(Pages: 3)

Name							
Reg.	No						

FIRST SEMESTER M.Sc. DEGREE (REGULAR/SUPPLEMENTARY) EXAMINATION, NOVEMBER 2020

(CBCSS)

Electronics

ELS 1C 04-ADVANCED DIGITAL SYSTEM DESIGN

(2019 Admissions)

Time: Three Hours

Maximum: 30 Weightage

General Instructions

- 1. In cases where choices are provided, students can attend all questions in each section.
- 2. The minimum number of questions to be attended from the Section/Part shall remain the same.
- There will be an overall ceiling for each Section / Part that is equivalent to the maximum weightage
 of the Section / Part.

Part A

Answer any **four** questions. Each question carries weightage 2.

- State and prove Consensus Theorem.
 - 2. Find the equivalent decimal number of the octal numbers:
 - (i) 2374₈; and (ii) 761.12₈.
 - 3. Explain linear separability of threshold functions.
 - 4. Explain isomorphic sequential machines.
 - 5. Describe Moore machine with an example.
 - 6. What is an ASM chart? Draw the ASM chart for 2 bit up-down counter.
 - 7. What is FPGA? What are its advantages?

 $(4 \times 2 = 8 \text{ weightage})$

Part B

Answer any **four** questions. Each question carries weightage 3.

- 8. (a) Reduce the function F = AB + A'BC'D + A'BCD + AB'C'D' using K-map.
 - (b) Explain static hazards in logic circuits.
- 9. Realize the given function using a single T-gate

$$F = CD + A'D + B'D + A'B'C$$

- 10. Identify if the function $F(A, B, C, D) = \sum (0, 3, 5, 8, 10, 12, 13, 15)$ is symmetric. Express the function in symmetric notation.
- 11. Derive the state table and state diagram of the circuit shown below.

- 12. Explain state minimization of incompletely specified machines.
- 13. Explain the structure of:
 - (a) Standard PLD
 - (b) Complex PLD.
- 14. Compare Actel ACT2 family with Xilinx XC4000 family.

 $(4 \times 3 = 12 \text{ weightage})$

Part C

Answer any **two** questions.

Each question carries weightage 5.

- (a) Design a modulo-5 counter.
 - (b) Briefly explain Reed-Muller expansion of a Boolean function.

- 16. (a) Is threshold gate a universal gate? Explain.
 - (b) Simplify the function:

$$f(a, b, c, d) = \sum_{m} (2, 3, 7, 9, 11, 13) + \sum_{d} (1, 10, 15)$$

using McClukey method.

- 17. Design a binary multiplier using ASM chart as a design tool.
- 18. Explain the programmable interconnect in Xilinx XC3000 series in detail.

 $(2 \times 5 = 10 \text{ weightage})$

(Pages: 2)

Name......

FIRST SEMESTER M.Sc. DEGREE (REGULAR/SUPPLEMENTARY) EXAMINATION, NOVEMBER 2020

(CBCSS)

Electronics

ELS 1C 03-MODERN DIGITAL AND OPTICAL COMMUNICATION

(2019 Admissions)

Time: Three Hours Maximum: 30 Weightage

General Instructions

- 1. In cases where choices are provided, students can attend all questions in each section.
- 2. The minimum number of questions to be attended from the Section/Part shall remain the same.
- There will be an overall ceiling for each Section / Part that is equivalent to the maximum weightage
 of the Section / Part.

Section A (Short Answer Type)

Answer any **four** questions.

Each question carries a weightage of 2.

- 1. Describe WAN.
- 2. What is data link layer? Explain its working.
- 3. Explain about unbounded media.
- 4. Differentiate between bridge and router in computer network.
- 5. What are the Benefits of Structured Cabling System?
- 6. What does optical switch do?
- 7. What is group velocity in optical fibers?

 $(4 \times 2 = 8 \text{ weightage})$

Section B (Short Essay Type)

Answer any **four** questions.

Each question carries a weightage of 3.

- 8. What are the key design issues of a computer Network?
- 9. Differentiate between connection oriented and connection less services.

