(Pages: 2)

Nam	e
Nam	e

Reg. No.....

FIRST SEMESTER P.G. DEGREE EXAMINATION, NOVEMBER 2020

(CCSS)

Statistics

STA 1C 05—SAMPLING THEORY

(2019 Admissions)

Time: Three Hours Maximum: 80 Marks

Section A

Answer any **four** questions. Each question carries 4 marks.

- I. (i) State the principle of statistical regularity and indicate its importance.
 - (ii) What are the advantages of sampling methods?
 - (iii) What are the advantages of PPS sampling?
 - (iv) Explain Lahiri's method.
 - (v) What are regression estimators?
 - (vi) Obtain the expression for the bias of ratio estimators in the case of simple random sampling.
 - (vii) What is systematic random sampling?
 - (viii) What are the advantages of cluster sampling?

 $(4 \times 4 = 16 \text{ marks})$

Section B

Answer **all** questions. Each question carries 16 marks.

- II. A) a) Show that in case of simple random sampling the probability that a specified unit of the population being selected in any given draw is equal to the probability of its being selected at the first draw.
 - b) Show that in simple random sampling s^2 is an unbiased estimator of S^2 . Also obtain an unbiased estimator of the variance of the \bar{y} in simple random sampling without replacement.

(6 + 10 = 16 marks)

2 **D 93626**

- B) a) Discuss the methods for the estimation of sample size in simple random sampling.
 - b) Explain optimum allocation.

$$(8 + 8 = 16 \text{ marks})$$

- III. A) a) Distinguish between simple random sampling and PPS sampling?
 - b) Explain Des Raj's ordered estimator and show that it is unbiased. Obtain its sampling variance.

$$(6 + 10 = 16 \text{ marks})$$

Or

- B) a) Distinguish between ordered and unordered estimators in PPS sampling.
 - b) Define the Horwitz-Thompson estimator for population total in case of PPS sampling. Obtain the expression for its variance.

$$(5 + 11 = 16 \text{ marks})$$

- IV. A) a) Compare the ratio estimator with mean per unit.
 - b) What are unbiased ratio type estimators? Define Hartley and Ross estimator and show that it is unbiased. Obtain its sampling variance under simple random sampling without replacement.

$$(6 + 10 = 16 \text{ marks})$$

O

- B) a) Obtain an expression for the approximate bias of the regression estimator and also obtain the large sample variance of the regression estimator.
 - b) When the bias of the ratio estimator will be small?

$$(12 + 4 = 16 \text{ marks})$$

- V. A) a) Explain multi-stage sampling. What are the situations in which we can use it?
 - b) Explain unequal cluster sampling and obtain the unbiased estimator of the mean. Also derive its variance.

$$(6 + 10 = 16 \text{ marks})$$

Or

- B) a) Explain multi-phase sampling and mention its advantages. How it differs from multistage sampling?
 - b) Explain various sources of non-sampling errors.

$$(8 + 8 = 16 \text{ marks})$$

\mathbf{D}	93625	
_	UUUEU	

(Pages: 2)

Name.....

Reg. No.....

FIRST SEMESTER P.G. DEGREE EXAMINATION, NOVEMBER 2020

(CCSS)

Statistics

STA 1C 04—DISTRIBUTION THEORY

(2019 Admissions)

Time: Three Hours Maximum: 80 Marks

Section A

Answer any **four** questions. Each question carries 4 marks.

- I. (i) Define discrete uniform distribution and derive its mean and variance.
 - (ii) Write a short note on hypergeometric distribution.
 - (iii) Derive the M.G.F. of gamma distribution.
 - (iv) Define beta distribution of first kind and second kind. Also state their properties.
 - (v) Write a short note on bivariate normal distribution.
 - (vi) Let (X, Y) be a random vector of continuous type with p.d.f. f. Obtain the p.d.f. of:

(a)
$$U = X - Y$$
 and (b) $V = \frac{X}{Y}$.

- (vii) Define F distribution and state its important properties.
- (viii) Define Chi-square distribution and list its applications.

 $(4 \times 4 = 16 \text{ marks})$

Section B

Answer either part -A or part - B of all questions. Each question carries 16 marks.

- II. A) a) Define Logarithmic distribution and derive its M.G.F.
 - b) Write a short note on hypergeometric and its association with other distributions.

(8 + 8 = 16 marks)

Or

- B) a) Derive the r^{th} order moment of discrete uniform distribution.
 - b) Explain the multinomial distribution and its marginal distribution.

(8 + 8 = 16 marks)

- III. A) a) Derive the r^{th} order moment of Pareto distribution.
 - b) Explain the role and significance of transformed distribution with illustration.

2

$$(8 + 8 = 16 \text{ marks})$$

Or

- B) a) Write the statistical properties of bivariate normal distribution.
 - b) Derive the characteristic function of generalized Laplace distribution.

$$(8 + 8 = 16 \text{ marks})$$

- IV. A. a) Let (X,Y) be a bivariate normal random vector with parameters $\mu_1,\mu_2,\sigma_1,\sigma_2$ and ρ . Let $U_1 = \sqrt{X^2 + Y^2} \quad \text{and} \quad U_2 = \frac{X}{Y} \text{. Find the joint density of } (U_1,U_2) \text{ and find the marginal density of } U_1 \text{ and } U_2.$
 - b) Derive the p.d.f. of the median and mid-range of order statistics from a random sample of size n.

$$(8 + 8 = 16 \text{ marks})$$

Or

B. a) Let X_1, X_2, X_3 be i.i.d. random variables with common density function

$$f(x) = \begin{cases} 1 & \text{if } 0 \le x \le 1 \\ 0 & \text{otherwise} \end{cases}.$$

Find the p.d.f. of $Y = X_1 + X_2 + X_3$.

b) Let $Y_1 < Y_2 < Y_3 < Y_4$ denote the order statistics of a random sample from exponential distribution with parameter $\lambda = I$. Compute the probability of an event $Y_4 \ge 3$.

$$(8 + 8 = 16 \text{ marks})$$

- V. A. a) Obtain the mean and variance of t distribution.
 - b) Show that non-central Chi-square satisfies additive property.

$$(8 + 8 = 16 \text{ marks})$$

Or

- B. a) Derive the p.d.f. of non-central F distribution.
 - b) Write in detail about the interrelation between F and χ^2 distribution.

$$(8 + 8 = 16 \text{ marks})$$

$$[4 \times 16 = 64 \text{ marks}]$$

(Pages: 3)

Reg. No.....

FIRST SEMESTER P.G. DEGREE EXAMINATION, NOVEMBER 2020

(CCSS)

Statistics

STA 1C 03—PROBABILITY THEORY—I

(2019 Admissions)

Time: Three Hours

Maximum: 80 Marks

Section A

Answer any four questions; each question carries 4 marks.

- I. (i) Define indicator random variable and mention any two properties.
 - (ii) What is induced probability space? Explain with an illustration.
 - (iii) Show that the expected value of a bounded variate X always exists.
 - (iv) State Holder's inequality and mention its relation with Schwarz' inequality.
 - (v) State Cauchy's criterion of convergence.
 - (vi) Define convergence almost surely and mutual convergence.
 - (vii) Define tail events. State Kolmogorov's 0-1 law.
 - (viii) Define independence of events. State Borel-Cantelli lemma.

