FOURTH SEMESTER (CBCSS-UG) DEGREE EXAMINATION, APRIL 2022

Instrumentation

INS 4B 06—ELECTRIC CIRCUITS AND MEASURING INSTRUMENTS

(2019 Admission onwards)

Time: Two Hours

Maximum: 60 Marks

Section A

Answer atleast eight questions.

Each question carries 3 marks.

All questions can be attended.

Overall ceiling 24.

- 1. State Thevenin's theorem.
- 2. Prove Kirchhoff's voltage law.
- 3. List the procedure to solve maximum power transfer theorem.
- 4. Compare PMMC and PMMI instruments.
- 5. What is the significance of damping torque in indicating instruments?
- 6. Compare attraction and repulsion type instruments.
- 7. List advantages and disadvantages of dynamometer type watt meter.
- 8. What is the operating principle of a.c. potentiometer?
- 9. Derive balance condition for A.C. bridges.
- 10. List any two applications of CRO.
- 11. What are the different modes of Digital Storage Oscilloscope?
- 12. What is the working principle of Digital Multimeter?

 $(8 \times 3 = 24 \text{ marks})$

Reg. No.....

Section B

Answer atleast **five** questions.

Each question carries 5 marks.

All questions can be attended.

Overall ceiling 25.

- 13. Describe how delta is converted into star circuit.
- 14. Find the current flowing through 20 Ω resistor of the following circuit using Nodal analysis:

- 15. Describe the working of PMMC instruments with diagram.
- 16. Derive balance equation for Schering bridge.
- 17. Find V_{Th} and R_{Th} from the circuit :

3 C 21544

- 18. Explain the construction and working of three-phase energy meter.
- 19. Derive balance equation of Wheatstone's bridge.

 $(5 \times 5 = 25 \text{ marks})$

Section C

Answer any one question.

The question carries 11 marks.

- 20. State and prove superposition theorem. Describe steps involved to find out solution.
- 21. Draw block diagram of CRO and explain its working.

 $(1 \times 11 = 11 \text{ marks})$

FOURTH SEMESTER (CBCSS—UG) DEGREE EXAMINATION APRIL 2022

Instrumentation

INS 4B 05—INDUSTRIAL INSTRUMENTATION—II

(2019 Admission onwards)

Time: Two Hours

Maximum: 60 Marks

Section A (Short Answer Type Questions)

Answer at least eight questions.

Each question carries 3 marks.

All questions can be attended.

Overall Ceiling 24.

- 1. How is volumetric flowrate different from mass flowrate?
- 2. Explain the working principle of variable head flowmeters.
- 3. Differentiate between laminar and Turbulent flow.
- 4. Illustrate the advantages of using valve positioners.
- 5. What is the role of a final control element? Give example.
- 6. Mention some applications of rupture disc.
- 7. Differentiate between Absolute and Kinematic Viscosity.
- 8. What is air quality index? What is its range of measurement?
- 9. What is relative density?
- 10. What is the working principle behind float densitometers.
- 11. What is an analyser? Give examples.
- 12. How does density differ from viscosity?

 $(8 \times 3 = 24 \text{ marks})$

Reg. No.....

Section B (Paragraph Type Questions)

Answer at least five questions.

Each question carries 5 marks.

All questions can be attended.

Overall Ceiling 25.

- 13. With suitable diagram, derive the velocity equation of a transit time ultrasonic flowmeter.
- 14. Write short notes on Pitot tube.
- . 15. Explain about spring and diaphragm actuators with suitable diagram.
 - 16. What are the 3 valve characteristics? Explain.
- 17. Illustrate the working ORSAT Apparatus.
- 18. What are the different types of air pollutants and their harmful effects?
- 19. Explain about Fahrenheit hydrometer.

 $(5 \times 5 = 25 \text{ marks})$

Section C (Essay Type Questions)

Answer any one question.

The question carries 11 marks.

- 20. Explain in detail about any two Industrial type viscometers.
- 21. Explain the principle, construction and working of Venturi meter. Also Derive the expression for volumetric flowrate.

