\mathbf{D}	1	3	5	6	9

(Pages: 2)

Name

Reg. No.....

FIRST SEMESTER (CBCSS—UG) DEGREE EXAMINATION NOVEMBER 2021

B.C.A.

BCA 1C 02—DISCRETE MATHEMATICS

(2019—2020 Admissions)

Time: Two Hours

Maximum: 60 Marks

Section A (Short Answer Type Questions)

Answer all questions.

Each question carries 2 marks.

Ceiling 20 marks.

- 1. Construct the truth table for $\sim (pq)$.
- 2. Express in the symbolic form of 'Everyone who is healthy can do all kinds of work'.
- 3. Give an example of a relationship that is both symmetric and antisymmetric.
- 4. Define the greatest lower bound in Poset.
- 5. Show that in any graph, the number of vertices of odd degrees is even.
- 6. Define a Hamiltonian Graph.
- 7. Briefly explain the spanning tree.
- 8. Define binary tree. Give example.
- 9. What is a regular graph? Give an example.
- 10. Write the matrix representation of the following graph.

2 **D 13569**

- 11. Define chromatic graph. Give an example.
- 12. Explain logical equivalent and logical sequences of a proposition.

Section B (Short Essay Type Questions)

Answer all questions.

Each question carries 5 marks.

Ceiling 30 marks.

- 13. Prove that for any three propositions P, Q, R the compound proposition $(P \to (Q \to R)) \to ((P \to Q) \to (P \to R))$ is a tautology i) With truth table; ii) With laws of logic.
- 14. Define partially ordered set and Hasse diagram. Let $S = \{a, b, c\}$ then the power set $P(S) = \{\phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}\}$ is a Poset with respect to the relation inclusion \subseteq . Draw the Hasse diagram.
- 15. What is Isomorphism? Explain with an example.
- Write Kruskal's algorithm.
- 17. How do you represent a graph? Explain with an example
- 18. Prove that the maximum number of edges in a simple graph with n vertices is.
- 19. Define Adjacency matrix and incidence matrix of a graph. Give example.

Section C (Essay Type Questions)

Answer any **one** question.
The question carries 10 marks.

- 20. Prove that connected graph G with at least two vertices contains at least two vertices that are not cut vertices.
- 21. Explain the searching algorithms of the graph with an example.

 $(1 \times 10 = 10 \text{ marks})$

Reg. No.....

FIRST SEMESTER (CBCSS-UG) DEGREE EXAMINATION, NOVEMBER 2021 B.C.A.

BCA 1C 01—MATHEMATICAL FOUNDATION FOR COMPUTER APPLICATIONS

(2019--2020 Admissions)

Time: Two Hours

Maximum: 60 Marks

Section A (Short Answer Type Questions)

Answer **all** questions.

Each question carries 2 marks.

Ceiling 20 marks.

1. Define skew symmetric matrices.

2. If
$$A = \begin{bmatrix} 2 & 1 \\ 1 & 7 \end{bmatrix}$$
 and $B = \begin{bmatrix} -2 & 5 \\ 0 & 8 \end{bmatrix}$. Find $4A - 8B$.

- 3. Find the value of λ such that the vectors $\vec{a} = 2\vec{i} + 3\vec{j} + 4\vec{k}$ and $\vec{b} = 3\vec{i} + 2\vec{j} + \lambda \vec{k}$.
- 4. Show that the matrix $\begin{bmatrix} 2 & -1 \\ 1 & 3 \end{bmatrix}$ is non-singular.
- 5. Find the derivative of $x^2 \tan x$.
- 6. Find $\frac{dy}{dx}$, if $y = (1 + x^2) \cos x$.
- 7. Find $\int_0^2 \cos 2x \, dx$.
- 8. Evaluate $\int \cot x \, dx$.
- 9. Define an odd fy etion. What is

d function?