 $(4 \times 4 = 16 \text{ marks})$

Section B

Answer either part-A or part-B of all questions; each question carries 16 marks.

- II. A. (a) Show that the probability function defined on all intervals of the form $(a, b] \subseteq \mathcal{R}$ defines an extension uniquely to the minimal field containing all the intervals. (10 marks)
 - (b) A function F(x, y) of two variates X, Y is defined by F(x, y) = 1, if $x + y \ge 0$; F(x, y) = 1, if x + y < 0. Examine whether F(x, y) can be a distribution function of some two-dimensional random variable. (6 marks)

Distinguish probability space and induced probability space.

(6 marks)

(b) State and prove Jordan decomposition theorem.

- (10 marks)
- A (a) Define Gamma distribution. Obtain its moment generating function and hence find E(X). III.
 - (8 marks)
 - (b) Show that $\mathbf{E}\left(\frac{\mid \mathbf{X} \mid^r}{1 + \mid \mathbf{X} \mid^r}\right) \frac{a^r}{1 + a^r} \le \mathbf{P}\left\{\mid \mathbf{X} \mid \ge a\right\} \le \frac{1 + a^r}{a^r} \mathbf{E}\left(\frac{\mid \mathbf{X} \mid^r}{1 + \mid \mathbf{X} \mid^r}\right)$ (8 marks)

- B (a) If $E(X^r)$ exists, then show that $E(X^t)$ need not exist if t > r. (6 marks)
 - (b) State and prove C_r inequality. (10 marks)
- A (a) Define convergence in probability. Show that IV.

$$X_n \xrightarrow{P} 0 \text{ iff } E\left(\frac{\mid X_n \mid}{1 + \mid X_n \mid}\right) \to 0, \text{ as } n \to \infty.$$
 (10 marks)

$$X_{n} \xrightarrow{P} 0 \text{ iff } E\left(\frac{\mid X_{n}\mid}{1+\mid X_{n}\mid}\right) \to 0, \text{ as } n \to \infty. \tag{10 marks}$$

$$\text{(b) Let } X_{n} \xrightarrow{P} X \text{ and } Y_{n} \xrightarrow{P} Y. \text{ Show that } X_{n}Y_{n} \xrightarrow{P} X Y. \tag{6 marks}$$

$$Or$$

B (a) Define convergence in distribution. Show that $X_n \xrightarrow{P} c$ implies that $\mathbf{F}_{n}\left(x
ight)
ightarrow 0 \text{ for } x < c, \mathbf{F}_{n}\left(x
ight)
ightarrow 1 \text{ for } x \geq c, \text{ and conversely.}$

(10 marks)

(b) Define convergence in mean square. Verify a sequence of variates $\{X_n\}$ defined with $P(X_n = 0) = 1 - (1/n^2), P(X_n = n) = 1/n^2, n = 1, 2, 3, \dots \text{ is convergent in mean square.}$

(6 marks)

V. A (a) What is lattice distribution? State the inversion formula for lattice distribution.

(8 marks)

(b) If $X \sim N(\mu, \sigma^2)$; $Z = \frac{X - \mu}{\sigma} \sim N(0, 1)$, show that $X = \mu + \sigma Z$ has its characteristic function

given by
$$\varphi_{X}(t) = \exp\left(it\mu - \left(t^{2}\sigma^{2}\right)/2\right)$$
. (8 marks)

Or

B (a) State and prove Borel 0-1 criterion.

(10 marks)

(b) Find the distribution for which characteristic function is $\varphi(t) = e^{-|t|}, -\infty < t < \infty$.

(6 marks)

 $[4 \times 16 = 64 \text{ marks}]$

(Pages: 2)

Name.....

Reg. No.....

FIRST SEMESTER P.G. DEGREE EXAMINATION, NOVEMBER 2020

(CCSS)

Statistics

STA 1C 02—MATHEMATICAL METHODS FOR STATISTICS-II

(2019 Admissions)

Time: Three Hours Maximum: 80 Marks

Section A

Answer any **four** questions. Each question carries 4 marks.

- I. (i) Distinguish between Sigma field and Borel sigma field.
 - (ii) What is a measure? Define finite measure and sigma-finite measure.
 - (iii) What is Borel measurable function? How does it differ from Lebesgue measurable function?
 - (iv) Define measurable space. State the conditions for a function defined on a measurable space to be simple.
 - (v) State Radon-Nikodym theorem. What is its significance?
 - (vi) Define signed measures and absolute continuity of one measure with respect to another.
 - (vii) Define complex n-space, and vector addition and vector multiplication on complex n-space.
 - (viii) State the condition for linear dependence of vectors in a vector space. Give an example.

 $(4 \times 4 = 16 \text{ marks})$

Section B

Answer **either** part-A **or** part-B of **all** questions. Each question carries 16 marks.

- II. A) (a) Define monotone class of sets. Show that sigma field is a monotone class and a monotone field is a sigma field.
 - (b) Let $\{A_n, n = 1, 2,\}$ be a finite, disjoint class of sets in P, each contained in a given set A_0 ,

such that $A_0 \subset \bigcup_{i=1}^{\infty} A_i$, where P is the class of all bounded, left closed and right opened

intervals, prove that $\mu(A_0) \le \sum_{i=1}^{\infty} \mu(A_i)$.

(8 + 8 = 16 marks)

B) (a) Let μ be a finite, non-negative and additive set function on a sigma field. If μ is either continuous from below at every set in the sigma field or continuous from above at 0, show that μ is a measure.

2

(b) Define outer measure. State any two properties on outer measures.

(8 + 8 = 16 marks)

- III. A) (a) Define fundamental in measure and convergence in measure of a sequence of measurable functions. State any two properties relating to convergence of a sequence of measurable functions.
 - (b) State and prove Fatou's lemma.

(8 + 8 = 16 marks)

Or

- B) (a) Let $\{f_n\}$ be a sequence of measurable functions which converges in measure to f and to g. Show that $\{f_n\}$ is fundamental in measure and f=g almost everywhere.
 - (b) Let f be measurable, g be integrable and $|f| \le |g|$ a.e, Prove that f is integrable.

(8 + 8 = 16 marks)

- IV. A) (a) Let μ be a signed measure and v be a finite signed measure, such that $v << \mu$. Prove that for every $\varepsilon > 0$, there is a $\delta > 0$, such that $|v|(A) < \varepsilon$ for every measurable set A, for which $|\mu|(A) < \delta$.
 - (b) Define product space and state Fubini's theorem.

(10 + 6 = 16 marks)

Or

- B) (a) What are double and iterated integrals?
 - (b) Show that every section of a measurable set is a measurable set.

(6 + 10 = 16 marks)

- V. A) (a) Define matrix representation of a linear operator T: V -> V relative to a basis.
 - (b) Define subspace of a vector space. Show that the intersection of any number of subspaces of a vector space V is a subspace of V.

