D 93439 (Pages : 2) Name	•••••••••••
--------------------------	-------------

Reg.	No	

FIRST SEMESTER M.Sc. DEGREE (REGULAR/SUPPLEMENTARY) EXAMINATION, NOVEMBER 2020

(CBCSS)

Polymer Chemistry

PCH 1C 04—POLYMER CHEMISTRY

(2019 Admissions)

Time: Three Hours

Maximum: 30 Weightage

General Instructions

- 1. In cases where choices are provided, students can attend all questions in each section.
- 2. The minimum number of questions to be attended from the Section/Part shall remain the same.
- 3. There will be an overall ceiling for each Section / Part that is equivalent to the maximum weightage of the Section / Part.

Section A

Answer any **eight** questions. Each question carries a weightage of 1.

- 1. Name two inorganic polymers.
- 2. Give two examples for the polymers which are formed by carbonyl addition substitution reaction.
- 3. What is the relationship between the number of free radicals produced and the number of quanta absorbed in photopolymerisation?
- 4. What do you meant by redox initiation?
- 5. What are thermoplastics?
- 6. What do you meant by photodegradation of polymers?
- 7. Give two examples for vinyl monomers.
- 8. What do you meant by degree of polymerisation?
- 9. What is a graft copolymer? Give example.
- 10. What are anti oxidants?
- 11. Comment on ring opening polymerisation.
- 12. What do you meant by co-ordination chain polymerisation?

 $(8 \times 1 = 8 \text{ weightage})$

Section B

2

Answer any **four** questions. Each question carries a weightage of 3.

- 13. What do you meant by interfacial condensation? Give examples.
- 14. How will you get the entropy of polymerisation?
- 15. Write down the mechanism of cationic polymerisation.
- 16. Discuss about Smith Ewart kinetics.
- 17. Discuss about crosslinking after polymerisation.
- 18. What do you meant by chemical degradation of polymers?
- 19. What are polymerisation reactors?

 $(4 \times 3 = 12 \text{ weightage})$

Section C

Answer any **two** questions.

Each question carries a weightage of 5.

- 20. (A) What do you meant by gelation? How will you calculate the gel point of polymers?
 - (B) Briefly discuss about statistics of linear step reaction polymerisation.
- 21. (A) What are copolymers? Derive the copolymer equation.
 - (B) Write note on rate of copolymerisation.
- 22. (A) How will you compare polymerisation in homogeneous and heterogeneous systems?
 - (B) Briefly discuss about the chemical reactions of polymers.
- 23. (A) What are the effect of temperature and pressure on chain polymerisation?
 - (B) Write notes on mechanism of vinyl polymerisation.

(Pages: 3)

lame.....

Reg. No.....

FIRST SEMESTER M.Sc. DEGREE (REGULAR/SUPPLEMENTARY) EXAMINATION, NOVEMBER 2020

(CBCSS)

Polymer Chemistry

PCH 1C 03—ORGANIC CHEMISTRY—I

(2019 Admissions)

Time: Three Hours Maximum: 30 Weightage

Section A

Answer any **eight** questions. Each question carries a weight of 1.

- 1. What are the basic criteria for a molecule to show aromaticity and antiaromaticity?
- 2. Write a short note on the comparison of acidic strength of malice acid and fumaric acid.
- 3. What is hammet acidity function?
- 4. Write the IUPAC name of the following compound (in terms of E and Z notations).

5. Write the R and S notation of second and third carbon atoms following compound:

- 6. What is cram's rule?
- 7. Write the structural formula of Cis-1,2 dichlorocyclohexane.
- 8. Define octant rule.
- 9. Draw the structure of second and third degenerate MOs (ψ_2 and ψ_3) of benzene molecule.

2

- 10. What is bond angle strain?
- 11. Draw all the diastereomers and enantiomers of the following molecule:

12. What is a prochiral centre?

 $(8 \times 1 = 8 \text{ weightage})$

Section B

Answer any four questions.

Each question carries a weight of 3.

- 13. Write a note on the volatility, acidity, basicity and stability of hydrates of carbonyl compounds.
- 14. Explain atropisomers with suitable examples.
- 15. Explain axial haloketone rule and its significance.
- 16. Draw the Newman's formulae of all possible confirmations of n-butane molecule.
- 17. Explain clemmenson and wolf-kishner reduction with suitable reaction.
- 18. Explain the stereochemistry of $S_N 1$ and $S_N 2$ mechanisms.
- 19. Explain optical rotatory dispersion (ORD) and Circular Dichroism (CD).