10. Evaluate
$$\int_0^{\frac{\pi}{4}} e^x \left(1 + \tan x + \tan^2 x\right) dx.$$

11. Find the determinant of the matrix
$$A = \begin{bmatrix} 1 & 0^{1} & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 4 \end{bmatrix}$$
.

12. Find the rank of the matrix $A = \begin{bmatrix} 5 & 2 \end{bmatrix}$.

Section B (Short Essay Type Questions)

Answer **all** questions.

Each question carries 5 marks.

Ceiling 30 marks.

13. If
$$A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \end{bmatrix}$$
. Verify that $A^2 - 4A - 5I = 0$.

14. Find the rank of the matrix
$$A = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 3 & -2 & 1 \\ 2 & 0 & -3 & 2 \end{bmatrix}$$
.

15. Find the derivative of e^x using the first principal.

16. Evaluate
$$\int \frac{x-5}{x^2-10x+11} dx.$$

17. Evaluate
$$\int \frac{1}{1+\sin x} dx$$
.

18. Solve the linear system:

$$-x_1 + x_2 + 2x_3 = 2$$

 $3x_1 - x_2 + x_3 = 6$
 $-x_1 + 3x_2 + 4x_3 = 4$.

19. Find the angle between the vectors a = [2, -1, 1] and $b = [-1 \ 3 \ 5]$.

Section C (Essay Type Questions)

Answer any **one** question. The question carries 10 marks.

20. a) If
$$A = \begin{bmatrix} 1 & -1 & 0 \\ 2 & 1 & 3 \\ 4 & 1 & 8 \end{bmatrix}$$
 and $B = \begin{bmatrix} 4 & 1 & 0 \\ 2 & -3 & 1 \\ 1 & 1 & -1 \end{bmatrix}$ then verify that $(AB)' = B'A'$.

b) Compute the inverse of a matrix
$$\begin{bmatrix} 1 & 0 & 2 \\ 2 & 1 & 0 \\ 3 & 2 & 1 \end{bmatrix}$$
.

21. a) Evaluate
$$\int \frac{x-1}{(x+1)(x-2)} dx$$

b) Evaluate
$$\int x \log x \, dx$$
.

$$(1 \times 10 = 10 \text{ marks})$$

D 13567	(Pages : 2)	Name
D 19901	(Pages : 2)	Name

Reg	No

FIRST SEMESTER (CBCSS—UG) DEGREE EXAMINATION NOVEMBER 2021

B.C.A.

BCA 1B 01—COMPUTER FUNDAMENTALS AND HTML

(2019-2020 Admissions)

Time: Two Hours

Maximum: 60 Marks

Section A (Short Answer Type Questions)

Answer all questions.

Each question carries 2 marks.

Ceiling 20 marks.

- 1. What are the different components of CPU?
- 2. Define the purpose of mother board.
- 3. What are the different types of computer language? Give examples for each.
- 4. What is Excess-3 code?
- 5. Define Maxterm.
- 6. How do you convert Is complement to 2s complement?
- 7. What are the symbols used in flowchart?
- 8. Write the algorithm to find the average of n numbers.
- 9. Define W3C.
- 10. What are Web browsers? Give two examples.
- 11. What are input types in HTML?
- 12. Define CSS Class.

Section B (Short Essay Type Questions)

Answer all questions.

Each question carries 5 marks.

Ceiling 30 marks.

- 13. Briefly discuss different types of RAM.
- 14. Differentiate primary storage and secondary storage devices with examples.

- 15. What is the difference between Octal and Hexadecimal number system? Give example.
- 16. Minimize the following Boolean expression using K-map -

$$F(A, B, C) = A'BC + A'BC' + AB'C' + AB'C$$

- 17. How do you find roots of quadratic equation? Briefly explain with an example.
- 18. Discuss briefly HTML media tags with example.
- 19. Briefly discuss the types of CSS with examples.

Section C (Essay Type Questions)

Answer any one question.

Each question carries 10 marks.

