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Preface 

Preface 

Environmental pollution, caused by a wide range of hazardous 

organic and inorganic compounds, is one of the most challenging 

problems facing the current generation and is probably going to be 

a problem for future generations as well. There is a great need for 

the precise and sensitive identification of pollutant species because 

environmental pollution is one of the main threats that eventually 

affect the health of people, animals, and vegetation. Growing human 

populations trying to achieve fast economic growth through 

industrialization, which necessitates massive resource exploitation 

through farming, fishing, forestry, mining, quarrying, oil and gas 

extraction, etc, are the main causes of environmental pollution. As a 

result of industrialization, different contaminants or pollutants 

present in soil, water, and air may reach a level that is hazardous to 

humans, animals, and plants. Currently, different traditional 

analytical and instrumental techniques have been employed for the 

detection of pollutant species, which demands expensive 

equipment, lack of portability, challenging multistep sample 

preparation procedures, difficult on-site operation or monitoring, 

and highly trained professionals for operation, etc.  

Schiff bases are extensively used for the development of 

colourimetric and luminescence sensors for the detection of analyte 

species due to easy structural modification, complex formation 

ability, and attractive photophysical properties. Herein, we have 

designed and synthesized three different Schiff base receptors 
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namely, 1,1'-((1E,1'E)- ((2E,2'E)- (1,3-phenylenebis (methanylylide 

ne)) bis (hydrazine-2,1-diylidene)) bis (methanylylidene)) 

bis(naphthalen-2-ol)[PMB3], 1-((E)-((E)-(4-(benzyloxy)benzylide 

ne)hydrazono)methyl)naphthalen-2-ol [BBHN], and 1-((E)-((E)-

(anthracen- 9-ylmethylene) hydrazono )methyl) naphthalen-2-ol 

[AHN], and their chemosensing activity through colourimetric and 

fluorescence responses have been explored, which offer great 

selectivity and sensitivity for different analytes of environmental 

significance. 

The thesis is comprised of five chapters carrying a detailed account 

of the synthesis, characterization, and sensing applications of Schiff 

bases, excluding the summary and future outlook. 

Chapter 1 presents a brief outline of the background of the study, 

the need for chemosensors, introduction to chemosensors, 

classification of chemosensors, signalling mechanisms, introduction 

of Schiff bases, structural and functional diversity of Schiff base and 

the mechanism of Schiff base formation, etc. This chapter also 

includes a brief review of previous studies related to Schiff bases 

used for the sensing of metal ions such as Zn2+, Cu2+, Ni2+, and a 

highly explosive aromatic nitro compound, picric acid.  
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Chapter 2 describes a brief outline of the materials used, the 

experimental details for the synthesis of Schiff bases (PMB3, BBHN, 

AHN), the analytical procedure, methods of analysis, and 

instrumental techniques used to characterize the compounds.  

The works included in Chapter 3 are divided into four sections, 3.1, 

3.2, 3.3 and 3.4 respectively. Section 3.1 deals with a novel “OFF-

ON-OFF” fluorescent sensor PMB3 for selective detection of Zn2+ ion 

and an in-situ produced complex PMB3-Zn2+ ensemble for the 

detection of picric acid (PA). The PMB3 exhibits a significant 

emission enhancement in intensity with Zn2+, however, the intensity 

of emission of the in-situ produced complex PMB3-Zn2+ ensemble is 

quenched selectively upon the progressive addition of PA. PMB3 

displays very selective, sensitive, and rapid changes in fluorescence 

in the presence of Zn2+. The sensor efficiently binds with Zn2+ to form 

a 1:1 complex, which resulted in significant fluorescence 

enhancement upon gradual addition while other metal ions do not 

affect significantly the intensity of the emission. The limit of 
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detection of bivalent zinc was 11.12×10-7M. This in-situ produced 

complex PMB3-Zn2+ ensemble was observed to be extremely 

selective for picric acid up to femtomolar level, over other 

nitroaromatics. The detection limit for picric acid by utilizing the in-

situ produced PMB3-Zn2+ ensemble complex was 42.40×10-15M. This 

sensor is therefore quite effective in detecting picric acid via turn-off 

fluorescence. 

Section 3.2 discusses the AIEE characteristics of PMB3 and its 

application for the selective detection of Cu2+ in aqueous medium. 

The PMB3 aggregates display a bright greenish fluorescence and 

show a fluorescence switch-off response to Cu2+ ion in the presence 

of diverse metal ions with a detection limit of 16.08 fM. These 

observations clearly divulge that PMB3 aggregates are highly 

selective to Cu2+ ions and hence can be extended for the instant 

naked-eye detection of Cu2+.  

 

Section 3.3 also describes the AIEE characteristics of PMB3 and its 

application for the sensing of picric acid (PA). The PMB3 aggregate 
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was found to be highly selective for the detection of picric acid, over 

other nitroaromatics in aqueous medium with a detection limit of 

2.43µM. The quenching of fluorescence emission intensity of PMB3 

aggregates in the presence of PA was explained with a time-resolved 

emission study that follows a static quenching mechanism and the 

quenching constant value was found to be 2.33×106 M-1.  

 

 

 

Section 3.4 deals with the colourimetric sensing of Cu2+ and Ni2+ 

using PMB3. The probe, PMB3, exhibited a sensitive colourimetric 

response to Cu2+ and Ni2+ ions among other competing metal ions, 

culminating in a prominent colour change from colourless to yellow. 

The stoichiometry of the ligand and metal complexes was 

ascertained to be 1:1 using Job's plot analysis. With detection limits 

of 4.56µM for Cu2+ and 2.68µM for Ni2+, the method was effectively 

extended to real sample analysis, ensuring propitious results that 

closely aligned with the actual values. 
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The works included in Chapter 4 are divided into two sections, 4.1, 

and 4.2 respectively. Section.4.1 describes the AIEE characteristics 

of a novel Schiff base BBHN and its applications as a selective 

fluorescence “Turn off” sensor for copper ions in aqueous medium. 

The aggregate of BBHN shows relatively high Cu2+ ion selectivity and 

sensitivity among various metal ions through fluorescence “Turn 

off” response with a very high detection limit of 35.52 nM and a 

quenching constant value of 2.58×108 M-1. These observations 

suggest that the synthesized Schiff base, BBHN could effectively 

function as a nano sensor for the detection of Cu2+ ion in aqueous 

media, which could be very well applied for the instant “naked eye” 

detection of the metal ion. The fluorescence quenching behaviour of 
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BBHN in the presence of Cu2+ ions take place through dynamic 

quenching which was evident from the steady state fluorescence 

lifetime measurement study.  

Section 4.2 also deals with the AIEE property of BBHN and its 

application for the sensing of picric acid (PA). The aggregates of 

BBHN showed a quick, highly selective, and sensitive fluorescence 

‘Turn off’ response towards picric acid (PA) in aqueous medium 

among various other nitroaromatics. The limit of detection was 

4.04µM with 2.03×106 M-1 as the quenching constant. The 
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fluorescence “Turn off” response in the presence of PA is mainly due 

to π-π interactions, and other non-covalent interactions. Moreover, 

steady-state fluorescence lifetime measurement and Stern-Volmer 

plots reveal that the fluorescence quenching followed mixed 

quenching strategies.  

Chapter 5 describes a novel Schiff base AHN, exhibiting multiple 

analytical responses comprising AIEE (Aggregation Induced 

Emission Enhancement) and colourimetric activity towards picric 

acid and cupric ion. The probe AHN with AIEE property acts as a 

fluorescent sensor for the selective detection of PA through 

fluorescence switch-off response and acts as a colourimetric sensor 

for Cu2+ in aqueous medium through a shift of colour from colourless 

to yellow. The multi-response characteristics of AHN propel its 

practical use for the naked-eye detection of these analytes. The 

addition of PA to the aggregate of AHN in DMSO with a 90% water 

fraction induces a quenching in the fluorescence intensity of the 

AHN aggregate and the limit of detection of PA was found to be 

2.45µM with a quenching constant value of 6.21×107M-1. Stern 

Volmer plots and lifetime measurements, clearly indicate that both 

static and dynamic processes were involved in the quenching 

mechanism. It is also evident that ground-state complexation 

between electron-rich fluorescent aggregates of AHN and electron-

deficient PA takes place through π-π interactions and 

intramolecular hydrogen bonding interactions. 

Further, AHN in DMSO exhibits a selective colourimetric response to 

bivalent copper among various metal ions with a detection limit of 
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3.16µM which is substantially below the permitted limit of copper 

recommended by WHO in drinking water. The mechanism of 

colorimetric response is the complexation of AHN with Cu2+ in the 

2:1 stoichiometry, as confirmed by Job’s plot method. Consequently, 

the versatility of probe AHN in detecting PA and Cu2+ through 

distinct mechanisms fosters its significance in the field of sensing 

and opens up promising avenues for practical applications.  

The last section of this thesis deals with a summary and future 

outlook. 

 



 

 

 

 

 

 

 

 

 

This chapter elucidates the 

significant threat posed by 

environmental pollution to 

human health, fauna, and 

flora, underscoring the 

necessity for precise and 

sensitive detection methods 

for pollutants. It provides an 

overview of chemosensors, 

their classifications, and 

signaling mechanisms, with 

a focus on Schiff bases due to 

their structural versatility 

and functional properties in 

sensor applications. The 

chapter reviews previous 

studies demonstrating the 

efficacy of Schiff bases in 

detecting metal ions such as 

Zn²⁺, Cu²⁺, and Ni²⁺, as well 

as the explosive compound 

picric acid. This 

foundational discussion sets 

the stage for the 

comprehensive synthesis, 

characterization, and 

chemosensing applications 

of novel Schiff base receptors 

explored in the subsequent 

chapters. 
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Chapter 1 

One of the most challenging problems facing the current generation 

is environmental pollution, which is brought on by a variety of toxic 

and hazardous organic and inorganic compounds and will likely to 

continue be a problem for future generations also. Nowadays, 

environmental pollution increasingly becoming one of the foremost 

threats that ultimately affect human health, animals, and vegetation 

and hence there is a significant demand for specific and sensitive 

identification of pollutant species. The primary cause of 

environmental pollution is a growing human population that is 

attempting to achieve rapid economic growth through 

industrialization, which requires extensive natural resource 

exploitation through farming, fishing, forestry, mining, quarrying, oil 

and gas extraction, etc [1, 2]. As a result of industrialization, different 

contaminants or pollutants present in soil, water, and air may reach 

to a level that are hazardous to humans, animals, and plants. 

Moreover, various metal ions play vital roles in numerous 

environmental and biological processes such as transmission of 

nerve impulses, regulation of cell activity, muscle contraction, 

osmotic regulation, catalysis, biomineralization and metabolic 

process, etc [3]. Human body needs very little quantity of metal ions 

and excessive exposure has harmful effects, cause severe damages 

to human health and adversely affect the environment [4-6]. 

Therefore, the development and designing of a cost-effective 

chemosensor for the accurate qualitative and quantitative 

determination of these metal ions is very necessary and is a 

challenging goal.  
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Currently, different traditional analytical and instrumental 

techniques have been employed for the detection of hazardous 

metal ions, such as Atomic Absorption Spectroscopy (AAS), Atomic 

Emission Spectroscopy (AES), Inductively Coupled Plasma Mass 

Spectrometry (ICP-MS), Neutron Activation Analysis (NAA), and 

Stripping Voltammetry (SV), [7-14] etc., which demands expensive 

equipment, lack of portability, challenging multistep sample 

preparation procedures, difficult on-site operation or monitoring, 

and highly trained professionals for operation etc. Hence, it is 

important to develop an effective detection method that 

significantly overcomes the difficulties of the above-mentioned 

techniques. To limit this, significant attention has been paid to the 

methods of detection by colourimetric and fluorimetric approaches 

owing to their simplicity, selectivity, better sensitivity, direct visual 

perception, non-destructive methodology, economic viability, 

reproducibility, fast and quick real-time monitoring, etc [15-18].  

