|   | $\Omega \Lambda$ | C | 49 |
|---|------------------|---|----|
| U | 20               | O | 40 |

(Pages: 2)

| Name |
|------|
|------|

Reg. No.....

# SIXTH SEMESTER U.G. DEGREE EXAMINATION, MARCH 2022

(CBCSS—UG)

#### Instrumentation

# INS 6B 15B—INSTRUMENTATION IN PETRO-CHEMICAL INDUSTRIES

(2019 Admissions)

Time: Two Hours Maximum: 60 Marks

#### Section A

Answer atleast eight questions.
Each question carries 3 marks.
All questions can be attended.
Overall Ceiling 24.

- 1. Discuss theories behind the origin of crude oil.
- 2. List chemical properties of crude oil.
- 3. Classify petrochemicals.
- 4. Write chemical formula for chloromethane.
- 5. What is the purpose of drying?
- 6. Explain the three process involved in hydro cracking.
- 7. Describe the process of polymerization.
- 8. Define the process of sweetening.
- 9. List any four acetylene derivatives.
- 10. What is the operating principle of RTD?
- 11. Draw an orifice meter and explain working.
- 12. Mention any two types of pressure sensors.

 $(8 \times 3 = 24)$ 

#### Section B

Answer atleast **five** questions. Each question carries 5 marks. All questions can be attended. Overall Ceiling 25.

- 13. Describe PVC production process with process diagram.
- 14. Explain the process of alkylation with process diagram.

- 15. Describe the working of ultrasonic flow meter.
- 16. Explain the process of reforming.
- 17. Describe the process of distillation of crude oil.
- 18. Explain the working of vortex flow meter.
- 19. Define Intrinsic safety equipment. Explain its working.

 $(5 \times 5 = 25)$ 

## Section C

Answer any one question. Each question carries 11 marks.

- 20. Write short notes on : (i) Migration of crude oil and (ii) Basin mapping methods.
- 21. With necessary process diagrams explian LQ structure in distillation column.

 $(1 \times 11 = 11)$ 

|   | 200 | 21        | 1 |
|---|-----|-----------|---|
| U | 400 | <b>34</b> | T |

(Pages: 2)

Name.....

Reg. No....

# SIXTH SEMESTER U.G. DEGREE EXAMINATION, MARCH 2022

(CBCSS—UG)

Instrumentation

INS 6B 14—PLC AND SCADA

(2019 Admissions)

Time: Two Hours Maximum: 60 Marks

#### Section A

Answer atleast eight questions.

Each question carries 3 marks.

All questions can be attended.

Overall Ceiling 24.

- 1. What are the types of inputs in PLC?
- 2. List out the languages used in PLC programing.
- 3. What are the types of PLCs.
- 4. Write a PLC program to implement AND logic.
- 5. What is meant by NO and NC conditions in PLC?
- 6. What are the advantages of ladder language?
- 7. Give the limitations of PLC automation system.
- 8. Differentiate between sourcing mode and sinking mode connections.
- 9. Write a PLC program to turn on a Lamp 5 seconds after the input swich is turned on.
- 10. Give applications of SCADA system.
- 11. What is meant by data acquisition systems?
- 12. List out the protocols used for communication in SCADA systems.

 $(8 \times 3 = 24 \text{ marks})$ 

## Section B

Answer atleast **five** questions. Each question carries 5 marks. All questions can be attended. Overall Ceiling 25.

- 13. With necessary diagrams explain how AC output units are connected to PLC.
- 14. Explain the steps for executing a program in PLC.

- 15. Write a PLC program to implement the SOP expression  $Y = \overline{A}B + B(\overline{C} + D)$ .
- 16. Compare relays and PLCs.
- 17. Discus different types of counters used in PLC. Distinguish between counters and timers.
- 18. How AC and DC inputs are interfaced in PLC, explain with neat diagrams?
- 19. Explain the architecture of SCADA systems.

 $(5 \times 5 = 25 \text{ marks})$ 

#### Section C

Answer any one question.

The question carries 11 marks.

- 20. Two motors are to be controlled in a sequence. The second motor starts 30 seconds after the starting of first motor by a push switch. Develop a PLC ladder diagram for the following cases and describe the circuit.
  - Case (A): Only one motor operates at a time.
  - Case (B): Both the motor gets off together after 50 seconds
- 21. With a neat diagram explain the automation in water purification system using SCADA.

 $(1 \times 11 = 11 \text{ marks})$ 

## SIXTH SEMESTER U.G. DEGREE EXAMINATION, MARCH 2022

(CBCSS—UG)

#### Instrumentation

#### INS 6B 13—INSTRUMENTATION SYSTEM DESIGN

(2019 Admissions)

Time: Two Hours Maximum: 60 Marks

#### Section A

Answer atleast eight questions.