- 20. Discuss Von Neumann Model with diagram.
- 21. Design algorithm and flowchart for the following:
 - a) Solutions to the Quadratic Equation.
 - b) Finding Smallest number among N numbers.

 $(1 \times 10 = 10)$

\mathbf{D}	1	9	C	Λ	9
IJ	1	4	O	v	IJ

(Pages : 2)

Reg. No.....

FIRST SEMESTER (CBCSS—UG) DEGREE EXAMINATION, NOVEMBER 2021

B.C.A.

BCA 1C 02—DISCRETE MATHEMATICS

(2021 Admissions)

Time: Two Hours

Maximum: 60 Marks

Section A (Short Answer Type Questions)

Answer at least **eight** questions.

Each question carries 3 marks.

All questions can be attended.

Overall Ceiling 24.

- Define contradiction.
- 2. Define dual of proposition. Write the dual of $(P \wedge Q) \vee T$
- 3. Show that $\neg P \land P$ is a tautology.
- 4. Explain universal quantifier.
- 5. Define transitive relation. Show whether the relation $R = \{<1, 2>, <2, 3>, <1, 3>, <2, 1>\}$ is transitive.
- 6. Define Boolean algebra.
- 7. Define minterm.
- 8. Define partially ordered set.
- 9. Define subgraph of a graph with an example.
- 10. Define Euler Graph.
- 11. Define isolated vertex of a graph. Give an example.
- 12. Define an m-ary tree.

 $(8 \times 3 = 24 \text{ marks})$

Section B (Short Answer Essay Questions)

Answer at least **five** questions. Each question carries 5 marks. All questions can be attended. Overall Ceiling 25.

- 13. Prove distributive law in logic using truth table.
- 14. Show that $P \longrightarrow (Q \longrightarrow R) \Leftrightarrow (P \land Q) \longrightarrow R$ using laws of logic.

- 15. Let $X = \{1, 2, 3, 4\}$ If $R = \{\langle x, y \rangle / x \rangle y, x \& y \in X\}$.
 - (a) Write the elements of R and its matrix.
 - (b) Draw the digraph represents the relation.
- 16. Define equivalence class. Also write the equivalence classes modulo 3 generated by the elements of Z.
- 17. Show that the < P(X), $\subseteq > is$ a partially ordered set, where X is any set and P(X) is the power set of A.
- 18. Define isomorphism between two graphs. Show that the following graphs are isomorphic.

19. Show that in a complete binary tree the total number of edges is given by $2(n_i - 1)$. Where n_i is the number of terminal nodes.

 $(5 \times 5 = 25 \text{ marks})$

Section C (Essay Type Questions)

Answer any **one** question.

The question carries 11 marks.

- 20. Explain relation on a set. Also explain different types of relation on a set. Give examples for each relation.
- 21. (a) Explain Travelling Salesman Problem.
 - (b) Explain Breadth-first search algorithm for spanning tree.

 $(1 \times 11 = 11 \text{ marks})$

(Pages: 3)

Name.....

Reg. No.....

FIRST SEMESTER (CBCSS-UG) DEGREE EXAMINATION NOVEMBER 2021

B.C.A.

BCA 1C 01—MATHEMATICAL FOUNDATION FOR COMPUTER APPLICATIONS
(2021 Admissions)

Time: Two Hours

Maximum: 60 Marks

Section A

Answer atleast **eight** questions.

Each question carries 3 marks.

All questions can be attended.

Overall ceiling 24.

- 1. Define singular and non-singular matrix
- 2. Define principal diagonal of matrix.

3. If
$$A = \begin{bmatrix} x - y & 2x + z \\ 2x - y & 3z + w \end{bmatrix} = \begin{bmatrix} -2 & 5 \\ 0 & 8 \end{bmatrix}$$
. Then find x, y, z and w .

4. State the definition of Eigen value.

5. Evaluate the determinant
$$\begin{vmatrix} \cos n\theta & \sin n\theta \\ -\sin n\theta & \cos n\theta \end{vmatrix}$$

- 6. Define derivative of a function at a point.
- 7. State function of function rule.