Chemosensing, also referred as chemical sensing, is the process of 

detecting a specific analyte by using chemosensors. This field of 

study has been growing quickly in recent years owing to its wide 

applications in fields such as environmental monitoring, 

toxicological analysis, security systems, and medical diagnostics 

[19-21]. 

1.1 Chemosensors  

A chemosensor is a chemical system which can bind with an analyte 

selectively and reversibly, followed by a change in at least one or 

more of its properties, such as colour, fluorescence, or redox 
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potential [22] (Fig.1). Chemical sensors can transform a chemical 

signal produced by the binding event of an analyte into a measurable 

analytical signal. Typically, a chemosensor consists of three parts: a 

receptor which is in charge of the specific analyte binding allowing 

the distinction, a photoactive unit or a signaling unit whose 

characteristics change upon the aforementioned binding of analyte, 

and a spacer, which has the ability to modify the geometry of the 

system so as to adjust the electronic interaction between the 

receptor and photoactive unit [23]. 

1.2 Classification of Chemosensors 

Depending upon the nature of the signal that the signaling subunit 

emits, chemosensors are categorized into (1) Colourimetric sensors; 

(2) Fluorimetric sensors and (3) Electrochemical sensors. 

1.2.1 Colourimetric Sensors (Chromogenic sensors)  

Colourimetric sensors are those which measure changes in 

electronic characteristics of signaling subunits in association with 

Intra and Iintermolecular Charge Transfer (ICT) including Ligand-

to-Metal Charge Transfer (LMCT) and Metal-to-Ligand Charge 

Fig.1 Schematic representation of binding interactions of analyte by a 
chemosensor 
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Transfer (MLCT) transitions. In these kinds of sensors, a change in 

the colour of the signaling unit or a change in the UV-visible 

spectrum is observed because of the interaction between the analyte 

and the binding site. Furthermore, the colourimetric detection of 

metal is achieved by a chemosensor having a donor-π-acceptor(D-

π-A) system. Hence, for that the electron-donating and electron-

withdrawing groups can be introduced into the chemosensor 

molecule at the appropriate positions to make the D-π-A system. The 

HSAB concept of Pearson hold good with these binding sites and 

analyte that determines whether a specific metal ion will bind an 

electron donating (ED or D) or an electron withdrawing (EW or A) 

group. Generally binding of metal ion to electron donor site (ED) 

increases the chance for the LMCT transition which results in a blue 

Fig.2 Diagrammatic representation of metal binding effect on D-π-A 
system 
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shift in the absorption spectrum and binding to electron 

withdrawing (EW) site will increase the chance of MLCT transitions 

which results in a red shift in absorption spectrum [24-26] (Fig.2). 

1.2.2 Fluorimetric sensors (Fluorogenic sensors) 

A fluorescent chemosensor is a molecular system whose 

physicochemical characteristics change in response to interaction 

with an analyte species, resulting a change in fluorescence [27]. Two 

integrated components typically used in the designing of fluorescent 

chemosensors are 1) a signaling fluorophore and 2) a guest binding 

receptor with recognition capabilities and they are connected by a 

spacer unit to form a fluorophore-spacer-receptor unit (Fig.3). 

Two fundamental criteria which are to be fulfilled by an ideal 

fluorescent chemosensor are 1) the receptor needs to have the 

strongest binding selectivity to the relevant target analyte and 2) the 

fluorescence signal should also be free from environmental 

interference (signal-selectivity) based on strong binding selectivity, 

such as photobleaching, sensor molecule concentration, the 

environment around the sensor molecule like pH, polarity, 

temperature, etc., and stability under illumination. 

 

 

Fig.3 Schematic representation showing binding of analyte by a 
fluorescent chemosensor 
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1.2.3 Electrochemical sensors 

Electrochemical sensors are those which measure the changes in the 

electrochemical properties of signaling subunits in association with 

redox potential. The most widely used conventional methods, 

including cyclic voltammetry, differential pulse voltammetry, 

square wave voltammetry, and impedance spectroscopy, have been 

investigated in this area. The sensitivity of the sensor is influenced 

by surface modification, electrochemical transduction mechanisms, 

and the selection of the recognition receptor molecules. 

1.3 Principles of designing Chemosensor 

The three major ways of designing chemosensors are 1) Binding 

site-signaling subunit approach 2) Displacement approach and 3) 

Chemodosimeter approach 

1.3.1 Binding site-signaling subunit approach 

In this approach, the binding site and signaling subunit are 

connected by a covalent bond linker called spacer [28]. The change 

in electronic properties of the signaling subunit in association with 

the interaction of the binding site with the analyte results in the 

recognition of the target via colour or emission modulations (Fig.4). 

 

 

Fig.4 Diagrammatic representation of binding site-signaling subunit 
approach 
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1.3.2 Displacement approach 

In this approach, the binding site and the signaling subunit form a 

coordination type complex rather than being covalently bound. 

When the binding site coordinates with a specific analyte result in 

the release of the signaling subunit into the solution with a 

concurrent change in their optical properties [29] (Fig.5).  

1.3.3 Chemodosimeter approach  

In the chemodosimeter approach, a particular analyte-induced 

chemical reaction takes place which generates an optical signal 

(Fig.6). The binding of the analyte results in an irreversible change 

to the structure of the chemosensor [30, 31]. This approach usually 

results in remarkable spectroscopic modulations because the 

molecular probe undergoes a remarkable chemical modification 

upon reacting with the target molecule. 

Fig.5 Diagrammatic representation of displacement approach 
 

Fig.6 Diagrammatic representation of the chemodosimeter approach 
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1.4 Factors affecting chemosensor design  

The size, shape, and binding energy of the receptor and analyte 

molecules play a significant role in the formation of a selective 

receptor-analyte complex. The following parameters need to be 

satisfied by the sensor molecule in order to function as an effective 

chemosensor [32, 33]. 

1.4.1 Sensitivity 

The sensor must be sensitive to a specific analyte. The origin of the 

binding sites or receptors determines the sensitivity. The 

photophysical properties should change significantly with even a 

small change in the concentration of the analyte. 

1.4.2 Selectivity 

The sensor should be significantly selective on a specific analyte. 

Other competing molecules should not interfere with the binding 

interaction between the receptor and a specific analyte. The primary 

variables that determine selectivity are the binding strength and the 

solvent molecules. 

1.4.3 Detection limit, response time and binding constant 

 An ideal sensor should possess the characteristics of a high binding 

constant, low limit of detection, and quick response time. The 

strength of the non-covalent interactions between the binding site 

and analyte influences the binding constant value. 

1.4.4 Water solubility 

Since most of the biological and environmental processes happen in 

an aqueous medium, the sensor should be soluble in water for 
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tracing the analyte such as metal ions, anions, and biomolecules 

involved in the process. 

1.5 Signaling Mechanism: A pathway phenomena for 

absorption and fluorescence spectral changes 

Chemosensors follow several sensing mechanisms which include,1) 

Intramolecular Charge Transfer mechanism (ICT), 2) Photo-induced 

Electron Transfer mechanism (PET), 3) Fluorescence Resonance 

Energy Transfer mechanism (FRET), 4) Excited State Intramolecular 

Proton Transfer mechanism (ESIPT), 5) Excimer-exciplex formation 

mechanism, 6) Inner Filter Effect (IFE), 7) C = N isomerization 

mechanism and 8) Aggregation-Induced Emission (AIE) process. 

These mechanisms result in a change in either the colour or 

fluorescence of the chemosensor with analyte binding. 

1.5.1 Intramolecular Charge Transfer Mechanism (ICT) 

Generally, colourimetric chemosensors follow an Intramolecular 

Charge Transfer mechanism (ICT). In Intramolecular Charge 

Transfer (ICT) sensors, the fluorophore and the receptor are linked 

directly by a π-conjugated system, forming a single entity. The two 

functionalities typically act as either an electron donor or an 

electron acceptor at opposite ends of the sensor molecule. The 

LUMO of the sensor has the highest electron affinity near the 

acceptor side, whereas the HOMO of the sensor has the highest 

electron density near the electron-donating moiety. As a result, upon 

excitation, a strong dipole with charge transfer from the donor to the 

acceptor is generated [34]. When an analyte is added, preferential 

bonding can occur at either the electron donor or acceptor regions. 
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This alters the dipole strength of the donor-acceptor couple, which 

is usually accompanied by changes in intensities and spectral shifts 

either blue or red region. Generally binding of an analyte to an 

electron donor site increases the chance for the LMCT transition 

which results in a blue shift in the spectrum whereas binding to an 

electron acceptor site (EW) will increase the chance of MLCT 

transition which results in a red shift in the spectrum [35] (Fig.7). 

 

 

Fig.7 Spectral changes of ICT based sensors when an analyte interact 
with acceptor site and with donor site 
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1.5.2 Photo-induced Electron Transfer mechanism (PET) 

In photo-induced electron transfer mechanism (PET) sensors, the 

fluorophore and the receptor are linked directly by a spacer. Photo-

induced Electron Transfer (PET) is a type of quenching process, 

which involves an electron transfer from the receptor to the excited 

fluorophore in the absence of an analyte. This process occurs only 

when the energy level of the highest occupied molecular orbital 

(HOMO) of the receptor has to have an energy intermediate between 

the lowest unoccupied molecular orbital (LUMO) and the HOMO of 

the fluorophore. Up on excitation, the electron transfer process 

occurs followed by charge recombination by the transfer of an 

electron from the HOMO of the receptor to the HOMO of the 

fluorophore, i.e., the process of photo-induced Electron Transfer 

(PET). Thus, when electrons are fully filled in the HOMO of the 

Fig.8 Diagrammatic representation of the PET mechanism 
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fluorophore, hinders the process of return of electrons from LUMO 

of the excited fluorophore to the ground state and thus prevents the 

fluorescence process. After binding with the analyte, the redox 

potential of the receptor is increased and hence the energy of the 

HOMO of the receptor is lowered than the energy of the HOMO of the 

fluorophore. Thus, the HOMO energy level of the receptor shifted 

outside the HOMO-LUMO gap of the fluorophore and the electron 

transfer from the HOMO of the receptor to the HOMO of the 

fluorophore becomes energetically unattainable and is blocked, 

resulting in the emission of photons in the form of fluorescence [36] 

(Fig.8). 

1.5.3 Fluorescence Resonance Energy Transfer mechanism 

(FRET) 

The Fluorescence Resonance Energy Transfer mechanism (FRET) is 

an electrodynamic non-radiative mechanism where the distance-

dependent energy transfer between excited state donor fluorophore 

and ground state acceptor fluorophore through dipole-dipole 

interactions [37, 38] (Fig.9). The FRET process requires some 

degree of spectral overlap between the emission spectrum of the 

Fig.9 Diagrammatic representation of the FRET mechanism 
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donor and absorption spectrum of the acceptor and for an effective 

FRET to occur, the distance between the donor and acceptor needs 

to be between 10 and 100 A0 [27, 39]. 

1.5.4 Excited State Intramolecular Proton Transfer mechanism 

(ESIPT) 

Fluorophores with the ability to transfer protons between two sites 

of a molecule, ie., in between proton donor and acceptor site are 

known as Excited State Intramolecular Proton Transfer (ESIPT) 

fluorophores[40]. These molecules are typically keto-enol 

tautomers [41]. For the effective ESIPT process, the proton donor 

and acceptor should be in proximity. Upon excitation, a proton is 

transferred from the donor site to the acceptor site leading to the 

formation of a tautomer in the excited state which differs from that 

in the ground state [34], and as a result, the fluorescence intensity of 

the system is suppressed [42]. Binding with analyte either through 

Fig.10 Diagrammatic representation of the ESIPT mechanism 
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proton donor or proton acceptor site or both inhibits the proton 

transfer by ESIPT process, resulting in radiative emission [43] 

(Fig.10). 