- 10. Which layers are network support layers? Explain each layer.
- 11. Describe a) switch. b) hub. c) router. d) bridge.
- 12. What is the use of optical switch?
- 13. Differentiate EDFA and FRA.
- 14. How do optical amplifiers work?

 $(4 \times 3 = 12 \text{ weightage})$

Section C (Long Essay Type)

2

Answer any **two** questions.

Each question carries a weightage of 5.

- 15. Explain TCP/IP model. Write the function of each layer.
- 16. What is data link layer? Explain the services provided by data link layer to network layer
- 17. What are the different types of transmission media? Explain them in detail.
- 18. Explain the optical fiber communication system with its block diagram.

 $(2 \times 5 = 10 \text{ weightage})$

(Pages: 2)

Nam	e
Reg.	No

FIRST SEMESTER M.Sc. DEGREE (REGULAR/SUPPLEMENTARY) EXAMINATION, NOVEMBER 2020

(CBCSS)

Electronics

ELS 1C 02-MICROCONTROLLER BASED SYSTEM DESIGN

(2019 Admissions)

Time: Three Hours Maximum: 30 Weightage

General Instructions

- 1. In cases where choices are provided, students can attend all questions in each section.
- 2. The minimum number of questions to be attended from the Section / Part shall remain the same.
- There will be an overall ceiling for each Section / Part that is equivalent to the maximum weightage
 of the Section / Part.

Section A (Short Answer Type)

Answer any **four** questions.

Each question carries a weightage of 2.

- 1. How do the banks in 8051 microcontrollers are accessed?
- 2. Give the advantages and disadvantages of absolute and linear address decoding?
- 3. Write a program to convert an ASCII number '47' to packed BCD and display them on P1.
- 4. Write a note on the interrupt priorities in 8051 microcontroller.
- 5. Explain how PWM can be used to control a DC motor.
- 6. What is signal conditioning? How is it achieved?
- 7. List the features of Arduino Uno.

 $(4 \times 2 = 8 \text{ weightage})$

Section B (Short Essay Type)

Answer any **four** questions.

Each question carries a weightage of 3.

- 8. Explain the Program Status Word in 8051 microcontroller.
- 9. Differentiate between memory mapped I/O and I/O mapped I/O.

Turn over

10. Write a program for the 8051 to receive bytes of data serially, and put them in P1, set the baud rate at 4800. 8-bit data, and 1 stop bit.

2

- 11. Write the programming steps to interface Timers in Mode 1.
- 12. Briefly explain the features of an RTC DS12887.
- 13. Write a sketch to control an LED according to the status of a switch.
- 14. Write a note on the serial communication protocols supported by Raspberry Pi.

 $(4 \times 3 = 12 \text{ weightage})$

Section C (Long Essay Type)

Answer any **two** questions.

Each question carries a weightage of 5.

- 15. Draw the pinout diagram of 8051 microcontroller and explain the pins.
- 16. Explain the interrupts in 8051 microcontroller.
- 17. Explain the interfacing of an LCD with necessary circuit diagram and flow chart.
- 18. Interface a temperature sensor with an Arduino and write a program to monitor the analog value sent by the sensor over the serial monitor.

 $(2 \times 5 = 10 \text{ weightage})$

(Pages: 2)

Nam	2
Reg.	No

FIRST SEMESTER M.Sc. DEGREE (REGULAR/SUPPLEMENTARY) EXAMINATION, NOVEMBER 2020

(CBCSS)

Electronics

ELS 1C 01-APPLIED MATHEMATICS

(2019 Admissions)

Time: Three Hours Maximum: 30 Weightage

General Instructions

- 1. In cases where choices are provided, students can attend all questions in each section.
- 2. The minimum number of questions to be attended from the Section / Part shall remain the same.
- There will be an overall ceiling for each Section / Part that is equivalent to the maximum weightage
 of the Section / Part.

Part A

Answer any **four** questions.

Each question carries weightage 2.

- 1. Define transcendental equation. Give an example of a transcendental equation.
- 2. What is the advantage of Gauss Jordan method over Gauss Elimination method?
- 3. The next iterative value of the root of $2x^2 3 = 0$ using the Newton-Raphson method, if the initial guess is 2, is:
- 4. Find the degree and order of differential equation $y' + ay^2 = 0$
- 5. Distinguish between transportation and assignment problem.
- 6. Define Poisson distribution. And state the assumptions under which binomial distribution tends to Poisson distribution?
- 7. Define eigen values and eigen vectors.

