$\boldsymbol{\cap}$	CO	A A !	7
U	634	44	1

(Pages: 3)

Reg. No.....

FOURTH SEMESTER M.Sc. (SSE) DEGREE EXAMINATION, MARCH 2019

Mathematics

Elective—ADVANCED COMPLEX ANALYSIS

(2003 Admissions)

Time: Three Hours

Maximum: 80 Marks

Part A

Answer all questions.
Each question carries 4 marks.

- 1. (a) Prove that every meromorphic function can be expressed as the quotient of two entire functions.
 - (b) Discuss the convergence of $\prod_{k=1}^{\infty} \left\{ 1 \frac{1}{k(k+3)} \right\}$.
 - (c) Prove that a non-constant entire function of finite order assumes every complex value with only one possible exception.
 - (d) Prove that a sequence $\{f_n\}$ in $(C(G,\Omega), \rho)$ converges to f if and only if $\{f_n\}$ converges to f uniformly on all compact subsets of G.

 $(4 \times 4 = 16 \text{ marks})$

Part F

Answer any four questions without omitting any unit.

Each question carries 16 marks.

Unit I

- 2. (a) Let $\{b_k\}_{k=1}^{\infty}$ be a sequence of distinct points having no accumulation point in the finite complex plane $\mathbb C$, and $\{P_k(2)\}_{k=1}^{\infty}$ be a sequence of polynomials without constant terms. Prove that there exists a meromorphic function f(z) having the singular part $P_k\left(\frac{1}{z-b_k}\right)$ at $b_k(k\in\mathbb N)$ and no other singularity in the finite complex plane $\mathbb C$.
 - (b) Prove that $\sin \pi z = \pi z \prod_{n=1}^{\infty} \left(1 \frac{z^2}{n^2}\right)$.

- 3. (a) Let $\left\{a_j\right\}_{j=1}^{\infty}$ be a sequence of distinct points having no finite accumulation point and $\left\{\mathcal{G}_j\right\}_{j=1}^{\infty}$ a completely arbitrary sequence of complex numbers (with repetitions permitted). Prove that there exists an entire function f(z) such that $f\left(a_j\right) = \mathcal{G}_j$ where $j \in \mathbb{N}$.
 - (b) State and prove the Cauchy criterion for the convergence of an infinite product.
- 4. (a) Let f(z) be a bounded analytic function, not identically zero in the unit disc D. If $\{a_n\}_{n=1}^{\infty}$ is the sequence of roots of f(z) in the unit disc D, each repeated according to their multiplicities, then prove that the product $\prod_{n=1}^{\infty} |a_n|$ is convergent.
 - (b) Prove that $|1 \mathbf{E}_n(z)| \le |z|^{n+1}$ where $z \in \overline{D}(0,1)$.

Unit II

- 5. State and prove Hadamard factorization theorem.
- 6. (a) Suppose f(z) is a function continuous on Γ , where Γ consists of a finite number of curves $C_k(k=1,2,...,m)$. Let k be a compact set that does not intersect Γ . Then for any $\epsilon > 0$, prove that there exists a rational function $\phi(z)$ having all its poles on Γ and satisfying $\left|\frac{1}{2\pi i}\int_{\Gamma}\frac{f\mathcal{G}}{G-z}d\mathcal{G}-\phi(z)\right|<\epsilon \text{ for all }z\in K.$
 - (b) Let K be a compact subset of \mathbb{C} and a and b be two distinct arbitrary points that are in the same component of $\hat{\mathbb{C}} \mathbb{K}$, $a \neq \infty$. Prove that any rational function $R_0(z)$ having its only pole at a can be uniformly approximated on K by rational functions whose only pole is at b.
- 7. (a) Let f(z) be any power series at a point 'a' and let Γ be an arc joining 'a' to 'b'. If f(z) can be continued along the arc Γ , prove that the analytic continuation of f(z) at the point b along the arc Γ is unique.
 - (b) For any region $\Omega \subset \hat{\mathbb{C}}$, prove that there exists a function $f(z) \in H(\Omega)$ having the boundary $\partial \Omega$ of the region Ω as its natural boundary.

Unit III

- 8. (a) State and prove Schwarz reflection principle.
 - (b) Suppose $\mathcal{F} \subset C(G, \Omega)$ is equicontinuous at each point of Ω . Prove that \mathcal{F} is equicontinuous over each compact subset of G.
- 9. (a) Suppose that $\mathcal{F} \subset \mathrm{C}(G,\Omega)$ satisfies the following two conditions :
 - (i) For each z in G, $\{f(z): f \in \mathcal{F}\}$ has compact closure in Ω .
 - (ii) \mathcal{F} is equicontinuous at each point of G.

Prove that \mathcal{F} is normal in $C(G, \Omega)$.

- (b) If $f_n: G \to \mathbb{C}$ is analytic and $\sum_{n=1}^{\infty} f_n(z)$ converges uniformly on compact sets to f(z) then prove that $f^{(k)}(z) = \sum_{n=1}^{\infty} f_n^{(k)}(z)$.
- 10. (a) A family $\mathcal F$ in H(G) is normal if and only if $\mathcal F$ is locally bounded.
 - (b) Prove that H(G) $U\{\infty\}$ is closed in $C(G, \mathbb{C}_{\infty})$.

 $(4 \times 16 = 64 \text{ marks})$

	C9 4 4 E
U	63445

(Pages: 2)

Nam	e	•
Reg.	No	

FOURTH SEMESTER M.Sc. (SSE) DEGREE EXAMINATION, MARCH 2019

Mathematics

Elective—PROBABILITY THEORY

(2003 Admissions)

Time: Three Hours Maximum: 80 Marks

Part A

Answer all questions.
Each question carries 4 marks.

- I. (a) If $\{E_n\}$ is a sequence of events, define (i) $\lim\inf E_n$, (ii) $\lim\sup E_n$, and (iii) $\lim E_n$. If $E_n = \left(2 \frac{1}{n}, 2 + \frac{1}{n}\right)$ for n odd and $E_n = \phi$ for n even, discuss about the convergence of $\{E_n\}$.
 - (b) Show that any Borel function of a random variable X is again a random variable.
 - (c) Explain the term Lebesgue-measurable sets.
 - (d) Define discontinuities of a distribution function. State Jordan decomposition theorem on distribution functions.

 $(4 \times 4 = 16 \text{ marks})$

Part F

Answer any four questions without omitting any unit.

Each question carries 16 marks.

Unit I

- II. (a) Given a collection of events denoted by G. Let A be the class of all events constructed from G by finite unions and complimentations. Let B be the class of all events constructed from G by finite intersections and complimentations. Then prove or disprove "A = B".
 - (b) Define a Borel set. Let E be a Borel set in R. Define $E(x) = \{a + x; a \in E\}$ for $x \in R$. Then show that both E(x) and its compliment E'(x) are Borel sets.
- III. (a) Show that a necessary and sufficient condition that a given function to be measurable is that its positive and negative parts are measurable.
 - (b) Given a function X defined on a sample space is such that |X| is a random variable. Then prove or disprove: "X is also a random variable".
- IV. (a) Define Lebesgue-Stieljes measure. Show that every distribution function of a random variable induces a Lebesgue-Stieljes measure.

(b) Suppose $X_1, X_2, ..., X_n$ are the observations drawn independently from a distribution with distribution function F(x). If the observations are ordered as $X_{1:n} \le X_{2:n} \le ... \le X_{n:n}$, then derive the distribution function $F_{\gamma:n}(x)$ of $X_{\gamma:n}$ for $1 \le \gamma \le n$.

Unit II

2

- V. (a) Define moments of a random variable. If X is a random variable and $E(X) < \infty$, then show that $E(X) = \int_{0}^{\infty} [1 F(x)] dx \int_{-\infty}^{0} F(x) dx.$
 - (b) State and prove Holder's and Jensen's inequalities on expectation.
- VI. (a) Define Lr space. Show that it is a complete metric space.
 - (b) Define convergence in rth mean of a sequence of random variables. If $\{X_n\}$ is a sequence of random variables such that $X_n \xrightarrow{r} X$, then show that $X_n \xrightarrow{s} X$ for every positive integer s such that s < r.
- VII. (a) Define characteristic function of a random variable. State and prove some of the basic properties of characteristic functions.
 - (b) State and establish the inversion formula connecting the distribution function and characteristic function of a random variable.

Unit III

- VIII. (a) Let X_1, X_2, X_3 be three random variables with probability density functions f_1, f_2, f_3 respectively. Let the joint pdf of X_1, X_2 and X_3 be $f(x_1, x_2, x_3)$. Then prove that X_1, X_2, X_3 are independently distributed if and only if $f(x_1, x_2, x_3) = f_1(x_1)f_2(x_2)f_3(x_3)$.
 - (b) State and prove Kolmogorov 0-1 law.
 - IX. (a) State and prove Borel-Cantelli lemma.
 - (b) State and establish Kolmogorov inequality.
 - X. (a) Distinguish between law of large numbers and central limit theorems. Explain if central limit theorem holds for the sequence $\{X_n\}$ of independent random variables with X_n is normal having 0 mean and $Var(X_n) = 2^{-n}$.
 - (b) State and prove Lindeberg-Feller Central Limit Theorem.

 $(4 \times 16 = 64 \text{ marks})$

C 63444	(Pages: 2)	Name
	_	

Reg.	No	•••••	

FOURTH SEMESTER M.Sc. (SSE) DEGREE EXAMINATION, MARCH 2019

Mathematics

OPERATIONS RESEARCH (Elective 9)

(2003 Admissions)

Time: Three Hours Maximum: 80 Marks

Part A

Answer all questions.

Each question carries 4 marks.

- I. (a) Define strongly connected graph. Give example of a graph that is strongly connected and another graph that is not strongly connected.
 - (b) A factory can manufacture two products A and B. The profit on a unit of A is Rs. 80 and of B is Rs. 40. The maximum demand for A is 6 units per week and of B it is 8 units. The manufacturer has set up a goal of achieving a profit of Rs. 640 per week. Formulate the problem as goal programming.
 - (c) Discuss the generalization of geometric programming problem through Kuhn-Tucker theory.
 - (d) Describe the method of axial directions in optimization problems.

 $(4 \times 4 = 16 \text{ marks})$

Part B

Answer any **four** questions without omitting any unit. Each question carries 16 marks.

Unit I

- II. (a) Define potential difference in an arc of a graph. Prove that the potential difference in a cycle is zero.
 - (b) Show that if $\{x_i\}$ and $\{y_i\}$ are two flows in a graph, then $\{ax_i + by_i\}$, where a and b are real constants, is also a flow.
- III. (a) Prove that the maximum flow in a graph is equal to the minimum of the capacities of all possible cuts in it.
 - (b) Find the maximum on negative flow in the network described below, arc (v_i, v_j) being denoted as (j, k). v_a is the source and v_b is the sink:

Arc ... (a, 1) (a, 2)(1, 2), (1, 3)(1, 4)(2, 4) (3, 2) (3, 4) (4, 3) (3, b) (4, b) Capacity ... 8 10 3 4 2 8 3 4 2 10 9

- IV. (a) Discuss the concept of parametric linear programming.
 - (b) Minimize $f = x_1 2x_2 + x_3$ subject to $2x_1 x_2 + 2x_3 \le 2 + 2\lambda$, $x_1 x_2 \le 3 + \lambda$, $x_1 + 2x_2 2x_3 \le 4 4\lambda$, $x_1, x_2, x_3 \ge 0$.