1.5.5 Excimer-Exciplex formation mechanism 

The interaction of a fluorophore in its excited state with a 

fluorophore having the same structure in its ground state results in 

the formation of a complex called an excimer. Likewise, the 

interaction of a fluorophore in its excited state with a fluorophore 

with a different structure in its ground state results in the formation 

of a complex called an exciplex [27]. As compared to the emission 

spectral profile of the monomer, the emission spectra of excimers 

and exciplex have a red shift which conforms to the formation of 

excimer and exciplex complex. As a result, a single spectral profile 

shows emission from both the monomer and the complex. Upon 

interaction with an analyte leads to the formation or deformation of 

the excimer/exciplex complex resulting the modifications in 

structure, and is analysed by observing the excimer/exciplex band 

in the emission spectrum recorded using spectroscopic method. 

1.5.6 Inner Filter Effect mechanism (IFE) 

The inner filter effect (IFE) mechanism is a phenomenon based on 

the non-irradiation energy conversion model. It is a radiative 

process which occur when the analyte (quencher or absorber) 

absorbs either emission or excitation energy of the 

fluorophore(sensor), leads to the exceptional quenching of the 

fluorescence of the fluorophore [44].  This mechanism works 

differently from the other mechanisms since there is no interaction 
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between the fluorophore (sensor) and the absorber (analyte). The 

IFE process requires some degree of spectral overlap between the 

absorbance of the quencher (analyte) and the excitation and or 

emission of the fluorophore (sensor) and the extent of spectral 

overlap determines the efficiency of the IFE process [4, 45] (Fig.11). 

 

Fig.11 Diagrammatic representation of the IFE mechanism 

1.5.7 C = N isomerization mechanism 

A relatively new signalling mechanism and photophysical process 

involving C=N isomerization was reported in 2007 using 

conformationally restricted compounds. It has been found that 

unbridged C=N structured compounds are non-fluorescent due to 

C=N isomerization between E and Z isomeric forms, which is the 

predominant decay process in the excited state. As a result, the 

excited state energy is used for the isomerization process and leads 

to non-radiative decay emission. The suppression of C=N 

isomerization in the excited states by bridging with the C=N bond 
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results in drastic increase in the fluorescence of the compounds [46]. 

Hence, it is clear that the interaction of analyte species to unbridged 

C=N bond through complexation leads to inhibition of C=N 

isomerization and results in radiative emission [47]. Thus, the 

blocking or inhibition of C=N isomerization by analyte species is a 

useful mechanism for the recognition of analytes by a sensor 

(Fig.12). 

 

Fig.12 Diagrammatic representation of the C=N isomerization mechanism. 

1.5.8 Aggregation-Induced Emission (AIE) mechanism 

Aggregation Induced Emission (AIE), is one of the interesting 

fluorescent mechanisms and was first observed by Tang et al in 2001 

in an organosilicon compound (hexaphenylsilole) which showed 

weak emission in solution state but strong emission upon 

aggregation phase [48, 49]. It has been found that some organic 

molecules that are almost non-fluorescent in a solution state become 

highly fluorescent when they are aggregated and this phenomenon 

is called Aggregation-Induced Emission (AIE). The non-fluorescent 

behaviour of a molecule(chromophore) in a solution state is due to 

its high degree of rotational freedom which leads to intramolecular 

rotations within the molecules. As in the aggregation process, the 

molecule or chromophore is locked in a rigid conformation that 

restricts the intramolecular bond rotation (RIR) leading to the 
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molecule being highly emissive one [50] (Fig.13). The restriction of 

intramolecular rotation (RIR), the restriction of intramolecular 

motion (RIM), and the restriction of intramolecular vibration (RIV) 

are the backbone processes behind the AIE phenomena [43, 51].  In 

addition to the above mechanism of restriction of intramolecular 

motion (RIM), there are some other mechanisms also proposed and 

used to explain AIE phenomena, such as j-aggregates [52], excimer 

formation [53], ESIPT [54], restriction of intramolecular rotation 

about the double bond [55], and inhibition of twisted intramolecular 

charge transfer (TICT) [56] process.  

 

Fig.13 Diagrammatic representation of the AIE mechanism 

A class of compounds with AIE activity phenomenon now has been 

applied in the chemosensing area for selective detection of 

environmentally and biologically important analytes such as metal 

ions, anions, explosives, etc. There is no common mechanism that 

applies to all AIE chemosensors, but each mechanism applies only to 

that system. Among the various mechanisms, the following are the 

specific main sensing mechanisms applied in AIE-based 

chemosensors [57], (1) Insoluble aggregates are produced when 

metal ions(analyte) coordinate with the sensor, which may limit 
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intramolecular rotation and activate fluorescence emission. (2) 

Through a variety of noncovalent interactions, including 

electrostatic, hydrogen bonds, van der Waals, C-H interaction, and J-

Fig.14 Diagrammatic representation of various sensing mechanisms 
shown by an AIE based chemosensor 
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type aggregates, the sensor itself self-assembles into a new pattern 

of fluorescence turning on and the aggregates will be disassembled 

by the added metal ions, which will quench the fluorescence of 

sensor. (3) The sensor on chelation with metal ion would induce or 

block some photophysical process involving Photo-induced Electron 

Transfer (PET), Intramolecular Charge Transfer (ICT) either 

through Metal-to-Ligand Charge Transfer (MLCT), or Ligand-to-

Metal Charge Transfer (LMCT), Excited-State Intramolecular Proton 

Transfer (ESIPT), FRET, C=N isomerization, which either quenches 

or enhances the fluorescence emission. (4) The sensor binding with 

an analyte metal ion alters the structure of the chemosensor by 

irreversible chemical reaction resulting an impact on changes in its 

fluorescence behaviour (Fig.14). 

1.6 Schiff bases as Chemosensor 

Schiff bases, also referred as imines or azomethines, are the 

condensation products formed from primary amines and aldehydes 

or ketones[58]    (Scheme 1). A German chemist, Hugo Schiff, who 

synthesized the first Schiff base in 1864 from primary amine with 

carbonyl compounds through a condensation process [59]. Schiff 

bases demonstrate exceptionally good performance for the 

identification of metal ions and have received great attention due to 

their ease of synthesis, low cost, high selectivity, and quick response 

Scheme 1 Schematic representation of Schiff base formation reaction 
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with an ability to form stable chelates with almost all metals [21, 60, 

61]. 

Schiff bases have been explored as a chemosensor for the successful 

determination of a wide variety of metal ions [62, 63]. The 

interaction between analyte metals and the Schiff base is crucial for 

generating a signal for sensing. Depending on the type of signal that 

the sensing materials emit, Schiff base chemosensors can be 

categorized into colourimetric sensors or fluorimetric sensors. 

Schiff bases can form complexes with almost all metals because the 

nitrogen atom in the imine bond has unpaired electrons, making 

them electron donors and basic in nature [64, 65]. The azomethine 

group, in which the nitrogen atom is linked by a double bond, can 

serve as a coordination site for d-metal ions is suitable for back 

bonding owing to its π-orbitals (Fig.15). Thus, the nitrogen atom in 

the azomethine group serves as both π-acceptor and σ-donor and 

hence gives extra stability to metal complexes formed from Schiff 

bases [66]. The distinct properties of Schiff bases make them useful 

in biological systems [67, 68], catalysis [69-71], medicine and 

pharmacy [72, 73], etc. 

The selectivity of Schiff base structure towards specific analyte 

depends on both the size and charge of the ion, the hard-soft acid 

base(HSAB) nature of both metal ion and electron withdrawing or 

donating groups on the Schiff base, the electronic configuration of 

both metal and binding site of the ligand and the ring size of chelate 

system [74]. 
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Fig.15 Structural and functional diversity of a Schiff base 

1.7 Mechanism of Schiff base formation 

Generally, imine formation happens in two stages. In the first stage, 

a nucleophilic attack of the amino group on the unsaturated carbon 

of the carbonyl compound results in the formation of a tetrahedral 

intermediate of carbinolamine, and in the second stage elimination 

of water from carbinolamine tetrahedral intermediate leads to the 

formation of imine bond (C=N bond) [75] (Scheme 2). Since the 

carbinolamine is a labile species, it is usually not isolated or 

determined[76].  

 

 

Scheme 2 Mechanism of imine bond (C=N) formation 

Schiff base formation can happen either through acid-catalysed or 

base-catalysed reactions [77]. In acid catalysed reaction, the acidic 
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proton protonates the carbonyl oxygen which increases the electron 

deficiency on carbonyl carbon and the attack of a lone pair of 

electrons from the nitrogen atom of the amino group on the 

electron-deficient carbonyl carbon leading to the formation of 

carbinolamine intermediate. On subsequent heating eliminates 

water from the intermediate and Schiff base is generated (Scheme 

3).  

 

Scheme 3 Mechanism of acid catalysed Schiff base formation 

In base catalysed reaction, the base increases the nucleophilicity of 

the amine group and attack the unsaturated carbon of carbonyl 

Scheme 4 Mechanism of Base catalysed Schiff base formation 
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compound by nucleophilic addition resulting in the formation of a 

carbinolamine intermediate. Elimination of water from the 

carbinolamine intermediate by heating generates Schiff base 

(Scheme 4). 

1.8 Schiff base derived from 2-hydroxy-1-naphthaldehyde as a 

chemosensor 

2-hydroxy-1-napthaldehyde is one of the frequently used 

fluorophores for the development of various fluorescent probes due 

to the presence of donor and acceptor sites on them. That is the OH 

group in the 2-position acts as a hydrogen bond donor site and the 

aldehyde group in the 1-position is transformed into an imine group 

which acts as an acceptor site [78]. Herein we utilized 

naphthaldehyde for the synthesis of a chemosensor due to its ability 

to act both as a donor and an acceptor, good photostability and 

biocompatibility, etc. The rotation of the C=N bond and hydrogen 

bonding through the hydroxyl group have crucial roles and provide 

an opportunity for chelation with metals. Moreover, due to the 

possibility of free rotation about the C=N bond, naphthaldehyde-

based chemosensors may also show Aggregation-Induced Emission 

(AIE) phenomenon which will also increase its utility in the field of 

sensing studies. 

1.9 Previous Studies-A Review  

Scientific interest in the chemosensing properties of Schiff-base 

receptors and their applications is quite interesting and gets greater 

attention in recent times. Schiff-base ligands exhibit a wide variety 

of applications that extend their use in analytical chemistry, 
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biological, pharmacological, and medical fields. In this study, we 

focus on the chemosensing applications of Schiff-base ligands and 

their interactions with different analytes through colourimetric and 

fluorescence responses. 

1.9.1 Schiff base sensors for Cu2+ 

Copper is an essential trace element and the third most abundant 

metal present in the biological system which plays a vital role in 

physiological and biological processes [79, 80]. Copper plays an 

active role as a cofactor in various metalloenzymes including 

superoxide dismutase, cytochrome c oxidase, tyrosinase, nuclease, 

etc, [81-83] and is also needed for bone-tissue formation, cellular 

respiration, for maintaining good conditions of the central nervous 

system and cardiovascular system and so on in the human body [84]. 

Apart from these, a major concern has been given to copper, a non-

biodegradable one becoming an important environmental pollutant 

due to its extensive use in various fields such as industry, 

agriculture, etc [85]. The major source of copper contamination is 

industrial waste, agriculture waste, decaying vegetation, and 

photovoltaics which will pose a threat to human health [86-88]. 

Moreover, over exposure and the extensive intake of copper to the 

human body leads to serious neurodegenerative diseases such as 

Parkinson’s, Alzheimer’s, Wilson disease, prion diseases, and liver 

and kidney disorders [89-94]. The World Health Organisation 

(WHO) has established the necessary regulations, which specify that 

the maximum amount of Cu2+ ions in drinking water should not 

exceed 31.5 µM [95, 96]. Therefore, in view of the above, it is highly 
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demanded a suitable cost-effective method for the detection of 

copper in different systems. In this context, Schiff-base sensors 

offering remarkable sensing properties have been used to detect 

copper ions, with remarkable limits of detection, good selectivity 

and sensitivity (Table 1).  