 $(1 \times 11 = 11 \text{ marks})$

ages: 4) Name	
a	ges : 4) Name

Reg.	No

FOURTH SEMESTER (CUCBCSS—UG) DEGREE EXAMINATION APRIL 2022

Instrumentation

ITN 4B 06—ELECTRICAL AND ELECTRONIC INSTRUMENTATION

		M AD OO—BUBCI	INICAL AND E	ישעי	CIRONIC INSTRU	MENTATION
			(2018 Ac	lmis	ssions)	
Time : Thr	ee F	Iours				Maximum: 80 Marks
		Sec	tion A (Objecti	ive '	Type Questions)	7,0
			Answer al	l qu	estions.	N .
			1 mar	k ea	ch.)
1. A 1	00 !	Ω resistor is to be	used in a circuit	carr	rying a current of 0.	5A. Its power rating should
be -		watt.				
((a)	50.	((b)	25.	
	(c)	200.	((d)	500.	
2. Wh	ile I	Thevenizing a circui	t between two ter	rmin	nals, $V_{ m th}$, equals ——	 .
•	(a)	Short-circuit termi	nal voltage.			
	(b)	Open circuit termin	nal voltage.			
	(c)	Net voltage availal	ole in the circuit.			
((d)	None of the above.	2			
3. The	e ma	ximum power is deli	vered from a sou	rce t	o its load when the lo	ad resistance is ———— the
		resistance.				
((a)	Greater than.	((b)	Less than.	
	(c)	Equal to.	((d)	Less than or equal	to.
4. The	e ser	sitivity of a voltmet	er is given by the	e:		
	(a)	Ohms/Volt.				
	(b)	Reciprocal of full so	cale deflection cu	rren	t.	
	(c)	Both (a) and (b).				
	\ \ \ \ \	ACCUAL (M) MANG (M)				

(d) None of the above.

5.	The fur	nction of shunt in an ammeter is to :
	(a)	By pass the current.
	(b)	Increase the sensitivity of the ammeter.
	(c)	Increase the resistance of the ammeter.
	(d)	None of the above.
6.	Basic p	principle of a Q-meter is:
	(a)	Electromagnetic induction.
	(b)	Kirchhoffs voltage law.
	(c)	Series resonance.
	(d)	Wheat stones principle.
7.	An osci	illoscope caiinot be used to indicate :
	(a)	Voltage. (b) Energy.
	(c)	Wave shape. (d) Frequency.
8.	In a Du	ual trace CRO ———— used to generate two traces.
	(a)	One electron beam is.
	(b)	Two electron beams are.
	(c)	Two vertical amplifiers are.
	(d)	None of the above.
9.	A digita	al multimeter suffer ———— from electric noise.
	(a)	More. (b) Less.
	(c)	Free. (d) None of the above.
10.	An inst	trument which generates different types of waveforms are called :
	(a)	Digital storage oscilloscope.
	(b)	Phase shift oscillator.
	(c)	Function generator.
	(4)	Sauara waya gaparatar

C 21295

Section B

3

Short answers type questions (one or two sentences each).

Answer ten (2 marks).

- 11. What is an ideal-constant voltage source?
- 12. State Thevenin's theorem.
- 13. What is Kirchhoffs current law?
- 14. Sketch and explain a shunt type ohmmeter,
- 15. What are thermal type watt meters?
- 16. What are the advantages of Hay's bridge?
- 17. A 2mA meter with an internal resistance of 100 Ω is to be converted to 0 150 mA ammeter. Calculate the value of the shunt resistance required.
- 18. What is meant by the loading effect of the voltmeters?
- 19. Briefly explain electronic voltmeters.
- 20. Explain the principle and operation of Hall effect.
- 21. Give an account of Analog phase meter.
- 22. Explain the use of multimeter for resistance measurement.

 $(10 \times 2 = 20 \text{ marks})$

Section C (Paragraph Type Questions)

Answer any six questions.

5 marks each.

- 23. State and explain superposition theorem.
- 24. Briefly explain Delta/Star transformation.
- 25. With a diagram explain the principle of moving coil galvanometer.
- 26. Draw and explain Analog frequency meter.
- 27. Distinguish between Dual trace CRO and Dual beam CRO.

C 21295

- 28. Draw and explain digital phase meter.
- 29. With a suitable diagram, explain DC ammeter.
- 30. Explain the calibration of the shunt type Ohmmeter.
- 31. State and explain the compensation theorem.

 $(6 \times 5 = 30 \text{ marks})$

Section D (Essay Type Questions)

4

Answer any two questions.

10 marks each.

- 32. State and prove Norton's theorem.
- 33. Explain: (a) Digital Storage Oscilloscope; and (b) Transistor voltmeter.
- 34. Give an account of: (a) Maxwell's inductance bridge; (b) Triggered sweep in a CRO.
- 35. With a relevant diagram explain the principle and working of: (a) Standard signal generator; (b) Function generator.

 $(2 \times 10 = 20 \text{ marks})$