(6 + 10 = 16 marks)

Or

- B) (a) Define linear span. Show that the vectors (1, 1, 1), (1, 2, 3) and (1, 5, 8) span \mathbb{R}^3 .
 - (b) Let $F: \mathbb{R}^2 \to \mathbb{R}^2$ be the linear operator defined by F(x,y) = (2x+3y,4x-5y). Find the matrix representation of F relative to the basis $S = \{u_1, u_2\} = \{(1,-2), (2,-5)\}$.

(8 + 8 = 16 marks)

 $[4 \times 16 = 64 \text{ marks}]$

(Pages: 3)

Name.....

Reg. No.....

FIRST SEMESTER P.G. DEGREE EXAMINATION, NOVEMBER 2020

(CCSS)

Statistics

STA IC 01-MATHEMATICAL METHODS FOR STATISTICS-I

(2019 Admissions)

Time: Three Hours

Maximum: 80 Marks

Section A

Answer any **four** questions. Each question carries 4 marks.

- I. (i) If f is a bounded function and α be a non-decreasing function on [a, b], show that the lower RS integral does not exceed the upper RS integral.
 - (ii) Define beta and gamma functions. Show that beta function is symmetrical in its constants.
 - (iii) Show that a monotonically increasing sequence which is not bounded above diverges.
 - (iv) What is an alternating series? State the conditions for testing the convergence of an alternating series.
 - (v) Examine the equality of the partial derivatives f_{xy} and f_{yx} of $f(x, y) = x^3 + e^{xy^2}$.
 - (vi) State Taylor's theorem on partial derivatives.
 - (vii) State the conditions to be satisfied by the generalized inverse of a matrix.
 - (viii) Explain the standard form of a system of linear equations.

 $(4 \times 4 = 16 \text{ marks})$

Section B

Answer **either** Part A **or** Part B of all questions. Each question carries 16 marks.

- II. (A) (a) State and prove second mean value theorem.
 - (b) If f is RS integrable on [a,b] with respect to a monotonically non-decreasing function α

on [a, b] and if $|f(x)| \le K$, find the upper bound for $\left| \int_a^b f(x) d\alpha(x) \right|$.

(8 + 8 = 16 marks)

(B) (a) Let S (P, f, α) be the Riemann - Stieltjes sum, where P is the partition of [a, b], f is the bounded function on [a, b] and α is the monotonic non-decreasing function on [a, b].

Prove that $\lim_{\|\mathbf{P}\| \to 0} \operatorname{S}(\mathbf{P}, f, \alpha)$ exists and is equal to $\int_{a}^{b} f(x) d\alpha(x)$.

(b) Examine the convergence of $\int_{0}^{2} \frac{1}{2x - x^{2}} dx.$

$$(10 + 6 = 16 \text{ marks})$$

- III. (A) (a) Define sequence. Show that a sequence cannot converge to more than one limit.
 - (b) Prove that a series of positive terms either converges or diverges but never oscillates.

$$(8 + 8 = 16 \text{ marks})$$

Or

- (B) (a) State and prove Cauchy's general principle of convergence for series.
 - (b) Justify the following statement citing two illustrations: A bounded sequence need not be convergent.

$$(8 + 8 = 16 \text{ marks})$$

- IV. (A) (a) What are partial derivatives of a function of two variables? State partial derivatives of higher order.
 - (b) Show that $f(x, y) = \begin{cases} \frac{xy}{\sqrt{x^2 + y^2}}, & (x, y) \neq (0, 0) \\ 0, & (x, y) = (0, 0) \end{cases}$ is continuous at the origin.

$$(8 + 8 = 16 \text{ marks})$$

Or

- (B) (a) Define limit, continuity and differentiability of a function f(x, y) at (x_0, y_0) .
 - (b) Define extreme values of a function. Show that $f(x, y) = x^4 + x^2y + y^2$ has a minimum at (0, 0).

$$(8 + 8 = 16 \text{ marks})$$

- V. (A) (a) Define characteristic polynomial and minimal polynomial. State any two properties connecting both the polynomials.
 - (b) If $A = \begin{bmatrix} 4 & 1 & -1 \\ 2 & 5 & -2 \\ 1 & 1 & 2 \end{bmatrix}$, verify whether it is diagonalizable. If yes, find the matrix P such that

P⁻¹ AP is diagonal.

(8 + 8 = 16 marks)

Or

- (B) (a) Show that rank of the generalized inverse of a matrix A equals the rank of A.
- (b) Find the characteristic polynomial of $A = \begin{bmatrix} 3 & -1 & 1 \\ 7 & -5 & 1 \\ 6 & -6 & 2 \end{bmatrix}$. Find the algebraic and geometric

multiplicities of one of the eigenvalues of the matrix.

(8 + 8 = 16 marks)

 $[4 \times 16 = 64 \text{ marks}]$

D 93620	1
---------	---

(Pages: 3)

Name.....

Reg. No.....

FIRST SEMESTER P.G. DEGREE EXAMINATION, NOVEMBER 2020

(CCSS)

Statistics

STA 1C 04—DISTRIBUTION THEORY

(2010 Admission onwards)

Time: Three Hours

Maximum: 80 Marks

Section A

Answer any **four** questions. Each question carries 4 marks.

- I. 1 If X_1 and X_2 are independent geometric random variables, show that min (X_1, X_2) is geometric.
 - 2. Derive the probability generating function of multinomial distribution and hence obtain the mean and variance.
 - 3. Derive the mean and variance of hypergeometric random variable.
 - 4. If X_1, X_2 are independent exponential random variables with mean 1, find the distribution of $X_1 X_2$.
 - 5. Define Pareto distribution. Find its mean and variance.
 - 6. If the joint distribution of X and Y is given by

$$F(x, y) = 1 - e^{-x} - e^{-y} + e^{-(x+y)}; x > 0, y > 0,$$

find the marginal and conditional densities. Are \boldsymbol{X} and \boldsymbol{Y} independent ?

- 7. Derive the formula for the joint distribution of two order statistics.
- 8. Distinguish between central and non-central Chi-square distributions.

 $(4 \times 4 = 16 \text{ marks})$

Section B

2

Answer either Part A or Part B of all questions.

Each question carries 16 marks.

- A (i) Show that binomial distribution as a special limiting distribution of hypergeometric II. distribution. Define negative binomial distribution. Why is it so called?
 - (ii) Define geometric distribution and derive its mean and variance. State and prove the lack of memory property of geometric distribution.

Or

- B (i) If X and Y are independent Poisson variates, show that the conditional distribution of X given X + Y is binomial.
 - (ii) Prove that Poisson distribution is a limiting case of the negative binomial distribution.
- A (i) If X and Y are independent standard norma! variates, derive the distribution of Z = X/Y. III.
 - (ii) If X and Y are independent exponential variates with common mean 1, derive the distribution of X/X + Y.

- B (i) Obtain the characteristic function of standard Laplace distribution.
 - (ii) If X and Y are independent U(0,1) random variables find the p.d.f. of
 - (1) U = X + Y; (2) V = X Y; and (3) W = |X Y|.
- A (i) If $X_{(1)}, X_{(2)}, \dots, X_{(n)}$ are order statistics of a random sample from IV.

$$f(x) = \theta e^{-\theta x}$$
; $0 < x < \infty$

$$f(x) = \theta e^{-\theta x}$$
; $0 < x < \infty$
find (i) $E(X_{(r:n)})$; and (ii) $V(X_{(r:n)})$.