1.9.2 Schiff base sensors for Ni2+ 

Nickel is one of the essential ultra-trace elements in biological 

system as it plays an active role in some biological processes within 

the body like metabolism, respiration, and biosynthesis and is a vital 

component of many metalloenzymes, including hydrogenases, 

ureases, etc [97-100]. Furthermore, the modern industrial sector 

makes extensive use of metallic nickel and its compounds to produce 

nickel-cadmium batteries, electronic equipment, supercapacitors, in 

electroplating and electroforming [101-104]. Moreover, stainless 

steel is one of the alloys of nickel, which is widely used to produce 

tools, machinery, armaments, and appliances [105]. However, the 

extensive use of nickel in these sectors inevitably results in 

environmental pollution and adversely affects human health. 

Excessive exposure and intake of Ni2+ by human beings could cause 

major health issues, such as respiratory problems, lung cancer, 

pneumonitis, central nervous disorders, and kidney disorders [106-

108]. Hence, great attention is needed to a cost-effective recognition 

method for the detection of nickel ions and is a challenging one and 

in this perspective, Schiff base colourimetric sensors have great 

significance. Till date, many Schiff base sensors have been reported 
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for the colourimetric determination of nickel with good selectivity 

and sensitivity and are summarised in Table 2. 

1.9.3 Schiff base sensors for Zn2+ 

Zinc is the second most abundant trace metal in the human body, as 

it plays an active role in some biological processes within the body 

like brain function, neural signal transmission, immune function, 

gene transcription, catalytic cofactors, the regulation of 

metalloenzymes, energy generation, and cellular metabolism [109-

114]. Furthermore, industrial sectors make use of zinc for 

galvanizing processes with iron metals to prevent rusting and die-

casting in the electrical, automobile, and hardware industries. 

However, the widespread use of zinc in these industries invariably 

leads to environmental pollution and has an adverse effect on 

human health [115, 116]. Even though zinc is a vital trace element 

indispensable for life, both excessive and inadequate levels of 

consumption lead to serious neurodegenerative disorders like 

Alzheimer’s disease, Parkinson’s disease, epilepsy, etc [117-123]. 

Since the d10 electronic configuration of Zn2+ makes them insensitive 

to many spectrophotometric detection methods [124, 125], it is a 

very challenging task to design a suitable selective and sensitive 

method for the detection of zinc in the presence of other metal ions. 

In this context, Schiff base fluorescent sensors have great 

significance and several Schiff base sensors have been reported as 

fluorimetric sensors for zinc ion with remarkable limit of detection, 

selectivity, and sensitivity which are summarised in Table 3. 
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1.9.4 Schiff base AIEE active sensors for Picric acid 

Nitroaromatic compounds (NACs), with explosive properties, have 

been utilized for military operations and terrorist activities [126, 

127]. Among the nitroaromatic compounds, picric acid (PA) is one 

of the most critical analytes and has paramount significance because 

of its explosive nature, non-biodegradability, higher water 

solubility, and is a harmful pollutant to human health and the 

ecosystem [128-131]. Besides its explosive nature, PA is widely used 

for rocket fuel manufacturing, dyes, paints, leather, and 

pharmaceutical industries, etc [132-134]. However, the widespread 

use of PA in these sectors leads to get into groundwater and soil 

which results in environmental pollution which hardly affects 

human health. Furthermore, extensive exposure to PA will lead to 

serious health problems like skin and eye irritation, anaemia, liver 

dysfunction, cancer, etc [135-137]. The existing analytical 

techniques for PA detection have some difficulties with on-site 

monitoring like expensive instrumental techniques, difficulties in 

handling, less sensitivity, and less portability [138, 139]. Therefore, 

it is essential and extremely important to develop a sensitive and 

selective method to identify PA. In this context, herein we have 

developed a few AIEE active Schiff-base sensors and in-site formed 

Schiff base-metal complexes which offer great selectivity and 

sensitivity for PA detection. Several AIEE active Schiff base and in-

site formed Schiff base-metal complexes with a remarkable limit of 

detection, with good selectivity and sensitivity have been reported 

elsewhere for the detection of PA and are summarised in Table 4 
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Table 1 Reported Schiff base chemosensors for the detection of Cu2+ ion 

Sensor Sensor 
type 

Sensing 
mechanism 

Analyte L:M LOD 
[M] 

Metrix/ 
Solvent 

Ref 

Probe-1 Colourimetric ICT and LMCT Cu2+ 2:1 5.80×10-6 DMSO [140] 

Probe-2 Colourimetric ICT Cu2+ 1:1 28.0×10-6 CH3CN [141] 

Probe-3 Colourimetric 
& Fluorescent 

Complex 
formation 

Cu2+ 1:1 8.68×10-6 DMSO-
HEPES 

[142] 

Probe-4 Colourimetric 
& Fluorescent 

Complex 
formation 

Cu2+ 1:1 2.48×10-6 DMF [143] 

Probe-5 Colourimetric Complex 
formation &ICT 

Cu2+ 2:1 2.85×10-6 CH3CN -
H2O 

[144] 

Probe-6 Colourimetric ICT and LMCT Cu2+ 1:1 9.3x10-7 CH3OH-
H2O 

[83] 

Probe-7 AIEE active 
Fluorescent 

ESIPT& CHEQ Cu2+ 1:1 2.10×10-6 DMF-
HEPES 

[145] 

Probe-8 Fluorescent C=N 
isomerization & 

PET 

Cu2+ 1:1 1.8×10-7 CH3CN [146] 

Probe-9 Fluorescent PET Cu2+ 1:1 0.26 ×10-6 DMSO-
H2O 

[147] 
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Probe-10 Fluorescent C=N 
isomerization & 

CHEF 

Cu2+ 2:1 1.80 ×10-6 CH3OH [148] 

Probe-11 Fluorescent Complex 
formation 

Cu2+ 1:1 1.01×10-7 CH3OH-
H2O 

[149] 

Probe-12 AIEE active 
Fluorescent 

Complex 
formation 

Cu2+ 2:1 5.0×10-9 DMSO-
H2O 

[150] 

Probe-13 AIEE active 
Fluorescent 

PET Cu2+ 1:1 3.98×10-8 DMSO-
H2O 

[151] 

Probe-14 AIEE active 
Fluorescent 

CHEQ Cu2+ 1:1 24.0×10-9 DMSO-
H2O 

[152] 

Probe-15 AIEE active 
Fluorescent 

ESIPT Cu2+ 1:1 5.31×10−7 EtOH-
DMSO 

[153] 

Probe-16 Fluorescent CHEQ Cu2+ 2:1 2.80 ×10-6 DCM-
CH3OH 

[84] 

Probe-17 Fluorescent ICT & CHEF Cu2+ 2:1 30.0×10-9 DMSO-
H2O 

[87] 

Probe-18 AIEE active 
Fluorescent 

Complex 
formation 

Cu2+ 2:1 8.14×10-8 CH3CH2O
H-PBS 

[154] 

Probe-19 AIEE active 
Fluorescent 

Complex 
formation 

Cu2+ 1:1 17.0×10-9 DMF-PBS [155] 

Probe-20 Fluorescent C=N 
isomerization & 

CHEF 

Cu2+ 1:1 1.54×10-9 CH3CN [156] 
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Probe-21 Colourimetric 
& Fluorescent 

Complex 
formation 

Cu2+ 1:1 7.3 × 10-10 CH3OH-
H2O 

[157] 

Probe-22 Colourimetric Complex 
formation 

Cu2+ 2:1 1.8 × 10-6 CH3OH-
H2O 

[158] 

Probe-23 Colourimetric 
& Fluorescent 

Complex 
formation 

Cu2+ 2:1 2.40× 10-8 CH3OH-
H2O 

[159] 

Probe-24 Colourimetric 
& Fluorescent 

Complex 
formation 

Cu2+ 1:1 4.9× 10-7 CH3OH-
Tris-HCl 

[97] 

Probe-25 Fluorescent Complex 
formation 

Cu2+ 1:1 0.35× 10-6 DMF [160] 

Probe-26 Colourimetric 
& Fluorescent 

Complex 
formation 

Cu2+ 1:1 20.0× 10-6 CH3CN [161] 

Probe-27 Fluorescent CHEF Cu2+ 1:1 9.0× 10-7 CH3CN [162] 

Probe-28 AIEE active 
Fluorescent 

Aggregate 
disruption 

Cu2+ 1:1 18.6× 10-9 H2O [163] 
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Table 2 Reported Schiff base sensors for the detection of Ni2+ ion 

Sensor Sensor 
type 

Sensing 
mechanism 

Analyte L:M LOD 
[M] 

Metrix/ 
Solvent 

Ref 

Probe-1 Colourimetric Complex 
formation 

Ni2+ 2:1 0.14× 10-6 CH3OH-
PBS 

[164] 

Probe-2 Colourimetric 
& Fluorescent 

Complex 
formation 

Ni2+ 1:1 2.39× 10-9 CH3CN-
H2O 

[165] 

Probe-3 Colourimetric Complex 
formation 

Ni2+ 1:1 7.4× 10-7 CH30H-
Tris-HCl 

[97] 

Probe-4 Colourimetric 
& Fluorescent 

C=N 
isomerization & 

PET 

Ni2+ 1:1 1.71× 10-6 CH30H-
Tris-HCl 

[166] 

Probe-5 Colourimetric 
& Fluorescent 

C=N 
isomerization & 

PET 

Ni2+ 2:1 1.80× 10-6 CH30H-
Tris-HCl 

[99] 

Probe-6 Colourimetric 
& Fluorescent 

CHEF & LMCT Ni2+ 1:1 0.36× 10-6 CH3CN [167] 

Probe-7 Colourimetric ICT & Complex 
formation 

Ni2+ 1:1 0.5× 10-6 Ethanol [168] 

Probe-8 Colourimetric ICT Ni2+ 1:1 1.0× 10-7 DMSO-
H2O 

[169] 

Probe-9 Colourimetric Complex 
formation 

Ni2+ 1:1 5.0× 10-6 DMSO-
H2O 

[105] 
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Probe-10 Colourimetric Complex 
formation 

Ni2+ 2:1 1.47× 10-6 CH3CN-
HEPES 

[170] 

Probe-11 Colourimetric Complex 
formation 

Ni2+ 1:1 0.12× 10-6 CH3CN [171] 

Probe-12 Colourimetric Complex 
formation 

Ni2+ 1:1 Not found CH3CN [100] 

Probe-13 Colourimetric 
& Fluorescent 

Complex 
formation 

Ni2+ 1:1 Not found Ethanol
-H2O 

HEPES 

[172] 

Probe-14 Colourimetric Complex 
formation 

Ni2+ 1:1 6.96× 10-7 DMSO [173] 

Proe-15 Colourimetric Complex 
formation 

Ni2+ 1:1 1.10× 10-6 CH3OH-
H2O 

[26] 

Probe-16 Colourimetric 
& Fluorescent 

C=N 
isomerization 

&PET 

Ni2+ 1:1 1.61× 10-6 CH3OH-
H2O 

[174] 

Probe-17 Colourimetric 
& Fluorescent 

d-d transition Ni2+ 1:1 17.7× 10-7 DMSO [175] 

Probe-18 Colourimetric 
& Fluorescent 

CHEF & ICT Ni2+ 1:1 0.04× 10-6 Ethanol [176] 

Probe-19 Colourimetric 
& Fluorescent 

C=N 
isomerization 

Ni2+ 1:1 1.08× 10-6 CH3OH-
H2O 

[177] 

Probe-20 Colourimetric 
& Fluorescent 

d-d 
transition 

Ni2+ 1:1 9.04× 10-6 CH3OH-
H2O 

[178] 
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Probe-21 Colourimetric 
& Fluorescent 

C=N 
isomerization & 

PET 

Ni2+ 1:1 3.3× 10-7 DMSO-
H2O 

[179] 

Probe-22 Fluorescent Complex 
formation 

Ni2+ 2:1 60.0× 10-9 DMF [180] 

Probe-23 Colourimetric ICT Ni2+ 1:1 50.0× 10-6 Ethanol [181] 

Probe-24 Colourimetric ICT Ni2+ 1:1 375× 10-9 CH3OH-
H2O 

[182] 

Probe-25 Fluorescent C=N 
isomerization 

Ni2+ 2:1 2.1× 10-11 THF-
PBS 

[183] 
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Table 3 Reported Schiff base sensors for the detection of Zn2+ ion 