Each question carries 3 marks.

All questions can be attended.

Overall Ceiling 24.

- 1. List out any two components of instrumentation system.
- 2. Which materials are used to construct pipes?
- 3. What are the methods of engineering analysis?
- 4. Define valve co-efficient CV.
- 5. List out any two hazards in using electric circuits.
- 6. State the operating principle of venture meter.
- 7. What are intrinsic safety barrier?
- 8. Differentiate piping and tubing.
- 9. How earthling is done?
- 10. What are the responsibilities of a process engineer?
- 11. How to prepare a bid document?
- 12. What is a graphical LCD?

 $(8 \times 3 = 24 \text{ marks})$ 

Reg. No....

#### Section B

Answer atleast five questions.

Each question carries 5 marks.

All questions can be attended.

Overall Ceiling 25.

- 13. Classify control valves.
- 14. A K type thermocouple produces a voltage which is measured by the potentiometer as 25mV. Determine the temperature T when the Reference Junction isothermal block is indicated by a thermistor as 0° C. Use the seeback co-efficient for 20° C.
- 15. Derive differential equation of flow nozzle.
- 16. List out the five factors to be considered while selecting a control valve.
- 17. How flow is measured by using orifice plate?
- 18. List major data that must include in instrument loop diagram.
- 19. Discuss steps involved in design of control panel.

 $(5 \times 5 = 25 \text{ marks})$ 

#### Section C

Answer any one question.

Each question carries 11 marks.

- 20. Write short notes on: (i) Construction of electronic instruments and (ii) Construction of mechanical instruments.
- 21. Discuss in detail how to start and execute an instrumentation project.

 $(1 \times 11 = 11 \text{ marks})$ 

| C 20639 | (Pages : 2) |
|---------|-------------|
|         |             |

| Name    | ٠. |
|---------|----|
| Reg. No |    |

## SIXTH SEMESTER U.G. DEGREE EXAMINATION, MARCH 2022

(CBCSS—UG)

#### Instrumentation

## INS 6B 12—PROCESS CONTROL INSTRUMENTATION

(2019 Admissions)

Time: Two Hours

Maximum: 60 Marks

#### Section A

Answer atleast eight questions.
Each question carries 3 marks.
All questions can be attended.
Overall Ceiling 24.

- 1. Differentiate between manipulated variable and controlled variable.
- 2. Enumerate the criteria for evaluating process control loops.
- 3. What is meant by self regulation?
- 4. Define proportional band.
- 5. Write the controller output equation for a P + I controller.
- 6. What is meant by Direct Digital Control?
- 7. Mention type of valves according to the construction.
- 8. Define digital control.
- 9. What is actuators?
- 10. Give the schematic of a flapper-nozzle system for two position controller.
- 11. Give the advantages of a derivative controller.
- 12. List out the advantages of digital control system.

 $(8 \times 3 = 24)$ 

#### Section B

Answer atleast **five** questions. Each question carries 5 marks. All questions can be attended. Overall Ceiling 25.

- 13. With a neat block diagram explain the basic process control loop.
- 14. Explain digital process control. Give example.

15. What is an integral mode control? Graphically show the relation between rate of change of error and  $K_1$  (integral constant)?

- 16. Differentiate between data loggers and data acquisition system.
- 17. Differentiate between air-to-open and air-to-close valve.
- 18. With a neat diagram explain the analog ON-OFF controller with neutral zone.
- 19. Write short notes on : (1) Analog and (2) Pneumatic controllers.

 $(5 \times 5 = 25)$ 

## Section C

Answer any one question. Each question carries 11 marks.

- 20. Illustrate the functions of op-amp implementation of P, PI, PD and PID controllers.
- 21. Write short notes on tuning using: (1) Process reaction curve method and (2) Ziegler Nichols Method.

