D 93938-A	(Pages : 4)	Name	
	_	Reg. No	

FIRST SEMESTER (CBCSS—UG) DEGREE EXAMINATION NOVEMBER 2020

Mathematics

MEC 1C 01—MATHEMATICAL ECONOMICS

(2019 Admissions)

(Multiple Choice Questions for SDE Candidates)

Time: 15 Minutes Total No. of Questions: 15 Maximum: 15 Marks

INSTRUCTIONS TO THE CANDIDATE

- 1. This Question Paper carries Multiple Choice Questions from 1 to 15.
- 2. The candidate should check that the question paper supplied to him/her contains all the 15 questions in serial order.
- 3. Each question is provided with choices (A), (B), (C) and (D) having one correct answer. Choose the correct answer and enter it in the main answer-book.
- 4. The MCQ question paper will be supplied after the completion of the descriptive examination.

MEC 1C 01—MATHEMATICAL ECONOMICS

(Multiple Choice Questions for SDE Candidates)

- 1. Which of the following are NOT true?
 - (A) $f(x) = ax^n$ implies $f'(x) = anx^{n-1}$.
 - (B) $f(x) = 4x^5 3x^2$ implies $f'(x) = 20x^{-5} 6x^{-2}$.
 - (C) $f(x) = 4x + 3/x^2$ implies $f'(x) = 4 6/x^3$.
 - (D) $f(x) = \ln(x)$ implies $f'(x) = x^{-1}$.
- 2. Which of the following statements are (in general) true?
- FCALICUT Marginal cost (MC) is minimised where MC = Average Variable Cost (AVC).
 - Total Cost (ATC) is minimised where MC = ATC.
 - Average Variable Cost (AVC) is minimised where MC = AVC.
 - Total revenue is maximised where MC = Marginal Revenue (MR).
- For the function $Q = AK^aL^b$ which of the following statements are NOT true?
 - (A) $dQ/dL = AbK^aL^{b-1}$.
 - Marginal Product of Labour (MPL) = $AaK^{a-1}L^b$. (B)
 - Marginal Product of Capital (MPK) = aQ/K.
 - Marginal rate of substitution of capital for labour (MRS) = |dK/dL|.
- 4. The law which studies the direct relationship between price and quantity supplied of a commodity is:
 - (A) Law of demand.

Law of variable proportion. (**B**)

Law of supply.

- None of the above. (D)
- 5. In case of perfectly inelastic supply the supply curve will be:
 - (A) Rising.

Vertical. (B)

Horizontal. (C)

(D) Falling.

6	. At wh	at point does total utility starts dimin	ishin	g?		
	(A)	When marginal utility is positive.				
	(B)	When it remains constant.				
	(C)	When marginal utility is increasing	ξ.			
	(D)	When marginal utility is negative.				
7.	Few se	ellers is the feature of :				
	(A)	Monopoly.	(B)	Oligopoly. Monopolistic competition.		
	(C)	Perfect competition.	(D)	Monopolistic competition.		
8.	Supply	curve of a perfectly competitive firm	is:	\mathcal{C}_{i}		
	(A)	Vertical.	(B)	Upward sloping.		
	(C)	Horizontal.	D)	Downward sloping.		
9.	Suppos	e the supply for product A is perfectl	y ela	stic. If the demand for this product increases :		
	(A)	The equilibrium price and quantity	will	increase.		
	(B)	The equilibrium price and quantity will decrease.				
	(C)	The equilibrium quantity will increase but the price will not change.				
	(D)	The equilibrium price will increase	but 1	the quantity will not change.		
10.	If the d	lemand for agricultural products is in	nelas	stic:		
	(A)	As the prices decrease, the revenues	s ear	ned by producers increase.		
	(B)	As the prices decrease, the revenues	s ear	ned by producers decrease.		
	(C)	Rising prices do not lead to different				
	(D)	The percentage decrease in prices is	low	er than the percentage increase in demand.		
		emand curve for product A moves to	the r	right, and the price of product B decreases, it can		
		uded that:				
	(A)	A and B are substitute goods.				
	(B)	A and B are complementary goods.	erio	. aooq		
		A is an inferior good, and B is a sup	C1 101	. goou.		
	(D)	Both goods A and B are inferior.		Turn over		

12.	If a pric 10 to 20	e increase of 50% results in an incr pieces, calculate the co-efficient of	ease i price	n the quantity supplyed of an economic good from elasticity of supply:
	(A)	1/4.	(B)	1/2.
	(C)	1.	(D)	2.
13.				lei, which he will repay in three equal annual l, knowing that the annual interest rate is 12% per
	(A)	3.600 lei.	(B)	1.800 lei.
	(C)	5.400 lei.	(D)	1.500 lei.
14.	Which	of the following statements is false	:	
	(A)	Perfect competition involves many	y selle	ers of standardized products.
	(B)	Monopolistic competition involves	man	y sellers of homogeneous products.
	(C)	The oligopoly involves several pro	ducer	rs of standardized or differentiated products.
	(D)	Monopoly involves a single produ	ct for	which there are no close substitutes.
15.	_	orice of coffee falls by 8% and the deand for Tea is :	emano	I for Tea declines by 2%. The cross price elasticity
	(A)	0.45.	(B)	0.25.
	(C)	0.45. +0.44.	(D)	- 0.30.
	O,			

D 93938	(Pages : 2)	Name

Reg.	No
------	----

FIRST SEMESTER (CBCSS—UG) DEGREE EXAMINATION NOVEMBER 2020

Mathematics

MEC 1C 01—MATHEMATICAL ECONOMICS

(2019 Admissions)

Time: Two Hours Maximum: 60 Marks

Section A

Answer at least **eight** questions.

Each question carries 3 marks.

All questions can be attended.

Overall Ceiling 24.

- 1. Define Law of Demand.
- 2. What is meant by Cross elasticity of demand?
- 3. Define MRSxy.
- 4. Define AFC.
- 5. Explain the meaning of Short run costs.
- 6. What is meant by a Point of inflexion?
- 7. What is an Indifference map?
- 8. Explain the term Shift in demand curve.
- 9. Explain the meaning of Budget line.
- 10. What is meant by Constrained optimization?
- 11. If $TC = 5Q^2 + 12Q + 14$, find MC.
- 12. Define the term Consumer equilibrium.