Sensor Sensor 
type 

Sensing 
mechanism 

Analyte L:M LOD 
[M] 

Metrix/ 
Solvent 

Ref 

Probe-1 Fluorescent C=N isomerization 
& ESIPT 

Zn2+ 1:1 4.7×10-6 CH3CN-
H2O 

[184] 

Probe-2 Fluorescent ESIPT Zn2+ 1:1 1.6×10-7 CH3OH-
H2O 

[185] 

Probe-3 Fluorescent Complex 
formation 

Zn2+ 1:1 7.2×10-6 CH3OH [186] 

Probe-4 Fluorescent CHEF Zn2+ 1:1 1.51×10-7 DMSO-
H2O 

[187] 

Probe-5 Fluorescent Complex 
formation 

Zn2+ 2:1 2.3 × 10-6 DMSO-
H2O 

[188] 

Probe-6 Fluorescent ESIPT Zn2+ 1:1 2.93 × 10-5 DMSO [189] 

Probe-7 Fluorescent C=N isomerisation Zn2+ 1:1 0.35 × 10-6 DMF-
H2O 

[190] 

Probe-8 Fluorescent Complex 
formation 

Zn2+ 1:1 0.66 × 10-6 CH3OH-
H2O 

[191] 

Probe-9 Fluorescent C=N isomerisation 
& PET 

Zn2+ 1:1 1.73 × 10-7 Ethanol [192] 

Probe-10 Fluorescent CHEF & C=N 
isomerisation 

Zn2+ 1:1 1.29 × 10-6 DMF [193] 
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Probe-11 Fluorescent C=N isomerisation 
& PET 

Zn2+ 1:1 10.0 × 10-6 DMF [194] 

Probe-12 Fluorescent CHEF Zn2+ 1:1 11.9× 10-6 DMSO [195] 

Probe-13 Fluorescent C=N isomerisation 
& PET 

Zn2+ 1:1 2.5× 10-4 DMSO [196] 

Probe-14 Fluorescent PET Zn2+ 1:1 3.35× 10-7 Ethanol-
HEPES 

[197] 

Probe-15 Fluorescent C=N isomerisation 
& PET 

Zn2+ 1:1 3.60× 10-6 Ethanol-
H2O 

[198] 

Probe-16 Fluorescent C=N isomerisation 
& PET 

Zn2+ 2:1 2.72× 10-6 DMF-
H2O 

[199] 

Probe-17 Fluorescent ESIPT/ICT Zn2+ 1:1 2.2× 10-9 CH3CN-
H2O 

[200] 

Probe-18 AIEE active 
Fluorescent 

CHEF and AIEE-
activation 

Zn2+ 1:1 1.1× 10-7 DMF-
H2O 

[201] 

Probe-19 Fluorescent ESIPT & PET Zn2+ 1:1 3.18× 10-7 Ethanol-
H20 

[202] 

Probe-20 Fluorescent C=N isomerisation 
& PET 

Zn2+ 2:1 5.03× 10-7 Ethanol-
HEPES 

[203] 

Probe-21 Fluorescent ESIPT & CHEF Zn2+ 1:1 37.7× 10-9 CH3OH-
HEPES 

[204] 
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Probe-22 Fluorescent PET & CHEF Zn2+ 1:1 5.50× 10-9 Ethanol-
H2O 

[205] 

Probe-23 Fluorescent PET & CHEF Zn2+ 1:1 21.2× 10-9 CH3OH [206] 

Probe-24 Fluorescent ESIPT & PET Zn2+ 1:1 1.17× 10-6 CH3CN-
H2O 

[207] 

Probe-25 Fluorescent ESIPT & PET Zn2+ 1:1 1.20× 10-6 CH3CN-
H2O 

[207] 

Probe-26 Fluorescent ESIPT & CHEF Zn2+ 1:1 3.7× 10-8 CH3OH-
H2O 

[208] 

Probe-27 Fluorescent ESIPT & CHEF Zn2+ 1:1 11.0× 10-9 CH3CN-
H2O 

[209] 

Probe-28 Fluorescent Complex 
formation 

Zn2+ 1:1 8.73× 10-7 DMSO [210] 

Probe-29 Fluorescent CHEF Zn2+ 1:1 0.01× 10-6 DMSO-
H2O 

[211] 

Probe-30 Fluorescent CHEF & C=N 
isomerisation 

Zn2+ 1:1 0.14× 10-6 Ethanol-
H2O 

[212] 

Probe-31 Fluorescent PET Zn2+ 1:1 5.10× 10-9 CH3CN-
H2O 

[116] 

Probe-32 Fluorescent CHEF & C=N 
isomerisation 

Zn2+ 1:1 39.0× 10-9 DMSO-
H2O 

[213] 
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Probe-33 Fluorescent CHEF Zn2+ 1:1 1.12× 10-6 DMSO [214] 

Probe-34 AIEE active 
Fluorescent 

Coordination 
polymerization 

induced emission 
[CPIE] 

Zn2+ 1:1 2.8× 10-7 THF-
H2O 

[215] 

Probe-35 AIEE active 
Fluorescent 

CHEF, C=N 
isomerisation & 

PET 

Zn2+ 1:2 2.18× 10-6 DMSO-
H2O 

[216] 

Probe-36 Fluorescent ESIPT Zn2+ 1:1 0.01× 10-6 DMSO-
H2O 

[217] 
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Table 4 Reported Schiff base sensors for the detection of PA 

Sensor Sensor 
type 

Sensing 
mechanism 

Analyte Quenching 
constant 

[M-1] 

LOD 
[M] 

Metrix/
Solvent 

Ref 

Probe-1 AIEE active 
fluorescent 

Ground state 
complexation 

PA 4.14×105 1.74× 10-6 THF-
H2O 

[206] 

Probe-2 Fluorescent Static and 
dynamic 

quenching 

PA 2.91×104 2.81× 10-7 DMF [218] 

Probe-3 AIEE active 
fluorescent 

Ground state 
complexation 

PA 70.1×106 72.6× 10-9 THF-
H2O 

[219] 

Probe-4 Fluorescent PET PA 6.45×107 96.3× 10-9 DMSO-
H2O 

[220] 

Probe-5 Fluorescent strong -I and -R 
effect 

PA Not found 1.22× 10-4 DMSO-
H2O 

[221] 

Probe-6 Fluorescent Static quenching PA 1.16×106 20.1× 10-9 HEPES [222] 

Probe-7 Fluorescent PA-Complex 
formation 

PA 1.16×106 12.1× 10-9 DMSO-
HEPES 

[223] 

Probe-8 Fluorescent H-bonding & π-π 
interactions 

PA 4.77×104 10.8× 10-9 CH3OH-
HEPES 

[224] 

Probe-9 Fluorescent H-bonding & π-π 
interactions 

PA 8.49×104 8.89× 10-9 Methano
l- HEPES 

[224] 
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Probe-10 Fluorescent H-bonding & π-π 
interactions 

PA 5.69×106 9.30× 10-9 CH3OH-
HEPES 

[224] 

Probe-11 Fluorescent H-bonding 
interactions 

PA Not found 2.2× 10-10 CH3OH-
DMF 

[225] 

Probe-12 AIEE active 
fluorescent 

PET PA 2.1×104 0.77× 10-6 CH3OH-
H2O 

[226] 

Probe-13 AIEE active 
fluorescent 

Ground state 
complexation 

PA 1.91×105 0.11× 10-6 CH3OH-
H2O 

[227] 

Probe-14 AIEE active 
fluorescent 

Inner filter effect 
[IFA] 

PA 2.61×105 93.0× 10-9 THF-
H2O 

[228] 

Probe-15 AIEE active 
fluorescent 

PET & Ground 
state 

complexation 

PA 1.48×104 55.0× 10-9 Ethanol-
Water 

[229] 

Probe-16 AIEE active 
fluorescent 

static and 
dynamic 

mechanisms & 
PET 

PA 2.21×105 9.50× 10-6 CH3CN-
H2O 

[141] 

Probe-17 Fluorescent H-bonding 
interactions 

PA 2.29×107 19.0× 10-9 CH3CN [230] 

Probe-18 Fluorescent FRET, IFE & PET PA 10.5×103 4.32× 10-6 CH3CN-
H2O 

[231] 

Probe-19 Fluorescent FRET, IFE & PET PA 29.4×103 4.15× 10-6 CH3CN-
H2O 

[231] 
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Probe-20 Fluorescent Static quenching PA 1.20×103 Not found DMSO-
H2O 

[232] 

Probe-21 AIEE active 
fluorescent 

Static quenching PA 7.81×104 0.77× 10-6 THF-
H2O 

[233] 

Probe-22 AIE active 
fluorescent 

Ground state 
complexation 

PA 4.70×105 16.0× 10-9 CH3CN-
H2O 

[234] 

Probe-23 fluorescent PET PA Not found 1.7× 10-5 CH3CN-
H2O 

[235] 

Probe-24 Fluorescent Resonance 
energy transfer 

RET-ICT 

PA Not found 1.50× 10-6 CH3CN-
H2O 

[236] 

Probe-25 AIE active 
fluorescent 

Destroying of the 
aggregation 
effect by PA 

insertion 

PA Not found 37.5× 10-9 DMSO-
H2O 

[237] 



 

41 
 

Chapter 1 

1.10 The present investigation 

Metals/ metal ions are necessary for vital life functions as they play 

key roles in a variety of essential biological processes. Apart from 

these, overuse of metals will also act as pollutants that affect human 

life and environment resulting serious health issues. Even though 

different analytical techniques have been proposed and used for 

metal ion monitoring, most of which needs sophisticated 

instrumentations, lacks on-site real-time monitoring and high cost. 

Since colourimetric and fluorimetric methods can provide naked eye 

detection without the use of very expensive equipment, the 

development of colourimetric and fluorimetric sensors is becoming 

a growing priority and has great significance in the field of sensing. 

Therefore, the focus of this research work will be on the design and 

development of cost-effective, highly sensitive, and selective 

chemosensors for selected metal ions and PA derived from different 

Schiff bases. A brief overview of the three Schiff base molecular 

probes designed and synthesised and their chemosensing 

behaviours studied are outlined below. 

[1] 1,1'-((1E,1'E)((2E,2'E)(1,3-phenylenebis (methanylylidene) 

bis(hydrazine-2,1-diylidene))bis(methanylylidene))bis (napht 

halen-2-ol) [PMB3] 

(a) As an organo- fluorescent sensor for successive detection of 

bivalent zinc and picric acid 

(b) As a AIEE active florescent probe for highly sensitive femtomolar 

level detection of copper in aqueous media.  
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(c) As an Aggregation-Induced Emission Enhancement (AIEE) active 

“turn-off” fluorescent sensor for the selective detection of picric acid 

in aqueous medium 

(d) As a colourimetric sensor for simultaneous detection of Cu2+ and 

Ni2+ ions. 

[2] 1-((E)-((E)-(4-(benzyloxy)benzylidene)hydrazono) methyl) 

naphthalen-2-ol [BBHN] 

(a)  As an aggregation-induced emission enhancement fluorescent 

sensor for nanoscale detection of copper. 

(b) As an AIEE active “turn off” fluorescent probe for picric acid. 

[3] 1-((E)-((E)-(anthracen-9-ylmethylene)hydrazono) methyl) 

naphthalen-2-ol [AHN] 

(a) As an AIEE active “turn off” fluorescent probe for picric acid and 

as a colourimetric sensor for Cu2+ ion. 

Detailed synthesis steps, characterization, sensing activity, and 

chemosensing mechanism are discussed in the following chapters. 
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Chapter 2 

This chapter describes a brief overview of the materials used, the 

experimental details for the synthesis of Schiff bases, the analytical 

procedures, the methods of analyses, and the instrumental 

techniques used to characterize the compounds. 

2.1 Materials 

All reagents used for the synthesis of Schiff bases including2-

hydroxy-1-naphthaldehyde, 4-benzyloxybenzaldehyde, isophthalal 

dehyde, and 9-anthraldehyde were purchased from Sigma-Aldrich. 