Section C

Answer any two questions.

Each question carries a weight of 5.

- 20. Write an essay on: (a) Inter and intra molecular hydrogen bonding; and (b) MO description of aromaticity and antiaromaticity?
- 21. Explain the sequence rule for R and S notations of acyclic and cyclic compounds.
- 22. Explain the following reactions with suitable molecules: (i) Aldol condensation; (ii) Stobbe reaction; and (iii) witting reaction.
- 23. Write an essay on electro organic reactions.

Dag	No	
nez.	110	

FIRST SEMESTER M.Sc. DEGREE (REGULAR/SUPPLEMENTARY) EXAMINATION, NOVEMBER 2020

(CBCSS)

Polymer Chemistry

PCH 1C 02—INORGANIC CHEMISTRY-I

(2019 Admissions)

Time: Three Hours

Maximum: 30 Weightage

General Instructions

- 1. In cases where choices are provided, students can attend all questions in each section.
- 2. The minimum number of questions to be attended from the Section / Part shall remain the same.
- 3. There will be an overall ceiling for each Section / Part that is equivalent to the maximum weightage of the Section / Part.

Section A

Answer any **eight** questions. Each question carries a weightage of 1.

- 1. Name the product obtained when diborane reacts with carbon monoxide.
- 2. What is the difference between Spectrochemical Series and Nephelauxetic Series?
- 3. Identify the crystal classes that satisfy the Bravais lattice relations:
 - (i) $a = b \neq c \text{ and } \alpha = \beta = Y = 90^{\circ} \text{ (ii) } a = b = c \text{ and } \alpha = \beta = Y \neq 90^{\circ}.$
- 4. Why do d3 complexes not show Jahn-Teller distortions?
- 5. In a solid, oxide ions are arranged in CCP, cation A occupy one- sixth of the tetrahedral voids and cations B occupy one third of the octahedral voids. What is the formula of the compound?
- 6. What is a polyoxyanion?
- 7. What are the factors upon which reaction rate depends in the case of reaction between two solids?
- 8. Potassium has the electronic configuration of [Ar]4s1. What are the possible term symbols of a neutral K atom?
- 9. What is the difference between Latimer Diagram and Frost Diagram?
- 10. Explain the stable oxidation states of lanthanides and actinides.

2 **D 93437**

- 11. Why are chelate complexes more stable?
- 12. What is the co-ordination number of atoms in BCC, HCP, CCP and simple lattices?

 $(8 \times 1 = 8 \text{ weightage})$

Section B

Answer any **four** questions. Each question carries a weightage of 3.

- 13. Explain the any two methods to synthesize diborane.
- 14. What are the characteristics of solid conductors?
- 15. Discuss charge transfer transition in transition metal complexes.
- 16. Give a brief note on Fluorite structure.
- 17. Give a note on the classification of alloys with examples.
- 18. What is the difference between Crystal Field Theory and Ligand Field Theory?
- 19. Strong bases are leveling solvents for acids, weak bases are differentiating solvents for acids. Explain

 $(4 \times 3 = 12 \text{ weightage})$

Section C

Answer any **two** questions.

Each question carries a weightage of 5.

- 20. Predict the structure of B_5H_{11} using Wade's rule.
- 21. Explain what is Born Haber cycle and how it can be used to calculate the lattice energy of an ionic solid.
- 22. (i) Sketch the d-orbital energy levels and the distribution of d electrons in the complex ion [Fe(Cl)6]3-List the number of lone electrons, and label whether the complex is paramagnetic or diamagnetic.
 - (ii) A tetrahedral complex absorbs at 545 nm. What is the respective octahedral crystal field splitting (Ao)? What is the color of the complex?
- 23. Explain the different types of defects in crystals.

D 93436	
---------	--

(Pages: 2)

Name

Reg. No.....

