THIRD SEMESTER (CBCSS—UG) DEGREE EXAMINATION NOVEMBER 2021

Electronics

ELE 3C 05—DIGITAL ELECTRONICS

(2019—2020 Admissions)

Time: Two Hours

Maximum: 60 Marks

Section A

Answer at least eight questions.

Each question carries 3 marks.

All questions can be attended.

Overall Ceiling 24.

- 1. What are alphanumeric codes? For what they are used?
- 2. What is 1' complement representation method?
- 3. State and prove associative law of Boolean algebra.
- 4. What is a Maxterm?
- 5. Can a multiplexer be used to realize logic functions? If yes, in what ways this realization is better than realization using logic gates?
- 6. What is an Encoder?
- 7. What do you mean by toggling?
- 8. What are the types of loading in a shift register?
- 9. What are the asynchronous inputs of a flip-flop?
- 10. List any four applications of counters.
- 11. What are RAMs? How they differ from ROMs?
- 12. Is ROM a volatile memory? Explain.

 $(8 \times 3 = 24 \text{ marks})$

Reg. No.....

Section B

Answer at least **five** questions. Each question carries 5 marks. All questions can be attended. Overall Ceiling 25.

- 13. Given $A\overline{B} + \overline{A}B = C$, show that $A\overline{C} + \overline{A}C = B$.
- 14. Discuss hexadecimal number system.
- 15. Realize the logic expression using MUX. F1 = $\sum m(1, 3, 4, 7, 12, 14, 15)$.
- 16. Realize a full adder using NAND gates only.
- 17. With neat diagrams, explain the working of 4-bit ring counter.
- 18. With neat diagrams, explain the operation of T and D flip-flops.
- 19. What are the different types of ROMs? Explain.

 $(5 \times 5 = 25 \text{ marks})$

Section C

Answer any one question.

The question carries 11 marks.

- 20. What are the different types of gates? Explain in detail each of them.
- 21. Design a 3 bit synchronous up counter.

 $(1 \times 11 = 11 \text{ marks})$

D 12009	Pages: 2)	Name
----------------	-----------	------

Rag	No		

THIRD SEMESTER (CBCSS-UG) DEGREE EXAMINATION NOVEMBER 2021

Electronics

ELE 3B 05—DIGITAL ELECTRONICS

(2019—2020 Admissions)

Time: Two Hours Maximum: 60 Marks

Section A

Answer atleast eight questions.

Each question carries 3 marks.

All questions can be attended.

Overall ceiling 24.

- 1. What are universal gates? Why are they called so?
- 2. Convert the following numbers to hexadecimal:
 - (a) $(1011011011)_2$; (b) $(1101101101101.1011)_2$; (c) $(176245)_8$ d) $(409657)_{10}$.
- 3. State commutative law and associative law of Boolean algebra.
- 4. Which is the most popular and most widely used digital IC family? What are its merits?
- 5. Why is multiplexer called a data selector?
- 6. What are full-adders? How can it be realized with two half-adders?
- 7. What is code-convertors?
- 8. Which flip-flop is preferred for counting? Which one is preferred for data transfer?
- 9. What are shift registers?
- 10. How many decade counters are required to convert a clock of 100MHz to 100Hz?
- 11. Which is the fastest ADC and why?
- 12. Define the following parameters of DACs:
 - (a) Resolution; (b) Accuracy; (c) Settling time; and (d) Monotonicity.

D 12009

Section B

2

Answer atleast **five** questions. Each question carries 5 marks. All questions can be attended. Overall ceiling 25.

- 13. Obtain the minimal SOP expression for $\sum m$ (5, 6, 7, 9, 10, 11, 13, 14, 15) and implement it in NAND logic.
- 14. With the help of a diagram, explain an octal-to-binary encoder.
- 15. Realize a single bit comparator.
- 16. Explain the basic types of shift registers.
- 17. With the help of a diagram, explain the operation of JK Master-Slave flip-flop.
- 18. Explain the working of counter type ADC.
- 19. What are MOD counters? Explain the state diagram of MOD 6 counter.

 $(5 \times 5 = 25 \text{ marks})$

Section C

Answer any one question.

Each question carries 11 marks.

- 20. Realize a 4 bit synchronous up counter with necessary state diagram and design.
- 21. Explain with necessary diagrams Ring Counter and Johnson Counter.

 $(1 \times 11 = 11 \text{ marks})$

D 11833	(Pages : 3)	Name

Reg	No
ILC E.	1 TO:

THIRD SEMESTER (CUCBCSS-UG) DEGREE EXAMINATION NOVEMBER 2021

Electronics

ELE 3C 03—DIGITAL ELECTRONICS

(2014—2018 Admissions)

Time: Three Hours

Maximum: 64 Marks

Section A

Answer all questions.

Each question carries 1 mark.

- 1. The binary equivalent of the decimal number 19₁₀.
- 2. A Karnaugh map is a systematic way of reducing which type of expression?
- 3. What is the binary equivalent of the octal number 75_8 ?
- 4. Convert the binary number 10100110102 to Hexadecimal number.
- 5. What is Encoding?
- 6. Why is a multiplexer called a data selector?
- 7. What is a flip-flop?
- 8. How does a register output data?
- 9. Define modulus of a counter.
- 10. What is a computer program called when it is permanently stored in a ROM?