Nitrate salts of metals such as Al3+, Hg2+, Zn2+, Co2+, Fe3+, Cd2+, Mn2+, 

Mg2+, Cr3+, Cu2+, Ni2+, Ca2+, Ag+, Ba2+, Pb2+, Na+, and K+ used for 

sensing studies were purchased from Sigma-Aldrich and Merck 

India Ltd. All nitroaromatic compounds (NACs) including 2,4,6-

trinitro phenol (PA), 2,4- dinitrophenol (2,4-DNP), 2,4,6-

trinitrotoluene (TNT), nitrobenzene (NB), 2-nitrophenol (2-NP), 4-

nitrophenol (4-NP), 4-nitroaniline (4-NA), 2-nitrotoluene (2-NT), 4-

nitrotoluene (4-NT), 3-nitroaniline (3-NA), 3-nitrobenzoic acid(3-

NBA) 2-nitroaniline (2-NA), 3-nitrotoluene (3-NT), and 2,4-

dinitroaniline (2,4-DNA) used for sensing studies were obtained 

from Merck India Ltd. The Tertiary butyl ammonium salts of 

different anions like CN-, F-, Cl-, Br-, I-, NO3-, AcO-, and H3PO4- used for 

anion sensing studies were purchased from Sigma-Aldrich.  

Solvents such as methanol, ethanol, dimethyl formamide (DMF), 

dimethyl sulfoxide (DMSO), dichloromethane (DCM), acetonitrile, 

acetone, and chloroform used for the studies were of analytical 

grade and were used as received without further purifications. 
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Freshly prepared doubly distilled deionized water was used 

throughout the experiments. 

2.2 Instrumental Techniques 

The elemental analysis for carbon, hydrogen, and nitrogen was 

performed using the elemental analyser Vario EL III CHNS analyser. 

The Fourier Transform Infra-Red spectra were recorded using a KBr 

pellet on a Jasco FTIR 4100 spectrometer over the range of 400-

4000cm-1. 1H NMR and 13C NMR spectrum were recorded using JEOL 

JNM-ECZR 500 MHz spectrometer in d6-DMSO solvent using 

tetramethyl silane (TMS) as the internal standard. The absorption 

and fluorescence spectral measurements were carried out using the 

Jasco UV-Visible spectrophotometer and the Agilent Technologies 

Cary Eclipse Fluorescence Spectrophotometer. The HRMS(ESI) 

spectrum analysis was performed on a Thermo Scientific Exactive 

Orbitrap mass spectrometer. Fluorescent images were taken on the 

Leica DM6 B System Microscope. 

2.3 Synthesis of Schiff bases 

2.3.1. Synthesis of (E) 1-(hydrazonomethyl) naphthalen-2-ol 

One of the precursors (E) 1-(hydrazonomethyl) naphthalen-2-ol 

used for synthesis of [1, 1'-((1E, 1'E) - ((2E, 2'E) - (1, 3- phenylenebis 

(methanylylidene))bis(hydrazine-2,1diylidene))bis(methanylylide 

ne))bis(naphthalen-2-ol)] [PMB3], 1-((E)-((E)-(4-(benzyloxy) 

benzylidene) hydrazono) methyl) naphthalen-2-ol [BBHN], and 1-

((E)-((E)-(anthracen-9-ylmethylene)hydrazono)methyl) naphthal 

en-2-ol [AHN] were synthesized from 2-hydroxy-1-naphthaldehyde 

as starting material using the method reported elsewhere [1-8]. 
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Scheme 1 Synthetic route of (E) 1-(hydrazonomethyl) 
naphthalen-2-ol 

2.3.2. Synthesis of [1, 1'-((1E, 1'E) - ((2E, 2'E) - (1, 3- 

phenylenebis(methanylylidene))bis(hydrazine-2,1 diylidene)) 

bis (methanylylidene)) bis (naphthalen-2-ol)] [PMB3] 

Ethanolic solution of (E) 1-(hydrazonomethyl) naphthalen-2-ol 

(0.372 g, 2 mmol), and isophthalaldehyde (0.314g, 1 mmol) were 

mixed in a 2:1 molar ratio with constant stirring with the addition of 

2-3 drops of acetic acid. Following that, the mixture was refluxed for 

8 h at 80°C. A yellow solid that precipitated was filtered and washed 

with ethanol and then air-dried. Using column chromatography on 

alumina and a 1:1 mixture of ethyl acetate and hexane as eluents, the 

crude product was purified and recrystallized. 

Scheme 2 Synthetic route of PMB3 
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2.3.3 Synthesis of 1-((E)-((E)-(4-(benzyloxy)benzylidene) 

hydrazono) methyl) naphthalen-2-ol [BBHN] 

Ethanolic solution of (E) 1-(hydrazonomethyl) naphthalen-2-ol 

(0.186 g, 1mmol) was added under vigorous stirring to an ethanolic 

solution of 4-benzyloxybenzaldehyde (0.212 g, 1 mmol) in a 1:1 

molar ratio followed by the addition of 2-3 drops of glacial acetic 

acid, which was then refluxed for 8 h at 80 °C. The yellow solid 

precipitated was filtered, washed with ethanol and dried under 

reduced pressure, and purified by column chromatography on 

alumina using a 1:1 mixture of ethyl acetate and hexane as eluent. 

 

Scheme 3 Synthetic route of BBHN 

2.3.4 Synthesis of 1-((E)-((E)-(anthracen-9-ylmethylene) 

hydrazono) methyl) naphthalen-2-ol [AHN] 

The precursor (E) 1-(hydrazonomethyl) naphthalen-2-ol 

(0.186g,1mmol) dissolved in ethanol was added to one equivalent of 

9-anthraldehyde (0.206g, 1mmol) with constant stirring and 

refluxed for 8 hours at 80 0C. The precipitated yellow solid was then 

filtered and washed with ethanol and purified by column 

chromatography on alumina using a 1:1 mixture of ethyl acetate and 

hexane as eluent. 
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2.4 Characterization 

The synthesized Schiff bases PMB3, BBHN, and AHN were 

characterized using methods such as CHNS,1H NMR, 13C NMR, and 

HRMS(ESI) analysis. 

2.4.1 Characterization of PMB3 

Chemical Formula: C30H22N4O2, Yellow solid, Yield: 90%; mp: 309 - 

3110C; Anal. Calculated (found) for C30H22N4O2; C-76.58(75.74), H- 

4.17(4.73), N-11.91(11.99). 1H NMR (500 MHz, DMSO-d6) δ(ppm): 

12.86(S,2H, OH), 9.97(S, 2H, HC=N), 8.64(S, 2H, HC=N), 8.03-8.01(d, 

4H, J=9Hz, Ar.H), 7.91-7.90(d, 2H, J=8Hz, Ar.H), 7.62-7.5(m, 4H, 

J=8Hz, Ar.H), 7.45-7.42(m, 4H, J=10Hz, Ar.H), 7.28-7.26(d, 4H, J=9Hz, 

Ar.H). 13CNMR (500 MHz, DMSO-d6) δ(ppm): 161.26, 151.20, 

149.19, 138.87, 137.09, 131.64, 128.07, 125.4, 125.2, 123.2, 115.3, 

109.6. FT-IR (KBr, cm-1): 3437 (-OH), 1623,1596,1580,1540 (-

CH=N), HRMS (ESI) (M+H)+: calculated for C30H22N4O2 is 471.1700, 

found 471.1817. Fig.1, Fig.2, Fig.3, and Fig.4 represent the FT-IR,1H 

NMR,13C NMR, and HRMS(ESI) spectrum of PMB3. 

 

Scheme 4 Synthetic route of AHN 
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Fig.1 FT-IR spectrum of PMB3 

 

 

Fig.2 1H NMR spectrum of the PMB3 in d6-DMSO solvent 
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Fig.3 13C NMR spectrum of the PMB3 in d6-DMSO solvent 

 

 

Fig.4 HR-MS(ESI) spectrum of the PMB3 in acetonitrile solvent 
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2.4.2 Characterization of BBHN 

Chemical Formula: C25H20N2O2, Yellow solid, Yield: 87%; Mp: 295 – 

297 0C; Anal. Calculated (found) for C25H20N2O2; C-78.93(78.62), H- 

5.30(5.28), N-7.36(7.38). 1H NMR (500 MHz, DMSO-d6): 12.858(S, 

1H, OH), 9.977(S, 1H, -HC=N), 8.609(S, 1H, -HC=N), 8.035-8.017(d, 

1H, J=9Hz, Ar.H), 7.918-7.901(d, 1H, J=8.5Hz, Ar.H), 7.803-7.785(d, 

3H, J=9Hz, Ar.H), 7.626-7.595(t, 2H, J=8.5Hz, Ar.H), 7.463-7.433(t , 

2H, J=7.5Hz, Ar.H), 7.419-7.377(m, 1H, J=6Hz, Ar.H), 7.344-7.315(t, 

1H, J=7Hz, Ar.H), 7.283-7.265(d, 1H, J=9Hz, Ar.H),7.126-7.108(d, 3H, 

J=9Hz, Ar.H), 5.171(S, 2H, -CH2). 13CNMR (500 MHz, DMSO-d6):  

163.240, 159.081, 152.221, 149.521, 139.845, 137.182, 132.012, 

128.014, 125.441, 125.268, 124.272, 118.092, 108.085, 66.913. FT-

IR (KBr, cm-1): 3444(-OH), 1621,1599 (-CH=N), 1161 (N-N) HRMS 

(ESI) (M+H)+: calculated for C25H20N2O2 is 381.15, found 381.1601. 

Fig.5 FT-IR spectrum of BBHN 
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Fig.5, Fig.6, Fig.7, and Fig.8 represent the FT-IR,1H NMR,13C NMR, 

and HRMS(ESI) spectrum of BBHN. 

Fig.6 1H NMR spectrum of the BBHN in d6-DMSO solvent 

Fig.7 13C NMR spectrum of the BBHN in d6-DMSO solvent 
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Fig.8 HR-MS(ESI) spectrum of the BBHN in acetonitrile solvent 

2.4.3 Characterization of AHN 

Chemical Formula: C26H18N2O, Red solid, Yield: 87%; mp: 291-293 

0C; anal. calculated (found) for C26H18N2O; C-83.40(82.18), H- 

4.85(4.81), N-7.48 (7.30). 1H NMR (500 MHz, DMSO-d6):13.163(S, 

1H, OH), 9.953(S, 1H, -CH=N), 9.725(S, 1H, -CH=N), 8.947-8.929(d, 

2H, J=9Hz, Ar.H), 8.829(S, 2H, Ar.H), 8.627-8.610(d, 1H, J=8.5Hz,  

Ar.H), 8.203-8.186(d, 2H, J=8.5Hz, Ar.H), 8.061-8.043(d, 1H, J=9Hz, 

Ar.H), 7.935-7.919(d, 1H, J=8Hz, Ar.H), 7.705-7.672(t, 2H, J=10.5Hz, 

Ar.H), 7.635-7.603(t, 2H, J=10Hz, Ar.H), 7.457-7.426(t, 1H, J=9.5Hz, 

Ar.H),7.317-7.299(d, 1H, J=9Hz, Ar.H). 13CNMR (500 MHz, 

DMSO-d6): 161.144, 152.367, 150.778, 131.139, 130.908, 130.275, 

129.056, 128.086, 127.626, 125.706, 125.322, 123.824, 121.598, 

118.939. FT-IR (KBr, cm-1): 3439 (-OH), 1622, 1586 (-CH=N), 1182 

(N-N). HRMS (ESI) (M + H)+: calculated for C26H18N2O is 375.1400, 
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found 375.1505. Fig.9, Fig.10, Fig.11, and Fig.12 represent the FT-

IR,1H NMR,13C NMR, and HRMS(ESI) spectrum of AHN. 