Unit II

- V. (a) If F(X, Y) has a saddle point (X_0, Y_0) for every $Y \ge 0$, then with usual notations, prove that $G(X_0) \le 0, Y_0'G(X_0) = 0$.
 - (b) Using Kuhn-Tucker conditions, find the minimum of $f(X) = (x_1 + 1)^2 + (x_2 2)^2$ subject to $g_1(X) = x_1 2 \le 0$, $g_2(X) = x_2 1 \le 0$, $x_1 \ge 0$, $x_2 \ge 0$.
- VI. Solve the quadratic programming:

Minimize
$$-6x_1 + 2x_1^2 - 2x_1x_2 + 2x_2^2$$
 subject to $x_1 + x_2 \le 2$, $x_1 \ge 0$, $x_2 \ge 0$.

VII. Use geometric programming method to minimize $f(X) = \frac{c_1}{x_1 x_2 x_3} + c_2 x_2 x_3 + c_3 x_1 x_3 + c_4 x_1 x_2$ where $c_i > 0, x_j > 0, i = 1, 2, 3, 4, j = 1, 2, 3$.

Unit III

- VIII. (a) What is meant by dynamic programming? Illustrate the concept using an example.
 - (b) Minimize $u_1^2 + u_2^2 + u_3^2$ subject to $u_1 + u_2 + u_3 \ge 10; u_1, u_2, u_3 \ge 0.$
 - IX. (a) Describe the computational economy in Dynamic programming.
 - (b) Find the maximum of $f(x) = -0.55 + 3x x^2$ by Rosenbrock algorithm starting from x = 0, h = 1.
 - X. (a) Discuss the line search methods in multidimensional search.
 - (b) Define unimodal function. Prove that the function $f(x) = 2 x, 1 \le x \le 2$ is unimodal in (0, 2). $(4 \times 16 = 64 \text{ marks})$

Reg. No.....

FOURTH SEMESTER M.Sc. (SSE) DEGREE EXAMINATION, MARCH 2019

Mathematics

FLUID DYNAMICS—Elective 8

(2003 Admissions)

Time: Three Hours

Maximum: 80 Marks

Part A

Answer all questions.

Each question carries 4 marks.

- 1. Show that the magnitude of the vorticity multiplied by the cross-sectional area is constant along the filament.
- 2. Show that the stream function is constant along a streamline.
- 3. What is cavitation?
- 4. Obtain the complex potential for a simple source.

 $(4 \times 4 = 16 \text{ marks})$

Part B

Answer any four questions without omitting any unit.

Each question carries 16 marks.

Unit I

- I. (a) Obtain the equation of continuity for a liquid of an irrotational motion.
 - (b) Show that $u = -\frac{2xyz}{\left(x^2 + y^2\right)^2}$, $v = \frac{\left(x^2 y^2\right)z}{\left(x^2 + y^2\right)^2}$, $w = \frac{y}{x^2 + y^2}$ are the velocity-components of a possible

fluid motion. Is this motion irrotational.

- II. (a) Establish the energy equation, when the forces are conservative.
 - (b) State and prove Kelvin's minimum energy theorem.
- III. (a) Obtain vector expression for velocity and vorticity.
 - (b) Show that the velocity potential

$$\phi = \frac{1}{2} \log \frac{(x+a)^2 + y^2}{(x-a)^2 + y^2}$$

gives a possible motion, and determine the form of the streamlines.

Unit II

- IV. (a) Discuss the streaming motion past a circular cylinder.
 - (b) Verify that the velocity potential $\phi = u \left(r + \frac{a^2}{r} \right) \cos \theta$ represents a streaming motion past a finxed circular cylinder.
- V. (a) State and prove Blasius's theorem.
 - (b) Discuss the motion represented by $w = \frac{1}{2} \frac{ua^3}{z^2}$, and show that the streamlines are lemniscates.
- VI. (a) Describe the geometrical construction of Joukowski aerofoils.
 - (b) Write a short note on aerofoils.

Unit III

- VII. (a) Determine the effect on a wall of a source parallel to the wall.
 - (b) If there is a source at (a, 0) and (-a, 0) and sinks at (0, a), (0, -a), all of equal strength, show that the circle through these four points is a streamline.
- VIII. (a) Show that if we map the z-plane on the ξ -plane by a conformal transformation $\xi = f(z)$, a source in the z-plane will transform into a corresponding point of the ξ -plane.
 - (b) Preve that in conformal transformation a doublet will transform into a doublet, but that the strength will differ.
 - IX. (a) What is Stoke's stream function?
 - (b) Verify the $\Psi = \left(\frac{A}{r^2}\cos\theta + Br^2\right)\sin^2\theta$ is a possibe form of Stoke's stream function, and find the corresponding velocity potential.

 $(4 \times 16 = 64 \text{ marks})$

	6343	Ω
\mathbf{C}	0040	IJ

(Pages: 2)

Name	•••••	•••••	••••••

Reg. No.....

FOURTH SEMESTER M.Sc. (SSE) DEGREE EXAMINATION, MARCH 2019

Mathematics

Elective 2—ALGEBRAIC NUMBER THEORY

(2003 Admissions)

Time: Three Hours

Maximum: 80 Marks

Part A

Answer all questions.
Each question carries 4 marks.

- 1. Show that if $\{\alpha_1,...,\alpha_n\}$ is any Q-basis of a number field $K=Q(\theta)$ of degree n, then $\Delta[\alpha_1,...,\alpha_n]=\det(T(\alpha_i\alpha_j))$.
- 2. Let $K = Q(\xi)$ where $\xi = e^{\frac{2\pi i}{p}}$ for a rational prime p. In the ring of integer $Z[\xi]$, show that $\alpha \in Z[\xi]$ is a unit iff $N_k(\alpha) = \pm 1$.
- 3. Show that the ring of integers D in a number field K is noetherian.
- 4. Sketch the lattice in R^2 generated by (-1, 2) and (2, 2).

 $(4 \times 4 = 16 \text{ marks})$

Part E

Answer any four questions without omitting any unit.

Each question carries 16 marks.

Unit I

- I. (a) Show that every subgroup H of a free abelian group G of rank n in free of rank $s \le n$.
 - (b) Find the order of the grou G/H where G is free abelian with Z-basis x, y, z and H is generated by 41x + 32y 999z, 16y + 3z, 2y + 111z.
- II. (a) Show that if k is a number field then $K = Q(\theta)$ for some algebraic number θ .
 - (b) Express $Q(\sqrt{2}, \sqrt[3]{5})$ in the form $Q(\theta)$.
- III. (a) Show that every number field K possesses an integral basis.
 - (b) Let d be a square free rational integer and $d \equiv 1 \pmod{4}$. Find an integral basis and discriminant for $Q(\sqrt{d})$.

Unit II

- IV. (a) Find the group of units u of the integers in $Q(\sqrt{-3})$.
 - (b) Show that factorization into irreducibles is not unique in the ring of integers of $Q(\sqrt{-10})$
- V. (a) Show that the ring of integers of $Q\!\left(\sqrt{-2}\right)$ is Eluclidean.
 - (b) Show that every Euclidean domain is a principal ideal domain.
- VI. (a) Let D be the ring of integers of a number field k of degree n. Show that if a and b are non-zero ideals of D, then N(ab) = N(a) N(b).
 - (b) In $Z\left[\sqrt{-5}\right]$, define the ideals $p = \langle 2, 1 + \sqrt{-5} \rangle$ and $q = \langle 3, 1 + \sqrt{-5} \rangle$. Determine pq.

Unit III

- VII. (a) Show that if X is a bounded subset of \mathbb{R}^n and v(X) exists and if $v(r(X)) \neq v(X)$, then r/X is not injective.
 - (b) State and prove Minkowski's theorem.
- VIII. (a) Let $K = Q(\theta)$ be a number field of degree n, where θ is an algebraic integer. Explain the concept of the vectors space L^{st} and show that the σ -map is a ring homomorphism from K into L^{st} .
 - (b) Let $K = Q(\theta)$ where $\theta \in R$ and $\theta^3 = 2$. What is the σ -map in this case? Show that this σ -map is injective.
 - IX. (a) Show that the equation $x^4 + y^4 = z^2$ has no integer solutions with $x, y, z \neq 0$.
 - (b) Let $K = Q(\xi)$ where $\xi = e^{\frac{2\pi i}{p}}$ for an odd prime p. Show that the only roots of unity in K are $\pm \xi^s$ for integers s.

 $(4 \times 16 = 64 \text{ marks})$

\boldsymbol{C}	63437	
U	03437	

(Pages: 2)

Nam	ıe	•••••	•••••	•••••	••
Reg.	No	•••••		•••••	

FOURTH SEMESTER M.Sc. (SSE) DEGREE EXAMINATION, MARCH 2019

Mathematics

Paper XVI—FUNCTIONAL ANALYSIS—II

(2003 Admissions)

Time: Three Hours Maximum: 80 Marks

Part A

Answer all questions.

Each question carries 4 marks.

- 1. (a) Let X be a Banach space. Show that $A \in BL(X)$ is invertible if and only if A is bijective.
 - (b) Let X be a Banach space. Prove that if X is finite dimensional and strictly convex then X is uniformly convex.
 - (c) Show that pointwise limit of a sequence of compact operators is compact.
 - (d) Let H be a Hilbert space and $A \in BL(H)$. Show that A is normal if and only if $||A|| = ||A^*||$ for all $x \in H$.

 $(4 \times 4 = 16 \text{ marks})$

Part P

Answer any **four** questions without omitting any unit. Each question carries 16 marks.

Unit I

- 2. (a) Let X be a Banach space. Prove that the set of all invertible operators is open in BL(X) and the map $A \mapsto A^{-1}$ is continuous in this set.
 - (b) Let X be a non-zero Banach space over C and $A \in BL(X)$. Prove that $\sigma(A)$ is a non-empty subset of C.
- 3. (a) Let X be a non-zero Banach space over C and A \in BL(X). Then show that the spectral radius $r_{\sigma}(A) = \lim_{n \to \infty} \|A^n\|^{\frac{1}{n}}.$
 - (b) Let $1 \le p \le \infty$ and $\frac{1}{p} + \frac{1}{q} = 1$. Show that the dual of c_{00} with norm $\| \cdot \|_p$ is linearly isometric to l^q .
- 4. (a) Define uniform convexity of a normed space. Show that if X is finite dimensional and strictly convex then X is uniformly convex.

C 63437

(b) Let X be a Banach space which is uniformly convex in some equivalent norm. Show that X is reflexive.