8. Find
$$\frac{dy}{dx}$$
 if $y = \sqrt{\sin x}$.

- 9. Find the derivative of (x-1)(x-2).
- 10. Evaluate $\int_{1}^{2} x^{2} dx$.

- 11. Define an even function. What is the value of $\int_{-a}^{a} \cos x \, dx$?
- 12. Write any two properties of definite integral.

 $(8 \times 3 = 24 \text{ marks})$

Section B

Answer atleast **five** questions.

Each question carries 5 marks.

All questions can be attended.

Overall ceiling 25.

13. If
$$A = \begin{bmatrix} a & b & c \\ c & a & b \\ b & c & a \end{bmatrix}$$
, then prove that $|A| = a^3 + b^3 + c^3 - 3abc$.

14. If
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
 where $ad - bc \neq 0$ then find the inverse of A.

- 15. Find the vector perpendicular to the vectors 2i j + k and 3i + 4j k.
- 16. Find the derivative of $\cos x$ using the first principal.
- 17. Differentiate $e^x \log(\sin 2x)$.

18. Evaluate
$$\int \frac{3x+2}{x^2+3x+2}$$

19. Integrate
$$\frac{\cos^3 x + 1}{\cos^2 x}$$
.

Section C

Answer any **one** question.

$$x_1 - x_2 + x_3 = 4$$
$$2x_1 + x_2 - 3x_3 = 0$$
$$x + x_1 + x_2 - 2$$

$$\begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{bmatrix}$$

- CHANK THE BEYOR CULT

D 12607	(Pages : 2)	Name

Reg.	No
Keg.	No

FIRST SEMESTER (CBCSS-UG) DEGREE EXAMINATION NOVEMBER 2021

B.C.A.

BCA 1B 01—COMPUTER FUNDAMENTALS AND HTML

(2021 Admissions)

Time: Two Hours

Maximum: 60 Marks

Section A (Short Answers)

Answer atleast eight questions.

Each question carries 3 marks.

All questions can be attended.

Overall ceiling 24.

- 1. Explain language translators.
- 2. What are the functions of an output unit? Explain.
- 3. What is input interface? Explain with example.
- 5. What is Postulates? Write all postulates.
- 6. What is a Gray code?
- 7. What is flowchart? Draw flowchart for find smallest number from a list of numbers.
- 8. What are the different CSS fonts Properties? Explain.
- 9. Define URL.
- 10. What is the use of Formatting Tags in HTML? Explain any two.
- 11. What is a Web Pages?
- 12. What is class selector in CSS? Explain.

 $(8 \times 3 = 24 \text{ marks})$

Section B (Short Answers)

Answer atleast **five** questions. Each question carries 5 marks. All questions can be attended. Overall ceiling 25.

- 13. What are registers? List the six registers in CPU and describe the function of each.
- 14. List the different optical disks. Explain each with its operations.
- 15. What do you mean by 1's and 2's Complements? Explain complement subtractions.
- 16. What is Product of Sums? Covert $F = \prod (1, 2, 3)$ to Product of Sums.
- 17. What is top-down design? Explain different characteristic of an algorithm. Write an algorithm to find quadratic equation.
- 18. Explain how to create text, password, button and checkbox.
- 19. Explain how to control fonts in CSS.

 $(5 \times 5 = 25 \text{ marks})$

Section C (Essays)

Answer any **one** question. The question carries 11 marks.

- 20. (a) List out the different digital codes. Explain each in detail.
 - (b) Explain different Unicode encoding forms.
- 21. (a) Minimize four variables Boolean equation using K-map method. Explain.
 - (b) Explain De Morgan's Theorem.

 $(1 \times 11 = 11 \text{ marks})$

\mathbf{D}	1	2/75	
IJ	L	4410	

(Pages: 4)

Name.....