 

Fig.9 FT-IR spectrum of AHN 

 

Fig.10 1H NMR spectrum of the AHN in d6-DMSO solvent 
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Fig.11 13C NMR spectrum of the AHN in d6-DMSO solvent 

 

 

Fig.12 HR-MS(ESI) spectrum of the AHN in acetonitrile solvent 
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Chapter 3 explores the 

versatile sensing capabilities 

of PMB3 across four distinct 

sections. PMB3 

demonstrates a unique 

"OFF-ON-OFF" fluorescence 

behavior, enabling selective 

detection of bivalent Zn2+ 

ions and picric acid (PA) via 

turn-off fluorescence. 

Further, the Aggregation-

Induced Emission 

Enhancement (AIEE) 

properties of PMB3 are 

investigated, revealing its 

effectiveness in selectively 

detecting Cu2+ ions in 

aqueous media and PA in 

aqueous medium with high 

sensitivity. Additionally, 

PMB3 exhibits colourimetric 

sensing abilities for Cu2+ and 

Ni2+ ions, offering a sensitive 

and selective response with 

potential for real sample 

analysis. Overall, Chapter 3 

highlights its potential as a 

versatile and sensitive sensor 

for environmental pollutant 

detection and analysis. 

Chapter 3 

 
Applications of 

PMB3 as sensor 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SECTION 3.1 

Successive detection of Zinc and Picric acid using an 

Organo-Fluorescent Sensor derived from 2-hydroxy-1-

naphthaldehyde 
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3.1.1 Introduction 

The design and development of an efficient, and simple method of 

determination of trace quantities of biologically and 

environmentally important species are of great significance in the 

field of environmental science, and analytical chemistry.  The 

spectrofluorometric methods need to be extremely helpful for this 

purpose as they provide high selectivity, visual detection, non-

destructive methodology, cost-effectiveness, fast, and quick real-

time monitoring, etc [1-6]. The detection of metal ions using modern 

methods such as  AAS [7], Chromatography [8], ICP-AES (Inductively 

coupled Plasma Atomic Emission Spectrometry) [9], ISE (Ion-

Sensitive Electrodes)  [10], and NAA (Neutron Activation Analysis)   

[11], etc., need sophisticated instrumentation. Therefore, finding 

new alternatives for the selective ion receptor systems with 

excellent optical responses towards a number of analytes [12-15]  is 

an appreciable yet challenging goal. Hence developing fluorescent 

sensors for the detection of metal ions and other pollutants has 

received much attention. Schiff bases are very useful for this 

purpose, because of their easy method of synthesis, acceptable 

selectivity, relatively quick response time, and low cost [16].  The 

promising sensing response of Schiff bases towards metal ions is 

mainly due to their strong coordination ability and structural 

variations. 

The detection of bivalent zinc has got extreme significance over 

other transition metal ions as it plays vital roles in biological 

processes [17-19]. Even though zinc is a vital trace element 
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indispensable for plants, animals, and microorganisms, both 

excessive and inadequate consumption can result in a number of 

health issues such as ‘Alzheimer’s disease’, ‘Parkinson’s disease’ [20-

23], etc. Since the d10 electronic configuration of Zn2+ ion makes it 

spectroscopically silent, it is absolutely necessary to design easy and 

accessible alternative methods like fluorescent probes that 

selectively binds Zn2+ among the other metal ions under biological 

conditions.  

For social and environmental safety, it is extremely significant to 

develop a more suitable and effective monitoring method for the 

trace-level detection of nitroaromatic explosives. Picric acid (PA), 

also known as 2,4,6-trinitrophenol (TNP), is one of the many 

nitroaromatic explosives quite important since it is the primary 

component of landmines and industrial explosives  [24]. It is also 

widely used in the production of rocket fuels, pharmaceuticals, 

leather, and dye industries [25, 26]. PA has a higher water solubility 

than other nitroaromatics, which makes it more likely to pollute soil 

and groundwater. Picric acid is a non-biodegradable nitroaromatics 

and exposure to it can cause a number of health issues, including 

liver damage, anaemia, headaches, skin irritation, and other 

respiratory problems [27, 28]. Methods like  Chromatography 

Coupled with Energy-Dispersive X-ray Diffraction [29], Surface-

Enhanced Raman Spectroscopy [30], Mass Spectrometry [31-33], 

Nuclear Quadruple Resonance Spectroscopy [34], etc used today, 

are relatively complex and need expensive instrumentation. 

Therefore, the development of chemical sensors for the selective 
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detection of nitro compounds like picric acid with high selectivity in 

solution is still challenging and is highly desirable. 

Herein this work, I present a novel “OFF-ON-OFF” fluorescent sensor 

PMB3 [1,1'- ((1E,1'E)- ((2E,2'E)- (1,3- phenylene bis 

(methanylylidene)) bis (hydrazine-2,1-diylidene)) bis 

(methanylylidene)) bis(naphthalen-2-ol)], for selective detection of 

bivalent zinc and an in-situ produced complex PMB3-Zn2+ ensemble 

for the detection of PA. The ligand PMB3 exhibits a significant 

emission enhancement in intensity with Zn2+, however, the intensity 

of emission of the in-situ produced complex PMB3-Zn2+ ensemble is 

quenched selectively upon the progressive addition of PA. 

3.1.2. Experimental  

3.1.2.1. Fluorescence measurements 

The stock solution of PMB3 with a concentration of 1 mM was 

prepared in DMF. The stock solutions of different metal salts and 

nitroaromatic compounds (NACs) of 1 mM concentration were 

prepared using freshly prepared double-distilled water. Emission 

spectra were obtained by excitation at 410 nm in DMF and sensing 

studies were carried out by recording the emission spectrum of the 

solution mixture consisting of 2.5ml of PMB3 with a concentration 

of 10µM and 1 equivalent of one of the metal ions stock solutions. 

The LOD was determined from emission spectral change using the 

formula, 3σ/k. where ‘σ’ is the standard deviation obtained from 

blank measurements and ‘k’ is the slope obtained from the 

calibration curve. 
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3.1.3. Results and Discussion 

The fluorescent sensor (PMB3) was synthesized by the simple 

condensation of isophthalaldehyde and 1-(hydrazonomethyl) 

naphthalen-2-ol in ethanol medium under reflux conditions at room 

temperature (Scheme 2 in chapter 2). The probe (PMB3) was easily 

soluble in DMF and DMSO. 

3.1.3.1. The Sensing behaviour of PMB3 to Zn2+ in DMF solution 

The ability of the Schiff base (PMB3) to sense a variety of different 

metal ions including Cd2+, Al3+, Hg2+, Zn2+, Ag+, Pb2+, Co2+, Cr3+, Ni2+, 

Mn2+, Ca2+, Mg2+, Ba2+, Na+, Cu2+, Fe3+, and K+ in a selective manner, 

was investigated by recording fluorescence spectra in DMF using an 

excitation wavelength at 410 nm as depicted in Fig.1. The ligand 

exhibited a weak emission at 512 nm because of an intra-molecular 

rotation. The intensity or wavelength of fluorescence did not 

significantly alter with the addition of metal ions, except for Zn2+. 

However, when the Zn2+ ion was added, the emission peak intensity 

significantly increased and shifted to a shorter wavelength region of 

507 nm. The enhancement in emission intensity of PMB3 with the 

addition of Zn2+ can be explained due to the structural rigidity of 

PMB3 that occurred in coordination with Zn2+ion and suppression 

of C=N isomerization, which may be the mechanism that makes the 

free ligand to be a weak emissive system. No appreciable 

enhancement in fluorescence intensity was seen with the addition of 

other metal ions, which indicates that the Schiff base (PMB3) can 

function as an effective fluorescent sensor for bivalent zinc metal. 

The sensitive and selective detection of Zn2+ visually under a UV 
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lamp, making PMB3 as a promising optical sensor probe for the 

Zn2+ion (Fig.2). 

 

Fig.1 Change in the fluorescence emission spectra of PMB3 (10 μM, λex= 410 
nm, λem= 512 nm) in DMF in the presence of different metal ions 

 

 

Fig.2 The fluorescence colour change of PMB3 (10 μM) with 1 equivalent of 
Zn2+ions 

For ascertaining the sensitivity of PMB3 towards bivalent Zn2+ ions, 

metal titration studies were performed with different zinc ion 

concentrations. When the Zn2+ ion concentration increases, the 

emission peak displays a little blue shift from 512nm to 507nm 

accompanied by the gradual enhancement of fluorescence intensity 

(Fig.3). 
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Fig.3 Changes in the fluorescence emission spectra of PMB3 (10 μM, λex= 
410 nm, λem= 512 nm) in DMF up on the increase in the concentration of 

Zn2+ from 0- 2.2 equivalents 

3.1.3.2 The metal-ligand stoichiometry and Sensing mechanism  

The reasons for the sensing response of fluorophore with analytes 

include the mechanisms like Photoinduced Electron Transfer (PET), 

Chelation Enhanced Fluorescence Transfer (CEFT), Intramolecular 

Charge Transfer (ICT), Twisted Intra-molecular/Intermediate 

Charge Transfer (TICT), C=N isomerization, etc. The fluorescence of 

the sensor gets quenched due to C=N isomerization process which 

has a significant influence on making the sensor into a weak 

emissive one. While the binding of metal ions to the sensor restricts 

the C=N isomerization and makes molecules more rigid, which 

enhances fluorescence emission. In this case, C=N isomerization 

processes are primarily responsible for the moderate fluorescence 

emission of PMB3 in the absence of bivalent Zn2+ ions. The blocking 

of the rotation about C=N of PMB3 by coordination with Zn2+ ions 

leads to restriction of C=N isomerization process and results in 
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enhancement in emission intensity[35]. Therefore, the effective 

suppression of the C=N isomerization process may be ascribed to the 

chelation between the nitrogen atom of the imine (C=N) group 

present in PMB3 and Zn2+ions (Scheme 1). The binding 

stoichiometry of PMB3 with Zn2+ is established using, Job’s method. 

The Job’s plot given in Fig.4 shows that maximum fluorescence 

intensity observed at 0.50 mol fraction for the PMB3-Zn2+ ensemble 

complex, suggesting that the stoichiometry of the metal complex is 

1:1.  

 

Scheme 1 Proposed sensing mechanism for PMB3 with Zn2+ 

 

 

Fig.4 Job’s plot for the identification of metal-PMB3 ratio 
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3.1.3.3. Detection limit and Association constant 

The detection limit for the bivalent Zn2+ ion using PMB3 was 

determined from the emission spectral change using the equation,  

Limit of detection (LOD) = 3× σ/k 

The LOD was determined to be 11.12×10-7M (Fig.5). The association 

constant of PMB3 with Zn2+ was determined using fluorescence 

titration (Benesi-Hildebrand equation) to be 8.09 ×105M-1, 

indicating that the PMB3-Zn2+ complex is sufficiently stable and 

signifying the strong binding property between PMB3 and 

Zn2+(Fig.6). The ability of a sensor to respond specifically to the 

target ion in the presence of complex background of more 

competitive analytes under biological pH is an essential 

requirement in sensor development. To confirm the selectivity of 

PMB3 towards bivalent Zn2+, the competitive fluorescence studies 

were performed by recording the fluorescence spectra of PMB3 with 

the addition of 1 equivalent of Zn2+ and an equivalent quantity of 

other metal ions. The change in fluorescence intensity that occurred 

in the presence of other metal ions are shown in Fig.7. From the 

histogram, it is evident that no noticeable change or significant 

fluctuations occurred in the fluorescence emission intensity of 

ensemble complex PMB3-Zn2+ in the presence of other competing 

metal ions. This finding supports that the ligand system is highly 

specific for sensing bivalent Zn2+ ions. Furthermore, measurements 

of the luminescence lifetime were done to realize the stability at the 

excited state. The lifetime decay profile of PMB3 and PMB3-Zn2+ 

complex fits well with the single-exponential decay curve, and the 
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addition of Zn2+ increases the lifetime of PMB3 significantly from 

1.002ns to 1.294ns (Fig.8). 