 $(8 \times 3 = 24 \text{ marks})$

Section B

Answer at least **five** questions. Each question carries 5 marks. All questions can be attended. Overall Ceiling 25.

- 13. Derive the relation between MR, AR and elasticity of demand.
- 14. What is ordinal utility of demand?
- 15. State the law of equi-marginal utility. If the utility function is $U = f(q_1, q_2)$ and the budget equation is $M = p_1q_1 + p_2q_2$, derive the law of equi-marginal utility.
- 16. Explain the properties of indifference curves.
- 17. Explain the conditions for the optimization of the multivariable functions.
- 18. Assume a four sector economy, where Y = C + I + G + (X M), $C = C_0 + bY$, $I = I_0 + aY$, $G = G_0$, $Z = Z_0$. Find the equilibrium level of income in terms of general parameters.
- 19. What is marginal productivity? Given the production function $Q = AL^aK^b$, show that marginal productivity of labor and capital depends on capital (K) labor (L) ratio.

 $(5 \times 5 = 25 \text{ marks})$

Section C

Answer any one question.

The question carries 11 marks.

- 20. Explain the significance of Lagrange multiplier and optimize the function $3x^2 2xy + 6y^2$ subject to the constraint x + y = 36 using the Lagrange multiplier.
- 21. Explain cardinal utility analysis of demand. Derive consumer equilibrium using cardinal utility method.

 $(1 \times 11 = 11 \text{ marks})$

D	9	3	9	3	7
_	v	•	v	v	•

(Pages: 3)

Name

Reg. No....

FIRST SEMESTER (CBCSS—UG) DEGREE EXAMINATION NOVEMBER 2020

Mathematics

MTS 1C 01—MATHEMATICS—I

(2019 Admissions)

Time: Two Hours

Maximum: 60 Marks

Section A

Answer at least eight questions.

Each question carries 3 marks.

All questions can be attended.

Overall Ceiling 24.

- 1. A train has position $x = 3t^2 + 2 \sqrt{t}$ at time t. Find the velocity of the train at t = 2.
- 2. Find $\lim_{x \to 2} \frac{-3x}{x^2 4x + 4}$
- 3. Find the slope of the line tangent to the graph of $f(x) = x^8 + 2x^2 + 1$ at (1, 4).
- 4. Suppose that $f(t) = \frac{1}{4}t^2 t + 2$ denotes the position of a bus at time t. Find and plot the speed as a function of time.
- 5. Find $\frac{d^2}{dr^2} (8r^2 + 2r + 10)$.
- 6. If $x^2 + y^2 = 3$, compute $\frac{dy}{dx}$ when x = 0 and $y = \sqrt{3}$.
- 7. On what interval is $f(x) = x^3 2x + 6$ increasing or decreasing?

- 8. Use the second derivative test to analyze the critical points of the function $f(x) = x^3 6x^2 + 10$.
- 9. Discuss the concavity of $f(x) = 4x^3$ at the points x = -1 and x = 1.
- 10. Find $\int_{2}^{6} (x^2 + 1) dx$.
- 11. Find the area between the graph of $y = x^2$ and $y = x^3$ for x between 0 and 1.
- 12. Find the average value of $f(x) = x^2$ on [0, 2].

 $(8 \times 3 = 24 \text{ marks})$

Section B

Answer at least **five** questions. Each question carries 5 marks. All questions can be attended. Overall Ceiling 25.

- 13. (a) Find $\frac{d}{dx} \left(\frac{\sqrt{x}}{1 + 3x^2} \right)$
 - (b) Calculate approximate value for $\sqrt{9.02}$ using linear approximation around $x_0 = 9$.
- 14. Find the equation of the tangent line to the curve $2x^6 + y^4 = 9xy$ at the point (1, 2).
- 15. Find the slope of the parametric curve given by $x = (1 + t^3)^4 + t^2$, $y = t^5 + t^2 + 2$ at t = 1.
- 16. State mean value theorem. Verify mean value theorem for the function $f(x) = x^2 x + 1$ on [-1, 2].
- 17. Find $\lim_{x\to 0} \left(\frac{1}{x\sin x} \frac{1}{x^2} \right)$.

18. An object on the x-axis has velocity $v = 2t - t^2$ at time t. If it starts out at x = -1 at time t = 0, where is at time t = 3? How far has it traveled?

٥

19. Find average value of $f(x) = x^2 \sin x^3$ on $[0, \pi]$.

 $(5 \times 5 = 25 \text{ marks})$

Section C

Answer any one question. The question carries 11 marks.

- 20. (a) Using product rule, differentiate $(x^2 + 2x 1)(x^3 4x^2)$. Check your answer by multiplying out first.
 - (b) Find the dimensions of a rectangular box of minimum cost if the manufacturing costs are 10 cents per square meter on the bottom, 5 cents per square metre on the sides, and 7 cents per square metre on the top. The volume is to be 2 cubic meters and height is to be 1 metre.
- 21. (a) The curves $y = x^2$ and $x = 1 + \frac{1}{2}y^2$ divide the xy plane into five regions, only one of which is bounded. Sketch and find the area of this bounded region.
 - (b) The region between the graph of x^2 on [0,1] is revolved about the x-axis. Sketch the resulting solid and find its volume. JHMK LIBI

 $(1 \times 11 = 11 \text{ marks})$

n	939	136	i–A
	.,,,,	,,,	,

(Pages: 4)

Name					
Dog	No				

FIRST SEMESTER (CBCSS_UG) DEGREE EXAMINATION NOVEMBER 2020

Mathematics

MTS 1B 01—BASIC LOGIC AND NUMBER THEORY

(2019 Admissions)

(Multiple Choice Questions for SDE Candidates)

Time: 15 Minutes Total No. of Questions: 20 Maximum: 20 Marks

INSTRUCTIONS TO THE CANDIDATE

- 1. This Question Paper carries Multiple Choice Questions from 1 to 20.
- 2. The candidate should check that the question paper supplied to him her centains all the 20 questions in serial order.
- 3. Each question is provided with choices (A), (B), (C) and (D) having one correct answer. Choose the correct answer and enter it in the main answer-book.
- 4. The MCQ question paper will be supplied after the completion of the descriptive examination.