(ii) Define bivariate normal distribution. If (X, Y) are bivariate normally distributed then derive the conditional distribution of Y given X = x.

- B (i) Find the distribution of sample range based on random sample from U (0, 1).
 - (ii) Let if $X_{(1)}, X_{(2)},, X_{(n)}$ be order statistics from a population with absolutely continuous distribution function F. Derive the p.d.f. of $X_{(r)}$ and joint p.d.f. of $X_{(r)}$ and $X_{(s)}$.
- V. A (i) If $X \sim N(\mu, 1)$ show that $Y = X^2$ has non-central Chi-square distribution. Also show that the square of a non-central t-statistic is a non-central F statistic.
 - (ii) If $F_n(x)$ denotes the empirical distribution function based on a sample of size n from a continuous population, derive the distribution of $Y = n F_n(x)$ and Var(Y).

Or

- B (i) Given a sample from $f(x) = 1/\theta$, $0 < x < \theta$; derive the distribution of the sample range.
 - (ii) Define bivariate normal distribution and show that its marginal distributions are univariate normal distributions.

 $(4 \times 16 = 64 \text{ marks})$

D	93	61	7
_	vv	UΙ	

(Pages: 3)

Nam	.e
_ ,	

Reg. No.....

FIRST SEMESTER P.G. DEGREE EXAMINATION, NOVEMBER 2020

(CCSS)

Statistics

STA IC 01—MATHEMATICAL METHODS FOR STATISTICS—I

(2010 Admission onwards)

Time: Three Hours

Maximum: 80 Marks

Section A

Answer any **four** questions.

Each question carries 4 marks.

- I. (a) State first and second mean value theorems for Riemann-Stieltjes integral.
 - (b) Define functions of bounded variation on interval A. Give one example.
 - (c) Prove that the sequence $\{f_n\}$, where $f_n(x) = \frac{x}{1 + nx^2}$ converges uniformly on any closed interval I.
 - (d) Define uniform convergence of sequence of functions. State Cauchy condition for uniform convergence of a sequence of functions.
 - (e) Show that the function $f(x, y) = \begin{cases} \frac{x^2y}{x^4 + y^2}, & x^2 + y^2 \neq 0 \\ 0, & x = y = 0 \end{cases}$.

Posses first order partial derivative everywhere, including the origin, but the function is discontinuous at the origin.

- (f) Prove that $(y-x-b)^4 + (x-a)^4$ has minima at (a, a+b).
- (g) Define Hermitian matrix. What can you say about the Eigen values of a Hermitian matrix?
- (h) What do you mean by positive definite matrix? Give one example.

 $(4 \times 4 = 16 \text{ marks})$

Section B

Answer the question from either Section A or B of all questions.

Each question carries 16 marks.

- II. A (a) If $f \in \mathbb{R}(\alpha)$ on [a,b] and α has a continuous derivative α' on [a,b], show that $\int_a^b f(x) \alpha'(x) dx \text{ exists and } \int_a^b f(x) d\alpha(x) = \int_a^b f(x) \alpha'(x) dx.$
 - (b) Show that the integral $\int_0^{\frac{\pi}{2}} \log \sin x \, dx$ is convergent and hence evaluate it.

$$(8 + 8 = 16 \text{ marks})$$

Or

- B (a) Assume that α is a function of bounded variation on [a,b]. Let V(x) denote the total variation of α on [a,x] if $a < x \le b$ and V(a) = 0. Let f be bounded on [a,b]. If $f \in \mathbb{R}(\alpha)$ on [a,b], then show that $f \in \mathbb{R}(V)$ on [a,b].
 - (b) State and prove Euler's summation formula.

$$(8 + 8 = 16 \text{ marks})$$

- III. A (a) Define uniform convergence of a series of functions. Discuss the uniform convergence of $\sum_{n=1}^{\infty} \frac{1}{n} \sin nx.$
 - (b) State and prove a set of sufficient conditions for uniform convergence of a series.

$$(6 + 10 = 16 \text{ marks})$$

Or

- B (a) If $\{f_n(x)\}$ is a sequence of continuous functions on $E \subset R$ and if f_n converges to f on E, prove that f is continuous on E.
 - (b) State and prove Weierstrass M-test.

$$(9 + 7 = 16 \text{ marks})$$

- IV. A (a) Explain how do you definite limit and continuity of multivariate functions. Illustrate it through an examples.
 - (b) Show that the length of the axes of the section of the ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ by the

plane lx + my + nz = 0 are the roots of the quadratic in r^2 , $\frac{l^2 a^2}{r^2 - a^2} + \frac{m^2 b^2}{r^2 - b^2} + \frac{n^2 c^2}{r^2 - c^2} = 0$.

(6 + 10 = 16 marks)

Or

- B (a) Investigate the maxima and minima of the function $21x 12x^2 2y^2 + x^3 + xy^2$.
 - (b) Establish a necessary condition for the existence of an extrema of a bivariate function. What are the sufficient conditions for the same?

(8 + 8 = 16 marks)

- V. A (a) Show that $H = \begin{bmatrix} A & B \\ 0 & C \end{bmatrix}$ is idempotent if and only if A and C are idempotent.
 - (b) Show that $m \times n$ matrix of real numbers has a generalized inverse.

(8 + 8 = 16 marks)

- B (a) State and prove a necessary and sufficient condition on A so that the quadratic form X'AX is positive definite.
 - (b) What is meant by spectral decomposition of a matrix? Give an application of such decomposition.

(10 + 6 = 16 marks)

D	9	34	44	17
---	---	----	----	----

(Pages: 3)

Name.....

Reg. No.....

FIRST SEMESTER M.Sc. DEGREE (REGULAR/SUPPLEMENTARY) EXAMINATION, NOVEMBER 2020

(CBCSS)

Statistics

MST 1C 04—PROBABILITY THEORY

(2019 Admissions)

Time: Three Hours

Maximum: 30 Weightage

General Instructions

- 1. In cases where choices are provided, students can attend all questions in each section.
- 2. The minimum number of questions to be attended from the Section / Part shall remain the same.
- 3. There will be an overall ceiling for each Section / Part that is equivalent to the maximum weightage of the Section / Part.

Part A

Answer any four questions.

Each question carries 2 weightage.

- 1. Prove that the intersection of arbitrary number of σ -fields is also a σ -field.
- 2. Show that distribution function can have atmost of countable number of discontinuity points.
- 3. Define a characteristic function. Will it always exists? Justify your answer.
- 4. Let $X_n \sim \chi^2_{(n)}$, $n = 1, 2, \dots$. Find the limiting distribution of $\frac{X_n}{n^2}$.
- 5. State Kolmogorov three series theorem.
- 6. Let $X_1, X_2,...$ be a sequence of independent random variables with p.m.f.

$$P[X_k = 1] = \frac{1 - 2^{-k}}{2} = P[X_k = -1] \text{ and } P[X_k = 2^k] = 2^{-(k+1)} = P[X_k = -2^k].$$
 Examine whether

SLLN holds.