Unit II

2

- 5. (a) Define a compact linear map. Let X and Y the Banach spaces and $F: X \to Y$ be linear. Prove that F is compact if and only if for every sequence $\{x_n\}$ in X, $(F(x_n))$ has a convergent subsequence.
 - (b) Let X be a normed space and $A \in CL(X)$. Show that every non-zero spectral value of A is an eigenvalue of A.
- 6. (a) Let X and Y be normed spaces and $F \in BL(X,Y)$. If $F \in CL(X,Y)$ then show that $F' \in CL(Y',X')$.
 - (b) Let X be an inner product space and $E \subset X$ convex how that there exists at most one best approximation from E to any $x \in X$.
- 7. (a) State and prove Riesz representation theorem.
 - (b) Prove that every Hilbert space is reflexive.

Unit III

- 8. (a) Let H be a Hilbert space and $A \in BL(H)$. If x_1 and x_2 are eigenvectors of A corresponding to distinct eigen values, then show that $x_1 \perp x_2$.
 - (b) Let $A \in BL(H)$ be self adjoint. Prove that A or -A is a positive operator if and only if $|\langle A(x), y \rangle|^2 \le \langle A(x), y \rangle \langle A(y), x \rangle$ for all $x, y \in H$.
- 9. (a) Let $T: l^2 \to l^2$ defined by $T(x_1, x_2, ...) = \left(x_1, \frac{x_2}{2} ...\right)$. Show that T is a Hilbert Schdmit operator.
 - (b) Let H be a Hilbert space and $A \in BL(H)$. Then show that $k \in \sigma(A)$ if and only if $\overline{k} \in \sigma(A^*)$.
- 10. State and prove the spectral theorem for compact self adjoint operators.

 $(4 \times 16 = 64 \text{ marks})$

Name.....

Reg. No.....

FOURTH SEMESTER P.G. DEGREE EXAMINATION, APRIL 2021

(CCSS)

M.Sc. Mathematics

MAT 4E 10-NON-LINEAR PROGRAMMING

(2019 Admissions)

Time: Three Hours

Maximum: 80 Marks

Part A

Answer all questions.

Each question carries 4 marks.

1. Determine whether the function f given by

$$f(x_1, x_2, x_3) = 4x_1^2 + 3x_2^2 + 5x_3^2 + 6x_1x_2 + x_1x_3 - 3x_1 - 2x_2 + 15$$

is convex or not.

- 2. Define Lagrangian function and saddle point of a programming problem.
- 3. Explain the terms (a) Mixed strategy; and (b) Pure strategy related to matrix game.
- 4. Find the saddle points and the game value of the pay-off matrix $\begin{vmatrix} -5 & 3 & 1 & 20 \\ 5 & 5 & 5 & 6 \\ -4 & -2 & 0 & -5 \end{vmatrix}$

 $(4 \times 4 = 16 \text{ marks})$

Part B

Answer any **two** questions. Each question carries 8 marks.

5. Write Kuhn-Tucker conditions for the problem:

Minimize
$$f(x) = -x_1 - x_2 - x_3 + \frac{1}{2}(x_1^2 + x_2^2 + x_3^2)$$

subject to $x_1 + x_2 + x_3 - 1 \le 0$
 $4x_1 + 2x_2 \le \frac{7}{3}$
 $x_1, x_2, x_3 \ge 0$.

Turn over

- 6. Solve the dynamic programming problem: Minimize $x^2 + y^2 + z^2$ subject to the constraints $xyz \le 6$, x, y, z are integers.
- 7. Solve the game, whose pay-off matrix is given below, by the principle of domination:

 $(2 \times 8 = 16 \text{ marks})$

Part C

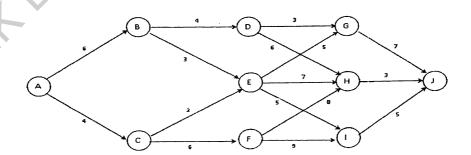
Answer either A or B of each question. Each question carries 24 marks.

8. (A) Solve by the method of quadratic programming:

Minimize
$$f(x) = -4x_1 + x_1^2 - 2x_1x_2 + 2x_2^2$$

subject to $2x_1 + x_2 \le 6$
 $x_1 - 4x_2 \le 0$
 $x_1, x_2 \ge 0$.

(B) Following figure shows a network of cities spread over a state. A company has to transport some goods from city A to city J. The cost of transportation between different cities is given along the line connected in nodes. A node represents a city. Find the optimal root connecting A to J using dynamic programming.



- 9. (A) (i) Explain dynamic programming problems with single additive constraint, additive the separable return.
 - (ii) State and prove the fundamental theorem of rectangular games.
 - (B) (i) Explain serial multi-stage model in dynamic programming.
 - (ii) Using graphical method solve the game, whose pay-off matrix is

В

 $(2 \times 24 = 48 \text{ marks})$

C 2715 (Pages: 3) Name......

Reg. No.....

FOURTH SEMESTER P.G. DEGREE EXAMINATION, APRIL 2021

(CCSS)

M.Sc. Mathematics

MAT 4E 05—ALGEBRAIC TOPOLOGY

(2019 Admissions)

Time: Three Hours

Maximum: 80 Marks

Part A

Answer all questions.

Each question carries 2 marks.

- State Jordan Curve Theorem.
- 2. Write the closure of the 2-simplex $\sigma = \langle a_0 a_1 a_2 \rangle$.
- Define chain mapping between complexes and give an example.
- 4. Prove that : \mathbb{R}^3 and \mathbb{R}^2 are not homeomorphic?
- Give an example of a path connected space.
- Define degree of a loop in S¹.

 $(6 \times 2 = 12 \text{ marks})$

Part B

Answer any five questions.

Each question carries 4 marks.

- 7. Prove that a simplex σ is the smallest convex set which contains all vertices of σ .
- 8. Prove that a set $A = \{a_0, a_1, \ldots \}$ of points in \mathbb{R}^n is geometrically independent if and only if the set of vectors $\{a_1 a_2, \ldots, a_k a_0\}$ is linearly independent.
- 9. Suppose that the complexes K_1 and K_2 have the same simplexes but different orientations. How are chain groups $C_p(K_1)$ and $C_p(K_2)$ related?

Turn

- 10. Prove that every simplicial mappings $\phi: |K| \to |L|$ is continuous.
- 11. Give an example of a simply connected space which is not contractible with justification.
- 12. If K is an oriented complex, $B_p(K), Z_p(K)$ are the p dimensional boundary group and cyclic group of K respectively, then prove that $B_p(K) \subset Z_p(K)$ for each integer p such that $0 \le p \le n$, where p is the dimension of K.
- 13. Prove that a discrete space X is contractible if and only if X has only one point.
- 14. State and prove the Generalized Covering Path Property.

 $(5 \times 4 = 20 \text{ marks})$

Part C

Answer either A or B of each of the following questions.

Each question carries 16 marks.

- 15. A (a) Let K be an oriented complex, σ^p an oriented p-simplex of K and σ^{p-2} a (p-2)-face of σ^p . Then prove that $\sum \left[\sigma^p, \sigma^{p-1}\right] \left[\sigma^{p-1}, \sigma^{p-2}\right] = 0$, $\sigma^p \in K$.
 - (b) If K is an oriented complex and $p \ge 2$, then prove that the composition $\delta \delta : C_p(K) \to C_{p-2}(K)$ in the diagram $C_p(K) \to^{\delta} C_{p-1}(K) \to^{\delta} C_{p-2}(K)$ is the trivial homomorphism.
 - B (a) Let K be a geometric complex with two orientations, and let K_1 , K_2 denote the resulting oriented geometric complexes. Then prove that the homology groups $H_p(K_1)$ and $H_p(K_2)$ are isomorphic for each dimension p.
 - (b) Let K be a complex with r combinatorial components. Then prove that $H_o(K)$ is isomorphic to the direct sum of r copies of the group $\mathbb Z$ of integers.
- 16. A (a) If S is a simple polyhedron with V vertices, E edges, and F faces, then prove that V E + F = 2.
 - (b) Show that an *n*-pseudomanifold K is orientable if and only if the n^{th} homology group $H_n(K)$ is not the trivial group.

- B (a) For any complex K, show that $\lim_{s\to\infty}$ mesh K (s) = 0.
 - (b) Let K and L be polyhedra with triangulations K and L respectively and $f:|K| \to |L|$ a continuous function such that K is star related to L relative to f. Then show that f has a simplicial approximation $g:|K| \to |L|$.
- 17. A (a) Show that two loops α and β in S^1 with base point 1 are equivalent if and only if they have the same degree.
 - (b) Show that the fundamental group $\pi_1(S^1)$ is isomorphic to the group $\mathbb Z$ of integers under addition.
 - B (a) If A is a deformation retract of a space X and x_0 is a point of A, then prove that $\pi_1(X, x_0)$ is isomorphic to $\pi_1(A, x_0)$.
 - (b) Let X be a space for which there is an open cover $\{V_i\}$ of X such that :
 - (i) $\cap V_i \neq \theta$,
 - (ii) Each V_i is simply connected, and
 - (iii) For $i \neq j$, $V_i \cap V_j$ is path connected. Then show that X is simply connected.

 $(3 \times 16 = 48 \text{ marks})$

	27	1 1
\mathbf{C}	41	14

(Pages: 2)

Nam	e
Reg.	No

FOURTH SEMESTER P.G. DEGREE EXAMINATION, APRIL 2021

(CCSS)

M.Sc. Mathematics

MAT 4E 04—ALGEBRAIC GRAPH THEORY

(2019 Admissions)

Time: Three Hours Maximum: 80 Marks

Part A

Answer all questions.
Each question carries 2 marks.

- 1. Obtain one spanning subgraph and one induced subgraph of Petersen graph.
- 2. What do you mean by proper colouring of a graph?
- 3. Define isomorphism between two graphs.
- 4. Define an asymmetric graph with an example.
- 5. Petersen graph is a Cayley graph: Justify your answer?
- 6. Define edge connectivity of a graph.

 $(6 \times 2 = 12 \text{ marks})$

Part B

Answer any **five** questions. Each question carries 4 marks.

- 7. Prove that the automorphism group of a graph is equal to the automorphism group of its complement.
- 8. Characterize a line graph in terms of its induced subgraph.
- 9. State and prove Orbit Stabilizer Lemma.
- 10. Let G be a transitive permutation group on V. Show that G is primitive if and only if each nondiagonal orbit is connected.
- 11. Prove that $|\operatorname{Aut}(C_n)| = 2n$.
- 12. Show that the Cayley graph X(G, C) is vertex transitive.
- 13. Let X be vertex and edge transitive, but not are transitive, Show that its valency is even.
- 14. Prove any two properties of fragments.

 $(5 \times 4 = 20 \text{ marks})$

Turn over

C 2714

Part C

Answer either A or B of each of the following questions. Each question carries 16 marks.

Unit I

- 15. A) (i) Prove that the chromatic numbers of a graph X is the least integer r such that there is a homomorphism from X to K_r.
 - (ii) Show that X and \overline{X} have the same automorphism group, for any graph X.
 - B) State and prove Euler's polyhedral formula for planar graphs.

Unit II

- 16. A) (i) Prove that almost all graphs are asymmetric.
 - (ii) Let D be a directed graph such that the in-valency and out-valency of any vertex are equal. Then, show that D is strongly connected if and only if it is weakly connected.
 - B) Let G be a transitive permutation group on V and let x be point in V. Prove that G is primitive if and only if G_x is maximal subgroup of G.