FIRST SEMESTER M.Sc. DEGREE (REGULAR/SUPPLEMENTARY) EXAMINATION, NOVEMBER 2020

(CBCSS)

Polymer Chemistry

PCH 1C 01—THEORETICAL CHEMISTRY—I

(2019 Admissions)

Time: Three Hours Maximum: 30 Weightage

General Instructions

- 1. In cases where choices are provided, students can attend all questions in each section.
- 2. The minimum number of questions to be attended from the Section/Part shall remain the same.
- 3. There will be an overall ceiling for each Section / Part that is equivalent to the maximum weightage of the Section / Part.

Section A

Answer any **eight** questions. Each question carries a weight of 1.

- 1. Write down the ground state term symbol of carbon atom.
- 2. Write down the cyclic boundary condition required for a rigid rotator.
- 3. State expectation value postulate?
- 4. Find the complex conjugate of:
 - (a) -7.

(b) 7 + 4i.

- (c) -8i.
- (d) $e^{-i\pi}$
- 5. What is Born-Oppenheimer approximation?
- 6. Calculate the lowest energy of an electron in a ID box of side 15A°.
- 7. For the eigen function, where m = 0, 1, 2, ..., show that all solutions are mutually orthogonal.
- 8. What is Compton effect?
- 9. Write down the possible spin and orbital functions for the electronic configuration $1s^1 2s^1$.
- 10. Normalize the wave function between the limits 0 and π .

- 11. Choose the orbital with 2 radial and 2 angular nodes:
 - (a) 3p.

(b) 5f.

(c) 5d.

- (d) 8d.
- 12. Write down any two major difference between VBT and MOT.

 $(8 \times 1 = 8 \text{ weightage})$

Section B

Answer any **four** questions. Each question carries a weight of 3.

- 13. Deduce the Schrödinger equation from classical wave equation.
- 14. Apply Schrödinger wave equation for particle in one dimensional box. Find eigen functions and eigen values.
- 15. Express in spherical polar coordinates.
- 16. The work function of metallic Fe is 5.8 eV. Calculate the kinetic energy of electrons from Fe surface when it is irradiated with a radiation of wavelength 350 nm.
- 17. Explain briefly the postulate of spin by Uhlenbeck and Goudsmith.
- 18. Find the ground state energy of He atom by first order perturbation method.
- 19. Briefly explain basic principles of HF method.

 $(4 \times 3 = 12 \text{ weightage})$

Section C

Answer any **two** questions. Each question carries a weight of 5.

- 20. State and prove variational theorem.
- 21. Explain the MO treatment of H²⁺ ion
- 22. Write down the Schrodinger equation for hydrogen atom in spherical polar co-ordinates, separate the variables and solve for the radial equation.
- 23. Write radial part of the Schrodinger wave equation for H atom. Find the solutions using Laguerre polynomials.

D 93255	(Pages : 2)	Name

Reg.	NT.		
REU.	17()	 	

FIRST SEMESTER M.Sc. DEGREE (SUPPLEMENTARY) EXAMINATION NOVEMBER 2020

(CUCSS)

Polymer Chemistry

PC 1C 03—THEORETICAL CHEMISTRY I

(2010 Admissions)

Time: Three Hours

Maximum: 36 Weightage

Part A

Answer **all** questions.

Each question carries a weightage of 1.

- 1. Explain the characteristics of well-behaved wavefunctions.
- 2. What are eigen values? Explain with an example.
- 3. Distinguish between normalized and orthogonal wavefunctions.
- 4. What is quantum tunnelling? Explain with an example.
- 5. Explain space quantization of angular momentum.
- 6. What is spin? How did Uhlenbeck and Goudsmith explain it?
- 7. Explain the fine structure of the atomic spectrum of Hydrogen.
- 8. State and explain Pauli's exclusion principle.
- 9. Find the ground state atomic term symbol for carbon atom.
- $10. \ \ Write the spectroscopic term symbol for diboron molecule (ground state).$
- 11. State and explain non-crossing rules for heteronuclear diatomics.
- 12. Explain Born-Openheimer approximation. What is its significance in quantum chemistry?
- 13. Define free valence index. How will you calculate the free valence indices at the carbon atoms in ethylene?
- 14. Explain the term Lennard Jones potential with suitable diagrams.

 $(14 \times 1 = 14 \text{ weightage})$

Part B

Answer any **seven** questions. Each question carries a weightage of 2.

- 15. (a) Define a Hermitian operator.
 - (b) State the properties of a Hermitian operator.