 $(4 \times 2 = 8 \text{ weightage})$

Part B

Answer any **four** questions.

Each question carries weightage 3.

- $\textbf{8.} \quad \textbf{What is the importance of Secant method over Newton-Raphson method?}$
- 9. Define Euler's method and comment the accuracy of Euler's method.

Turn over

- 10. Answer briefly:
 - a) Scope of Operations Research.
- b) Duality.

c) Degeneracy.

- d) Unbalanced assignment problem.
- 11. 1 An article is manufactured by a company consists of two parts A and B. In the process of manufacture of part A, 9 out of 100 are likely to be defective. Similarly 5 out of 100 are likely to be defective in the manufacture of part B. Calculate the probability that the assembled part will not be defective?
- 12. For a normal population with mean 12 and standard deviation 2 find :
 - a) $P[9.6 \le X \le 13.8]$
 - b) P[X > 15]
- 13. Define geometric distribution and derive its mean and variance.
- Prove that any two characteristic vectors corresponding to two distinct characteristic roots of a unitary matrix are orthogonal.

 $(4 \times 3 = 12 \text{ weightage})$

Part C

Answer any **two** questions. Each question carries weightage 5.

- 15. Use Gauss elimination process find the inverse of the matrix :
 - 2 1 1
 - $A = 3 \ 2 \ 3$.
 - 1 4 9
- 16. Find the eigen values and the corresponding Eigen vectors of the matrix:
 - 8 -6 5
 - $\mathbf{A} = -6 \quad 7 \quad -4$
 - 2 -4 3
- 17. Solve the following L.P.P

Maximise $Z = X_1 + 2X_2 + 3X_3$

Subject to $X_1 - X_2 + X_3 \ge 4$

 $X_1+X_2+2X_3\leq 8$

 $X_1 + X_3 \ge 2$.

 $X_1, X_2, X_3 \ge 0$.

- a) State and prove Baye's theorem.
 - b) Three identical boxes contain two balls each. One has both red, one has one red and one black, and the third has two black balls. A person chooses a box at random and takes out a ball. If the ball is red find the probability that the other ball is also red.

(Pages : 2)

Name.....

Reg. No.....

FIRST SEMESTER M.Sc. DEGREE (SUPPLEMENTARY) EXAMINATION NOVEMBER 2020

(CUCSS)

Electronics

DSIC04—ADVANCED DIGITAL SYSTEM DESIGN

(2010 Admissions)

Time: Three Hours Maximum: 36 Weightage

Part A

Answer **all** fourteen questions.

Each question carries a weightage of 1.

- 1. State consensus theorem.
- 2. Define dynamic hazard free.
- 3. Discuss about sequential logic circuit.
- 4. List the features of FPGA
- 5. Discuss CPLD with its structure
- 6. Define symmetric function.
- 7. Define single gate threshold network.
- 8. What is an AOI diagram?
- 9. What is the use of PLA logic structure.
- 10. What is the difference between PAL and PLA devices?
- 11. Mention the use of Gale Expander.
- 12. What is CPLD and discuss its structure.
- 13. Mention the use of Buffer and Gate.
- 14. Discuss logic cell array.

 $(14 \times 1 = 14 \text{ weightage})$

Part B

Answer any **seven** questions. Each question carries a weightage of 2.

- 15. Explain the designing roles for FPGA.
- 16. State Unger's Theorem.
- 17. Explain the Basic combinational circuits.
- 18. Write different between Programmable logical device and Microcontrollers.
- 19. Mention advantage of look table in PLA.
- 20. Explain, how the logic function can be implemented using look up table?
- 21. Explain the features of sequential circuits.
- 22. Explain the functions of ASM.
- 23. Write short note on consensus theorem.
- 24. Explain the use of IOB in Xilinx XC 3000.

 $(7 \times 2 = 14 \text{ weightage})$

Part C

Answer any **two** questions. Each question carries a weightage of 4.