7. State Lindeberg-Feller Central limit theorem.

 $(4 \times 2 = 8 \text{ weightage})$

Part B

Answer any four questions.

Each question carries 3 weightage.

8. Define limit of a sequence of sets. Examine whether the following sequence of sets is convergent.

$$A_{2n} = \left(0, \frac{1}{2n}\right), A_{2n+1} = \left[-1, \frac{1}{2n+1}\right].$$

- 9. State and prove Basic inequality.
- 10. Characteristic function is real iff the distribution function is symmetric about zero.
- 11. Prove that $X_n \xrightarrow{a.s.} X \Rightarrow X_n \xrightarrow{P} X$. Check whether the converse is true.
- 12. If $\{F_n(x)\}$ is a sequence of distribution functions, then there exist a subsequence of $\{F_n(x)\}$ which converges weakly.
- 13. State and prove Khintchine's WLLN.
- 14. Let x_1, x_2, \dots, x_n be i.i.d. N (0,1) RVs. Define

$$\mathbf{U}_{n} = \left(\frac{x_{1}}{x_{2}} + \frac{x_{3}}{x_{4}} + \dots + \frac{x_{2n-1}}{x_{2n}}\right)$$

$$V_n = x_1^2 + x_2^2 + ... + x_n^2 \text{ and } Z_n = \frac{U_n}{V_n}.$$

Find limiting distribution of Z_n .

 $(4 \times 3 = 12 \text{ weightage})$

Part C

Answer any **two** questions.

Each question carries 5 weightage.

15. Define convergence in probability. Prove that if $X_n \xrightarrow{P} X$, then there exist a sub-sequence $\{X_{nk}\}$ of $\{X_n\}$ which converges a.s to X.

HAWALIBRARY UNIVERSITY OF CALIFOLY

D	93446	
	UUTTU	

(Pages: 2)

••••
•

Reg. No.....

FIRST SEMESTER M.Sc. DEGREE (REGULAR/SUPPLEMENTARY) EXAMINATION, NOVEMBER 2020

(CBCSS)

Statistics

MST 1C 03—DISTRIBUTION THEORY

(2019 Admissions)

Time: Three Hours

Maximum: 30 Weightage

General Instructions

- 1. In cases where choices are provided, students can attend all questions in each section.
- 2. The minimum number of questions to be attended from the Section / Part shall remain the same.
- 3. There will be an overall ceiling for each Section / Part that is equivalent to the maximum weightage of the Section / Part.

Part A

Answer any **four** questions. Each question carries 2 weightage.

- 1. For the p.m.f. $P[X = j] = \frac{a_j \theta^j}{f(\theta)}$, $j = 0,1,2,3,...,\theta > 0$, where $a_j \ge 0$ and $f(\theta) = \sum_{j=0}^{\infty} a_j \theta^j$. Find the pgf of X.
- 2. Let X and Y be independent random variables with pmf's b(m, p) and b(n, p) respectively. Show that X given X + Y is hypergeometric.
- 3. Let X and Y be iid N(0,1) random variables. Show that X + Y and X Y are independent.
- 4. If $X_1, X_2,, X_n$ are iid random variables following the Weibull distribution. Find the distribution of $X_{(1)} = Min (X_1, X_2,, X_n)$.
- 5. If X is lognormal obtain the distribution of $\frac{1}{X}$.
- 6. Define exponential family of distributions. Identify two distributions belongs to this family.
- 7. Define noncentral Chi-square distribution. When will this reduce to central Chi-square?

 $(4 \times 2 = 8 \text{ weightage})$

Part B

Answer any **four** questions. Each question carries 3 weightage.

- 8. Define negative binomial distribution, Establish the reproductive property of it.
- 9. Obtain the poisson distribution as a limiting case of the negative binomial distribution.
- 10. Let X_1, X_2, X_3 be iid random variables with common exponential distribution $f(x) = e^{-x}, x > 0$. Let

$$Y_1 = X_1 + X_2 + X_3$$
, $Y_2 = \frac{X_1 + X_2}{X_1 + X_2 + X_3}$ and $Y_3 = \frac{X_1}{X_1 + X_2}$. Show that Y_1, Y_2 and Y_3 are independent.

11. If X and Y are independent Gamma variates with parameters α and β . Find the distribution of

$$U = X + Y$$
 and $V = \frac{X}{X + Y}$.

- 12. Define Cauchy distribution and obtain its Characteristic function.
- 13. Define Pareto distribution. If Y is a random variable following Pareto distribution, find the distribution of X = logY.
- 14. Derive the distribution of the range of a random sample of size n from U[0, 1] distribution.

 $(4 \times 3 = 12 \text{ weightage})$

Part C

Answer any **two** questions. Each question carries 5 weightage.

- 15. Let $X_1, X_2, ..., X_n$ be a random sample of size n from Normal distribution with mean μ and variance σ^2 . Show that sample mean and sample variance are independently distributed.
- 16. Define non-central t distribution. Derive the probability density function of it.
- 17. Let X_1 , X_2 be iid U[0, 1] random variables. Let $Y_1 = X_1 + X_2$ and $Y_2 = X_1 X_2$, find the p.d.f's of Y_1 and Y_2 .
- 18. Define order statistics. Find the p.d.f's of $X_{(1)}$ and $X_{(n)}$ of a random sample of size n from standard logistic distribution.

 $(2 \times 5 = 10 \text{ weightage})$

Pog	No

FIRST SEMESTER M.Sc. DEGREE (REGULAR/SUPPLEMENTARY) EXAMINATION, NOVEMBER 2020

(CBCSS)

Statistics

MST 1C 02—ANALYTICAL TOOLS FOR STATISTICS—II

(2019 Admissions)

Time: Three Hours Maximum: 30 Weightage

Part A

Answer any **four** questions Weightage 2.

- 1. Explain linear dependency and independency of vectors over a field.
- 2. Define basis and dimension of a vector space with suitable example.
- 3. Prove that the inverse of amatrix exist iff it is non singular
- 4. Define Hermition and skew Hermition matrices. Give examples.
- 5. Define algebraic and geometric multiplicities.
- 6. State rank -nullity theorem.
- 7. Examine the definiteness of the quadratic form $2x^2 + 3y^2 + 4xy$.

 $(4 \times 2 = 8 \text{ weightage})$

Part B

Answer any **four** questions Weightage 3.

- 8. Explain linear dependency and independency of vectors over a field. Examine whether the following vectors are linearly independent. {(1, 1, 1), (1, 3, 2), (2, 1, 1)}
- 9. Define sub space. Show that, the intersection of any number of subspaces of a vector space V is also a subspace of V.
- 10. What do you mean by algebraic and geometric multiplicity of an eigen value . Establish how they are related
- 11. Show that a set of orthogonal vectors are linearly independent.
- 12. Prove that the characteristics roots of a Hermition matrix are real.

- 13. Define Moore-Penrose the g-inverse. Show that it is unique.
- 14. Define *g*-inverse. Compute the *g*-inverse of the matrix $A = \begin{bmatrix} 2 & 1 & 1 & 2 \\ 2 & 4 & 3 & 1 \\ 0 & 2 & 0 & 5 \end{bmatrix}$.