UNIT III

- 17. A) (i) Prove that k—cube Q_k is vertex transitive.
 - (ii) Let u and v be distinct vertex in X and let P be a path from u to v. If no vertex in $V(P)\setminus\{u,v\}$ is critical then show that maximum matching misses both u and v.
 - B) (i) Show that any two paths of maximum length in a connected graph must have at least one vertex in common.
 - (ii) Prove that a transitive abelian permutation group is regular.

 $(3 \times 16 = 48 \text{ marks})$

C 2710	(Pages : 2)	Name
	_	

Reg. No.....

FOURTH SEMESTER P.G. DEGREE EXAMINATION, APRIL 2021

(CCSS)

Mathematics

MAT 4E 04—ALGEBRAIC GRAPH THEORY

(2017 Admissions)

Time: Three Hours

Maximum: 80 Marks

Part A

Answer all questions.

Each question carries 2 marks.

- 1) Find the automorphism group of C_3 .
- 2) Give an example of a maximal planar graph.
- 3) Prove that stabilizer of an element in a permutation group V is a subgroup of V.
- 4) Prove that a directed graph is weakly connected if and only if its underlying undirected graph is connected.
- 5) Draw the Cayley graph $X(\mathbb{Z}_4, \{1,2,3\})$.
- 6) Is an edge transitive graph regular? Justify your answer.

 $(6 \times 2 = 12 \text{ marks})$

Part B

Answer any five questions.
 Each question carries 4 marks.

- 7) Show that any edge in a bipartite graph X is a retract of X.
- 8) Is $Aut(K_4)$ isomorphic to $Aut(L(K_4))$? Justify your answer.
- 9) Let X be a maximal planar graph on n vertices. Prove that X has 3n-6 edges.
- 10) Let G_v denote the class of graphs on the vertex set V. For $X,Y \in G_v$, define \sim by $X \sim Y \Leftrightarrow X$ and Y are isomorphic.

Prove that ~ is an equivalence relation on G_v.

- 11) Prove that Sym(3) is a primitive group.
- 12) Prove that the k-cube Q_k is vertex transitive.

Turn over

- 13) Prove that the Cayley graph X (G, C) is connected if and only if C generates the group G.
- 14) If A and B are fragments in a graph X, then prove that $\overline{A} \cup \overline{B} \subset \overline{A \cap B}$.

 $(5 \times 4 = 20 \text{ marks})$

Part C

Answer A or B of the following questions. Each question carries 16 marks.

Unit I

- 15) A (a) Let x and y be vertices in a graph X and let g be an automorphism of X. Prove that the distance between x and y in X is equal to the distance between x^g and y^g in X.
 - (b) If the line graph of a connected graph X is regular, then prove that X is regular or bipartite and semiregular.
 - B (a) Let X be a graph with n vertices. If $d_1, d_2, ..., d_n$ are the valencies of n vertices of X, then prove that the number of edges in the line graph L(X) is

$$\frac{1}{2} \left(\sum_{i=1}^{n} d_i^2 - \sum_{i=1}^{n} d_i \right).$$

(b) Prove that K_5 is not planar.

UNIT II

- 16) A (a) Is K_3 asymmetric? Justify your answer.
 - (b) Prove that the number of isomorphism classes of graphs on n vertices is at most

$$(1+o(1))\frac{2\binom{n}{2}}{n!}$$

- B (a) Let G be a permutation group on the set V and let x be a point in V. If $g \in G$, then prove that $g^{-1}G_xg = G_{xx}$.
 - (b) Let G be a transitive permutation group on V. Prove that G is primitive if and only if each non-diagonal orbit is connected.

UNIT III

- 17) A (a) Let X is a connected vertex-transitive graph, then prove that its edge connectivity is equal to its valency.
 - (b) If a graph X is vertex and edge transitive, but not arc transitive, then prove that its valency is even.
 - B (a) Prove that Petersen graph is not a Cayley graph.
 - (b) If A is an atom and B is a fragment of X, then prove that A is a subset of exactly one of B, N(B) and \overline{B} .

	07	19
v	ZI.	LO

(Pages: 3)

Reg. No.....

FOURTH SEMESTER P.G. DEGREE EXAMINATION, APRIL 2021

(CCSS)

M.Sc. Mathematics

MAT 4E 02—ADVANCED FUNCTIONAL ANALYSIS

(2019 Admissions)

Time: Three Hours

Maximum: 80 Marks

Part A

Answer all questions. Each question carries 2 marks.

- 1. Let X be a vector space over $\mathbb{K} (= \mathbb{R} \text{ or } \mathbb{C})$ and $A,B:X \to X$ be two linear maps. Show that A^{-1} and B^{-1} exist if and only if $(AB)^{-1}$ and $(BA)^{-1}$ exist.
- 2. Show that a normed space X is separable if the dual space X' is separable.
- 3. Define compact operators with examples. Show that a compact operator on an infinite dimensional Banach space is never invertible.
- 4. State True or False. Justify your claim: Every Banach space is a Hilbert space.
- 5. Give example for an infinite orthonormal set. Show that every orthonormal set is linearly independent.
- 6. Let $A: l^2 \to l^2$ be defined by A(x(1), x(2),) = (0, x(1), x(2),); for all $(x(1), x(2),) \in l^2$. Find the adjoint A^* .
- 7. Define normal, unitary and self-adjoint operators. Give an example for a normal operator that is not unitary.
- 8. Define Hilbert-Schmidt operators and show that A is Hilbert-Schmidt if and only if A* is Hilbert-Schmidt.

 $(8 \times 2 = 16 \text{ marks})$

Part B

Answer any **four** questions. Each question carries 4 marks.

9. Define the spectral radius $r_{\sigma}(A)$ of a bounded operator on a normed space X. Show by an example that $r_{\sigma}(A)$ can be strictly less than $\inf_{n=1,2,...} ||A^n||^{\frac{1}{n}}$.

- 10. Show that the spectrum of a compact operator on a Banach space is at most countable.
- 11. Let $\{u_1, u_2,\}$ be a countable orthonormal set in an inner product space X and $x \in X$. Show that the sequence $\{(x, u_n); n \in \mathbb{N}\}$ is in l^2
- 12. Show that if A is a normal operator on a Hilbert space, and λ is an eigenvalue of A, then $\bar{\lambda}$ is an eigenvalue of A*. Show by an example that this need not be true if A is not normal.
- 13. Show that $x_n \xrightarrow{w} x$ if and only if $x_n \to x$ in l^1 .
- 14. Show that sum of two compact operators is compact. Also show that composition of a compact operator and a bounded operator is compact.

 $(4 \times 4 = 16 \text{ marks})$

Part C

Answer either part (a) or (b) of each of the following questions.

Each question carries 12 marks.

- 15. (a) i) Introduce the spectrum $\sigma(A)$, eigenspectrum $\sigma_e(A)$, approximate eigenspectrum $\sigma_a(A)$ of a bounded operator A on a normed space X. Show that $\sigma_e(A) \subset \sigma_a(A) \subset \sigma(A)$.
 - ii) Show by examples that the above inclusions can be strict. Also give examples of equality also.
 - iii) Give example for an operator with no eigenvalues but $\sigma(A)$ is non-empty.

Oi

- (b) For $1 \le p < \infty$, show that the dual $(l^p)'$ of l^p is isometrically isomorphic to l^q , where $\frac{1}{p} + \frac{1}{q} = 1$.
- 16. (a) Show that the class CL(X) of all compact operators on a Banach space X is a closed two sided ideal in BL(X), the class of all bounded operators on X.

Or

- (b) Let X be a normed space and A be a compact operator on X.
 - i) Show that every non-zero spectral value of A is an eigenvalue of A.
 - ii) Show that $\sigma_{\alpha}(A) = \sigma(A)$.
- 17. (a) i) State and prove Projection theorem.
 - ii) State and prove Riesz Representation theorem.

Οı

(b) Let $\mathbb{H} = L^2(\mathbb{R})$ and $z \in L^{\infty}(\mathbb{R})$. Define A on \mathbb{H} by A(x) = zx, $x \in \mathbb{H}$. Show that A is a bounded linear map on \mathbb{H} and $\|A\| = \|z\|_{\infty}$. Also find A^* .

- 18. (a) Let H be a Hilbert space and $A \in BL(H)$.
 - i) If A is self-adjoint, then show that $||A|| = \sup\{|\langle A(x), x \rangle| : x \in \mathbb{H}, ||x|| \le 1\}$.
 - ii) Show that A is unitary if and only if ||A(x)|| = ||x||, for every $x \in H$. Also show that in this case, $||A^{-1}(x)|| = ||x||$ for every $x \in H$ and $||A|| = 1 = ||A^{-1}||$.
 - iii) Show that A is normal if and only if $\|A(x)\| = \|A^*(x)\|$, for every $x \in H$. Also show that in this case, $\|A^2\| = \|A\|^2 = \|A^*A\|$.

Or

- (b) i) Introduce the numerical range $\omega(A)$ of a bounded operator A on a Hilbert space $\mathbb H$. Show that neither $\sigma(A)$ nor $\omega(A)$ is contained in the other in general.
 - ii) Show that $\omega(A)$ need not be closed.
 - iii) Show that $\sigma(A) \subset \overline{\omega(A)}$.

 $(4 \times 12 = 48 \text{ marks})$

	27	OO
\mathbf{C}	41	UÐ

(Pages: 3)

Nam	e
Reg.	No

FOURTH SEMESTER P.G. DEGREE EXAMINATION, APRIL 2021

(CCSS)

Mathematics

MAT 4E 02—ADVANCED FUNCTIONAL ANALYSIS

(2017 Admissions)

Time: Three Hours

Maximum: 80 Marks

Part A

Answer all questions.
Each question carries 2 marks.

- 1. Let X be a normed space over K and (K_n) be a sequence of eigen values of $A \in BL(X)$. Show that if $K_n \to K$ in K, then k is an approximate eigen value of A.
- 2. Show that if X is a finite dimensional normed space, then its dual X' has the same dimension as X.
- 3. Show that the dual space of a reflexive normed space is reflexive.
- 4. Let X be an inner product space and $x \in X$. Show that $\langle x, y \rangle = 0$ for all $y \in X$ iff x = 0.
- 5. Let F be a subspace of a normed space X and $x \in X$. Show that if $y \in F$ with $x y \perp F$, then y is a best approximation from F to x.
- 6. Let H be a Hilbert space, $\{u_1, u_2, ...\}$ a countable orthonormal set and $k_1, k_2, ...$ belong to K. Show that if $\sum_n |k_n|^2 < \infty$, then $\sum_n k_n u_n$ converges in X.
- 7. Let H be a Hilbert space and $A \in BL(H)$ be self-adjoint. Show that $A^2 \ge 0$ and $A \le ||A||$. I.
- 8. Let H be a Hilbert space and $A \in BL(H)$. Show that if $A(x_1) = k_1x_1$ and $A*(x_2) = \overline{k_2}x_2$ for $k_1 \neq k_2$ in K and $x_1, x_2 \in X$, then $x_1 \perp x_2$

 $(8 \times 2 = 16 \text{ marks})$

Part B

Answer any **four** questions. Each question carries 4 marks.

