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M.Sc. (PREVIOUS) DEGREE EXAMINATION
APRIL/MAY 2020

(PVT/SDE)
M.Sc. Mathematics
Paper V—-DIFFERENTIAL EQUATIONS
(2000 Admission onwards)
Time : Three Hours Maximum : 120 Marks
Part A

Answer all the questions.
Each question carries 4 marks.

I. (a) Find the general solution of the differential equation (2362 + 236) y"+(1+5x)y" +y=0 near

its singular point (x =0).
(b) Show that J_,, (x)=(~1)" J,, (x) where m is a non-negative integer.

(¢) Show that a function of the form ax? + bxy? + cxy? + dy? cannot be either positive definite or

negatiVe definite.

(d) Show that f(x, y):xy2 satisfies a Lipschitz condition on any rectangle a<x<b and

c<y<d.
(e) Show that the solution to the Dirichlet problem is stable.
2, .2, 2_ % . . .
(f) Show that the surfaces x° + y“ + z° =cx/3 can form an equipotential family of surfaces, and

find the general form of the potential function.
(6 x 4 = 24 marks)
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II. (a)

(b)

(c)

III. (a)

(b)

V. (a)

(b)
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Part B

Answer any four questions without omitting any unit.
Each question carries 24 marks.

Unir I
Find the power series solution of the differential equation (1 + x) y=pyy (0) =1

Show that the hypergeometric equation

x(1-x)y"+ [C —(a+b+1) x]y' — aby =0 has three regular singular points 0, 1 and .

1 0 ifm#n
Show that j Pm (x) Pn (x) dx =

, when p, (x) denotes the n' degree
-1 2n +1

ifm=n
Legendre polynomial.

Find a series solution y; (x) of the equation y”+ y' = xy =0 such that y, (0)=1, yj (0)=0.

Find two independent Frobenius series solutions of Bessel’s equation

x2y”+xy'+(x2—%]y=0.

2
Show that -xP‘Jp(x) =Jp-1(x)+ Jp+l("")'

Find the general solution of the system :

d_x 5:’1:+4y,ﬂ

at a_ Y

Unrr 11

V. (a) Find the critical points and differential equation of the paths of the non-linear system :

%:y(x2+1),%=—x(x2+1).



VII.

VIII.

(b)

(c)

(a)
(b)

(a)

(b)

(c)

(a)

(b)

(c)
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Determine the nature and stability properties of the critical point (0,0) for the linear
system :
dy
dx =—x—-92y, 2 _4y_
It Y, It 4x — 5y.

Verify that (0, 0) is a simple critical point for the following system, and determine its nature

and stability properties :

—c—i?=x+y—2xy,%=—2x+y+3y2.

State and prove Liapunov’s theorem.

Show that (0, 0) is an unstable critical point for the system:
dt 3 dy 2. .5
—=2xy+x°,—=—-x"+y".
ar 0T '

Apply Picard’s method to calculate y;(x), ¥2(x), ¥3(x) of the initial value problem
=52, y(0)=1.
Find the general integral of :
(x2 + y2) p+2xyg=(x+y)z
Find the integral of the Ptaffian differential equation yzdx + 2xydy — 3xydz = 0.
Unir II1

Determine the region in which the two equations xp—yg—x=0,x2p+g-xz=0 are

compatible.
. . . 2, 2\
Find a complete integral of the equation (P +q )y =gz by Jacobi’s method.
Solve the Cauchy problem for 2zx+yzy=21 when the initial data curve ¢ is

x5 =5, ¥p =32,zo=s, 1<s<2.
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IX. (a) Find an integral surface of p2x+qy—z=0 containing the initial line y=1,x+2=0; by
Monge’s method.

(b) Reduce the equation Uy — 42 u,, = 1 u, into its canonical form.
x

Yy
X. (a) Solve:
Vi — €2y =0, 0<x<l, t>0
y(0,)=y(1,¢)=0
y(x,0)=0, 0<x<1
¥ (=, 0)=x2, 0<x<1.

(b) Solve the Naumann problem for a circle.

(c) State the heat conduction problem in an infinite rod.

(4 x 24 = 96 marks)
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Part A

Answer all the questions.
Each question carries 4 marks.

I. (a) Prove that the lower limit topology on R is strictly finer than the standard topology.

(b) In the set of real numbers with standard topology, prove that closed intervals are closed sets.
(c) Show that interior of a connected set is connected in a topological space.
(d) Prove that every locally compact Hausdorff space is regular.
(e) Show that closed subset of a normal space is normal.
(f) Show that the order topology on the set of real numbers is regular.
(6 x 4 = 24 marks)
Part B

Answer any four questions without omitting any unit.
Each question carries 24 marks.