 $(4 \times 3 = 12 \text{ weightage})$

Part C

Answer any **two** questions. Weightage-5.

- 15. (i) If $t \, W_1$ and W_2 be subspaces of a vector space V, then prove that $W_1 + W_2$ is a subspace of V. And $W_1 + W_2$ is the smallest subspace of V containing W_1 and W_2 .
 - (ii) Let W be the sub space of R⁴ spanned by vectors

$$\{(1, -2, 5, -3), (2, 3, -1, 4), (3, 8, -3, -5)\}$$
 Find the basis and dimension of W.

- 16. Describe the spectral decomposition of a real symmetric matrix.
- 17. Solve the system of equations using Gauss elimination method.

$$2x - y + z = 5$$
$$7x + 2y - 5z = 20$$
$$x + y + z = 6$$

- 18. (i) State and prove Cayley-Hamilton theorem.
 - (ii) Explain Gram -Schmidt orthogonalization process.

 $(2 \times 5 = 10 \text{ weightage})$

D	93,	444
v	บบ	144

(Pages: 2)

Name.....

Reg. No.....

FIRST SEMESTER M.Sc. DEGREE (REGULAR/SUPPLEMENTARY) EXAMINATION, NOVEMBER 2020

(CBCSS)

Statistics

MST 1C 01—ANALYTICAL TOOLS FOR STATISTICS—I

(2019 Admissions)

Time: Three Hours

Maximum: 30 Weightage

Part A

Answer any **four** questions. Weightage 2 for each question.

- 1. Define directional derivative.
- 2. Define the limit of a multivariate function.
- 3. Define an analytic function. Give an example.
- 4. Distinguish between essential and isolated singularity.
- 5. Define Laplace transform of a function.
- 6. State Poisson integral formula.
- 7. If $L\{F(t)\}=f(s)$, show that $L\{\int_0^1 F(u) du\}=\frac{1}{s} f(s)$.

 $(4 \times 2 = 8 \text{ weightage})$

Part B

Answer any **four** questions. Weightage 3 for each question.

- 3. Examine whether the limit of the function $f(x, y) = \frac{x^3 y^3}{x^2 + y^2}$ exist at (0, 0).
- 9. Examine the function $21x 12x^2 2y^2 + x^3 + xy^2$ for maximum and minimum.

- 10. Show that every analytic function satisfies Cauchy-Riemann equations.
- 11. State and prove Jordan's lemma.
- 12. Show that if f(z) is an entire function, which is bounded for all values of z then it is a constant.
- 13. Describe different forms of Fourier integral formula.
- 14. Evaluate $\int_0^\infty \frac{x^2}{x^4 + 5x^2 + 6} dx$.

 $(4 \times 3 = 12 \text{ weightage})$

Part C

Answer any **two** questions.

Weightage 5 for each question.

- 15. (i) Explain the Lagrange multiplier method. Maximize $36 x^2 y^2$ subject to x + 7y = 25.
 - (ii) Explain Riemann integral of a multivariable function.
- 16. State and prove Laurent's lemma.
- 17. (i) State and prove the necessary and sufficient condition for a function to be analytic.
 - (ii) Find an analytic function whose real part is $e^x \cos y$.
- 18. State and prove Cauchy residue theorem.

 $(2 \times 5 = 10 \text{ weightage})$

D 93264

(Pages: 4)

Name.....

Reg. No.....

FIRST SEMESTER M.Sc. DEGREE (SUPPLEMENTARY) EXAMINATION NOVEMBER 2020

(CUCSS)

Statistics

ST IC 05—DISTRIBUTION THEORY

(2013 Admissions)

Time: Three Hours

Maximum: 36 Weightage

Part A

Answer all questions.

Each question carries a weightage 1.

- 1. Define moment generating function. Give an example of a random variable whose moment generating function does not exist.
- 2. Obtain the probability generating function of geometric distribution with success probability p.
- 3. Specify the conditions under which binomial distribution tends to Poisson distribution.
- 4. Let X and Y be independent random variables following standard normal distribution. Identify the distribution of $\frac{X}{Y}$.
- 5. Obtain the variance of standard Weibul distribution.
- 6. Let X be a random variable with distribution function $F_X(x)$. Show that $F_X(x)$ follows uniform distribution in the interval [0,1].
- Define location-scale family with an example.
- 8. Define marginal and conditional distributions in bivariate case.
- 9 If X_i , i = 1, 2,, n be n random variables follows a distribution with distribution function $F_X(x)$.

 Obtain the distribution function of $X_{(r)}$, where $X_{(r)}$ is the r^{th} order statistic.

- 10. Define non-central χ^2 distribution with non-centrality parameter α .
- 11. Explain any two uses of Students t-distribution.
- 12. If X_1 and X_2 are independent Chi-square variate with degrees of freedom n_1 and n_2 , then write the distribution of $\frac{X_1}{X_2}$.

 $(12 \times 1 = 12 \text{ weightage})$

Part B

Answer any **eight** questions. Each question carries a weightage 2.

- 13. The mean and variance of a binomial random variable X with parameters n and p is 16 and 8. Find i) P(X=0); ii) P(X=1); and iii) $P(X \ge 2)$.
- 14. If X_1 and X_2 be two independent random variables having geometric distribution, then show that the conditional distribution of $(X_1/(X_1 + X_2) = n)$ is uniform.
- 15. Obtain the mean of power series distribution.
- 16. Derive the characteristic function of standard cauchy distribution.
- 17. If X has a uniform distribution in the interval [0.1], then find the distribution of $-2\log X$.
- 18. Prove or disprove Normal distribution belongs to Pearson family of distributions.
- 19. Explain mixture distribution. Derive Pareto distribution as a mixture of gamma distribution and exponential distribution.
- 20. If X and Y are independent. Show that they are un correlated. Is the converse always true? Justify your answer.
- 21. If $X_1, X_2, X_3, ..., X_n$ are independent random variables, X_i i=1,2,3,...,n having an exponential distribution with parameters $\lambda_i, i=1,2,3,...,n$, then obtain the distribution of $X_{(1)}$, where $X_{(1)} = \min (X_1, X_2, X_3, ..., X_n)$.
- 22. If X is a Chi-square variate with n degrees of freedom, then prove that for large n the random variable $\sqrt{2X}$ follows normal distribution with mean $\sqrt{2n}$ and variance 1.

- 23. Obtain the variance of a students-t distribution with degrees of freedom n.
- 24. If $X_1, X_2, X_3, ..., X_m, X_{m+1}, X_{m+2}, ..., X_{m+n}$ are independent normal variate with mean zero and

variance σ^2 . Obtain the distribution of $\frac{\displaystyle\sum_{i=1}^m X_i^2}{\displaystyle\sum_{i=m+n}^{m+n} X_i^2}$.

 $(8 \times 2 = 16 \text{ weightage})$

Part C

Answer any **two** questions.

Each question carries a weightage of 4.