Reg. No.....

FIRST SEMESTER (CUCBCSS-UG) DEGREE EXAMINATION NOVEMBER 2021

B.C.A.

BCA 1C 02—DISCRETE MATHEMATICS

(2016—2018 Admissions)

Time: Three Hours

Maximum: 80 Marks

Part A (Objective Type)

Answer all ten questions.

- 1. Write an example for a proposition.
- 2. Which of the following is a tautology?
 - (i) 1+1=2.
 - (ii) The equation $x^2 + x + 1 = 0$ has no solution.
 - (iii) x + 3 = 5.
 - (iv) Mysore is in Tamilnadu.
- 3. Give an example of a relation which is antisymmetric.
- 4. State De Morgan's laws in Boolean algebra.
- 5. Write the complement of the Boolean expression (a + b')c.
- 6. Draw a graph having five vertices of degree 0, 1, 2, 2, 3.
- 7. Define a regular graph.
- 8. A tree with 11 vertices 11 edges doesn't exist. Why?
- 9. Draw a rooted tree with 5 vertices.
- 10. Which graph is called Kratowski's second graph?

 $(10 \times 1 = 10 \text{ marks})$

Part B (Short Answer Type)

Answer all five questions.

- 11. Give an example for a partial order relation.
- 12. Draw the symbol for NOT gate and its truth table.
- 13. Write the dual of the Boolean expressions:
 - (i) (x+0)+(1.x')=1; and (ii) $x\cdot(x'+y)=x\cdot y$.
- 14. Draw a graph with 4 vertices of degree 1, 1, 3 and 3. Is the graph simple?
- 15. If there is one and only one path between every pair of vertices in a graph, prove that the graph is a tree.

 $(5 \times 2 = 10 \text{ marks})$

Part C (Short Essay Type)

Answer any five questions.

- 16. With the help of truth table, obtain that the statement $p \vee \overline{p}$ is tautology.
- 17. Symbolize the following expressions:
 - (i) Some animals are vegetarians
 - (ii) Every student is tall.
- 18. In Boolean algebra, prove that $(a+b)' = a' \cdot b'$.
- 19. Define: (i) Loop; (ii) Parallel edge; (iii) Walk; and (iv) Path.
- 20. Define: (i) Cut vertex; and (ii) Cut edge. Give examples.
- 21. Prove that every connected simple graph has a spanning tree.
- 22. Either draw a graph with the given specifications or explain why no such graph exists:
 - (i) Rooted tree having 4 vertices.
 - (ii) Connected graph with 6 vertices and 5 edges having a non-trivial circuit.
- 23. With the help of an example, define dual of a plane graph.

OF CALICUT

Part D (Essay Type)

Answer any five questions.

24. Verify whether the statements are true/false:

(i)
$$(\forall n \in \mathbb{N}) (n+4>5)$$
.

(ii)
$$(\forall n \in \mathbb{N}) (n+1>5)$$
.

(iii)
$$(\exists n \in \mathbb{N}) (n + 9 < 8).$$

(iv)
$$(\exists n \in \mathbb{N}) (n + 5 < 7)$$
.

25. Which of the of the following relations are equivalence relations?

- (i) x R y if and only if x y is a multiple of 10 on the set of positive integers.
- (ii) x R y if and only if x < y on the set of integers.
- (iii) x R y if and only if x is perpendicular to y on the set of all straight lines in the plane.
- 26. Explain the concept of a Boolean algebra with the help of an example.
- 27. (a) Prove that every u, v-walk contains a u, v-path.
 - (b) Prove that if a graph possesses an Eulerian path, then it is connected and has either zero or two vertices of odd degree.
- 28. (a) Define a planar graph.
 - (b) Let G be a connected simple planar graph with $n \ (\ge 3)$ vertices and e edges. Prove that if G has no circuits of length 3, then $e \le 2n 4$.
 - (c) Is $K_{3,3}$ planar? Justify your answer.
- 29. Prove that the number of edges in a tree with n vertices is n-1.
- 30. Discuss how graphs can be used to formulate and solve network-flow problems.

