C 83803 (Pages : 2) Name......

Reg. No.....

SECOND SEMESTER M.TECH. (NANO SCIENCE AND TECHNOLOGY) DEGREE EXAMINATION, APRIL 2020

NST 204-PROPERTIES AND APPLICATIONS OF NANO MATERIALS

(2019 Admissions)

Time: Three Hours Maximum: 60 Marks

Section A

Answer all questions.

2 marks each.

- 1. What is evanescent wave?
- 2. What is magneto resistivity?
- 3. What is quantum wave guide?
- 4. What is magnetic anisotropy?
- 5. What is the difference between Mott-Wannier and Frenkel exciton?
- 6. What is surface plasmon resonance?
- 7. What is ballistic conductance?
- 8. What is hard magnetic material and soft magnetic material?

 $(8 \times 2 = 16 \text{ marks})$

Section B

Answer any five questions.

4 marks each.

- Discuss the direct and indirect band gap materials. Describe the band structure modification in 2-D nanostructure
- 10. Explain type-I, type-II nanoparticles.
- 11. How core-shell nanoparticles are synthesysing? Discuss some of the advantages of cre-shell nanoparticles.
- 12. What is nanocomposite? What are the advantages of nanocomposites?
- 13. How the magnetism is getting modified in low dimensional systems?
- 14. Describe the structure of carbon nanotubes.

- 15. Explain Nabarro-Herring mechanism and Coble mechanism.
- 16. Discuss the mechanical properties of polypropelene/single walled carbon nanotube composite.

2

 $(5 \times 4 = 20 \text{ marks})$

Section C

Answer any four questions.

6 marks each.

- 17. What is Density of state? How it varies with the quantum confinement?
- 18. What is quantum waveguide? Discuss the applications of it.
- 19. Explain electron spin transistors.
- 20. How Nano systems can be used for single electron transfer devices?
- 21. What is photonic crystals? How optical filters can be designed with photonic band gap materials?
- 22. How nanotechnology is useful for large area optoelectronic devices?
- 23. What is magnetic domain? Explain the superparamagnetic effect based on domain theory.
- 24. Explain two-atom chain mechanism.

C 83802 (Pages: 2) Name......

Reg. No.....

SECOND SEMESTER M.TECH. DEGREE (NANO SCIENCE AND TECHNOLOGY) EXAMINATION, APRIL 2020

NST 203-BIO-NANO MATERIALS

(2019 Admissions)

Time: Three Hours Maximum: 60 Marks

Section A

Answer all questions. 2 marks each.

- 1. What is calcite?
- 2. What are biominerals? Give some examples.
- 3. Give the characteristics of polyplexes.
- 4. What are liposomes?
- 5. What is simulated body fluid?
- 6. Give the merits of grafting method.
- 7. What are the materials used for MEMS manufacturing?
- 8. Name the application corresponding to NEMS.

 $(8 \times 2 = 16 \text{ marks})$

Section B

Answer any **five** questions.

4 marks each.

- 9. Explain bioassay along with its classification.
- 10. Differentiate intercellular and extracellular bio-mineralization.
- 11. Demonstrate the advantages of liposomes.
- 12. Discuss the role of magnetic nanoparticles for therapeutic application of cancer.
- 13. Emphasis in details the artificial implants.
- 14. Write a short note on osteogenesis.
- Write a note on biochips.
- 16. Enumerate how DNA is employed as template in nanocircuitry.

Section C

Answer any **four** questions. 6 marks each.

- 17. Illustrate the synthesis of oxide nanoparticles using root extract with few examples.
- 18. Give the medical application of metallic nanoparticles.
- 19. Write a detailed note on injectable nanoparticles.
- 20. Write a detailed note on the molecular labels.
- 21. What is bone grafting? And list out their merits.
- 22. Discuss the role scaffolds in tissue engineering.
- 23. Explain the applications of NEMS in detail.
- 24. Write about the nanoparticle-biomaterial hybrid systems.

4	am	C	••••••	******	******	••••••	*****

Reg. No.

SECOND SEMESTER M.TECH. (NANO SCIENCE AND TECHNOLOGY) DEGREE EXAMINATION, APRIL 2020

NST 202-CHARACTERIZATION TECHNIQUES OF NANO MATERIALS

(2019 Admissions)

Time: Three Hours Maximum 60 Marks

Section A

Answer all questions.