- 25. If $X_1, X_2, X_3, ..., X_k$ are k independent Poisson variates with parameters $\lambda_1, \lambda_2, \lambda_3, ..., \lambda_k$ respectively. Obtain the conditional distribution of $(X_1 \cap X_2 \cap \cap X_k/X)$ where $X = (X_1 + X_2 + X_k)$ is fixed.
- 26. i) Define an exponetial distribution with parameter λ .
 - ii) If X has an exponential distribution with parameter λ , then for every constant $a \ge 0$, show that $P\{Y \le x \mid X \ge a\} = P\{X \le x\}$ for all x, where Y = X a.
- 27. Let the joint density of (X, Y) is

$$f(x, y) = \frac{e^{-(x+y)} x^3 y^4}{\Gamma 4 \Gamma 5} x > 0, y > 0$$

= 0 otherwise.

- (i) Obtain the pdf of $U = \frac{X}{X + Y}$.
- (ii) Find the expectation and variance of the random variable U.

- 28. Let $X_1, X_2, X_3, \dots, X_n$ be a random sample from a normal population with mean μ and variance
 - σ^2 . Then show that the sample mean $\overline{X} = \frac{\sum\limits_{i=1}^n X_i}{n}$ and sample variance $S^2 = \frac{\sum\limits_{i=1}^n \left(X_i \overline{X}\right)^2}{n}$ are independently distributed.

 $(2 \times 4 = 8 \text{ weightage})$

D 93263	(Pages : 3)	Name

Reg	No	

FIRST SEMESTER M.Sc. DEGREE [SUPPLEMENTARY] EXAMINATION NOVEMBER 2020

(CUCSS)

Statistics

ST 1C 04—REGRESSION AND LINEAR PROGRAMMING

(2013 Admissions)

Time: Three Hours

Maximum: 36 Weightage

Part A

Answer all questions.
Each question carries 1 weightage.

- 1. When do you say that a linear parametric function is estimable?
- 2. What are the assumptions of a simple linear regression models?
- 3. Define orthogonal polynomials.
- 4. Define a generalized linear model.
- 5. Obtain the link function associated to a Poisson regression model.
- 6. Give the prediction problem on generalized linear model.
- Define basic feasible solution of an LPP.
- 8. Define artificial variables.
- 9. What do you mean by degeneracy in Linear programming?
- 10. State the fundamental theorem of duality.
- 11. Establish the difference between assignment problem and transportation problem.
- 12. Define the terms pure strategy and mixed strategy.

 $(12 \times 1 = 12 \text{ weightage})$

Part B

Answer any **eight** questions. Each question carries 2 weightage.

- 13. Obtain the unbiased estimator of O^2 in a simple linear regression model.
- 14. Explain the methods for scaling residuals.
- 15. Describe the inference on polynomial regression models.

- 16. Obtain the inference on logistics regression model.
- 17. Discuss the parameter estimation in GLM.
- 18. Explain how residual analysis performed in GLM.
- 19. Obtain all basic solution to the following system of linear equations:

$$x + 2y + z = 4$$
$$2x + y + 5z = 5.$$

20. Use simplex method to solve the following LPP:

$$Maximize Z = 2x_1 - x_2 + x_3$$

subject to
$$3x_1 + x_2 + x_3 \le 60$$

 $x_1 - x_2 + 2x_3 \le 10$
 $x_1 + x_2 - x_3 \le 20$
 $x_1, x_2, x_3 \ge 0$

21. Use Big- M method to solve the following LPP:

Maximize
$$Z = 6x_1 + 4x_2$$

subject to
$$2x_1 + 3x_2 \le 30$$

 $3x_1 + 2x_2 \le 24$
 $x_1 + x_2 \ge 3$
 $x_1, x_2 \ge 0$.

22. Obtain the dual of the following primal problem:

$$Minimize Z = x - 3x_2 - 2x_3$$

subject to
$$3x_1-x_2+2x_3 \le 7 \\ 2x_1-4x_2 \ge 12 \\ -4x_1+3x_2+8x_3=10 \\ x_1,x_2 \ge 0.$$

$$x_1,x_2 \ge 0 \text{ and } x_3 \text{ unrestricted in sign.}$$

- 23. Describe travelling salesman problem:
- 24. Explain the method of finding optimal solution of a two -person zero sum game.

 $(8 \times 2 = 16 \text{ weightage})$

Part C

Answer any **two** questions. Each question carries 4 weightage.

- 25. State and prove Gauss Markove theorem.
- 26. Describe the procedure for estimating the parameters in a Poisson regression model.
- 27. Explain dual simplex algorithm.
- 28. Use Vogel's approximation method to obtain the initial feasible solution of the following transportation problem:

	D	E	F	G	Available
A	11	13	17	14	250
В	16	18	14	10	300
C	21	24	13	10	400
Demand	200	225	275	250	

 $(4 \times 2 = 8 \text{ weightage})$

(Pages: 3)

Name.....

Reg. No.....

FIRST SEMESTER M.Sc. DEGREE (SUPPLEMENTARY) EXAMINATION NOVEMBER 2020

(CUCSS)

Statistics

ST IC 03—ANALYTICAL TOOLS FOR STATISTICS—II

(2013 Admissions)

Time: Three Hours

Maximum: 36 Weightage

Part A

Answer all the questions.

Weightage 1 for each question.

- 1. Give an example for a vector space.
- 2. Define basis of a vector space.
- 3. Define an inner product space.
- 4. Define idempotent matrix and give an example.
- 5. What do you meant by unitary matrix?
- 6. Define rank of a matrix.
- 7. Prove that for a Hermitian matrix, the eigen values are all real.
- 8. What do you meant by minimal polynomial? Find the minimal polynomial of an idempotent matrix.
- 9. Describe singular value decomposition of a matrix
- 10. What do you meant by reflexive g-inverse of a matrix?
- 11. Define a quadratic form. How will you classify it?
- 12. Define null space and nullity of a matrix.

 $(12 \times 1 = 12 \text{ weightage})$

Part B

Answer any **eight** questions. Weightage 2 for each question.

- 13. Suppose that the vectors x, y, z are linearly independent. Check the independence of the vectors x + y, x y and x 2y + z.
- 14. Show that sum of two subspaces is again a subspace.
- 15. If u and v are any two vectors in an inner product space, prove that $||u+v|| \le ||u|| + ||v||$.
- 16. Let A be an $m \times n$ matrix and B be an $n \times p$ matrix. Show that $\rho(AB) \ge \rho(A) + \rho(B) n$, where $\rho(A)$ denote the rank of A.
- 17. For a non singular matrix A, show that $\begin{vmatrix} A & B \\ C & D \end{vmatrix} = |A| |D BA^{-1} C|$.
- 18. If A is a square matrix of order n having eigen values $\lambda_1, \lambda_2,, \lambda_n$. Show that (i) trace $A = \sum_{i=1}^n \lambda_i$; and (ii) $|A| = \prod_{i=1}^n \lambda_i$.
- 19. Distinguish between algebraic multiplicity and geometric multiplicity. Establish the relation between them.
- 20. Find the eigen values of an idempotent matrix
- 21. Explain spectral decomposition of a real symmetric matrix
- 22. Derive a necessary and sufficient condition for the linear system Ax = b to be consistent.
- 23. Show that a generalized inverse always exists and is not unique.
- 24. Examine the nature of the quadratic form $x^2 y^2 + z^2 + 6xy 2yz$.