MTS 1B 01—BASIC LOGIC AND NUMBER THEORY

(Multiple Choice Questions for SDE Candidates)

1. Let P: Mathematics is interesting, Q: You should not learn it. Then 'Mathematics is interesting and you should learn it' is best represented by :

(A)
$$\neg P \lor \neg Q$$
.

(B)
$$P \wedge \neg Q$$
.

(C)
$$P \vee Q$$
.

(D)
$$P \wedge Q$$
.

2. The compound statement $A \to (A \to B)$ is false, then the truth values of A, B are respectively.

3. The compound propositions p and q are called logically equivalent if ———— is a tautology.

$$(A) \quad p \leftrightarrow q.$$

(B)
$$p \rightarrow q$$

(C)
$$\neg (p \lor q)$$
.

(D)
$$\neg p \lor \neg q$$

4. Let P(x) denote the statement "x > 7". Which of these have truth value true?

$$(A)$$
 $P(0)$.

5. $p \vee q$ is logically equivalent to:

$$(A) \qquad \neg q \rightarrow \neg p$$

(B)
$$q \rightarrow p$$

(C)
$$\neg p \rightarrow \neg q$$

(D)
$$\neg p \rightarrow q$$

6. The value of 155 mod 9 is:

7.	If a	and b	are	relatively	prime	then	:
----	--------	---------	-----	------------	-------	------	---

(A) $a \mid b$.

(B) $b \mid a$.

 $\gcd(a,b)=1.$

1 cm. (a, b) = 1.(D)

8. Let gcd(a, b) = d, then:

- (A) d = ax + by, for some x and y.
- (B) $a \mid d$.

(C) $b \mid d$.

(D) d = a + b.

9. The number '1' is:

(A) Prime number.

- FCALICUT (B) Composite number.
- (C) Neither Prime nor Composite.
- None of the mentioned. (\mathbf{D})
- 10. Difference of two distinct prime numbers is?
 - Odd and prime.

- Even and composite.
- None of the mentioned.
- 11. If a, b are integers such that a > b then 1 cm. (a, b) lies in :

(B) a > b > 1 cm. (a, b).

(D) None of the mentioned.

12.
$$(1001111)_2 = ----$$

(B) 89.

(D) 99.

13. The linear Diophantine equation
$$ax + by = c$$
 has a solution if and only if:

(A) gcd(a,c)|b.

(B) gcd(a,b)|c.

(C) gcd(c,b)|a.

(D) $c \mid gcd(a, b)$.

14.	A comr	posite number n for which $a^n \equiv a$ (n	nod n	is called :
	(A)	A pseudoprime.	(B)	A prime.
	(C)	A pseudoprime to the base a.	(D)	An absolute pseudoprime.
15.		$q_1,q_2,,q_n$ are all primes and $p \mid q_1q_2$	q_n	
		$p = q_k$ for some k .		p=2.
		$q_k = 2$ for some k .	(D)	$p q_k$ for some k .
16.		the n^{th} prime number, then:		
	(A)	$P_n = n + 1.$	(B)	$Pn \leq 2^2$.
	(C)	$\mathbf{P}_n = n! + 1.$		210,
17.	If $a \equiv b$	$p \mod n$, then:		
	(A)	a and b leave the same non-negat	ive re	emainder when divided by n .
	(B)	a and b leave the different non-ne	egativ	te remainder when divided by n .
	(C)	a and b need not leave the same r	ion-ne	egative remainder when divided by n .
18.	If a is a	an odd integer, then $a^2 \equiv$	(mod	18):
	(A)	1.	(B)	2.
	(C)	3.	(D)	4.
19.	If $a \equiv$	$b \mod n$ and a is a solution of $P(x)$	≡ 0	$\mod n$, then :
	(A)	b is also a solution.	(B)	b need not be a solution.
	(C)	0 is a solution.		
20.	The lin	near congruence $ax \equiv b \mod n$ has a	a solu	tion if and only if:
	(A)	b=1.	(B)	b=0.
	(C)	$d \mid b$ where $d = gcd(a, n)$.		

\mathbf{D}	93936-B	
--------------	---------	--

(Pages: 2)

Na	m	е	••••	•••••	•••••	•••••	•••••	••••••
_		3. T						

FIRST SEMESTER (CBCSS-UG) DEGREE EXAMINATION, NOVEMBER 2020

Mathematics

MTS 1B 01—BASIC LOGIC AND NUMBER THEORY

(2020 Admissions)

Time: Two Hours and a Half

Maximum: 80 Marks

Section A

Answer at least ten questions. Each question carries 3 marks. All questions can be attended. Overall Ceiling 30.

- 1. Find the truth table for the Disjunction of two propositions.
- 2. Define a proposition. Give an example.
- 3. Define Valid and Invalid Arguments.
- 4. Show that the proposition P(0) is true where P(n) is the propositional function "If n > 1 then $n^2 > n$ ".
- 5. Prove that every non-empty set of non-negative integers has a least element.
- 6. Find the quotient q and the remainder r when:
 - (i) 207 is divided by 15.
 - (ii) -23 is divided by 5
- 7. Prove that 2 and 3 are the only two consecutive integers that are primes.
- 8. State and prove Handshake Problem.
- 9. Define the Fibonacci sequence and write the first four Fibonacci Numbers and Lucas numbers.
- 10. Using the Euclidean algorithm, express (4076, 1024) as a linear combination of 4076 and 1024.
- 11. Find the number of trailing zeros in 234!.
- 12. Find the largest power of 2 that divides 109!.
- 13. Find all solutions of the congruence $9x \equiv 21 \pmod{30}$.
- 14. If 2p + 1 is a prime number, prove that $(p)^2 + (-1)^r$ is divisible by 2p + 1.
- 15. Find the remainder obtained when 5^{38} is divided by 11.

 $(10 \times 3 = 30 \text{ marks})$

Section B

Answer at least **five** questions. Each question carries 6 marks. All questions can be attended. Overall Ceiling 30.

- 16. Give a proof by contradiction of the theorem "if n^2 is even, then n is even."
- 17. Write any 5 inference rules.
- 18. Prove that there is no positive integer between 1 and 2.
- 19. Obtain an explicit formula corresponding to the recursive relation:

$$h(n) = h(n-1) + (n-1), n \ge 2$$
.