Unit I

II. (a) IfXisany set, prove that the collection of all one point subsets of X is a basis for the discrete
topology on X.

(b) Let Y be a subspace of X. Then prove that a set A is closed in Y if and only if A equals the
intersection of a closed set of X with Y.

III. (a) IfX and Y are any two topological spaces, give a basis for the topology on X x Y in terms of
bases of topologies on X and Y. Establish your claim.

(b) Prove that a subset of a topological space is closed if and only if it contains all its limit points.
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Iv.

VII.

VIIL

(a)

(b)

(a)

(b)
(a)
(b)

(a)
(b)

(a)
(b)

(a)

(b)

(a)

(b)
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Let f: A —> X x Y be given by the equation f(a)=(fi(a),f2(a)). Then prove that f is

continuous if and only if the functions f; : A—> X and f, : A—> Y are continuous.

Let {X,} be an indexed family of spaces ; let A, =X, for each o . If HXa is given either

the product or the box topology, then prove that HKa = HAa .

Unir 11

Let the sets C and D form a separation of X, and if Y is a connected subspace of X, then prove
that Y lies entirely within either C or D.

Prove that every compact subspace of a Hausdorff space is closed.
Prove that the product of finitely many compact spaces is compact.

Suppose that the topological space X has a countable basis. Then prove that there exists
a countable subset of X that is dense in X.

Prove that every regular space with a countable basis is normal.
Show that every locally compact Hausdorff space is regular.
Unir 111

State and prove Tychonoff theorem.

Let X be a space. Let 9 be a collection of subsets of X that is maximal with respect to the finite
intersection property. Let Dx 2 . Show thatif A 5D, then Ae?.

Let (X, d) be a metric space. Prove that there is an isometric imbedding of X into a complete
metric space.

Let X be a topological space and (Y, d) be a metric space. Prove that the set C (X, Y) of all
continuous functions is closed in YX under the uniform metric.

Prove that a sequence { fn} of functions converges to the function fin the topology of pointwise
convergence if and only if for each x e X, the sequence {f, (x)} of points of Y converges to the
point £(x).

Prove that a metric space (X, d) is compact if and only if it is complete and totally bounded.
(4 x 24 = 96 marks)
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I. (a)

(b)

(c)

(d

(e)

69

II. ()

(ii)

(iii)

Part A

Answer all questions.
Each question carries 4 marks.

Prove that every closed subset of a compact set is compact.

Let f be a decreasing function on (a,b). Prove that the set of discontinuities of f on (a,b) is
at most countable.

) n_2
+
Prove that the series Z (-—1) X ) n converges uniformly in every bounded interval.

n=1 n

Prove that the characteristic function g of a set E is measurable if and only if E is measurable.

Let f be integrable on a measurable set E. Prove that | f | is integrable and “ Ef < I E]f :

Prove that monotonic functions on [0, 1] are of bounded variation on [a,b].
(6 x 4 = 24 marks)
Part B

Answer any four questions without omitting any unit.
Each question carries 24 marks.

Unir I

Prove that for every real x >0 and every integer n >0, there is one and only one real y >0

such that y" = x.
Let {Ga} be a collection of open sets in a metric space X. Prove the UGa is open in X.

a

Prove that finite point set has no limit points.
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III. @)

(i)

(iii)

(ii)

(iii)

(ii)

(i1)

VII. @)

(i)
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Prove that a set E is open if and only if its complement is open.
Let X be a metric space and let E be a subset of X. Prove that E is closed if and only if E = E,

Prove that non-empty perfect sets in R* are uncountable.

Let f be a continuous mapping of a compact metric space X into a metric space Y. Prove that

f is uniformly continuous on X.

If f is a continuous mapping of a connected metric space X into a metric space Y, then prove

that f(X) is connected.

Let f be a differentiable function on (a,b). If f'(x) 2 0 for all x €(a,b), then prove that f is
monotonically increasing.

Unrr 11

Let a be a monotonically increasing function on [a,b] and let f be a real bounded function
on [a,b]. Prove that f € ®(a) (fis Riemann-Stieltjes integrable with respect « ) on [a,b] if -
and only if for every ¢ > 0 there exists a partition P of [a,b] such that U(P, f ,a) - L(P, f ,a) <E.

Let o be monotonically increasing and o' is Riemann integrable (o’ € R) on [a,b]. Let f be

a bounded real function on [a,b]. Prove that f € ®(a) if and only if fa’'e®. In that case
prove that

J:fda = j:f(x) o' (x)dx.