 $(1 \times 11 = 11)$ 

| C 20    | 1900                                                         | (D)                                                      |                                       |
|---------|--------------------------------------------------------------|----------------------------------------------------------|---------------------------------------|
| C 20200 |                                                              | ( <b>Pages</b> : 3)                                      | Name                                  |
|         |                                                              |                                                          | Reg. No                               |
| SIX     | TH SEMESTER (CUCBCSS-                                        | –UG) DEGREE EXA                                          | AMINATION, MARCH 2022                 |
|         |                                                              | Instrumentation                                          |                                       |
|         | ITN 6B 1                                                     | 4—MICROCONTROLL                                          | ERS                                   |
|         | (2014                                                        | 4 to 2017 Admissions)                                    |                                       |
| Time    | : Three Hours                                                |                                                          | Maximum : 80 Marks                    |
|         | Section A                                                    | (Objective Type Questi                                   | ions)                                 |
|         |                                                              | answer <b>all</b> questions.<br>question carries 1 mark. |                                       |
| 1.      | In the implied or implicit addressin operands. (True/False)  | ng mode, the instructions                                | don't have any source or destination  |
| 2.      | PSW register is also referred to as                          | the flag register. (True/Fa                              | lse)                                  |
| 3.      | The 8255 IC is used as a PP1 IC. T                           | he abbreviation PPI stand                                | ds for ———.                           |
| 4.      | The instruction: INC A does not aff                          | fect the Carry flag. (True/                              | False)                                |
| 5.      | When the 8051 is powered up, the                             | SP register contains value                               | e <del></del> .                       |
| 6.      | The abbreviation ADC stands for -                            |                                                          |                                       |
| 7.      | LCALL instruction can be used to c<br>the 8051. (True/False) | all subroutines available v                              | vithin the 64 K-byte address space of |
| 8.      | The size of scratch pad in the RAM                           | of 8051 is ——— byt                                       | es.                                   |
| 9.      | The 8051 microcontroller has                                 | —— parallel 8-bit ports.                                 |                                       |
| 10.     | All interrupts in 8051 can be disable                        | ed by clearing the EA bit                                | of the ——— same register.             |
|         | 2                                                            |                                                          | $(10 \times 1 = 10 \text{ marks})$    |
|         | Section B (S                                                 | hort Answer Type Que                                     | stions)                               |
|         | One                                                          | or two sentences each.                                   |                                       |

Answer any ten questions.

Each question carries 2 marks.

- 11. What is the function of the 'parity' flag?
- 12. What is the value in the accumulator after the execution of this code snippet?

MOV A, #0

MOV R2, #10

AGAIN: ADD A, #02

DJNZ R2, AGAIN

13. What is the use of XRL instruction? What is the value stored in the accumulator after execution of the following instructions?

2

MOV A, #44H

XRL A, #40H

- 14. What is the function of Program Counter register in 8051?
- 15. Considering the crystal frequency XTAL = 11.0592 MHz, what will be the timer clock frequency and period?
- 16. Considering the 8051 crystal frequency XTAL = 11.0592 MHz, what is the frequency provided by the UART to Timer 1 to set baud rate?
- 17. What is the role of SCON register in in 8051?
- 18. What happens if the 8051 is executing an ISR belonging to an interrupt and another interrupt is activated?
- 19. If both INTO and INTI in the IP are set to high, what happens if both are activated at the same time using low-level-triggered interrupts?
- 20. For a given ADC with 8-bit resolution and the reference voltage  $V_{ref} = 2.56$  V. calculate the 8-bit binary output if the analog input is 1.28 V.
- 21. What is the difference between serial and parallel ADCs?
- 22. What is a DAC?

 $(10 \times 2 = 20 \text{ marks})$ 

## Section C (Paragraph Type Questions)

Answer any six questions.

Each question carries 5 marks.

- 23. Describe the RAM memory allocation in 8051 microcontroller.
- 24. Explain the Indirect Addressing mode in 8051.
- 25. Explain (he role of C'/T bit in the TMOD register that decides the source of the clock for the timer.
- 26. Briefly describe the Serial Port Control Register (SCON) of 8051 and the function of each of the SCON bits.
- 27. Describe the working of edge-triggered external interrupts in 8051.
- 28. Describe in brief, the working of a typical keyboard.
- 29. Assume that crystal frequency for the 8051 is XTAL = 11.0592 MHz. What value do we need to load into the timer's registers if we want to have a time delay of 6ms (milliseconds)?
- 30. Describe in brief, the simplex and duplex modes of data communication.
- 31. Briefly describe the different operating modes of 8255.

## Section D (Essay Type Questions)

Answer any **two** questions. Each question carries 10 marks.

- 32. Describe a typical microcontroller with the help of a block diagram.
- 33. Describe the pins and the signals at each pin for the 8051 microcontroller (using the 40-pin DIP configuration) with the help of an appropriate pinout diagram.
- 34. Describe the PSW (Program Status Word) register and the function of each of the bits in PSW.
- 35. Assume that XTAL 11.0592 MHz. What value do we need to load into the timer's registers if we want to have a time delay of 6 milliseconds? Write the code for Timer 0 to create a pulse width of 6 milliseconds on P2.3.