- 20. Let (a,b) = d. Then prove that (a,a-b) = d.
- 21. Explain Jigsaw Puzzle.
- 22. Find the remainder obtained upon dividing the sum

$$1! + 2! + 3! + 4! + \dots + 99! + 100!$$
 by 12.

23. Let p be a prime and a any integer such that p does not divide a. Then prove that the solution of the linear congruence $ax = b \pmod{p}$ is given by $x = a^{p-2}b \pmod{p}$.

 $(5 \times 6 = 30 \text{ marks})$

Section C

Answer any **two** questions.

Each question carries 10 marks.

- 24. (a) Prove that $\sqrt{2}$ is irrational by giving a proof by contradiction.
 - (b) Prove the implication "If n is an integer not divisible by 3, then $n^2 \equiv 1 \pmod{3}$."
- 25. (a) Prove that a palindrome with an even number of digits is divisible by 11.
 - (b) Let a and b be any positive integers, and r the remainder, when a is divided by b. Then prove that gcd(a, b) = gcd(b, r).
- 26. (a) Prove that the gcd of the positive integers a and b is a linear combination of a and b.
 - (b) State Duncan's identity. Using recursion, evaluate (18, 30, 60, 75, 132).
- 27. (a) Prove that no prime of the form 4n + 3 can be expressed as the sum of two squares.
 - (b) Prove that the linear congruence $ax \equiv b \pmod{m}$ is solvable if and only if d|b, where d = (a, m) and if d|b, then it has d incongruent solutions.

 $(2 \times 10 = 20 \text{ marks})$

(Pages: 3)

Vam	e	•
Reg.	No	

FIRST SEMESTER (CBCSS—UG) DEGREE EXAMINATION NOVEMBER 2020

Mathematics

MTS 1B 01—BASIC LOGIC AND NUMBER THEORY

(2019 Admissions)

Time: Two Hours and a Half

Maximum: 80 Marks

Section A

Answer any number of questions.

Each question carries 2 marks.

Maximum 25 marks.

1. Define what is meant by *disjunction* of two statements. Construct the disjunction of the following statements:

Statement 1) Vinod watches cinemas during holidays.

Statement 2) Vinod enjoys poetry during holidays.

- 2. What is meant by the converse of an implication? Give an example.
- 3. What is the difference between tautology and a contradiction?
- 4. Show that if c|a and c|b, then $c|\alpha a + \beta b$ for any integers α , β .
- 5. Express $(1092)_{10}$ in base 8.
- 6. Define the GCD of integers a, b. When do we say that they are relatively prime?
- 7. Find the canonical decomposition of 1980.
- 8. Find (252, 350) and hence find [252, 360].
- 9. If $a \equiv 5 \pmod{25}$ give four possibilities of a.
- 10. Which of the following is a complete set of residues modulo 8? $\{1, 2, 4, 5, 7, 8, 11, 14\}$ or $\{1, 2, 4, 5, 7, 8, 19, 24\}$ or both? Why?
- 11. Find the inverse of 7 modulo 50.

- 12. Evaluate $\phi(35)$, $\phi(48)$ directly without using formula.
- 13. State Fermat's Little Theorem. Prove it.
- 14. Define the function τ . Evaluate $\tau(19)$ and $\tau(23)$.
- 15. Compute ϕ (666) and ϕ (1976) using canonical decomposition.

Section B

Answer any number of questions. Each question carries 5 marks. Maximum 35 marks.

- 16. Test the validity of the following argument:
 - A₁ There are more residents in New Delhi than there are hairs in the head of any resident.
 - A₂ No resident is totally bald.

Hence At least two residents must have the same number of hairs on their heads.

- 17. State the Inclusion-Exclusion Principle. Use it to find the number of positive integers ≤ 2076 that are divisible by neither 4 nor 5.
- 18. Define Fermat numbers. Derive a recurrence formula for the n^{th} Fermat number f_n .
- 19. Let a and b be any positive integers, and r the remainder, when a is divided by b. Prove that (a, b) = (b, r).
- 20. Find the general solution to the LDE 12x + 20y = 28.
- 21. Prove that no integer of the form 8n+7 can be expressed as a sum of three squares.
- 22. Let p be a prime and a any positive integer. Prove that $a^p \equiv a \pmod{p}$. Does this result hold for some non-prime integer p? Justify.
- 23. Prove that if n is an odd pseudoprime, then $N = 2^n 1$ is also an odd pseudoprime.

Section C

Answer any **two** questions.

Each question carries 10 marks.

Maximum 20 marks.

- 24. (a) Prove directly that the product of any even integer and any odd integer is even.
 - (b) Prove by cases that for any integer $n, n^2 + n$ is an even integer.
 - (c) Prove by contradiction that $\sqrt{5}$ is an irrational number.
- 25. (a) Let p be a prime and $p|a_1 a_2.....a_n$, where $a_1, a_2,...., a_n$ are positive integers. Prove that $p|a_i$ for some i, where $1 \le i \le n$.
 - (b) State and prove the Fundamental Theorem of Arithmetic.
- 26. Prove that the linear congruence $ax \equiv b \pmod{m}$ is solvable if and only if d|b, where d = (a, m).

 Also, prove that if d|b, then it has d incongruent solutions.
- 27. Prove that the function ϕ is multiplicative. Use it to evaluate φ (221) and φ (6125).

D	93824-	A
---	--------	---

(Pages: 4)

Name	

FIRST SEMESTER (CUCBCSS—UG) DEGREE EXAMINATION NOVEMBER 2020

Mathematics

ME 1C 01—MATHEMATICAL ECONOMICS

(Multiple Choice Questions for SDE Candidates)

Time: 15 Minutes Total No. of Questions: 20 Maximum: 20 Marks

INSTRUCTIONS TO THE CANDIDATE

- 1. This Question Paper carries Multiple Choice Questions from 1 to 20.
- 2. The candidate should check that the question paper supplied to him/her contains all the 20 questions in serial order.
- 3. Each question is provided with choices (A), (B), (C) and (D) having one correct answer. Choose the correct answer and enter it in the main answer-book.
- 4. The MCQ question paper will be supplied after the completion of the descriptive examination.