 $(8 \times 2 = 16 \text{ weightage})$

Part C

Answer any **two** questions. Weightage 4 for each question.

- 25. If A and B are two subspaces of a finite dimensional vector space V, then show that $\dim(A+B) = \dim(A) + \dim(B) \dim(A \cap B)$.
- 26. State and prove (i) Rank nullity theorem; and (ii) Fundamental theorem on ranks.
- 27. State and prove Cayley-Hamilton theorem.
- 28. State and prove a necessary and sufficient condition for a quadratic form to be positive definite.

 $(2 \times 4 = 8 \text{ weightage})$

(Pages: 3)

Name.....

Reg. No.....

FIRST SEMESTER M.Sc. DEGREE (SUPPLEMENTARY) EXAMINATION NOVEMBER 2020

(CUCSS)

Statistics

ST 1C 02—ANALYTICAL TOOLS FOR STATISTICS-I

(2013 Admissions)

Time: Three Hours

Maximum: 36 Weightage

Part A

Answer all the questions. Weightage 1 for each question.

- 1. State the necessary condition for f(x,y) to have an extreme value at x=a,y=b.
- 2. State existence theorem in case of function of two variables.
- 3. What is meant by line integral?
- 4. State Poisson integral formula.
- 5. What are the sufficient conditions for a complex valued function f(z) to be analytic?
- 6. Give an example of a function has a pole of order 3 at z = 1 and having residue 10.
- 7. State fundamental theorem of algebra.
- 8. Compute the inverse Laplace transform of the function $\frac{1}{(s-1)^3}$.
- 9. Define Fourier infinite transform.
- 10. State the conditions of a function which can be represented as a Fourire series.
- 11. Examine the singularity of the function $f(z) = e^{\frac{1}{z}}$ at z = 0.
- 12. Define Riemann integrable functions over \mathbb{R}^2 .

 $(12 \times 1 = 12 \text{ weightage})$

Part B

Answer any **eight** questions. Weightage 2 for each question.

- 13. Evaluate the integral $\iint_{\mathbb{R}} (x^2 + 2y) dxdy$, where $\mathbb{R} = [0,1;0,2]$.
- 14. Find the maxima and minima of the function, $f(x,y) = x^3 + y^3 3x 12y + 20$.
- 15. Explain Lagrange's method of multiplier to find stationary points of the function $f(x_1, x_2, ..., x_n)$
- 16. State and prove Morera's theorem.
- 17. Evaluate $\frac{1}{2\pi i} \oint_C \frac{z^2}{z^2+4} dz$, where C is the square with vertices at $\pm 2, \pm 2 + 4i$.
- 18. Find the inverse Laplace transforms of : (i) $\frac{6s-4}{s^2-4s+20}$ (ii) $\frac{1}{(s-1)^4}$
- 19. Find the Fourier series of the function $\sin 4x$ in the interval $[0,\pi]$.
- 20. Show that $f(z) = |z|^4$ is differentiable but not analytic at z = 0.
- 21. Expand $f(z) = \frac{1}{(z+1)(z+3)}$ in a Laurent series valid for (a) 1 < |z| < 3 (b) 0 < |z+1| < 3.
- 22. State the Cauchy's residue theorem and determine the residues of $f(z) = \frac{z^2 + 4}{z^3 + 2z^2 + 2z}$ at the poles.
- 23. Find the Fourier series of the function $f(x) = x + x^2$ in the interval [-1,1].
- 24. State and prove Fourier integral theorem.

 $(8 \times 2 = 16 \text{ weightage})$

Part C

Answer any **two** questions. Weightage 4 for each question.

25. Find the Fourier series of the function f(x) = |x| for $-\pi \le x \le \pi$ and also show that

$$\sum_{n=1}^{\infty} \frac{1}{(2n-1)^2} = \frac{\pi^2}{8}.$$

26. State Taylor's expansion of f(x,y) about x = a, y = b and hence obtain Taylor's expansion of $x^2y+3y-2$ in powers of (x-1) and (y+2).

27. Solve the following differential equation by the Laplace transform method:

$$x'' + y' + 3x = 15e^{-t}$$
, $y'' - 4x' + 3y = 15\sin 2t$ subject to

$$x(0) = 35, x(0) = -48, y(0) = 27, y(0) = -55.$$

28. Show that $\int_{0}^{\infty} \frac{\sin x}{x} dx = \frac{\pi}{2}.$

 $(2 \times 4 = 8 \text{ weightage})$

D 93260	(Pages : 2)	Name
	(I ages: 2)	11411101111111111

Reg.	No

FIRST SEMESTER M.Sc. DEGREE (SUPPLEMENTARY) EXAMINATION NOVEMBER 2020

(CUCSS)

Statistics

ST 1C 01-MEASURE THEORY AND INTEGRATION

(2013 Admissions)

Time: Three Hours

Maximum: 36 Weightage

Part A

Answer all the questions. Weightage 1 for each question.

- 1. Define Reimann-Stieiltjes integral.
- 2. State mean value theorem.
- 3. Find the Lebesgue measure of the set of irrationals between 0 and 1.
- 4. Define the integral of a simple function.
- 5. State Radon-Nikodym theorem.
- 6. What do you understand by a sigma field?
- 7. Define measure space.
- 8. State Holder inequality.
- 9. Give an example of an integral which depends on a parameter.
- 10. What do you mean by a normed linear space?
- 11. State monotone class lemma.
- 12. State Caratheodory extension theorem.

 $(12 \times 1 = 12 \text{ weightage})$

Part B

Answer any **eight** questions. Weightage 2 for each question.

- 13. Show that the sum, product and difference of two measurable functions are measurable.
- 14. Show that the following statements are equivalent:
 - (i) f is a measurable function.
 - (ii) $\forall \alpha, \{x : f(x) \le \alpha\}$ is measurable.
 - (iii) $\forall \alpha, \{x: f(x) > \alpha\}$ is measurable.

- 15. Show that arbitrary intersection of sigma fields is a sigma field.
- 16. State Lebesgue dominated convergence theorem.
- 17. State and prove Minkowski's inequality.
- 18. State Fubini's theorem and point out its applications in Statistics.
- 19. Define Lebesgue-Stieltjes measure and show that Lebesgue measure is its particular case

2

- 20. State Jordan decomposition theorem and explain its importance.
- 21. State and prove fundamental theorem of integral calculus.
- 22. Let R (a) denote the class of all R-S integrable functions on [a, b]. If $f,g \in R(a)$ then show that

$$f+g\in R(\alpha)$$
 and $\int_a^b (f+g) d\alpha = \int_a^b f d\alpha + \int_a^b g d\alpha$.

- 23. State and prove a sufficient condition for the existence of Riemann-Stieltjes integral.
- 24. Establish the continuity property of measure.

 $(8 \times 2 = 16 \text{ weightage})$

Part C

Answer any **two** questions. Weightage 4 for each question.

- 25. State and prove Weistrass theorem.
- 26. State and prove monotone convergence theorem.
- 27. Write short note on different modes of convergence. Illustrate each with an example.
- 28. State and prove Lebesgue decomposition theorem.

 $(2 \times 4 = 8 \text{ weightage})$