2 **D 93255**

- 16. Deduce Schrödinger wave equation from classical wave equation.
- 17. (a) Define postulate.
 - (b) Write the prominent postulates of quantum mechanics.
- 18. Derive the energy expression for a particle constrained to move in a onedimensional box.
- 19. How does a quantum harmonic oscillator differ from classical harmonic oscillator?
- 20. (a) What are spherical harmonics? Why do you call them so?
 - (b) Picturize any two of them using polar diagrams.
- 21. State and prove variation theorem.
- 22. Apply Independent-Particle model to the ground state of Helium atom.
- 23. Explain the significance of Frost-Huckel circle in Quantum Chemistry with examples.
- 24. Discuss ion-dipole and dipole-dipole interactions in chemistry with proper examples.

 $(7 \times 2 = 14 \text{ weightage})$

Part C

Answer any **two** questions.

Each question carries a weightage of 4.

- 25. (a) Write Schrödinger wave equation for hydrogen atom in spherical polar coordinates.
 - (b) Solve it by the method of separation of variables.
- 26. Discuss the general theory of perturbation method. Arrive at the mathematical expressions of the first order correction to energy and wavefunction.
- 27. Write the essence of Molecular Orbital Theory (MOT). Apply MOT to hydrogen molecule ion.
- 28. (a) Write the basic principle of Hückel's Molecular Orbital theory (HMOT).
 - (b) Apply HMOT to 1, 3-butadiene. Demonstrate how you will estimate the pi-electron energy and delocalization energy of this conjugated system.

(Pages: 4)

Name.....

Reg. No.....

FIRST SEMESTER M.Sc. DEGREE (SUPPLEMENTARY) EXAMINATION NOVEMBER 2020

(CUCSS)

Polymer Chemistry

PC 1C 02—ORGANIC CHEMISTRY-I

(2010 Admissions)

Time: Three Hours

Maximum: 36 Weightage

Part A

Answer all questions.
Each question carries 1 weightage.

- 1. Draw the line diagram of hex-2, 4-diene. Give the possible stereoisomers.
- 2. Which of them is/are aromatic? Why?

a) <u>Ā</u>

b) (

c) [

d) 🗍

- 3. Account for the optical activity of spiranes and allenes.
- 4. Write notes on the significance of Taft equation.
- 5. How many conformations are possible for trans-decal-2-ol? Draw them.
- 6. Explain antiaromaticity with a suitable example.
- 7. Assign absolute configuration for the following compounds:

a)

CH₃Et

b)

- 8. Draw the conformations of cis-1,3-dimethyl cyclohexane. Which is the most stable conformation?
- 9. Why $^{\mathsf{TsO}}$ reacts with acetic acid 10^{11} times faster than $^{\mathsf{TsO}}$
- 10. Identify the product and propose a mechanism for its formation:

- 11. Briefly discuss electropolymerisation reaction. Give an instance in which it is highly useful.
- 12. Comment on the relative reactivity of HCHO, $\mathrm{CH_3CHO}$, $\mathrm{(CH_3)_2CO}$ and $\mathrm{(C_2H_5)_2CO}$ towards nucleophilic addition reactions.
- 13. Predict the product and identify the reaction:

$$\begin{array}{c|c}
O \\
\hline
OEt \\
\hline
EtOH
\end{array}$$

$$\begin{array}{c}
NaOEt \\
\hline
EtOH
\end{array}$$

$$\begin{array}{c}
Dil. HCl \\
\hline
\Delta
\end{array}$$

$$\begin{array}{c}
Dil. HCl \\
\hline
\Delta
\end{array}$$

14. Compare the acidities of maleic acid and fumaric acid. Substantiate your answer.

 $(14 \times 1 = 14 \text{ weightage})$

Part B

Answer any **seven** questions. Each question carries 2 weightage.

15. Predict the major product formed in the following reactions and explain the reason:

16. Predict the products and explain:

a)

$$i.$$

Br

 CH_3OH

heat

 $ii.$
 CI
 C

b)

17. Briefly discuss with mechanism:

- a) Wolf Kishner Reduction.
- b) Unimolecular elimination reaction (E1).
- 18. Comment on the stereochemistry of the product obtained in the following reaction:

- 19. Explain axial, planar and helical chirality with examples.
- 20. Give a note on primary kinetic isotopic effect with suitable example.
- 21. Define Huckel's rule and discuss the aromaticity of annulenes.
- 22. Mechanistically illustrate: a) MPV reduction; b) Ritter reaction.
- 23. o-bromo toluene and m-bromo toluene gives the same product upon reaction with $NaNH_2$ in liquid NH_3 . Give the reason with equation.
- 24. Illustrate the utility of electrochemical oxidation and reduction reactions in comparison with normal oxidation and reduction reactions.