ME 1C 01—MATHEMATICAL ECONOMICS

 $(Multiple\ Choice\ Questions\ for\ SDE\ Candidates)$ 1. When the elasticity of demand e_p is greater than 1 the demand for good is ?

	(A)	Inelastic.	(B)	Unitary elastic.
	(C)	Relatively elastic.	(D)	Elastic.
2.	When	the cross price elasticity e_c is less th	an 0,	the goods are ?
	(A)	Substitutes.	(B)	Complementary.
	(C)	Independent.	(D)	None of these.
3.	The po	pint price elasticity of demand e_p is	given	the goods are? Complementary. None of these. by:
	(A)	$\frac{d\mathrm{P}}{d\mathrm{Q}}.rac{\mathrm{P}}{\mathrm{Q}}.$	(B)	$\frac{d\mathbf{Q}}{d\mathbf{P}} \cdot \frac{\mathbf{Q}}{\mathbf{P}}$.
	(C)	$\frac{d\mathbf{Q}}{d\mathbf{P}} \cdot \frac{\mathbf{P}}{\mathbf{Q}}$.	(D)	$\frac{1}{P}\frac{dQ}{dP}$.
4.	In the	case of a perfectly inelastic supply	curve	, the elasticity of supply η_s is :
	(A)	Infinity.	(B)	One.
	(C)	Greater than 1.	(D)	Zero.
5.	The va	riables in the demand function whi	ch are	e related to price are :
	(A)	Own price of the product.	(B)	Price of compliment.
	(C)	Price of substitutes.	(D)	All the above.
6.	When t	he purchases of goods increase with	n risir	ng levels of income, such goods are called :
	(A)	Inferior goods	(B)	Normal goods.
	(C)	Giffen goods.	(D)	Laxurious goods.
7.	The inf	luence of a change in a product's pr	ice on	real income is called :
	(A)	Substitution effect.	(B)	Income effect.
	(C)	Both (A) and (B).	(D)	None.

ong t	the
ი	ng '

Vertical axis. (**A**)

Horizontal axis. (**B**)

Both (A) and (B).

(D) None.

9. When the elasticity of supply $\eta_p^s = 0$, the supply curve will be:

Parallel to x axis. (A)

FCALICU (B) Passing through origin.

Parallel to y axis.

(D)None.

10. For a unitary elastic supply curve,
$$\eta_p^s$$
 is :

Less than 1. (**A**)

(B) More than 1.

Equal to 1.

11. The price elasticity of demand of the demand function Q = 400 - 4P at p = 10 is:

(A) 0.11.

(C) -0.11.

12. Luxury goods are:

Price inelastic.

Price elastic.

Both (A) and (B).

13. The elasticity of demand η_d in terms of AR and MR is:

(D)

14. A distinction between cost of production and expenses of production is made by :

Engel. (\mathbf{A})

 (\mathbf{B}) Marshall.

(C) Keynes.

(D) None of these.

		1		
15.	Total va	ariable cost plus total fixed cost give	es.	
	(A)	Total cost.	(B)	Average cost.
	(C)	Marginal cost.	(D)	None of these.
16.	A firm	decide to discontinue production an	d acc	ept a loss equal to it fixd cost :
		Loss > FC.	(B)	Loss < FC.
	(C)	Loss = FC.	(D)	None.
17.	Which	of the following is correct?		C.V.
	(A)	Indifference curves slopes downw	ard to	the right.
	(B)	Indifference curves do not interse	ct.	
	(C)	Indifference curves are convex to	the or	rigin.
	(D)	All the above.	,	123.
18.	An attr	ribute possessed by a commodity to	satisf	y a human want, to yield satisfaction to consumer
	is term	ed as:	17,	
	(A)	Utility.	(B)	Preference.
	(C)	Want.	(D)	None of these.
19.	The sec	cond order condition for maximising	g utilit	ty is:
	(A)	$\frac{du}{dq_1} = 0.$ $\frac{d^2u}{d^2q_1} < 0.$	(B)	$\frac{d^2u}{dq_1^2} > 0.$
	(C)	$\frac{d^2u}{d^2q_1}<0.$	(D)	$\frac{d^2u}{da_1^2}=0.$

20. An indifference map is a collection of:

- (A) Indifference curves.
- (B) Cost curve.

(C) Revenue curve.

(D) None of these.

D 938	324
-------	------------

(c) Equal to 1.

(Pages: 4)

Name
Reg. No

FIRST SEMESTER (CUCBCSS—UG) DEGREE EXAMINATION NOVEMBER 2020

Mathematics

ME 1C 01—MATHEMATICAL ECONOMICS

		ME 10 01—MAIH	LIVLA	TICAL ECONOMICS
Time	: Three	e Hours		Maximum : 80 Marks
		1	Part	A
				e lve questions. rries 1 mark.
1.	The de	mand curve shows the relationship	betw	veen:
	(a)	Price and quantity.	(b)	Income and quantity.
	(c)	Consumption and quantity.	(d)	Consumption and income.
2.	The ela	asticity of demand at different point	ts on	the same demand curve is :
	(a)	Same.	(b)	Zero.
	(c)	Different.	(d)	None.
3.	The tot	al of the quantities demanded by a	ll con	sumers in an economy at each price is called:
	(a)	Market demand curve.	(b)	Market supply curve.
	(c)	Market equilibrium.	(d)	None of the these.
4.	Sum of	explicit cost and implicit cost gives	:	
	(a)	Total cost.	(b)	Average cost.
	(c)	Marginal cost.	(d)	None of these.
5.	The rati	io of total cost to the quantity produ	ıced i	s called :
	(a)	Average cost.	(b)	Marginal cost.
	(c)	Total variable cost.	(d)	None.
6.	When m	arginal cost is greater than averag	e cost	t, the total cost elasticity will be :
	(a)	Greater than 1.	(b)	Less than 1.

(d) None.