 $(10 \times 1 = 10 \text{ marks})$

Section B

Answer all questions.

Each question carries 2 mark.

- 11. Write a short note on Octal number system.
- 12. Find 2's complement of binary number 10110010_2 .
- 13. What is a Half subtractor? Write down the truth table of a Half subtractor.
- 14. What is a decoder? Name any two decoders.

- 15. What is race around condition?
- 16. Draw the symbol and Truth table of following logic gates:
 - (a) AND gate; and (b) XOR gate.
- 17. Distinguish volatile memory and non-volatile memory.

 $(7 \times 2 = 14 \text{ marks})$

Section C

Answer any **five** questions. Each question carries 4 marks.

- 18. Compare Asynchronous and Synchronous counters.
- 19. (a) Add the binary numbers 1101.101₂ and 111 .011₂.
 - (b) Multiply the binary number 1101₂ by 110₂.
- 20. Write a short note on Binary Coded Decimal (BCD).
- 21. With neat diagram explain the working of a master-slave JK flip-flop.
- 22. Convert the Boolean expression $(A + \overline{B})(B + C)$ to a standard POS form.
- 23. Compare SRAM and DRAM.
- 24. Explain the working of a Half adder and full adder circuit.
- 25. Discuss the concept of a multiplexer with 4 input lines.

 $(5 \times 4 = 20 \text{ marks})$

Section D

Answer any **two** questions. Each question carries 10 marks.

- 26 Jan What are the different types of Read Only Memory. Explain.
 - (b) Distinguish between dynamic and static memory.
- 27 Design a 4 bit synchronous up counter

- 28. (a) State and Prove De Morgan's theorems. Draw the gate equivalent.
 - (b) Reduce the expression $f = \sum_{m} (1, 2, 4, 6, 7)$ using K map and implement it using gates.
- 29. (a) Realize AND, OR, NOT and NOR gates by using NAND gate.
 - (b) Why a demultiplexer called a distributor. Discuss the concept of 1 line to 4 line Demultiplexer.

 $(2 \times 10 = 20 \text{ marks})$

D 11832	(Pages: 3)	Name
D 11832	(Pages : 3)	Name

Reg	No

THIRD SEMESTER (CUCBCSS—UG) DEGREE EXAMINATION NOVEMBER 2021

Electronics

ELE 3B 04—ANALOG AND DIGITAL INTEGRATED CIRCUITS

(2014-2018 Admissions)

Time: Three Hours Maximum: 80 Marks

Part A

Answer all questions
Each question carries 1 mark.

- 1. What is input bias current?
- 2. What is drop out voltage in a linear voltage regulator?
- 3. Write the equation for frequency of oscillation of RC phase shift oscillator?
- 4. Define hysteresis voltage of a Schmitt trigger.
- 5. Draw the frequency response curve of a low high pass filter?
- 6. Write down the two fundamental commutative laws related with Boolean algebra?
- 7. Why is a De-multiplexer called a data distributor?
- 8. Convert the decimal number 35 to BCD.
- 9. Define a flip flop?
- 10. The decimal equivalent of the binary number 1001011.

 $(10 \times 1 = 10 \text{ marks})$

Part B

Answer any **five** questions Each question carries 2 marks.

- 11. What is the need of a level shifter in an operational amplifier?
- 12. Define SVRR?
- 13. Draw the circuit diagram of a non-inverting amplifier for a gain of 11.
- 14. Draw the voltage transfer curve of an op-amp.

- 15. Convert the Boolean expression $A\overline{B}C + \overline{A}\overline{B} + ABD$ into the standard SOP form.
- 16. Describe PIPO shift register.
- 17. Write short note on Hexadecimal number system.

 $(5 \times 2 = 10 \text{ marks})$

Part C

2

Answer any six questions

Each question carries 5 mark.

- 18. Explain about a two input non-inverting adder circuit using IC 741.
- 19. Draw a dual input balanced output differential amplifier and explain.
- 20. Draw the block diagram of IC 555 and explain.
- 21. Design a band pass filter for cutoff frequencies 1 kHz and 5 KHz using IC 741.
- 22. What is Encoding. Explain Decimal to BCD encoder.
- 23. (a) What are the merits and demerits of ECL?
 - (b) Compare asynchronous and synchronous counters?
- 24. Explain the concept of 4 bit Johnson counter. Why Johnson counter is known as twisted ring counter.
- 25. Draw and explain the working of a mod 10 asynchronous counter.

 $(6 \times 5 = 30 \text{ marks})$

Part D

Answer any **two** question Each question carries 15 mark.

26. (a) Derive an expression for the gain of an inverting amplifier.

(8 marks)

(b) Solve the equation using operational amplifier Y = V1 + V2 - V3.

(7 marks)

D 11832

27. (a) Draw a mono stable multivibrator using 555 and explain with necessary waveforms.

3

(10 marks)

(b) Design a mono stable multivibrator using 555 for a time constant of 2 ms. (5 marks)

(8 marks) 28. (a) What are the universal gates? Prove their validity.

(7 marks) (b) Draw and Explain the concept of 4×1 multiplexer.

29. (a) With neat diagram. Explain the working of a JK flip flop What are the limitations? How can you eliminate the limitations?

(10 marks)

(b) What are the applications of counters?

(5 marks)

 $[2 \times 15 = 30 \text{ marks}]$