Part C

Answer any two questions.

Each question carries 4 weightage.

- 25. Explain briefly on the effects of substrate and leaving group on nucleophilic substitution reactions
- 26. Account for the effect of conformation on dehalogenation and dehydrohalogenation reactions.
- 27. Mechanistically illustrate and discuss the utility of:
 - a) Wittig Reaction.

b) Stobbe Condensation.

c) Prins Reaction.

- d) Chichibabin Reaction.
- 28. a) Write a note on the topicity of ligands.
 - b) Discuss CIP rules for R-S nomenclature.

D 72799	(Pages: 2)	Name
J	(=B · = /	

Reg.	MT.		
Rep.	180	 	

FIRST SEMESTER M.Sc. DEGREE EXAMINATION, DECEMBER 2019

(CUCSS)

Polymer Chemistry

PC1C01—INORGANIC CHEMISTRY—I

(2010 Admissions)

Time: Three Hours Maximum: 36 Weightage

Part A

Answer all questions.

Each question carries 1 weightage.

- 1. Define an acid and a base according to Arrhenius and Lewis concept. Give suitable examples.
- 2. What is meant by levelling effect?
- 3. Classify the following as closo, nido and arachno : (i) $B_{10}H_{14}$; (ii) B_5H_{11} ; (iii) $C_2H_{10}H_{12}$.
- 4. How many Bravais lattices are there? What are they?
- 5. What are carbides? How do we classify them?
- 6. Write a note on Hume-Rothery rules.
- 7. What is Fermi energy?
- 8. What is Q value? Write its importance in nuclear chemistry.
- 9. Distinguish between nuclear fission and nuclear fusion reactions.
- 10. Discuss briefly the theory of adsorption indicators.
- 11. State and explain Jahn-Teller effect.
- 12. Write notes on Ellingham diagram.
- 13. Account for the colour exhibited by the lanthanide compounds.
- 14. Actinides have greater tendency to form complexes that lanthanides. Explain.

 $(14 \times 1 = 14 \text{ weightage})$

Part B

Answer any seven questions. Each question carries 2 weightage.

- 15. Write notes on the chemistry of liquid ammonia as a solvent. What are their advantageous and disadvantageous?
- 16. Discuss the nature of bonding involved in B₂H₆ and B₄H₁₀.

D 72799

- 17. What are silicones? Describe their structures and applications.
- 18. Explain the structure of the following with diagrams: (i) CaF₂; (ii) Rutile; and (iii) Perovskite.

2

- 19. Discuss the Born-Haber cycle for experimental determination of lattice energy.
- 20. What is meant by the term confidence limit? How is it determined? What is its significance?
- 21. What is nephelauxetic effect? How does this effect explain the contribution of covalent bonding in metal-ligand bonds?
- 22. Define crystal field stabilization energy. Calculate its value for the following systems (i) d^5 low spin octahedral; (ii) d^4 tetrahedral; (iii) d^5 high spin octahedral; and (iv) d^6 tetrahedral.
- 23. Discuss the crystal field splitting of d orbitals in tetrahedral and square planar complexes.
- 24. What is lanthanide contraction? What are its important consequences? Would you expect analogous actinide contraction?

 $(7 \times 2 = 14 \text{ weightage})$

Part C

Answer any two questions. Each question carries 4 weightage.

- 25. Discuss the stoichiometric and non-stoichiometric defects in crystals. Mention the consequences of these defects in crystals.
- 26. Explain the following: (i) Tracer Techniques; (ii) Rock dating; (iii) Carbon dating; (iv) Neutron activation analysis.
- 27. Discuss sigma and pi bonding in square planar complexes by constructing a composite molecular orbital diagram for $[PtCl_4]^i$.
- 28 (a) What are the problems in the separation of lanthanides from one another? Discuss the ion exchange method for the separation of lanthanides.
 - (b) Discuss the chemistry of various steps involved in the extraction of Thorium from monazite sand and of Uranium from Pitchblende.