7.	The	ncept of indifference curves was dev	elope	ed by :	
·	(a)	J.R. Hicks.	(b)	R.G.D. Allen.	
	(c)	J.R. Hicks and Allen.	(d)	None of these.	
8.		ailibrium of a consumer purchasing	one	commodity is attained when :	
		$\frac{du}{dQ}$ < P.		$\frac{du}{dQ} = P.$	CUT
	(c)	$\frac{du}{dQ} > P.$	(d)	$\frac{du}{dQ} = 0.$	
9.	The poi	int at which the marginal utility fir	st inc	reases, reaches the maximum,	then diminishes is
	(a)	Point of inflexion.	(b)	Minimum point.	
	(c)	Saturation point.	(d)	None of these.	
LO.	Let 10	+ $30kk^2$ be a production function, wh	ere k	represents capital. Then the ma	rginal productivity
	when k	= 3 is:		7	
	(a)	116.	(b)	16.	
	(c)	58.	(d)	24.	
11.	When t	the average revenue function is AR	= 10	5q, the marginal revenue is	:
	(a)	$0.5q^2$.	(b)	10 - q.	
	(c)	10q0.5 .	(d)	10.	
12.	Behavi	our of the function defined by $y = 3$	$c^4 - 6$	$x^3 + 4x^2 - 13$ at $x = 4$ is:	
	(a)	Decreasing.	(b)	None.	
	(c)	Increasing.	(d)	Stationary.	
	U'			(1	$.2 \times 1 = 12 \text{ marks}$

Part B

Answer any **six** questions in two **or** three sentences.

Each question carries 3 marks.

- 13. What is a Demand Function?
- 14. Write any three factors determining supply.
- 15. What is price elasticity of demand?
- 16. Define average revenue and marginal revenue.
- 17. Define elasticity of total cost.
- 18. Write a note on Legrange's multiplier.
- 19. What do you mean by utility?
- 20. Find average cost and marginal cost from the total cost function TR = $10 + x + 2x^2$.
- 21. Show that the function $3x^3 + 3x^2 + x 1$ is monotonic increasing.

 $(6 \times 3 = 18 \text{ marks})$

Part C

Answer any **six** questions from the following. Each question carries 5 marks.

- 22. Describe various elasticities of demand.
- 23. What are the determinants of elasticity of demand?
- 24. Give the nature and property of a demand function for a normal good.
- 25. Cost function is given by $\pi = a + bq + cq^2$. Prove that $\frac{d(AC)}{dq} = \frac{MC AC}{q}$.
- 26. What are the similarities between utility approach and indifference curve approach?
- 27. Find the maximum profit : Given the profit function $\pi = -Q^3 6Q^2 + 1440Q 545$.
- 28. Find the critical points of $z = 3x^2 xy + 2y^2 4x 7y + 12$.

29.
$$z = \frac{x+y}{x+2}$$
. Find dz .

30. Find all the four second order partial derivatives of $z = 3x^3y^2$.

 $(6 \times 5 = 30 \text{ marks})$

Part D

Answer any **two** questions from the following. Each question carries 10 marks.

- 31. Write short notes on determinants of price elasticity of demand.
- 32. (a) Prove that marginal cost (MC) must equal marginal revenue (MR) at the profit-maximizing level of output.
 - (b) The total cost function of a firm is given by $TC = 400 10q + q^2$. Find the optimum size of output.
- 33. Explain briefly properties of indifference curves.
- 34. Given the profit function $\pi = 160x 3x^2 2xy 2y^2 + 120y 18$ for a firm producing two goods x and y. Find the maximum profit.

 $(2 \times 10 = 20 \text{ marks})$

Reg. No.....

FIRST SEMESTER (CUCBCSS—UG) DEGREE EXAMINATION **NOVEMBER 2020**

Mathematics

MAT 1C 01—MATHEMATICS

Time: Three Hours

Maximum: 80 Marks

OF CALM Part A (Objective Type Questions)

Answer all questions (1 - 12). Each question carries 1 mark.

1.
$$\lim_{x \to \infty} x \sin\left(\frac{1}{x}\right) = \dots$$

2.
$$\lim_{x \to 0} \frac{\sin(2+x) - \sin 2}{x} = \dots$$

- Define removable discontinuity.
- State the condition(s) for local maximum of the function y = f(x).
- What is (are) the vertical asymptote(s) of the curve $xy^3 2xy^2 2y^3 4 = 0$.
- State Rolle's theorem.

7 Find
$$\frac{d}{dx}(\cosh(3x-2))$$
.

- State the second derivative test for concavity of a function y = f(x).
- State the mean value theorem for definite integral.

10.
$$\sum_{k=1}^{4} (k^2 - 3k) = \dots$$

- Let f be a continuous function on [a,b]. Then what is the average value of f on [a,b].
- 12. Area bounded by the curves y = f(x), y = g(x) and the ordinates x = a and x = b is given by

 $(12 \times 1 = 12 \text{ marks})$

Part B (Short Answer Type)

Answer any **nine** questions (13 - 24). Each question carries 2 marks.

13. If
$$\sqrt{3-2x} \le f(x) \le \sqrt{3-x}$$
, find $\lim_{x\to 0} f(x)$.

14. Find
$$\lim_{x \to 2} \frac{x-3}{x^2-4}$$
.

- 15. Find the equation of the tangent line to the curve $y = \sqrt{x}$ at x = 4.
- 16. Find the absolute extrema of $f(x) = x^{2/3}$ on [-2, 3].
- 17. Find the points of inflection of the function $y = 2 + \cos x, x \ge 0$.

18. Find
$$\lim_{x \to \infty} \frac{5x^2 + 8x - 3}{3x^2 + 2}$$
.

- 19. Find the horizontal asymptotes of the graph of the function $f(x) = \frac{-8}{x^2 4}$.
- 20. Find the linearization of $f(x) = x^3 2x + 3$ at x = 2.

21. Find
$$\frac{dy}{dx}$$
 if $y = \int_1^{x^2} \cos t \, dt$.

22. Find
$$\lim_{x \to 1} \frac{1-x}{\log x}$$
.

23. Find
$$\lim_{x\to\infty} x^{1/x}$$
.

24. Verify Rolle's theorem for the function $f(x) = \tan x$ in $[0,\pi]$.

 $(9 \times 2 = 18 \text{ marks})$

Part C (Short Essay Type)

Answer any six questions (25 - 33). Each question carries 5 marks.

- 25. State and prove the rule for the limit of a sum.
- 26. Show that if a function f has a derivative at x = c, then show that f is continuous at x = c.
- 27. State and prove Rolle's theorem.