- 25. Describe the various programming technologies used in LCA
- 26. Draw the block diagram and explain the features of Xilinx XC 3000.
- 27. Explain the Mc-Cluskey method of decomposition.
- 28. Discuss the working principle of CPLD and explain with a neat diagram.

 $(2 \times 4 = 8 \text{ weightage})$

(Pages: 2)

N	am	е	••••	••••	•••	••••	••••	••••	••••	••••	••••
---	----	---	------	------	-----	------	------	------	------	------	------

Reg. No.....

FIRST SEMESTER M.Sc. DEGREE (SUPPLEMENTARY) EXAMINATION NOVEMBER 2020

(CUCSS)

Electronics

DC IC 03-MODERN DIGITAL AND OPTICAL COMMUNICATION

(2010 Admissions)

Time: Three Hours Maximum: 36 Weightage

Part A

Answer all **fourteen** questions.

Each question carries a weightage of 1.

- 1. Write about routing algorithm?
- 2. Define Directional Coupler?
- 3. What do you mean Network protocol?
- 4. Give the list of LAN characteristics?
- 5. List the different network layers?
- 6. What are the important protocols in the internet?
- 7. What is TCP?
- 8. How do you brief the bidirectional WDM?
- 9. What is unbounded media?
- 10. Define a connectionless network?
- 11. DNS uses UDP or TCP? Justify.
- 12. Write a short note on router?
- 13. What do you mean by a structured cabling?
- 14. What is Bit Error Rate?

 $(14 \times 1 = 14 \text{ weightage})$

2 Part B

Answer any seven questions.

Each question carries a weightage of 2.

- 15. Discuss about Directional Couplers.
- 16 Give the list the uses of Routers.
- 17. Give a short note on Quantum Limit of a network.
- 18. Enumerate the applications of Optical Amplifiers.
- 19. Explain about WAN.
- 20. Explain the specifications of Bounded Media.
- 21. Explain about the timers used in TCP?
- 22. Write short notes on OS Model.
- 23. List the features of Data Link Layer.
- 24. Discuss briefly how bit error rate is evaluated?

 $(7 \times 2 = 14 \text{ weightage})$

Part C

Answer any two questions.

Each question carries a weightage of 4.

- 25. Explain about optical link design.
- 26. Draw neat diagram of OSI / TCP/ IP reference model and give its various functions.
- 27. Explain in detail about the common architectures used for network applications?
- 28. Discuss about network equipment used in wired-LANS.

 $(2 \times 4 = 8 \text{ weightage})$

Reg. No.....

FIRST SEMESTER M.Sc. DEGREE (SUPPLEMENTARY) EXAMINATION NOVEMBER 2020

(CUCSS)

Electronics

AM 1C 01-APPLIED MATHEMATICS

(2010 Admissions)

Time: Three Hours

Maximum: 36 Weightage

Part A

Answer all questions.

Each question carries a weightage of 1.

- 1. Let $f(x) = -x^3 \cos x$. With $p_0 = -1$ and $p_1 = 0$ find p_3 by the Secant method.
- 2. Estimate $\sqrt{2}$ using Newton's method in three iterations.
- 3. Find the solution at x = 1, t = 1 of the partial differential equation, $\frac{\partial^2 u}{\partial x^2} = 25 \frac{\partial^2 u}{\partial t^2}$.

Subject to initial condition of u(0) = 3x. $\frac{\partial u}{\partial t}(0) = 3$.

- 4. Derive the equation for the vibration of a stretched string.
- 5. A string with L=2 and c=3 is given the initial shape:

 $f(x) = \begin{cases} 0 & \text{if } 0 \le x \le 1 \\ (x-1)(2-x) & \text{if } 1 < x \le 2. \end{cases}$ It is released with zero initial velocity. How long does it take

before the point $x = \frac{1}{5}$ begins to vibrate?

- 6. Prove the recurrence formulae $\frac{d}{dx} \left[x^n J_n(x) \right] = x^n J_{n-1}(x)$.
- 7. Show that $P_n(-x) = (-1)^n P_n(x)$.