2 marks each.

- 1. What are the different Fourier Transform techniques available for nanomaterial characterization?
- 2. Name the different x-ray diffraction techniques used for material characterization.
- 3. How AFM works?
- 4. What are the different modes of operations in SEM?
- 5. How hardness of a material can be tested?
- 6. How gaseous nanomaterials are characterized?
- 7. How NMR spectroscopy works?
- 8. What is the working principle of VSM?

 $(8 \times 2 = 16 \text{ marks})$

Section B

Answer any five questions.

4 marks each.

- 9. How IR spectroscopy works? Explain the technique with applications.
- 10. Discuss Raman spectroscopy with appropriate diagrams and explain the working principle.
- 11. Explain the working principle of SPM with neat diagram. Mention the applications.
- 12. Discuss the different contrast modes in TEM.
- 13. How mechanical tension of a nanomaterial can be characterized?
- 14. What is combustion calorimetry? How it works?
- 15. How the electrochemical impedance of nanomaterial can be measured?
- 16. How Mossbauer spectroscopy is useful in nanomaterial characterization? What are the suitable sources for this technique?

 $(5 \times 4 = 20 \text{ marks})$

Turn over

Section C

Answer any four questions.

6 marks each.

- 17. Explain Raman spectroscopy. What is the difference between Raman and FT Raman spectroscopic techniques?
- 18. What are the applications of XPS? Explain its working principle in detail.
- 19. Discuss the working and applications of STM.
- 20. Discuss about scanning probe microscopes. What are the various modes of operation?
- 21. How tension and hardness of nanomaterials can be measured?
- 22. Explain various thermal analysis techniques used for material characterization.
- 23. How does ESR spectroscopy work? Explain its applications.
- 24. Discuss the working principle and instrumentation of VSM in detail.

(Pages : 2)

Name

Reg. No.....

SECOND SEMESTER M.TECH. (NANO SCIENCE AND TECHNOLOGY) DEGREE EXAMINATION, APRIL 2020

NST 201—DESIGN AND SYNTHESIS OF NANO MATERIALS

(2019 Admissions)

Time: Three Hours Maximum: 60 Marks

Section A

Answer all questions.

2 marks each.

- 1. Give a comparison of evaporation and sputtering.
- 2. How monosized metallic nanoparticles are synthesizing?
- 3. What is protic and aprotic solvent?
- 4. What is mean free path of molecule? How it effect the evaporation growth technique?
- 5. Differentiate between homo epitaxy and hetero epitaxy.
- 6. Discuss the effect of homogeneous and inhomogeneous nucleation in nanoparticle growth.
- 7. Describe the growth of metaloxide nanostructures by electrochemical method.
- 8. What is soft lithography?

 $(8 \times 2 = 16 \text{ marks})$

Section B

Answer any five questions.

4 marks each.

- 9. Explain electrostatic stabilization.
- 10. Explain Ostwald ripening.
- 11. What is chemical potential? Describe its variation with surface curvature.
- Explain Molecular beam epitaxial with the help of schematic diagram.
- 13. Distinguish between solvothermal and hydrothermal synthesis.
- 14. What is self-assembly? Discuss the driving forces. Discuss the types of self-assembly methods for organic monolayers.

- 15. How growth control can be achieved with diffusion?
- 16. Explain the subsequent growth technique of nuclei.

 $(5 \times 4 = 20 \text{ marks})$

Section C

2

Answer any four questions.

6 marks each.

- 17. Explain photo-lithography and discuss the minimum resolvable features.
- 18. What is mean by spatial confinement of growth process in nanoparticle synthesis? Discuss available methods for spatial confinement.
- 19. Explain evaporation condensation growth of ZnO nanobelts.
- 20. Explain the fabrication of ordered mesoporous materials.
- 21. Explain Near filed Scanning Optical Microscopy. How classical optical diffraction limits can be overcome?
- 22. Explain the electrochemical deposition of nanorods and nanowires.
- 23. Explain the use of microorganisms in nanoparticle synthesis. Compare the advantages of biological methods with conventional chemical methods?
- 24. Explain dip-pen lithography and discuss the role of humidity in that process.