- Verify mean value theorem for the function $f(x) = x^3 3x^2 + 2x$ in $\left| 0, \frac{1}{2} \right|$.
- 29. Find the intervals on which $f(x) = -x^3 + 12x + 5, x \in [-3,3]$ is increasing and decreasing.
- 30. Find all the asymptotes of $f(x) = \frac{x^2 3}{2x 4}$.
- Give an example of a function which is not Riemann integrable. Prove your claim.
- Find the area between $y = \sec^2 x$ and $y = \sin x$ from 0 to $\pi/4$.

Part D (Essay Questions)

Answer any two questions (34 - 36). Each question carries 10 marks.

- 34. A dynamite blast blows a heavy rock straight up with a velocity of 160 ft/sec. It reaches a height of $s = 160t - 16t^2$ ft after t seconds.
 - How high does the rock go?
 - What is the velocity and speed of the rock when it is at 256 ft above the ground on the way up? on the way down?
 - What is the acceleration of the rock at any time t during its flight?
- 35. Sketch the graph of the function $y = x^4 4x^3 + 10$, by inspecting increasing, decreasing, concavity, points of inflection, local extrema etc.
- a) A curved wedge is cut from a cylinder of radius 3 by two planes. One plane is perpendicular to 36. the axis of the cylinder. The second plane crosses the first plane at 45° angle at the center of the cylinder. Find the volume of the wedge by slicing method.
 - b) Find the area of the region bounded by the curves $y = x^2$ and $y = x^4 4x^2 + 4$.

 $(2 \times 10 = 20 \text{ marks})$

D	93	78	9	-A
.,	าบ	10	v	-7 P

(**Pages**: 4)

Nam	le
Reg.	No

FIRST SEMESTER B.A./B.Sc. DEGREE EXAMINATION NOVEMBER 2020

(CUCBCSS)

Mathematics

MAT 1B 01—FOUNDATIONS OF MATHEMATICS

(Multiple Choice Questions for SDE Candidates)

Time: 15 Minutes Total No. of Questions: 20 Maximum: 20 Marks

INSTRUCTIONS TO THE CANDIDATE

- 1. This Question Paper carries Multiple Choice Questions from 1 to 20.
- 2. The candidate should check that the question paper supplied to him/her contains all the 20 questions in serial order.
- 3. Each question is provided with choices (A), (B), (C) and (D) having one correct answer. Choose the correct answer and enter it in the main answer-book.
- 4. The MCQ question paper will be supplied after the completion of the descriptive examination.

MAT 1B 01—FOUNDATIONS OF MATHEMATICS

(Multiple Choice Questions for SDE Candidates)

1.	If A an	d B are two disjoint sets, then $A \oplus$	B = -	 .
	(A)	A.	(B)	$A \cap B$.
	(C)	A∪B.	(D)	B. {2}. {1, 2, 3, 5}. ??
2.	If A =	$\{1, 3, 5\}$ and B $\{1, 2, 3\}$, then $A \oplus B$	=	
	(A)	{5} .	(B)	{2}.
	(C)	{2, 5}.	(D)	{1, 2, 3, 5}.
3.	Who is	s considered to be the father of set t	heory	7?
	(A)	Bertand Russel.	(B)	George Cantor.
	(C)	Srinivasa Ramanujan.	(\mathbf{D})	George Boole.
4.	A and l	B are subsets of a universal set hav	ring 1	2 elements. If A has 7 elements, B has 9 elements
	and A	B has 9 elements, then what is the	ne nui	mber of elements in A∪B?
	(A)	11.	(B)	16.
	(C)	22.	(D)	10.
5.	For any	y two sets A and B, $A - B$ defined b	y:	
	(A)	$\{x:x\in A \text{ and } x\in B\}$	(B)	$\{x:x\in A \text{ and } x\notin B\}.$
	(C)	$\{x: x \notin A \text{ and } x \in B\}.$	(D)	$\{x:x\in A \text{ or } x\in B\}.$
6.	If A =	24, $ B = 69$ and $ A \cup B = 81$, then	ı A∩	B =
	(A)	12.	(B)	10.
	(C)	14.	(D)	15.
7.	If $A = \{$	1, 2, 3, 4}, then the number of non-	empty	y subsets of A is :
	(A)	16.	(B)	15.
	(C)	20	(D)	2

Turn over

8	. For an	y three sets A, B, C, $(A \cup (B \cap C) =$.
	(A)	$(A \cup B) \cap (A \cup C).$	(B)	$(A \cup B) \cup (A \cup C).$
	(C)	$(A \cap B) \cap (A \cap C).$	(D)	None of these.
9	. If a set	t A has 3 elements and B has 6 elem	nents	, then the minimum number of elements in $A \cup B$
	(A)	6.	(B)	3.
	(C)	9.	(D)	None of these.
10	. For ar	by three sets A, B, C, $A \times (B - C) =$		
	(A)	$(A \times B) \cup (A \times C).$	(B)	$(A \times B) \cap (A \times C)$.
	(C)	$(\mathbf{A} \times \mathbf{B}) - (\mathbf{A} \times \mathbf{C}).$	(D)	$(A \times C) - (A \times B).$
11	. For an	y two sets A and B, a relation from	A to I	B is a subset of ———.
	(A)	A.	(B)	B.
	(C)	$A \times B$.	(D)	$B \times A$.
12.	If R is	a relation from a non-empty set A t	to a no	on-empty set B, then:
	(A)	$R = A \cap B$.	(B)	$R = A \cup B$.
	(C)	$R = A \times B$.	(D)	$R \subseteq A \times B$.
13.	If A is a	a finite set containing 'n' distinct el	emen	ts, then the number of relations on A is:
	(A)	2 ⁿ .	(B)	n^2 .
	(C)	2^{n^2} .	(D)	2n.
14.	Let R =	{(1, 3), (4, 2), (2, 4), (2, 3), (3,1)} be	e a rel	lation on $A = \{1, 2, 3, 4\}$, then R is:
	(A)	Not symmetric.	(B)	Transitive.
	(C)	A function.	(D)	Reflexive.
15.	If $A = \{a$	$\{a, b\}$ and B = $\{1, 2, 3\}$, then the num	nber o	of functions from A to B is:
	(A)	2^{3} .	(B)	3^2 .
	(C)	2×3 .	(D)	2 + 3. Turn over

(C) 2×3 .