- - (b) Draw the digraph corresponding to the adjacency matrix $\begin{bmatrix} 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix}$

 $(5 \times 8 = 40 \text{ marks})$

(Pages: 4)

Name.....

Reg. No.....

FIRST SEMESTER (CUCBCSS—UG) DEGREE EXAMINATION NOVEMBER 2021

B.C.A.

BCA 1C 01—MATHEMATICAL FOUNDATION OF COMPUTER APPLICATIONS

(2017—2018 Admissions)

Time: Three Hours

Maximum: 80 Marks

Part A

Answer all questions.

Each question carries 1 mark.

1. Define transpose of a matrix.

2. Find A + B where A =
$$\begin{bmatrix} 1 & 2 \\ 4 & 5 \end{bmatrix}$$
, B = $\begin{bmatrix} 9 & 4 \\ 2 & 8 \end{bmatrix}$.

- 3. Define eigen values.
- 4. State Cayley-Hamilton Theorem.
- 5. Define limits of a function.

6. Find
$$\frac{dy}{dx}$$
 if $y = \sin x + \cos x$.

- 7. Evaluate $\int x \log x \, dx$.
- 8. What is the value of $\int_{-a}^{a} f(x) dx$ if f(x) is an odd function. Define odd function.

9. Evaluate
$$\int \frac{2x}{1+x^2} dx$$

10. Evaluate $\int \tan x \, dx$.

Part B

Answer all questions. Each question carries 2 marks.

11. Check whether the given matrix is symmetric or skew symmetric
$$A = \begin{bmatrix} 1 & 0 & 4 \\ 0 & 2 & 5 \\ 4 & 5 & 3 \end{bmatrix}$$
.

- 12. Explain triangular matrices.
- 13. Find all Eigen values of the matrix $A = \begin{bmatrix} 5 & 4 \\ 1 & 2 \end{bmatrix}$.
- 14. Find $\frac{dy}{dx}$ if $y = (x^3 + x)^3$.
- 15. Find $\frac{dy}{dx}$ if $y = 4x^2 + 2x + 1$.
- 16. Evaluate $\int \cos 2x \, dx$.
- 17. Evaluate $\int 5e^{3x} dx$.
- 18. Find $\int_0^1 \frac{1}{x^2 + 2x + x} dx$.

 $(8 \times 2 = 16 \text{ marks})$

Part C

Answer any six questions.

Each question carries 4 marks.

- 19. Explain different types of matrices.
- 20. Find the inverse of the matrix $\begin{bmatrix} 1 & 3 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 4 \end{bmatrix}$.

- 21. Find the rank of the matrix $\begin{bmatrix} 1 & 2 & 3 & 2 \\ 2 & 3 & 5 & 1 \\ 1 & 3 & 4 & 5 \end{bmatrix}$.
- Find the derivative if $\sin x$ using first principle.
- 23. Find $\frac{dy}{dx}$ if $y = \frac{6x^2}{2-x}$.
- 24. Evaluate $\int \frac{1}{3 + \cos x} dx$.
- 25. Find $\int_0^\pi \frac{x}{1+\sin x} dx.$
- 26. Evaluate $\int_0^{\pi} \log(1+\cos x) dx$.
- 27. Prove that $\int_0^{\pi/4} \sin 2x \, dx = \frac{1}{2}$.

 $(6 \times 4 = 24 \text{ marks})$

Part D

- Answer any three questions. Each question carries 10 marks. $Each \ question \ carries \ 10 \ marks.$ 28. a) If $A = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 3 & 4 \\ -1 & 1 & 2 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 0 & 2 \\ 2 & 1 & 0 \\ 3 & 2 & 1 \end{bmatrix}$. Find the product AB and BA. Show that $AB \neq BA$.
 - b) Find the determinant of the matrix $A = \begin{bmatrix} 9 & 1 & 2 \\ 4 & 3 & 7 \\ 5 & 1 & 0 \end{bmatrix}$.