- 9. Let X be a finite dimensional normed space. Show that $x_n \xrightarrow{w} x$ in X iff $x_n \to x$ in X.
- 10. Let X be a Banach space and $P \in BL(X)$ be a projection. Show that $P \in CL(X)$ iff P is of finite rank.
- 11. Show that every inner product space is a normed linear space.
- 12. Let $X = C([-1,1], x(t) = 1 t^2, x_0(t) = 1 \text{ and } x_1(t) = \cos \pi t$, for t in [0,1]. Show that the best approximation from span $\{x_0, x_1\}$ is $\frac{2}{3} + \frac{4x_1}{\pi^2}$ to x.
- 13. Let H be a Hilbert space and $A \in BL(H)$. Show that $||A^*|| = ||A||$ and $||A^*A|| = ||A||^2 = ||AA^*||$.
- 14. Show that every compact operator is bounded. Is the converse true? Justify your answer.

 $(4 \times 4 = 16 \text{ marks})$

Part C

Answer either part A or B of each of the following questions. Each question carries 12 marks.

- 15. A (i) Let X be a Banach space. Show that the set of all invertible operators is open in BL (X) and that the map $A \mapsto A^{-1}$ is continuous on this set.
 - (ii) Let $X = l^2$ and $A: X \to X$ be defined by:

$$A(x) = \left(0, x(1), \frac{x(2)}{2}, \dots\right) \text{ for } x = \left(x(1), x(2), \dots\right) \in X \text{ . Show that } \sigma_e(A) = \emptyset \text{ and :}$$

$$\sigma_a(A) = \{0\} = \sigma(A).$$

- B Let $1 \le p \le \alpha$ and $\frac{1}{p} + \frac{1}{q} = 1$. For a fined $y \in l^q$, let $f_y(x) = \sum_{j=1}^{\infty} x(j) y(j)$, for $x \in l^p$. Show that :
 - (i) $f_y \in (l^p)'$ and $||f_y|| = ||y||_q$.
 - (ii) the map $F: l^2 \to (l^p)'$ defined by $F(y) = f_y, y \in l^q$, is a linear isometry from l^q into $(l^p)'$

- 16. A (i) Let X and Y be Banach spaces and $F: X \to Y$ be linear. Show that F is a compact map and R (F) is closed in Y iff F is continuous and of finite rank.
 - (ii) Let $X = l^2$, the Banach sequence space, and let $M = \text{diag}(k_1, k_2, \ldots)$. Show that if $K_n \to 0$ as $n \to \infty$, then M defines a map in CL (X).
 - B Let X be a normed space and $A \in CL(X)$. Show that every non-zero spectral value of A is an eigen value of A.
- 17. A (i) Let X be an inner product space and $f \in X'$ and let $\{u_1, u_2, \ldots\}$ be an orthonormal set in X. Show that $\sum_{n} |f(u_n)^2| \le ||f||^2$.
 - (ii) State and prove unique Hahn-Banach extension theorem for Hilbert spaces.
 - B (i) Prove or disprove: Let X be an inner product space and $A \in BL(X)$. Then there is a $B \in BL(X)$ such that $\langle A(x), y \rangle = \langle x, B(y) \rangle$ for all $x, y \in X$.
 - (ii) Let H be a Hilbert space and $A \in BL(H)$. Show that R(A) = H iff A^* is bounded below, and that $R(A^*) = H$ iff A is bounded below.
- 18. A (i) Let H be a Hilbert space and $A \in BL(H)$. Show that A is unitary iff ||A(x)|| = ||x|| for all $x \in H$ and A is surjective.
 - (ii) Let H be a finite dimensional Hilbert space over K = C and $A \in BL(H)$ be normal. Show that there is an orthonormal basis for H consisting of eigenvectors of A.
 - B (i) Let H be a Hilbert space and $A \in BL(H)$ be compact show that A^* is compact.
 - (ii) Let A be a compact operator on a non-zero Hilbert space H. Show that every non-zero approximate eigenvalue of A is an eigenvalue of A and the corresponding eigen space is finite dimensional.

 $(4 \times 12 = 48 \text{ marks})$

(Pages: 4)

Name.....

Reg. No.....

FOURTH SEMESTER M.Sc. DEGREE (REGULAR) EXAMINATION MARCH 2021

(CBCSS)

Mathematics

MTH 4E 13—WAVELET THEORY

(2019 Admissions)

Time: Three Hours

Maximum: 30 Weightage

General Instructions

- 1. In cases where choices are provided, students can attend all questions in each section.
- 2. The minimum number of questions to be attended from the Section/Part shall remain the same.
- 3. There will be an overall ceiling for each Section / Part that is equivalent to the maximum weightage of the Section / Part.

Part A

Answer all questions.

Each question carries weightage 1.

- 1. Define conjugate reflection of $w \in l^2(\mathbb{Z}_N)$. Prove that $z * \overline{w}(k) = \langle z, \mathbb{R}_k w \rangle$.
- 2. Compute \hat{z} for $z = (1, i, 2 + i, -3) \in l^2(\mathbb{Z}_4)$.
- 3. Let $w \in l^2(\mathbf{Z_N})$. Then prove that $\{\mathbf{R}_k w\}_{k=0}^{N-1}$ is an orthonormal basis for $l^2(\mathbf{Z_N})$ if and only if $|\hat{w}(n)| = 1$ for all $n \in \mathbf{Z_N}$.
- 4. Suppose $z \in l^2(\mathbb{Z})$. Then prove that $\tilde{z}, z^* \in l^2(\mathbb{Z})$, and $\mathbb{R}_k z \in l^2(\mathbb{Z})$, for all $k \in \mathbb{Z}$.
- 5. Suppose $z, w \in l^2(\mathbf{Z})$. Then prove that :
 - (i) $(\tilde{z}*w) = \tilde{z}*\tilde{w}$
 - (ii) $U(\tilde{z}) = U(\tilde{z})$

- 6. Prove that the trigonometric system is an orthonormal set in $L^2[-\pi,\pi)$.
- 7. For $g: \mathcal{R} \to C$ and $t \in \mathcal{R}$, t > 0, define the t-dilation of g. What do you mean by an approximate identity?
- 8. What is Multi-Resolution Analysis?

 $(8 \times 1 = 8 \text{ weightage})$

Part B

Answer any **two** questions from each unit. Each question carries weightage 2.

Unit 1

- 9. Let $T: l^2(Z_N) \to l^2(Z_N)$ be a translation-invariant linear transformation. Then prove that T is diagonalizable.
- 10. Let $b \in l^2(\mathbb{Z}_N)$. Then define the convolution operator \mathbb{T}_b . Prove that \mathbb{T}_b is translation-invariant.
- 11. State and prove the Folding lemma.

Unit 2

- 12. Suppose $f \in L^1([-\pi,\pi))$ and $\langle f,e^{in\theta} \rangle = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(\theta) \, e^{-in\theta} d\theta = 0$ for all $n \in \mathbb{Z}$. Then prove that $f(\theta) = 0$ a.e.
- 13. Suppose that $u,v \in l^1(Z)$. Then prove that $B = \{R_{2k}v\}_{k \in Z} \cup \{R_{2k}u\}_{k \in Z}$ is a complete orthonormal set in l^2Z if and only if the system matrix $A(\theta)$ is unitary for all $\theta \in [0,\pi)$.
- 14. Suppose $u \in l^1(Z)$ and $\{R_{2k}u\}_{k \in Z}$ is orthonormal in $l^2(Z)$. Define a sequence $v \in l^1(Z)$ by $v(k) = (-1)^{k-1} \overline{u(1-k)}$. Then prove that $\{R_{2k}v\}_{k \in Z} \cup \{R_{2k}u\}_{k \in Z}$ is a complete orthonormal system in $l^2(Z)$.

Unit 3

- 15. Prove that $L^2(\mathcal{R})$ is an innerproduct space.
- 16. If $f \in L^1(\mathcal{R})$ and $\hat{f} \in L^1(\mathcal{R})$, then show that $\frac{1}{2\pi} \int_{\mathbb{R}} \hat{f}(\xi) e^{ix\xi} d\xi = f(x)$ at every Lebesgue point x of f.
 - 17. Explain Haar MRA.

 $(6 \times 2 = 12 \text{ weightage})$

Part C

Answer any **two** questions. Each question carries weightage 5.

- 18. (i) State and prove convolution theorem in $l^2(\mathbb{Z}_n)$.
 - (ii) Verify convolution theorem for $z = (2, i, 1, 0), w = (1, 0, 2, 3) \in l^2(\mathbb{Z}_n)$.
- 19. (i) Suppose $\theta_0 \in (-\pi,\pi)$ and $\alpha > 0$ is sufficiently small that $-\pi < \theta_0 \alpha < \theta_0 + \alpha < \pi$. Define intervals $I = (\theta_0 \alpha, \theta_0 + \alpha)$ and $J = (\theta_0 \frac{\alpha}{2}, \theta_0 + \frac{\alpha}{2})$. Then prove that there exists $\delta > 0$ and a sequence of real valued trigonometric polynomials $\{p_n(\theta)\}_{n=1}^{\infty}$ such that:
 - (a) $p_n(\theta) \ge 1$ for $\theta \in I$.
 - (b) $p_n(\theta) \ge (1+\delta)^n$ for $\theta \in J$.
 - (c) $|p_n(\theta)| \le 1$ for $\theta \in [-\pi, \pi) \setminus I$.
 - (ii) Suppose N is even, say N = 2M, $z \in l^2(\mathbb{Z}_N)$, and $x, y, w \in l^2(\mathbb{Z}_N)$. Then prove that :
 - (a) D(z)*w = D(z*U(w)).
 - (b) U(x * y) = U(x) * U(y).
- 20. (i) Suppose $v, w \in l^1(\mathbb{Z})$ and $z \in l^2(\mathbb{Z})$. Then prove that :
 - (a) $(z \hat{*} w)(\theta) = \hat{z}(\theta)\hat{w}(\theta)$ a.e.
 - $(b) \quad z * w = w * z.$
 - (c) v*(w*z)=(v*w)*z

(ii) Suppose $u_1, v_1 \in l^1(\mathbf{Z})$ for each $l \in \mathcal{N}$, and the system matrix $\mathbf{A}_l(\theta)$ is unitary for all $\theta \in [0,\pi)$. Define $f_1 = v_1, g_1 = u_1$ and inductively, for $l \in \mathcal{N}, l \geq 2$, define $f_l = g_{l-1} * \mathbf{U}^{l-1}(v_l)$ and $g_l = g_{l-1} * \mathbf{U}^{l-1}(u_l)$. For each $l \in \mathcal{N}$, define

4

$$\mathbf{V}_{-l} = \left\{ \sum\nolimits_{k \in \mathbb{Z}} \ z(k) \mathbf{R}_{2^l k} g_l : z = \left(z(k) \right)_{k \in \mathbb{Z}} \in l^2(\mathbb{Z}) \right\}. \\ \mathbf{Suppose} \cap_{l \in \mathbb{N}} \mathbf{V}_{-l} = \left\{ 0 \right\}.$$

Then prove that $\mathbf{B} = \left\{ \mathbf{R}_{2^{l}k} f_{l} : k \in \mathbf{Z}, l \in \mathbf{N} \right\}$ is a homogeneous wavelet system in $l^{2}(\mathbf{Z})$.