- 8. Compute $J_o(2)$ correct to three decimal places.
- 9. Four coins are tossed. What is the expectation of the member of heads?
- 10. A coin is tossed twice. Let X be the random variable that represents the number of the heads that come up. Assuming that the coin is fair, find the probability function corresponding to X.

2

- 11. Find 'a' and 'b' if Y = a X + b has mean 6 and variance unity where X is a random variable with mean 8 and variance 16.
- 12. The number of customers arriving at a grocery store is a Poisson random variable. On an average 10 customers arrive per hour. Let X be the number of customers arriving from 2 pm to 3:30 pm. What is $P(10 < X \le 15)$?
- 13. Consider an M/M/1 model with arrival rate X and service time following exponential distribution with mean $\frac{1}{\mu}$ such that $\lambda < \mu$. What is the expected number of customers in the system?
- 14. Define priority queues.

 $(14 \times 1 = 14 \text{ weightage})$

Part B

Answer any **seven** questions.

Each question carries weightage of 2.

- 15. Find the root of $2x^3 2.5x 5 = 0$ in [1,2] by Newton Raphson method.
- 16. Find the root of the given equation using bisection method upto two decimal places $x^3 5x + 1 = 0$ which lies between 2 and 3.
- 17. In a self sendee store with one cashier, 8 customers arrive on an average of every 5 minutes and the cashier can serve 10 in 5 mins. If both arrival and service time are exponentially distributed, then determine:
 - i) Average number of customers waiting in the queue.
 - ii) Expected waiting time in the queue.
 - iii) The probability of having more than 6 customers in the system.
- 18. Show that the solution to the vibrating string problem is periodic in time, with period 2L/c.
- 19. Express $J_5(x)$ in terms of $J_0(x)$ and $J_1(x)$.
- 20. Express $f(x) = x^4 + 3x^3 x^2 + 5x + 2$ in terms of Legendre polynomials.

- 21. A horizontal line of length 5 units is divided by a point chosen at random into two parts. If the length of the first part is X, find E[X(5-X)]. Also, find the moment generating function (m.g.f) of X and get the mean and variance of X from it.
- 22. The probability function of a random variable $f(x) = \begin{cases} 2^{-x} & x = 1, 2, 3, \dots \\ 0 & \text{otherwise} \end{cases}$. Find the probability function for the random variable $U = X^4 + 1$.
- 23. The arrival and departure rates in a public telephone booth with a single phone are $\frac{1}{12}$ and $\frac{1}{14}$ respectively, find the probability that the phone is busy.
- 24. Consider the following single-server queue: The inter arrival time is exponentially distributed with a mean of 10 minutes and the service time has the uniform distribution with a maximum of 9 minutes and a minimum of 7 minutes. Find:
 - (a) Mean wait in the queue.
 - (b) Mean number in the queue.
 - (c) Mean wait in the system.
 - (d) Mean number in the system.

 $(7 \times 2 = 14 \text{ weightage})$

Part C

Answer any **two** questions.

Each question carries a weightage of 4.

25. Solve the system of equations:

$$x + 4y - z = -5$$

$$x + y - 6z = -12$$

$$3x - y - z = 4$$

by applying (i) Gauss elimination method; (ii) Gauss - Jordan method.

- 26. A tightly stretched string with fixed end points x = 0 and x = l is initially in a position given by
 - $y = y_0 \sin^3 \frac{\pi x}{l}$. If it is released from rest from this position, find the displacement y(x, t).

- 27. The joint probability function of two discrete random variables X and Y is given by f(x,y) = c(2x+y) where x and y can assume all integers such that $0 \le x \le 2$, $0 \le y \le 3$, and f(x,y) = 0 otherwise.
 - (a) Find the value of the constant c.
 - (b) Find P(X = 2, Y = 1).
 - (c) Find $P(X \ge 1, Y \le 2)$.
- 28. (a) If $f(x) = \begin{cases} 0, & -1 < x \le 0 \\ 1, & 0 < x < 1. \end{cases}$ Show that:

$$f(x) = \frac{1}{2}P_0(x) + \frac{3}{4}P_1(x) - \frac{7}{16}P_3(x) + \dots$$

(b) Explain Bessel functions. What are its properties.

 $(2 \times 4 = 8 \text{ weightage})$