- a) Find the Eigen values of the matrix $\begin{bmatrix} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{bmatrix}$. 29.
 - b) Solve the system of equation using Gauss Jordan Method:

$$2x - y + 2z = 8$$

 $3x + 2y - 2z = -1$
 $5x + 3y - 3z = 3$.

30. a) Find
$$\frac{dy}{dx}$$
, if $y = \frac{4 \sin x}{2x + \cos x}$.

b) State and prove increment theorem.

31. a) Find
$$\frac{dy}{dx}$$
 if $y = \log \left[x + \sqrt{x^2 + 1} \right]$.

b) Evaluate $\int x^3 \sqrt{3+5x^4} dx$.

32. a) Evaluate
$$\int_{0}^{6} (2+5x) e^{\frac{1}{3}x} dx$$
.

b) Evaluate $\int_{0}^{\pi} x^{2} \cos 4x dx$.

 $(3 \times 10 = 30 \text{ marks})$

(Pages: 4)

Name.....

Reg. No.....

FIRST SEMESTER (CUCBCSS—UG) DEGREE EXAMINATION NOVEMBER 2021

B.C.A.

BCA 1C 01—MATHEMATICAL FOUNDATION OF COMPUTER APPLICATIONS

(2016 Admissions)

Time: Three Hours

Maximum: 80 Marks

Part A (Objective Type Questions)

Answer all questions (1–10). Each question carries 1 mark.

- 1. What is the rank of the matrix $\begin{bmatrix} 1 & 0 & 6 \\ 3 & 0 & 2 \end{bmatrix}$?
- 2. $\hat{k} \times \hat{j} =$
- 3. Define idempotent matrix.
- 4. What is the derivative of a^x ?
- 5. What is the integral of $\tan x$?
- 6. If f is an even function, then $\int_{-a}^{a} f(x) dx = \underline{\hspace{1cm}}$
- 7. Find the order and degree of the differential equation $(y'')^2 + (y')^3 + 4y = 2$.
- 8. What is the general solution of the differential equation $dy + \cos x \, dx = 0$.
- 9. Find the complementary function of the differential equation $y'' 2y' + y = e^x$.
- 10. Write the general form of quasi-linear first order partial differential equation.

Part B (Short Answer Type)

Answer all questions (11–15). Each question carries 2 marks.

11. Find
$$a, b, c$$
 and d , where, $\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$. $\begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$.

12. Evaluate
$$\overline{a} \times \overline{b}$$
, where $\overline{a} = 2\hat{i} - \hat{j}$ and $\overline{b} = \hat{i} + \hat{j} + \hat{k}$.

13. Integrate
$$x(x+1)(x+2)$$
.

14. Assume that a spherical rain drop evaporates at a rate proportional to its surface area. Form a differential equation involving the rate of change of the radius of the rain drop.

15. Solve:
$$(D^2 + D)$$
 $y = 0$, where $D = \frac{d}{dx}$.

 $(5 \times 2 = 10 \text{ marks})$

Part C (Short Essay Type)

Answer any five questions (16-23).

Each question carries 4 marks.

16. Find the eigen values of the matrix
$$\begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix}$$
.

17. Find the inverse of the matrix
$$\begin{bmatrix} 1 & 2 & 5 \\ 2 & 3 & 1 \\ -1 & 1 & 1 \end{bmatrix}$$

18. Using the first principle find the derivative of
$$\sqrt{x}$$
.

19. Find the derivative of
$$y = (x \sin x)^3$$
.

- 20. Integrate $\cos 5x \cos 2x$.
- 21. Evaluate $\int e^{\tan x} \sec^2 x \, dx$.
- 22. Solve the differential equation : $\frac{dy}{dx} = x \log x$.
- 23. Solve: $y'' + 2y' + y = \cos x$.