 $(2 \times 10 = 20 \text{ marks})$ 

| C <b>20</b> 3 | 199        | (Pag                                   | es:   | 3)                | Name                     | ••••••       |
|---------------|------------|----------------------------------------|-------|-------------------|--------------------------|--------------|
|               |            |                                        |       |                   | Reg. No                  | •••••        |
| SIXT          | H SE       | MESTER (CUCBCSS—UG) I                  | )E(   | REE EXAM          | INATION, MARC            | H 2022       |
|               |            | Instrun                                | ient  | ation             |                          |              |
|               |            | ITN 6B 12PROCESS COI                   | ۷TR   | OL INSTRUM        | ENTATION                 |              |
|               |            | (2014 to 201                           | 7 A   | dmissions)        |                          | U            |
| Cime :        | Three      | Hours                                  |       |                   | Maximum:                 | 80 Marks     |
|               |            | Section A (Object                      | ve '  | Гуре Question     | s)                       |              |
|               |            | Answer a                               | 1 qu  | estions.          | 1,0                      |              |
|               |            | 1 mar                                  | k ea  | ech.              |                          |              |
| 1.            | The inp    | out of a controller is :               |       | . 1               | 0                        |              |
|               | a)         | Sensed signal.                         |       |                   |                          |              |
|               | b)         | Error signal.                          |       | 611               |                          |              |
|               | c)         | Desired variable value.                |       | 2                 |                          |              |
|               | d)         | Signal of fixed amplitude not deper    | nden  | t on desired var  | able value.              |              |
| 2.            | Feedba     | ck path element measure only input     | par   | ameters.          |                          |              |
|               | a)         | True.                                  | b)    | False.            |                          |              |
| 3.            | A gain     | setting of 0.8 is equivalent to a prop | ortic | onal band setting | g of ———.                |              |
| 4.            | A condi    | tion where integral control action dr  | ives  | the output of a   | controller ini saturatio | n is called: |
|               | a)         | Self-bias.                             | b)    | Wind-up.          |                          |              |
|               | <b>c</b> ) | Repeat.                                | d)    | Noise.            |                          |              |
|               | <b>e</b> ) | Offset.                                |       |                   |                          |              |
| 5.            | Deriva     | tive output compensation :             |       |                   |                          |              |
|               | a)         | Improvement in transient response      | .b)   | Reduction in st   | eady state error.        |              |

c) Reduction is settling time. d) Increase in damping constant.

6. Which one of the following is a disadvantage of proportional controller?

•

) It destabilises the system. b) It produces offset.

d) It makes response faster. d) It has very simple implementation.

| 7. | A first order dynamic linear system with a proportional controller exhibits an offset to a unit step |
|----|------------------------------------------------------------------------------------------------------|
|    | input. The offset can be reduced by:                                                                 |

2

- Decreasing the proportional gain. b) Adding derivative mode.

- Adding integral mode.
- d) Increasing the proportional gain.
- 8. In proportional integral control, integral action is used to
  - a) Increase speed of response.
- b) Minimise overshoot.

Minimise cycling.

- d) Minimise steady state error.
- is the algebraic difference between the measured value of a variable and the ideal value.
- 10. Reset control action is often expressed in units of:
  - Percent.

b) Seconds per rate.

Minutes.

Repeats per minute.

Time constant ratio.

 $(10 \times 1 = 10 \text{ marks})$ 

## Section B (Short Answer Type Questions)

One or two sentences each. Answer any ten questions. 2 marks each.

- 11. What is the need for Process Control?
- 12. What is floating control mode?
- 13. Define process load.
- 14. Mention any two drawbacks of derivative controller.
- 15. What is the relation between proportional control band and proportional gain?
- 16. Sketch electronic ON-OFF controller.
- 17. Define offset.
- 18. Sketch the input-output characteristic of single speed floating controller.
- 19. Define controller tuning.
- 20. What is the principle of electric actuators?
- 21. Give any two example of digital process control.
- 22. What is the function of actuator?

## Section C (Paragraph Type Questions)

Answer any **six** questions. 5 marks each.

- 23. Discuss about three-mode controller. Mention its advantages.
- 24. Why do we need mathematical modelling of process?
- 25. Why is the electronic controller preferred to pneumatic controller?
- 26. Explain the open loop method of tuning with neat diagrams.
- 27. Differentiate floating controller mode and continuous controller mode.
- 28. Explain the functioning of I/P converter with a neat sketch.
- 29. What are the advantages and disadvantages of PI control?
- 30. Draw the block diagram of a process control system.
- 31. Discuss how the stability is affected for integral and derivative control.

 $(6 \times 5 = 30 \text{ marks})$ 

## Section D (Essay Type Questions)

Answer any **two** questions. 10 marks each.