If {f,} is a sequence of continuous functions on E and if f,, — f uniformly on E, then prove

that f is continuous on E.

Prove that there exists a real continuous function on the real line which is nowhere
differentiable.

Prove that the family .4{ of measurable sets is a ¢ -algebra.

Let {E,} be an infinite decreasing sequence (E,,; c E, for each n) of measurable sets. If

m(E;) is finite, then prove that

m[ N En}= lim m(E,).
n=1 X



(iii)

VIII. (i)

(i1)

(iii)

(ii)

(iii)

(i1)

(iii)
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Let f be a real valued function and g be a continuous function defined on (- «,®). Prove

that gof is measurable.

Unir 1

Let {f, } be a sequence of measurable functions defined on a measurable set E of finite measure

and let M be a real number such that Ifn (x)l <M for all n and all x. Prove that
jEf=1im jEf,,.

Let f and g be integrable functions over a measurable set E. Prove that - f + g is integrable
over E and

IE(f+g)= jEf+ IEg'

Let { fn} be a sequence of measurable functions that converges in measure to f . Prove that

there is a subsequence {f,,k} of {fn} that converges to f almost everywhere.

Let f be an increasing real-valued function on the interval [a,b] . Prove that f is differentiable

almost everywhere. Also prove that the derivative f' is measurable and

[Jf (@) dz<f()~f(a).

If f is absolutely continuous, then prove that f has a derivative almost everywhere.

If ¢ is convex on (a,b), then prove that ¢ is absolutely continuous on each closed subinterval
of (a,b).

Let v be a signed measure on the measure space (X,%). Prove that there is a positive set A

and a negative set B such that X = AUB and ANB= ﬁf .

Prove that the total variation of a signed measure is a measure.

State and prove Lebesgue decomposition theorem.
(4 x 24 = 96 marks)
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Part A

Answer all questions in this part.
Each question carries 4 marks.

1. (a) Find all the units in Z,4. Describe all units in Z,.
(b) Let M, N be R-modules and f:M-—>N be a module homomorphism. Define

K ={xeM:f (x)=0}. Show that K is a submodule of M.

(¢) Find % for which u=(1,—2,k)in]R3 is a linear combination of

v =(3,0,—2)andw=(2,—1,—5).

(d) Is there a linear transformation T:R% - R? such that
T(1,-1,1) = (1,0) and T (1,1,1) = (0, 1).

(e) Let W, =(0) and W, = R% Verify whether (W, + W,)° = W,% A W0,

(f) Let C be the vector space of all complex numbers over R and T:C ->Cbe defined by
T (z) =2z. Find the matrix of T relative to the basis (1 +Z,1+ 2i) and its characteristic values.

(6 x 4 = 24 marks)
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. (a)

(b)

(c)

. (a)

(b)

(c)

. (a)

(b)

. (a)

(b)

. (a)

(b)

(c)
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Part B

Answer any four questions from this part without omitting any unit.
Each question carries 24 marks.

Unir 1
Prove that the cancellation laws hold in a ring R if and only if R has no divisors of zero.

Show that a division ring contains exactly two idempotent elements.
Find all solutions of x% + 2x +2=01in Zg.
Find the remainder when 347 is divided by 23.

Let d be the ged of a and m. Prove that ax =5 (mod m) has a solution if and only if d|b.

Find all solutions of 15x = 27 (mod 18).

If R is a commutative ring with unity and M and N are unitary free R-modules, prove that

Homg (M, N) is a free R-module.

Prove that a unitary module over a division ring is a free module.
Unrr 2

If W is a subspace of a finite dimensional vector space V then prove that every linearly
independent subset of W is finite and is part of a basis for W. Further prove that dim W < dim V
if W is a proper subspace of V.

If W; and W, are finite dimensional subspaces of a vector space V, then prove that W, + W, is

finite dimensional and dimW, + dim Wy, =dim (W; N Wy) + dim (W} + W,).

Let T:V -5 W be a linear transformation from a finite dimensional vector space V into a

vector space W. Show that rank (T) + nullity (T) = dim (V).

Verify the Rank-Nullity theorem for the linear transformation T: R3 - R%*defined by
T(a,b,c)=(a,a+b,a+b+c,c).

Let V be the vector space of all 7 x n matrices over the field F. Let B be a fixed 7 xn matrix

overF.If T (A) =AB - BA, verify whether T is a linear transformation from V into V.
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7. (a) IfT is a linear transformation from the vector space V into the vector space W, prove :

10.

(i) There exists a unique linear transformation T!=W*_V* such that
T’ (g) () = g (Ta) for every ge W*and ae V.