 $(5 \times 4 = 20 \text{ marks})$

Part D (Essay Questions)

Answer any five questions (24–31). Each question carries 8 marks.

- 24. Find the rank of the matrix $\begin{bmatrix} 1 & -1 & 0 & 2 & 1 \\ 3 & 1 & 1 & -1 & 2 \\ 4 & 0 & 1 & 0 & 3 \\ 9 & -1 & 2 & 3 & 7 \end{bmatrix}$ by reducing it to the row-echelon form.
- 25. Test for consistency and if consistent, solve completely:

$$5x + 3y + 3z = 48$$
; $2x + 6y - 3z = 18$; $8x - 3y + 2z = 21$.

26. Differentiate: (a)
$$y = \sqrt{\frac{1-\cos x}{1+\cos x}}$$
; and (b) $y = \sin^{-1}\left(\frac{2x}{1+x^2}\right)$.

27. Evaluate : $\int_{0}^{\frac{\pi}{2}} \frac{\sin 2\theta \, d\theta}{\sin^4 \theta + \cos^4 \theta}$

- 28. Solve: y' y x = 0.
- 29. Solve: $x^2y' = y^2 + xy + x^2$.
- 30. Solve: $y'' + 4y' + 5y = e^{2x} + \cos 4x$.
- 31. Form the partial differential equation by eliminating the arbitrary function f, where $z = f\left(x^2 + y^2\right)$.

(Pages: 2)

Name	
2 1 62 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	

Rog	No
neg.	140

FIRST SEMESTER (CUCBCSS—UG) DEGREE EXAMINATION NOVEMBER 2021

BCA

BCA 1B 01—COMPUTER FUNDAMENTALS AND HTML

(2017—2018 Admissions)

Time: Three Hours

Maximum: 80 Marks

Section A

Answer all questions. Each question carries 1 mark.

- 1. Write the use of language translator.
- 2. What is the function of a port?
- 3. What is postulates?
- 4. What is SOP?
- 5. What is computer programming?
- 6. Give two examples for high level programming language.
- 7. What is URL? Give example.
- 8. Why we use search engines?
- 9. Which tag is used to write subscripts?
- 10. What is a List?

 $(10 \times 1 = 10 \text{ marks})$

Section B

Answer all questions.
Each question carries 2 marks.

- 11. What is RAM and ROM?
- 12. What is Unicode?
- 13. What is K-map?
- 14. Represent the decimal number 147 in 2's complement form.
- 15. List the symbols used in flowchart.

- 16. What is the 2's complement of 0011010110011100.
- 17. What are the advantages of CSS?
- 18. Explain how CPU and memory works.

 $(8 \times 2 = 16 \text{ marks})$

Section C

2

Answer any six questions. Each question carries 4 marks.

- 19. With the help of a neat diagram, explain memory hierarchy.
- 20. Explain decimal and hexa-decimal number systems.
- 21. Explain how to find I's complement and 2's complement.
- 22. Explain basic logic gates with truth tables.
- 23. Differentiate between ordered and unordered list in HTML with suitable examples.
- 24. Draw a flowchart to check whether a number is odd or even.
- 25. Explain media tags in HTML with examples.
- 26. How to include CSS in a web page?
- 27. Explain navigation using anchor tag.

 $(6 \times 4 = 24 \text{ marks})$

Section D

Answer any three questions. Each question carries 10 marks.

- 28. Explain classification of computer languages with proper examples.
- 29. Explain laws and rules of Boolean algebra.
- 30. Write an algorithm and draw a flowchart to find the sum and average of N' natural numbers.
- 31. Write short notes on:
 - (a) HTML.

(b) XHTML.

(c) DHTML.

- (d) HTTP.
- 32. Design a form which accepts roll number, name, department, address, phone number, e-mail id, gender and hobbies of a student.

 $(3 \times 10 = 30 \text{ marks})$