- 32. Draw the circuit for electronic PID controller and describe the working.
- 33. Explain in detail about direct digital control using a suitable block diagram.
- 34. Explain different types of electrical actuators.
- 35. Explain the basic elements of a process-control system.

 $(2 \times 10 = 20 \text{ marks})$ 

|   | 1 | 995        |
|---|---|------------|
| U |   | <b>433</b> |

(Pages: 3)

| Name    | ••••• | ••••• | •••••• | ••••• |
|---------|-------|-------|--------|-------|
| Reg. No |       |       |        |       |

# SIXTH SEMESTER (CUCBCSS—UG) DEGREE EXAMINATION **MARCH 2021**

## Instrumentation

## ITN 6B 13—BIOMEDICAL INSTRUMENTATION

| $\Gamma$ ime: $\Gamma$ | 'hree | Hours | Maximum |  | 80 | Mark | (5 |
|------------------------|-------|-------|---------|--|----|------|----|
|------------------------|-------|-------|---------|--|----|------|----|

|     | Section A (Objective Type Questions)                                                         |
|-----|----------------------------------------------------------------------------------------------|
|     | Answer all questions.                                                                        |
|     | 1 mark each.                                                                                 |
| 1.  | The process of changing of a cell from the resting state to the action potential is called   |
| 2.  | The horizontal segment of ECG waveform preceding the P wave is designated as the baseline or |
|     | the ———— line.                                                                               |
| 3.  | The ———— interval represents the time during which the excitation wave is delayed in         |
|     | the fibers near the AV node.                                                                 |
| 4.  | In the standard 12-lead ECG measurement, the number of limb leads used is ————.              |
| 5.  | Electrodes used to measure bioelectric potentials near or within a single cell are           |
|     | called ————.                                                                                 |
| 6.  | Needle electrodes are used to measure ECG, EEG, and EMG potentials from the surface of the   |
|     | skin. (True/False).                                                                          |
| 7.  | An is a circuit is used to increase the amplitude of the measured biomedical                 |
|     | signal.                                                                                      |
| 8.  | The system is an organ system that permits blood to circulate and transport                  |
|     | nutrients and blood cells in the body.                                                       |
| 9.  |                                                                                              |
| V   | for this purpose, have now been widely replaced by other more modern methods. (True/False)   |
| ιο. | temperature is a measure of the basic temperature of the complete organism.                  |
|     | $(10 \times 1 = 10 \text{ marks})$                                                           |

## Section B (Short Answer Type Questions)

One or two sentences each. Answer any ten questions.

2 marks each.

- 11. How are bioelectric potentials generated?
- 12. What are augmented unipolar limb leads used in ECG measurement?
- 13. What is EEG?
- 14. What is the difference between measurement using unipolar and bipolar needle electrodes?
- 15. What is the need of signal conditioning in biomedical instruments?
- 16. What is cardiovascular system?
- 17. What is an arrhythmia?
- 18. What are Korotkoff sounds?
- 19. What is Alkalosis?
- 20. What is capacitance plethysmograph?
- 21. How can the intensity of X-rays be controlled?
- 22. What are the commonly used electronic temperature-sensing devices used in biomedical applications?

 $(10 \times 2 = 20 \text{ marks})$ 

# Section C (Paragraph Type Questions)

Answer any **six** questions.

5 marks each.

- 23. Explain briefly, the types of electrodes used for measurement of bioelectric potentials.
- 24. Briefly explain the working of a Doppler-type ultrasonic blood flowmeter.
- 25. Explain the placement of the three bipolar limb leads for ECG measurement.
- 26. Briefly explain the technique of quantification of EMG using time-integral of EMG waveform.
- 27. Briefly explain 'evoked potentials' and their measurement.
- 28. Explain in brief, the principle behind the measurement of blood pressure using Sphygmomanometer.
- 29. What are the major advantages and disadvantages of using laser for medical therapy and treatment?

- 30. Explain diathermy and its use in therapy?
- 31. What is fibrillation? How can this medical condition be rectified?

 $(6 \times 5 = 30 \text{ marks})$ 

## Section D (Essay Type Questions)

Answer any two questions.

10 marks each.

- 32. What is the role of the cardiovascular system? Describe the working of the human cardiovascular system with the help of a relevant diagram.
- 33. With the help of a diagram, describe the 10-20 electrode configuration for EEG measurement.
- 34. Explain the 12-lead ECG measurement with the help of relevant diagrams.
- 35. Explain working of Magnetic blood flow meters with the help of a neat diagram.

 $(2 \times 10 = 20 \text{ marks})$