16. If f(x) = 2x + 3 and $g(x) = x^2 + 7$, then the values of 'x' for which g(f(x)) = 8 are:

(A) 1, 2.

(B) -1, 2.

(C) -1, -2.

(D) 1, -2.

17. Let A be a set containing 'n' distinct elements. How many bijections from A to A can be defined? OF CALICIA

(A) n^2 .

(B) n!.

(C) n.

(D) 2n.

18. If $f(x) = \frac{1}{\sqrt{2x-4}}$, then its domain is:

(A) $\mathbb{R}-\{2\}$.

(C) $(2,\infty)$.

19. Which of the following is a Polynomial function?

(A) $\frac{x^2-1}{x}, x \neq 0.$

20. If for a function f(x), f(x+y) = f(x) + f(y) for all real number 'x' and 'y'. then f(0) = -

(B) -1.

 (\mathbf{D}) 0.

D	93	789
---	----	------------

(Pages: 4)

Reg. No.....

FIRST SEMESTER B.A./B.Sc. DEGREE EXAMINATION NOVEMBER 2020

(CUCBCSS)

Mathematics

MAT 1B 01—FOUNDATIONS OF MATHEMATICS

Time: Three Hours

Maximum: 80 Marks

Section A

Answer all the **twelve** questions.

Each question carries 1 mark.

- 1. Fill in the blanks : When A and B are any two sets, $A \oplus B = -----$.
- 2. Fill in the blanks: If A and B are any two finite sets, $n(A \setminus B) = n(A) \cdots$
- 3. Define a transitive relation on a set.
- 4. The diagonal elements of the matrix representing a reflexive relation will be ————.
- 5. Find the domain of the function $f(x) = \frac{1}{\sqrt{1-x^2}}$.
- 6. Number of one-one functions from a set A of m elements to a set B of n elements when n > m is ————.
- 7. Find $\lim_{n \to \infty} \frac{\sin n}{n}$
- 8. Give an example of a denumerable set.
- 9. Define a bijection from the set of even integers to the set of odd integers.
- 10. Solve for x and y if (x + 2y, x 2y) = (8, 2).
- 11. How many rows appear in a truth table for the compound proposition : $p \rightarrow \neg p$.

12. Find the complement of the set of all solutions of the quadratic equation $x^2 - 2x + 1 = 0$ with respect to the set of real numbers.

 $(12 \times 1 = 12 \text{ marks})$

Section B

Answer any **nine** out of twelve questions. Each question carries 2 marks.

- 13. Construct a relation R on $A = \{1, 2, 3\}$ such that R is symmetric and anti-symmetric but not reflexive.
- 14. Find the matrix of the relation R from A = $\{1, 2, 3, 4\}$ to B = $\{x, y, z\}$ given by R = $\{(1, y), (1, z), (3, y), (4, x), (4, z)\}$.
- 15. Evaluate the limit of $f(x) = \frac{|x| + x}{|x| + x}$ as x tends to -1.
- 16. Find the function obtained by shifting the graph of f(x) = |x-1| right by 2 units.
- 17. Test whether the function $\mathbb{R} \to \mathbb{R}$ defined by $f(x) = x^2$ is injective or not.
- 18. Find all real values of x at which $f(x) = \tan x$ is discontinuous.
- 19. Show that the relation "is a divisor of" is not a partial order on the set of integers.
- 20. Find the number of functions which are one-one from $A = \{1, 2, 3\}$ to the set $B = \{a, b, c, d\}$.
- 21. Find f^{-1} when f(x) = 2x 3.
- 22. Write down the power set of $A = \{x, y, z\}$.
- 23. Show that limit of a constant function is that constant through out the domain of that function using the formal definition of the limit.
- 24. Use a quantified statement to express the verbal statement "Every student in your class has taken a course in calculus."

Section C

Answer any **six** out of nine questions. Each question carries 5 marks.

25. Find
$$g \circ f$$
 and $f \circ g$, if $f(x) = x^2$ and $g(x) = x + 3$.

26. Show that
$$\neg \forall x (P(x) \rightarrow Q(x))$$
 and $\exists x (P(x) \land \neg Q(x))$ are logically equivalent.

- 27. Show that \mathbb{Q} , the set of rational numbers is countable.
- 28. Discuss the continuity of the function $\sin\left(\frac{1}{x}\right)$ at the origin.

29. If
$$\mathcal{A} = \{\{1, 2, 3\}, \{2, 3, 4\}, \{2, 3, 5\}\}\$$
, find $\bigcup_{A \in \mathcal{A}} A$ and $\bigcap_{A \in \mathcal{A}} A$.

- 30. Draw the graph of the function obtained by shifting the graph of $f(x) = x^2 1$ up by one unit.
- 31. Let $f: A \to B$ and $g: B \to C$ be functions. If $g \circ f$ is onto, show that g is onto.
- 32. Show that $\neg(p \lor q)$ and $\neg p \land \neg q$ are logically equivalent.

 $(6 \times 5 = 30 \text{ marks})$

Section D

Answer any **two** out of three questions.

Each question carries 10 marks.

34. (a) Find
$$\lim_{x \to 4} \frac{\sqrt{x} - 2}{x - 4}$$
.

- (b) Prove that subset of a countable set is countable.
- 35. (a) Find the continuous extension of the function $h(x) = \frac{x^2 4}{x 2}, x \neq 2$.
 - (b) Find $\lim_{x\to 0+} \frac{x-\sin mx}{mx}$ when $m \neq 0$.

- 36. (a) What is the truth value of $\forall x (x^2 \ge x)$ if the domain consists of all real numbers? What is the truth value of this statement if the domain consists of all integers?
 - (b) Test whether the function

truth value of this statement in the domain consists of all integers?

(b) Test whether the function

$$f(x) = \begin{cases} \frac{e^{\frac{1}{2}x} - 1}{e^{\frac{1}{2}x} + 1}, & \text{if } x \neq 0 \\ 0, & \text{otherwise} \end{cases}$$
is continuous or not.

(2 × 10 = 20 mark)

 $(2 \times 10 = 20 \text{ marks})$