- 21. (i) Define approximate identity.
 - (ii) Suppose $f \in L^1(\mathcal{R})$ and $\{g_t\}_{t>0}$ is an approximate identity. Then prove that for every Lebesgue point x of f, $\lim_{t\to 0} + g_t * f(x) = f(x)$.

 $(2 \times 5 = 10 \text{ weightage})$

\mathbf{C}	Ω	Λ	E	റ
U	4	v	บ	4

(Pages: 3)

Name.....

Reg. No.....

FOURTH SEMESTER M.Sc. DEGREE (REGULAR) EXAMINATION MARCH 2021

(CBCSS)

Mathematics

MTH 4E 12—REPRESENTATION THEORY

(2019 Admissions)

Time: Three Hours

Maximum: 30 Weightage

General Instructions

- 1. In cases where choices are provided, students can attend all questions in each section.
- 2. The minimum number of questions to be attended from the Section/Part shall remain the same.
- 3. There will be an overall ceiling for each Section / Part that is equivalent to the maximum weightage of the Section / Part.

Part A

Answer all questions.

Each question has weightage 1.

- 1. Verify whether $A(a) = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ gives a representation of the cyclic group $\{1, a : a^2 = 1\}$.
- 2. Let A(x) be the permutation representation of the symmetric group S_4 . Find the matrix A(x) for x = (12).
- 3. Let \mathbb{R}^3 be the S_3 -module given by :

$$(x_1,x_2,x_3)\sigma = (x_{1\sigma},x_{2\sigma},x_{3\sigma})$$

for $(x_1,x_2,x_3) \in \mathbb{R}$ and $\sigma \in S_3$. Find a one dimensional submodule of \mathbb{R}^3 .

- 4. Let v be the character of the permutation representation of S_3 . Find v (a) where a = (123).
- 5. Let $\phi = \chi^{(1)} + 2\chi^{(2)}$ be a character of the cyclic group \mathbb{Z}_5 where $\chi^{(1)}$ and $\chi^{(2)}$ are simple characters.

Find the inner product $\langle \phi, \chi^{(1)} \rangle$.

6. Find the number of simple characters of \mathbb{Z}_3 .

- 7. Let G be the subgroup of S_4 generated by (12) (34). Verify whether G is transitive.
- 8. Let ψ be the trivial character of the subgroup A_4 of the symmetric group $G = S_4$. Find $\psi^G(1)$ where ψ^G is the induced character.

 $(8 \times 1 = 8 \text{ weightage})$

Part B

Answer any two questions from each unit. Each question has weightage 2.

Unit I

- 9. Let G be the cyclic group of order 3. Give a G-module action on \mathbb{R}^3 .
- 10. Let A and B be 2×2 matrices. Show that trace (AB) = trace (BA).
- 11. Let V, U be G-modules and $\theta: V \to U$ be a module homomorphism. Show that ker θ is a G-submodule of V.

Unit II

- 12. Let v be the permutation character and ψ be the alternating character of S_3 , find the inner product $\langle v, \psi \rangle$.
- 13. Let ϕ be a character of a group G. Show that $\phi(x) = \phi(y)$ if x and y are conjugates in G.
- 14. Let \mathbb{R}^3 be the S_3 -module given by :

$$(x_1, x_2, x_3)\sigma = (x_{1\sigma}, x_{2\sigma}, x_{3\sigma})$$

for $(x_1,x_2,x_3) \in \mathbb{R}$ and $\sigma \in S_3$. Find all $(x,y,z) \in \mathbb{R}^3$ such that $(x,y,z)\sigma = (x,y,z)$ for all $\sigma \in S_3$.

Unit III

- 15. Define doubly transitive permutation group.
- 16. Let G be a transitive permutation group on 1, 2, ..., n. Let H be the stabilizer of 1. Show that the stabilizer of α is $p_{\alpha}^{-1}Hp_{\alpha}$ where p_{α} maps 1 to α .
- 17. Let ϕ be the character of a subgroup H of a group G. Show that :

$$\phi^{G}(x) = \frac{1}{h} \sum_{y \in G} \phi(yxy^{-1})$$

where h is the order of H.

 $(6 \times 2 = 12 \text{ weightage})$

Part C

Answer any **two** questions. Each question has weightage 5.

- 18. (a) Define G-module.
 - (b) Let V be a G-module and $\{v_1, v_2, \dots, v_3\}$ be a basis of V. Describe the matrix representation of G provided by the G-module V with respect to the above basis.
- 19. (a) Define complete reducibility of a representation.
 - (b) Give an example of a non-trivial completely reducible representation of degree 4 of the cyclic group \mathbb{Z}_4 . Verify the complete reducibility.
- 20. (a) Let $\chi^{(1)}, \chi^{(2)}, \dots, \chi^{(k)}$ be the simple characters of degree f_1, f_2, \dots, f_k respectively of a finite group G of order g. Show that $f_1^2 + f_2^2 + \dots + f_k^2 = g$.
 - (b) Let G be a group of order 8 with five simple characters. Find the degrees of each of the characters.
- 21. Let H be a subgroup of a group G and B (x) be a representation of H.
 - (a) Describe the induced representation on G induced by B (x).
 - (b) Let ϕ be a character of G and ψ be a character of H. Let ψ^G be the induced character of ψ and ϕ_H be the character of H obtained by restricting ϕ to H. Show that :

$$\left\langle \psi^{G}\text{,}\phi\right\rangle =\left\langle \psi\text{,}\phi_{H}\right\rangle .$$

 $(2 \times 5 = 10 \text{ weightage})$

C 2051	(Pages: 2)	Name
C 2051	(Pages: 2)	Name

Rog	No
ILCE.	T40

FOURTH SEMESTER M.Sc. DEGREE (REGULAR) EXAMINATION MARCH 2021

(CBCSS)

Mathematics

MTH 4E 11—GRAPH THEORY

(2019 Admissions)

Time: Three Hours Maximum: 30 Weightage

General Instructions

- 1. In cases where choices are provided, students can attend all questions in each section.
- 2. The minimum number of questions to be attended from the Section/Part shall remain the same.
- 3. There will be an overall ceiling for each Section / Part that is equivalent to the maximum weightage of the Section / Part.

Part A

Answer all questions.

Each question carries a weightage of 1.

- 1. Define a Forest.
- 2. Define independence number and covering number of a graph.
- 3. Define matching and perfect matching.
- 4. Find edge connectivity of a disconnected graph.
- 5. State Euler's formula.
- 6. Define critical graph.
- 7. Define Bridge.
- 8. Find Chromatic polynomial of a complete graph.

2

Answer any **two** questions from each unit. Each question carries a weightage of 2.

MODULE I

- 9. Show that:
 - (1) every connected graph contains a Spanning tree.
 - (2) if G is connected, then $\varepsilon \ge v 1$.
- 10. Show that C(G) is well defined.
- 11. Prove that a vertex v of G is a cut vertex implies that d(v) > 1.

MODULE II

- 12. Prove that if G is a k-regular bipartite graph with k > 0, then G has a perfect matching.
- 13. Prove that in a critical graph no vertex cut is a clique?
- 14. Prove that a connected graph has an Euler trail if and only if it has atmost two vertices of odd degree?

MODULE III

- 15. Prove that:
 - (a) If G is k-critical then $\delta \ge k-1$.
 - (b) Every k-chromatic graph has at least k vertices of degree at least k-1.
- 16. Prove that if G is a simple planar graph with $v \ge 3$, then $\varepsilon \le 3v 6$.
- 17. Prove that for any graph G, $\pi_k(G)$ is a polynomial in k of degree v with integer co-efficients.

 $(6 \times 2 = 12 \text{ weightage})$

Part C

Answer any **two** questions.

Each question carries a weightage of 5.

- 18. In a graph G prove that $k \le k' \le \delta$.
- 19. If G is a connected simple graph and is neither an odd cycle nor a complete graph, then $\chi \leq \Delta$.
- 20. Prove that every 3-regular graph without cut edges has a perfect matching.
- 21. If G is a simple graph with $v \ge 3$ and $\delta \ge \frac{v}{2}$, then prove that G is Hamiltonian.

2050	(Pages: 3)	Name

FOURTH SEMESTER M.Sc. DEGREE (REGULAR) EXAMINATION MARCH 2021

(CBCSS)

Mathematics

MTH 4E 10—FLUID DYNAMICS

(2019 Admissions)

Time: Three Hours Maximum: 30 Weightage

General Instructions

- 1. In cases where choices are provided, students can attend all questions in each section.
- 2. The minimum number of questions to be attended from the Section/Part shall remain the same.
- 3. There will be an overall ceiling for each Section / Part that is equivalent to the maximum weightage of the Section / Part.

Part A

Answer all the questions.

Each question carries weightage 1.

- 1. Show that a vortex filament cannot terminate at a point within the fluid.
- 2. Show that the constancy of circulation in a circuit moving with the fluid in an inviscid fluid in which the density is either constant or is a function of the pressure.
- 3. Define irrotational motion.
- 4. Obtain the equation satisfied by the velocity potential.
- 5. What is Cavitation?
- 6. Find the point of minimum pressure on the elliptic cylinder $\xi = \xi_0$.
- 7. Let there be a source of strength m at z = f, where f is real, outside the cylinder of radius a whose center is at the origin. Determine the complex potential.
- 8. How are air ship forms formed?

Answer any six questions. Each question carries weightage 2.

Unit 1

9. Establish the equation of continuity for an incompressible fluid in the from:

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} = 0.$$

- 10. State and prove Kelvin's minimum energy theorem.
- 11. In irrotational motion in two dimensions, prove that $\left(\frac{\partial q}{\partial x}\right)^2 + \left(\frac{\partial q}{\partial y}\right)^2 = q\nabla^2 q$.

Unit 2

- 12. State and prove Blasius's theorem.
- 13. State and prove the theorem of Kutta and Joukowski.
- 14. Discuss the type of transformation that will convert the flow past a circular cylinder (with or without circulation) to the flow past a body of aerofoil shape in a perfect fluid.

Unit 3

- 15. Show that if we map the z-plane on the ξ -plane by a conformal transformation $\xi = f(z)$, then a source in the z-plane will transform into a source at the corresponding point of the ξ -plane.
- 16. Discuss the force exerted on a circular cylinder by a source.
- 17. Verify that $\Psi = \left(\frac{A}{r^2}\cos\theta + Br^2\right)\sin^2\theta$ is a possible form of Stoke's stream function, and find the corresponding velocity potential.

 $(6 \times 2 = 12 \text{ weightage})$

Part C

Answer any **two** questions. Each question carries weightage 5.