(ii) The null space of T¢ is the annihilator of the range of T.

(iii) If V and W are finite dimensional, then the range of T is the annihilator of the null
space of T.

(b) Let fe (]R2) * be defined by f (x;,%g)=ax; +bxy and T (x;, x3) = (%1, 0) be a linear operator

on g2 If g=T*(f), find g (1, %2)-
Unir 3

(a) Let ¢, cy,..., c; be the distinct characteristic values of the linear operator T on the finite
dimensional vector space V. Let W; be the space of characteristic vectors associated with c;.

If W=W; + W, +....+ W, then prove that dim W =dimW,; + dimWj + ...+ dim W,

(b) Let T be the linear operator on R3 which is represented in the standard ordered basis by the

-9 4 4
matrix | _g 3 4 [ Prove thatT is diagonalizable by exhibiting a basis for R® each of
-16 8 7

which is a characteristic vector.
In the following T is a linear operator on a finite dimensional vector space V :

(a) IfWisaninvariant subspace for T, prove that the characteristic polynomial for T, divides
the characteristic polynomial for T.

(b) Prove that T is diagonalizable if and only if the minimal polynomial for T has the form
p=(x-c;)(x-cp)..(x~c;) where ¢, cy,..., c; are distinct elements of F.

(a) Let T be alinear operator on a finite dimensional vector space V over F. Prove that the T-cyclic

subspace generated by a a € V is one dimensional if and only if a is a characteristic vector
for T.

(b) State and prove the primary decomposition theorem.

(4 x 24 = 96 marks)
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Part A

Answer all questions.
Each question is of 4 marks.

I. (a) Find the order of (1, 2) in Z, x Zj.

(b) Give a refinement of the series (0) < H < G where G = Z, x Z;, and H is the subgroup
generated by (2, 3).

(c) Find the number of Sylow 2 subgroups of the symmetric group S,.

(d) Find all maximal ideals of the ring Z of integers.

(e) Find the degree [Q(a):Q] where a is the real cube root of 2.

(f) Show that squaring a circle is an impossible construction.
(6 x 4 = 24 marks)
Part B

Answer any four questions without omitting any Unit.
Each question is of 24 marks.

Unit I
II. (a) Prove thatif m and n are relatively prime then Z,,, is isomorphicto Z,, xZ,.

(b) Let G;, G, be groups and (a, b) € G; x G,. Let a be of order s in G, and b be of order ¢ in G,.

Prove that the order of (a, b) in G, x G, is the least common multiple of s and ¢.
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III. Let Xbe a G-set. For geG let 6, : X — X be defined by x> g Show that :

Iv. (a)

(b)

V. (a)

(b)

()

VL. (a)
(b)

(c)

VIL. (a)

(b)

(c)

(a) 0Oy is a pérmutation of X.
(b) The map ¢:G — S, is a homomorphism of groups.

(c) LetSjactonX={1,2,8}by c-x=0(x) for ceS; and x € X. Find the image of ¢ where

¢ as given above.

Let X be a G-set. For x, y e X define x~y if there exists g € G such that gx =y. Show that
~ is an equivalence relation on X.

Describe a non-trivial action of the Klein four group on the set X = {1, 2, 3, 4}. Find the
number of orbits in this action.

Unir I1

Define maximal ideal of a ring.

Let R be a commutative ring with unity and M be a maximal ideal of R. Show that R/M is a
field.

Give a maximal ideal in the polynomial ring R [x].

Define unique factorizaion domain.

Show that the polynomial ring F [x] where F is a field is a unique factorization domain.
Show that the ring 7 of integers is a UFD.

Define algebraic extension of a field.

Let F be a field and p (x) be an irreducible polynomial in F [x]. Show that there is an extension
Eof Fand a€E such that p () = 0.

Show that every finite extension of F is an algebraic extension.
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Unir 111

VII (a) LetF be a finite field of characteristic p. Show that the number of elements in F is p" for some
positive integer n.

(b) LetE be a finite field of ¢ = p” elements where p is a prime. Show that all elements of E are
zeros of the polynomial x7 - x€ Z , [x].
IX. (a) Define splitting field and give an example.

(b) Let E <F where F is an algebraic closure of F, Show that E is a splitting field over F if and

only if every automorphism of F leaving F fixed maps E onto E.

X. (a) Define n** cyclotomic polynomial @, (x).

(b) Show that ®g(x)=x*+1.

(c) Show that the Galois group of the pt! cyclotomic extension of Q for a prime p is cyclic of order
p—1
(4 x 24 = 96 marks)