- 18. (a) Explain the method of differentiation following the fluid, and find the condition that the surface F(x, y, z, t) = 0 may be boundary surface.
 - (b) Prove that acyclic irrotational motion is uniquely determined when the boundary velocities are given.

- 19. Explain the derivation of Joukowski aerofoil by the transformation $\xi = z + \sum_{r=1}^{n} \frac{a_x}{z_r}$ applied to the circle centre z_0 and radius a. Obtain the lift formula $L = 4\pi\rho U^2 \sin(\alpha + \beta)$ and show that the momentum about the point $\xi = z_0$ is $M = 2\pi\rho b^2 U^2 \sin 2(\alpha + \gamma)$, where α is the angle of attack and b,β,γ constants of transformation.
- 20. Discuss the streaming and circulation for a circular cylinder.
- 21. Determine the effect on a wall of a source parallel to the wall.

	20 4	10
U	404	Łΰ

Name.....

Reg. No.....

FOURTH SEMESTER M.Sc. DEGREE (REGULAR) EXAMINATION MARCH 2021

(CBCSS)

Mathematics

MTH 4E 09—DIFFERENTIAL GEOMETRY

(2019 Admissions)

Time: Three Hours

Maximum: 30 Weightage

General Instructions

- 1. In cases where choices are provided, students can attend all questions in each section.
- 2. The minimum number of questions to be attended from the Section/Part shall remain the same.
- 3. There will be an overall ceiling for each Section / Part that is equivalent to the maximum weightage of the Section / Part.

Part A

Answer all questions.

Each question has weightage 1.

- 1. Find and sketch the gradient field of the function $f(x_1, x_2) = x_1 + x_2$.
- 2. Show that if $\alpha: I \to \mathbb{R}^{n+1}$ is a parametrized curve with constant speed then $\ddot{\alpha}(t) \perp \dot{\alpha}(t), \forall t \in I$.
- 3. Define Euclidean parallel and Levi-Civita parallel vector fields.
- 4. Define (i) Global parametrization; (ii) Circle of curvature; and (iii) Radius of curvature of a plain curve.
- 5. Find the length of the parametrized curve $\alpha: I \to \mathbb{R}^3$ where $\alpha(t) = (\cos 3t, \sin 3t, 4t), I = [-1, 1].$
- 6. Compute $\nabla_{\overline{v}} f$ where $f: \mathbb{R}^2 \to \mathbb{R}$ and $\overline{v} \in \mathbb{R}^2_p$, $p \in \mathbb{R}^2$ given by $f(x_1, x_2) = {x_1}^2 {x_2}^2$, $\overline{v} = (1, 1, \cos \theta, \sin \theta)$.

- 7. Define a parametrized n-surface. Write the map which represent the parameterized torus in \mathbb{R}^4 .
- 8. State inverse function theorem for n-surface.

 $(8 \times 1 = 8 \text{ weightage})$

Part B

Answer **two** questions from each unit in this part. Each question has weightage 2.

Unit 1

- 9. Define (i) Level set; and (ii) Graph of a function. Sketch the Graph f and level set of the function $f(x_1, x_2) = x_1^2 x_2^2$.
- 10. Find the integral curve through P(1,0) and P(a,b) for the vector field

$$\overline{X}(p) = (x_1, x_2, -2x_2, \frac{1}{2}x_1) \text{ on } U \subseteq \mathbb{R}^2.$$

11. Let U be an open set in \mathbb{R}^{n+1} and let $f: U \to \mathbb{R}$ be smooth. Let $p \in U$ be a regular point of f and c = f(p). Then show that the set of all vectors tangent to $f^{-1}(c)$ at p is equal to $[\nabla f(p)]^{\perp}$.

IINTT 2

- 12. Prove that the Weingarten map L_p is self-adjoint.
- 13. Let \overline{X} , \overline{Y} be two smooth tangent vector fields on S and $f: U \to \mathbb{R}$ any smooth function and $\alpha: I \to S$ is a parametrized curve with $\alpha(t_0) = p$ and $\dot{\alpha}(t_0) = \overline{v}$. Then prove that:

(i)
$$D_{v} - (\overline{X} + \overline{Y}) = D_{v} - \overline{X} + D_{v} - \overline{Y}$$
; and (ii) $\nabla_{v} - (\overline{X} \cdot \overline{Y}) = D_{v} - \overline{X} \cdot \overline{Y}(p) + \overline{X}(p) \cdot D_{v} - \overline{Y}$.

14. Find the global parametrization and curvature K of the circle $(x_1 - a)^2 + (x_1 - b)^2 = r^2$, oriented by the out ward normal $\nabla f / \| \nabla f \|$.

Unit 3

- 15. Find the Gaussian curvature for the ellipsoid $\frac{x_1^2}{a^2} + \frac{x_2^2}{b^2} + \frac{x_3^2}{c^2} = 1$; $a, b, c \neq 0$ oriented by its outward normal.
- 16. Prove that on each compact oriented n-surface S in \mathbb{R}^{n+1} , there exists a point p such the second fundamental form of p is definite.
- 17. Show that $\varphi: U \to \mathbb{R}^3$ where $U = \{(\theta, \phi) \in \mathbb{R}^2 : 0 < \phi < \pi\}$ and a > b > 0 given by

 $\phi\left(\theta,\phi\right) = \left(\left(a+b\cos\phi\right)\cos\theta,\left(a+b\cos\phi\right)\sin\theta,b\sin\phi\right) \text{ is a parametrized 2-surface in }\mathbb{R}^{3}.$

 $(6 \times 2 = 12 \text{ weightage})$

Part C

Answer any two questions.

Each question has weightage 5.

- 18. Let S be a compact connected oriented n-surface in \mathbb{R}^{n+1} exhibited as a level set $f^{-1}(c)$ of a smooth function $f: \mathbb{R}^{n+1} \to \mathbb{R}$ with $\nabla f(p) \neq 0$ for all $p \in S$. Then the Gauss map maps S onto the unit sphere S^n .
- 19. Let C be an a connected oriented plane curve and let $\beta: I \to C$ be a unit speed global parameterization of C. Then β is either one to one or periodic. Also show that β is periodic if and only if C is compact.
- 20. (a) Prove that if V is a finite dimensional vector space with dot product and $L: V \to V$ a self-adjoint linear transformation on V. Then there exists an orthonormal basis for V consisting of eigenvectors of L.
 - (b) Find the Gaussian curvature of a cylinder over a plain curve.
- 21. Find the Gaussian curvature of the parametrized 2-surface

 $\varphi(\theta, \phi) = ((a + b \cos \phi) \cos \theta, (a + b \cos \phi) \sin \theta, b \sin \phi) \text{ in } R^3.$

	$\Omega \Lambda$	40
U	ZU	48

Nam	e
Reg.	No

FOURTH SEMESTER M.Sc. DEGREE (REGULAR) EXAMINATION MARCH 2021

(CBĆSS)

Mathematics

MTH 4E 08—COMMUTATIVE ALGEBRA

(2019 Admissions)

Time: Three Hours

Maximum: 30 Weightage

General Instructions

- 1. In cases where choices are provided, students can attend all questions in each section.
- 2. The minimum number of questions to be attended from the Section/Part shall remain the same.
- 3. There will be an overall ceiling for each Section / Part that is equivalent to the maximum weightage of the Section / Part.

Part A

Answer all questions. Each question carries a weightage of 1.

- Let A be a ring ≠ 0, and every homomorphism of A into a non-zero ring B is injective. Prove that
 A is a field.
- 2. If $L \supseteq M \supseteq N$ are A-modules, prove that $(L/N)/(M/N) \cong L/M$.
- 3. Let $f: A \to B$ be a homomorphism of rings and let N be a finitely generated B-module and B is finitely generated A-module. Prove that N is finitely generated as an A-module.
- 4. If N, P are submodules of an A-module M, prove that $S^{-1}(N \cap P) = S^{-1}(N) \cap S^{-1}(P)$.
- 5. Let I be a primary ideal in a ring A. Prove that r (I) is the smallest prime ideal containing I.
- 6. Let A⊆B be rings and let C be the integral closure of A in B. Prove that C is integrally closed in B.
- 7. Let B be an integral domain, K its field of fractions. Prove that B is integrally closed in K.
- 8. If A [x] is Noetherian, is A necessarily Noetherian?

Answer any two questions from each module. Each question carries a weightage of 2.

Module I

- 9. Prove that the nilradical of a ring A is the intersection of all prime ideals of A
- 10. Prove that M is a finitely generated A-module if and only if M is isomorphic to a quotient of A^n for some positive integer n.
- 11. State and prove Nakayama's Lemma.

Sugar

Module II

- 12. Let $\phi: M \to N$ be an A-module homomorphism. Prove that ϕ is injective if and only if $\phi_m: M_m \to N_m$ is injective for each maximal ideal m.
- 13. Let A be a ring, S a multiplicatively closed subset of A, prove that the prime ideals of S⁻¹A are in one-to-one correspondence with the prime ideals of A which do not meet S.
- 14. State and prove second uniqueness theorem for a decomposable ideal.

Module III

- 15. Let $A \subset B$ be integral domains, B is integral over A. Prove that B is a field if and only if A is a field.
- 16. Prove that M is a Noetherian A-module if and only if every submodule of M is finitely generated.
- 17. In an Artin ring prove that every prime ideal is maximal ideal.

 $(6 \times 2 = 12 \text{ weightage})$

Part C

Answer any **two** questions.

Each question carries a weightage of 5.

- 18. (a) Prove that every ring $A \neq 0$ has at least one maximal ideal.
 - (b) Prove that the set of all nilpotent elements in a ring A is an ideal.
- 19. (a) Let $g: A \to B$ be a ring homomorphism such that g(s) is a unit in B for all $s \in S$, where S is a multiplicatively closed subset of A. Prove that there exist a unique ring homomorphism $h: S^{-1}A \to B$ such that $g = h \circ f$.
 - (b) Prove that every ideal in S⁻¹A is an extended ideal.

20. (a) Let B be a ring and A is a subring of B, prove that $x \in B$ is integral over A if and only if A[x] is a finitely generated A-module.

3

- (b) State and prove the Going-down theorem.
- 21. (a) State and prove Hilbert's Basis theorem for Noetherian ring.
 - (b) In an Artin ring prove that the nilradical is nilpotent.

	904	7
U	204 ¹	•

Name

Reg. No.....

FOURTH SEMESTER M.Sc. DEGREE (REGULAR) EXAMINATION MARCH 2021

(CBCSS)

Mathematics

MTH 4E 07—ALGEBRAIC TOPOLOGY

(2019 Admissions)

Time: Three Hours

Maximum: 30 Weightage

General Instructions

- 1. In cases where choices are provided, students can attend all questions in each section.
- 2. The minimum number of questions to be attended from the Section / Part shall remain the same.
- 3. There will be an overall ceiling for each Section / Part that is equivalent to the maximum weightage of the Section / Part.

Part A

Answer all questions.
Each question has weightage 1.

- 1. Define a geometric complex K and r-skeleton of K.
- 2. Define homologous p-cycles and the quotient group $Z_p(K)/B_p(K)$.
- 3. Define connected simplexes in a complex.
- 4. Let K be a 2-pseudomanifold with α_0 vertices, α_1 1-simplexes and α_2 2-simplexes. Then show that $\alpha_1 = 3(\alpha_0 x(k))$.
- 5. Show that a chain mapping $\left\{ \phi_{p} \right\}_{0}^{\alpha}$ from a complex K into a complex L maps Z_{p} (K) into Z_{p} (L).
- 6. Prove that the *n*-sphere is not contractible for $n \ge 0$.
- 7. Define the equivalence of loops α , β having common base point x_0 .
- 8. Define the degree of a loop α in S^1 .

C 2047

Part B

2

Answer **six** questions choosing **two** from each module. Each question has weightage 2.

Module 1

- 9. Let σ^p be an oriented p-simplex of an oriented complex K and σ^{p-2} be a (p-2) face of σ^p . Show that $\sum \left[\sigma^p, \sigma^{p-1}\right] \left[\sigma^{p-1}, \sigma^{p-2}\right] = 0, \sigma^{p-1} \in K$.
- 10. If K is an oriented complex and $p \ge 2$, then show that the composition $\partial \partial : C_p(K) \to C_{p-2}(K)$ is the trivial homomorphism.
- 11. Show that Z_1 (K) is isomorphic to \mathbb{Z} , where K is the closure of a 2-simplex $\langle a_0 \ a_1 \ a_2 \rangle$ with the orientation induced by the ordering $a_0 < a_1 < a_2$.

Module 2

- 12. If S is a simple polyhedron with V vertices, E edges and F faces, then show that V E + F = 2.
- 13. For K, L complexes, define the simplicial approximation of a continuous function $f: |K| \to |L|$. Also, for an arbitrary complex K and the closure L of a p-simplex $\sigma^p = \langle a_0, \ldots, a_p \rangle$ show that any continuous map $f: |K| \to |L|$ has a simplicial approximation the constant map $g: |K| \to |L|$ which collapses all of K to the vertex a_0 .
- 14. Show that S^m and S^n are not homeomorphic, for $m \neq n$.

Module 3

- 15. Prove that equivalence of loops is an equivalence relation on the set of loops in a space X with base point x_0 .
- 16. Prove that two loops α and β in S^1 with base point 1 are equivalent if and only if they have the same degree.
- 17. Let X and Y be spaces with x_0 in X and y_0 in Y. Prove that :

$$\pi_1(X \times Y,(x_0,y_0)) \cong \pi_1(X,x_0) \oplus \pi_1(Y,y_0).$$

3 Part C

Answer any **two** questions. Each question has weightage 5.

- 18. Show that the homology groups of a complex are independent of the choice of the orientation of the complexes.
- 19. Prove that an n-pseudomanifold K is orientable if and only if the nth homology group $H_n(K)$ is not the trivial group.
- 20. Prove that for any complex $K, \underset{s \to \infty}{\text{limit}} \text{ mesh } K^{(s)} = 0.$
- 21. (a) Let the space X be path connected and x_0 , x_1 be points in X. Prove that the fundamental groups $\pi_1(X,x_0)$ and $\pi_1(X,x_1)$ are isomorphic.
 - (b) Show that $\pi_1(\mathbb{R}^2 \setminus \{p\}) \cong \pi_1(A)$, where A is a circle in \mathbb{R}^2 with center p and $\mathbb{R}^2 \setminus \{p\}$ is the punctured plane.

C 2046 (Pages: 3) Name

Reg.	NT _~		
REV.	INC.	 	

FOURTH SEMESTER M.Sc. DEGREE (REGULAR) EXAMINATION MARCH 2021

(CBCSS)

Mathematics

MTH 4E 06—ALGEBRAIC NUMBER THEORY

(2019 Admissions)

Time: Three Hours

Maximum: 30 Weightage

General Instructions

- 1. In cases where choices are provided, students can attend all questions in each section.
- 2. The minimum number of questions to be attended from the Section/Part shall remain the same.
- 3. There will be an overall ceiling for each Section / Part that is equivalent to the maximum weightage of the Section / Part.

Part A

Answer all questions.

Each question carries a weightage of 1.

- 1. Prove that $\mathbb{Z} \times \mathbb{Z}$ is finitely generated.
- 2. Find all monomorphisms of $\mathbb{Q}(i) \to \mathbb{C}$
- 3. Find the degree of $\mathbb{Q}(\pi)$ over \mathbb{Q}
- 4. Find an integral basis and discriminant for $\mathbb{Q}(\sqrt{5})$.
- 5. Write all units in $\mathbb Q$ and $\mathbb Z$.

 $2\pi i$

- 6. What is the discriminant of $\mathbb{Q}(\zeta)$ where $\zeta = e^{-p}$, p an odd prime.
- State Minkowski's theorem.
- 8. Find the ideals contained in the ideal $\langle 120
 angle$.

Answer any **two** questions from each module. Each question carries a weightage of 2.

Module I

- 9. Prove that a subgroup of a finitely generated abelian group is finitely generated.
- 10. Prove that the set of algebraic numbers is a subfield of the complex field $\mathbb C$.

 $2\pi i$

11. Find the minimum polynomial of $\zeta = e^{-p}$, p an odd prime over \mathbb{Q} . Also find the degree of $\mathbb{Q}(\zeta)$.

Module II

- 12. Let R be a ring and I be an ideal of R. Prove that I is prime if and only if $\frac{R}{I}$ is an integral domain.
- 13. Prove that the factorization of elements of \mathcal{O} into irreducibles is unieque if and only if every ideal of \mathcal{O} is principal.
- 14. Prove that the class group of a number field is a finite abelian group and the class number h is finite.

Module III

- 15. Prove that the quotient group $\mathbb{R}_{\mathbb{Z}}$ is isomorphic to the circle group S.
- 16. Prove that $x^4 + y^4 = z^2$ has no integer solutions with $x, y, z \neq 0$.
- 17. Prove that the additive group of \mathbb{R}^n is a Lattice if and only if it is discrete.

 $(6 \times 2 = 12 \text{ weightage})$

Part C

Answer any **two** questions.

Each question carries a weightage of 5.

- 18. (a) If K is a number field then prove that $K = \mathbb{Q}(\theta)$ for some algebraic number 0.
 - (b) Find the degree of $\mathbb{Q}(\sqrt{2}, \sqrt{6} + \sqrt{10})$ over $\mathbb{Q}(\sqrt{3} + \sqrt{5})$.
- 19. (a) Find the ring of integers of $\mathbb{Q}(\sqrt{2},i)$
 - (b) Let $K = \mathbb{Q}(\sqrt[4]{2})$. Find all monomorphisms of $\mathbb{Q}(\sqrt[4]{2}) \to \mathbb{C}$, minimum polynomial over \mathbb{Q} and field polynomial over K.

- 20. (a) Derive all solutions for the Fermat's equation $x^n + y^n = z^n$ for n = 2.
 - (b) Show that if π is an irreducible in $\mathbb{Z}[i]$ then $\mathbb{Z}[i]$ is a field.
- 21. (a) Prove that every number field possesses an integral basis and the additive group of \mathcal{O} is free abelian of rank n equal to the degree of K.
 - (b) Prove that an algebraic number α is an algebraic integer if and only if the minimum polynomial over $\mathbb Q$ has coefficients in $\mathbb Z$.

\mathbf{C}	റ	Λ	A	A
U	Z	v	4	4

Name	•••
------	-----

Reg. No.....

FOURTH SEMESTER M.Sc. DEGREE (REGULAR) EXAMINATION MARCH 2021

(CBCSS)

Mathematics

MTH 4C 15—ADVANCED FUNCTIONAL ANALYSIS

(2019 Admissions)

Time: Three Hours

Maximum: 30 Weightage

General Instructions

- 1. In cases where choices are provided, students can attend all questions in each section.
- 2. The minimum number of questions to be attended from the Section/Part shall remain the same.
- 3. There will be an overall ceiling for each Section / Part that is equivalent to the maximum weightage of the Section / Part.

Part A

Answer all the questions. Each question carries a weightage of 1.

- 1. Show that every $\lambda \in \mathbb{C}$ with $|\lambda| > ||A||$ is a regular point of the operator A.
- Give an example for a residual spectrum.
- 3. Show that for every compact operator $T, 0 \in \sigma(T)$, the spectrum of the operator T.
- 4. Show that every ortho projection satisfies $0 \le P \le I$.
- 5. State the Banach-Steinhaus theorem.
- 6. Give an example of a set which is convex but is not perfectly convex.
- 7. Let E_1 , E_2 be Banach spaces, $A \in L(E_1, E_2)$ and let $T_1 \subseteq E_1$, $T_1 \subseteq E_2$ be perfectly convex sets. Prove that if T_1 is bounded, then AT_1 is perfectly convex.
- 8. Give an example of a Banach algebra without identity.

Answer any six questions. Each question carries a weightage of 2.

Unit 1

- 9. Show that $(Ax,x) \in \mathbb{R}$ for any $x \in H$ if and only if A is symmetric.
- 10. Define the operator $K: L_2[0,1] \mapsto L_2[0,1]$ by $(Kf)(t) = \int_0^1 k(t,s) f(s) ds$, where $k(t,s) = \begin{cases} 1, s \leq t, \\ 0, s > t. \end{cases}$ Find the spectrum of K.
- 11. Let A be a symmetric operator and let $||A|| = \mu = \sup\{|\langle Ax, x \rangle| : ||x||\} = 1$. Show that at least one of μ or $-\mu$ is an element of $\sigma(A)$.

Unit 2

- 12. Prove that for any self-adjoint operator $A \in L(H)$ the residual spectrum is empty.
- 13. Let $\varphi(t) \in K[a,b]$, the set of piece-wise continuous bounded functions which are monotone decreasing limits of continuous functions. Show that there exists a sequence of polynomials $P_n(t) \searrow \varphi(t)$ as $n \to \infty$ for all $t \in [a,b]$.
- 14. State the Hilbert theorem on the spectral decomposition of self- adjoint bounded operators.

Unit 3

- 15. Define closed graph operator and give an example for a closed graph operator.
- 16. If X^* is separable, then show that X is also separable.
- 17. Let $A: X \mapsto Y$ be a linear operator such that Im (A) is closed in Y and there exists m > 0 such that for any $x \in \text{Dom } A$, $||Ax|| \ge m||x||$. Prove that A is closed.

Part C

Answer any **two** questions. Each question carries a weightage of 5.

- 18. Show that a sequence of operators $T_n \in L(X,Y)$ converges strongly to an operator $T \in L(X,Y)$ if and only if:
 - (i) the sequence $\{T_n(x)\}$ converges for any x from a dense subset of X.
 - (ii) there exists C > 0 such that $||T_n|| \le C$.
- 19. State and prove the Gelfand's theorem on maximal ideals.
- 20. Let the operator $K: L_2[-\pi,\pi] \mapsto L_2[0,1]$ be given by $(Kf)(t) = \int_{-\pi}^{\pi} |t-s| f(s) ds$.
 - (a) Prove that K is a compact self adjoint operator.
 - (b) Find the spectrum of K.
 - (c) Is K a positive operator? Justify.
- 21. State and prove the Fredholem's first theorem.