 

 

Fig.5 Limit of detection (LOD) for bivalent Zn (II) 

 

 

 

Fig.6 Benesi-Hildebrand plot of PMB3 with Zn2+ 
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Fig.7 Selectivity of PMB3 towards Zn(II). The selectivity of PMB3(10 μM, 
λex= 410 nm, λem= 512 nm) in DMF towards Zn2+ (1 equivalent) in the 

presence of other metal ions (1 equivalent) 

 

 

Fig.8 Fluorescence decay profile of PMB3 in DMF (10µM) in the absence 
and presence of Zn2+ 

3.1.3.4. Reversibility of PMB3 

Reversibility and reusability of the sensor molecules are very 

important in sensor development like sensitivity and selectivity. In 

reversibility experiments, the emission intensity of the ensemble 
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complex PMB3-Zn2+ was investigated with the addition of Na2EDTA 

solution. As seen in Fig.9, with the addition of Na2EDTA to the 

ensemble complex PMB3-Zn2+, the fluorescence emission intensity 

decreased significantly and almost reversed to the original state of 

the free sensor which indicates the regeneration and recovery of the 

free PMB3. The findings demonstrated that the detection of Zn2+ ions 

was reversible by treatment with Na2EDTA, allowing the sensor to 

be utilized again to detect Zn2+ ions in the presence of majority of 

competing metal ions. 

 

Fig.9 Reversibility study of the PMB3 in DMF (10 μM, λex= 410 nm, λem= 512 
nm) towards Zn2+ with addition of EDTA 

3.1.3.5. The Effect of pH on Sensing 

The influence of pH on the emission intensity of PMB3 in the absence 

and presence of bivalent Zn2+ ions was investigated. As illustrated in 

Fig.10, the emission intensity of PMB3 and ensemble complex 

PMB3-Zn2+ progressively increases when pH > 4, and is stable from 

the range 5 to 11, covering the biological pH range, showing the 
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potential use of PMB3 as a selective sensor for bivalent zinc in 

biological systems.  

 

Fig.10 pH effect on the determination of Zn (II) using PMB3(10 μM), λex= 
410 nm, λem= 512 nm) in DMF 

To explore the practical applications of PMB3 in biological systems, 

we have studied the cytotoxicity of PMB3 towards human cell lines 

(CHO K1). For this MTT cell viability assay was performed. The MTT 

assay is used to measure cellular metabolic activity as an indicator 

of cell viability, proliferation, and cytotoxicity. This colorimetric 

assay is based on the reduction of a yellow tetrazolium salt, the MTT 

(3–(4,5–dimethylthiazol–2–yl)–2,5–diphenyltetrazolium bromide), 

to purple formazan crystals by metabolically active cells. The viable 

cells contain NAD(P)H-dependent oxidoreductase enzymes which 

reduce the MTT to formazan. The insoluble formazan crystals will be 

dissolved using a solubilization medium and the resultant solution 

will be quantified by measuring absorbance at 570–630nm using a 

96-well (microplate) spectrophotometer. The darker the solution, 

the greater the number of viable, metabolically active cells. The 
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result revealed that PMB3 was found to be highly biocompatible and 

cell viable within the concentration range 0-100 µg for 24h (Fig.11 

and Table 1). 

 

 

Fig.11 Cytotoxicity study of PMB3 (a) cell with short-term exposure: 24h 
(b) cell with long-term exposure: 72h 

 

Table 1 Results of cytotoxicity study of PMB3 

(Short-term exposure: 24h) 

Conc. 

(µg) 

Absorbance (570 nm – 630 nm) Cell 

viability 

(%) 

1 2 3 Mean 

6.25 0.5984 0.5979 0.5988 0.5984 99.97 

12.5 0.5661 0.5657 0.5665 0.5661 94.57 

25 0.5402 0.5411 0.5407 0.5407 90.33 

50 0.5193 0.5189 0.5190 0.5191 86.72 

100 0.4738 0.4732 0.4736 0.4735 79.10 

Control 0.5988 0.5984 0.5987 0.5986  
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(Long-term exposure: 72h) 

Conc. 

(µg) 

Absorbance (570 nm – 630 nm) Cell 

viability 

(%) 

1 2 3 Mean 

6.25 0.3611 0.3576 0.3421 0.3536 89.70 

12.5 0.2152 0.2119 0.2173 0.2148 54.49 

25 0.2088 0.2103 0.2076 0.2089 52.99 

50 0.1477 0.1452 0.1464 0.1464 37.14 

100 0.0527 0.0544 0.0529 0.0533 13.52 

Control 0.3948 0.3937 0.3942 0.3942  

3.1.3.6. Picric acid Sensing 

The sensing ability of ensemble complex PMB3-Zn2+  towards a 

number of nitro aromatic compounds including picric acid  (PA), 2,4-

dinitrophenol (2,4-DNP), 2,4,6-trinitrotoluene (TNT),  nitrobenzene 

(NB), 2-nitrophenol (2-NP),  4-nitrophenol (4-NP),  4-nitroaniline 

(4-NA), 2-nitrotoluene (2-NT), 4-nitrotoluene (4-NT), 3-nitroaniline 

(3-NA), 3-nitrobenzoic acid(3-NBA) 2-nitroaniline (2-NA), 3-

nitrotoluene (3-NT), and 2,4-dinitroaniline (2,4-DNA), was 

investigated by recording fluorescence spectra and the results are 

summarized in Fig.12. The fluorescence spectrum of the ensemble 

complex, PMB3-Zn2+, shows a strong emission peak at 507 nm. The 

intensity of this peak decreases gradually upon the addition of PA 

without any change in the position of peak (Fig.13). The Stern-

Volmer method is used for calculating the fluorescence quenching 

constant and is found to be 21.17×1015 M-1. The  I0/I vs [PA] plot 

displays an upward curve, which indicates the efficiency of 
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quenching increases with PA concentration (Fig.14), besides that, at 

a higher PA concentration the plot bends upward, suggesting the 

“super amplified quenching process” [36]. Moreover, the percentage 

quenching efficiency was calculated using the equation [(I0-I)/I0 

×100], where I0 and I are fluorescence intensity of ensemble 

complex, PMB3-Zn2+, before and after the addition of nitro 

compounds and the results obtained were given in Fig.15. Picric 

acid has much higher quenching efficiency than other nitro 

compounds.  The fluorescence decay profile of the ensemble 

complex (Fig.16) both with and without PA fits well with the single-

exponential decay curve and the lifetime of PMB3-Zn2+ complex is 

found to be 1.294ns which is almost unchanged in the presence of 

PA(1.289ns). This unchanged fluorescence lifetime value suggests 

that the interaction between ensemble complex PMB3-Zn2+ and PA 

takes place in the ground state and thus indicated the mechanism to 

be a static quenching. 

Fig.12 Change in the fluorescence emission spectra of PMB3-Zn2+ in-
situ complex in DMF (10 μM, λex= 410 nm, λem= 507 nm) in the presence 

of different nitro compounds 
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Fig.13 Changes in the fluorescence emission spectra of PMB3-Zn2+ in-situ 
complex in DMF (10 μM, λex= 410 nm, λem= 507 nm) up on the gradual 

increase in the concentration of PA from 0 - 4.6 equivalent 

 

 

 

Fig.14 Stern-Volmer plot of PMB3-Zn2+ in-situ complex in DMF (10 
μM, λex= 410 nm, λem= 507 nm) with PA 
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Fig.15 Quenching efficiency of PMB3-Zn2+ in-situ complex in presence nitro 
compounds. 

 

 

Fig.16 Fluorescence decay profile of PMB3-Zn2+ in-situ complex in DMF in 
absence and presence of PA 

The most probable quenching mechanism was shown in Scheme 2. 

The bonding of nitrogen atom of the imine(C=N) group present in 

PMB3 with Zn2+ by chelation increases the structural rigidity of the 

molecule and thereby leading to enhancement in emission intensity 
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of the ensemble complex, PMB3-Zn2+. However, as PA is added, the 

electron cloud is shifting towards PA due to the strong negative 

inductive effect (I) and resonance (R) effect, reducing the emission 

intensity of the whole complex. The strong electron-withdrawing 

property of three nitro groups (i.e., negative inductive effect) 

present in PA makes it more acidic and hence interacts with π-

electron-rich part of the PMB3-Zn2+ complex. The lone pair of 

electrons present in the oxygen atom of the OH group got delocalized 

in the aromatic ring (negative R effect). This delocalization of 

electrons also makes it more acidic. Thus donor-acceptor interaction 

accompanied by proton transfer induces intermolecular charge 

transfer between PA and PMB3-Zn2+ complex followed by 

fluorescence quenching of PMB3-Zn2+ complex. 

 

Scheme 2 The proposed quenching mechanism 

The possibility of the inner-filter effect was investigated by taking 

the absorbance spectra of PA and excitation spectra of PMB3-Zn2+. It 

was found that there was a significant overlap between the 

absorbance spectrum of PA and the excitation spectrum of PMB3-

Zn2+, indicating the possible existence of the Inner-Filter Effect (IFE). 

Figure.17 shows the absorbance spectra of PA and excitation 
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spectra of PMB3-Zn2+. Hence, the fluorescence quenching of PMB3-

Zn2+ by the addition of PA is believed to be through inner-filter effect 

(IFE) and static quenching effect. The remarkable selectivity of 

ensemble complex PMB3-Zn2+ towards PA was examined by 

recording the emission spectra of ensemble complex, PMB3-Zn2+, 

with PA in the presence of other aromatic nitro compounds. The 

Fig.18 indicates the selectivity of ensemble complex towards PA and 

the data reveals that there is no significant guest-driven quenching 

of the fluorescence emission of the ensemble complex, PA system. 

The detection efficiency of PMB3 alone towards different nitro 

compounds was also investigated. The addition of PA and other nitro 

compounds does not show any detectable change in the emission 

spectra of PMB3 (Fig.19).   

 

 

Fig.17 The absorbance spectra of PA and excitation spectra of PMB3-Zn2+ 
in-situ complex in DMF 
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Fig.18 The selectivity of PMB3-Zn2+ in-situ complex in DMF towards PA (10 
μM) (1 equivalent) in the presence of other nitro compounds (10 μM) (1 

equivalent) 

 

 

Fig.19 Selectivity of PMB3 towards different nitro compound 

The limit of detection (LOD) of PA using the ensemble complex 

PMB3-Zn2+ was determined by the equation, “limit of detection 

(LOD) = 3× σ/k. The LOD was found to be 42.40×10-15M (Fig.20). 

This result demonstrates that the ensemble complex PMB3-Zn2+ is a 
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powerful system for sensing picric acid at a femtomolar level. The 

change in emission intensity of the in-situ PMB3-Zn2+ ensemble 

complex with the concentration of PA is depicted in Fig.21.The 

comparison of PMB3 with other reported probes in the literature 

was done and the data are shown in Table 2. 

 

Fig.20 Limit of detection (LOD) of PA using PMB3-Zn2+ in-situ complex 
 

 

Fig.21 The profile of fluorescence intensity vs PA concentration 
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Table 2 Comparison of PMB3 with other reported probes 

Probe Sensing analyte LOD Interfering ions Ref 

Probe-1 Zn2+ 0.61µM Cd2+ [37] 

 

Probe-2 Zn2+ 15.6 µM Al3+ [38] 

Probe-3 Zn2+ 0.66µM Fe3+ [39] 

Probe-4 Zn2+ 1.59µM Al3+ [40] 

Probe-5 PA 10nM No interfere [41] 

Probe-6 PA 0.11 µM No interfere [42] 

PMB3 

 

PMB-Zn2+ 

Zn2+ 

 

PA 

Zn2+ = 1.11µM 

 

PA = 42.40fM 

No interfere Present 

work 
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In practical applications, the reversibility and reusability of the 

sensor molecules are very important. We have done the cyclability 

experiment by adding zinc metal ions to the solution containing 

PMB3-Zn2+ and PA complex. As seen in Fig.22, with the addition of 

zinc ions, the fluorescence emission intensity increased significantly 

and almost reversed to the original state of the free PMB3-

Zn2+sensor which indicates the regeneration and recovery of the 

free ensemble complex. This may be due to the formation of zinc 

picrate salts i.e., the added zinc metal ion reacts with PA and form 

picrate salts. Due to this salt formation, the emission intensity of the 

PMB3-Zn2+ complex regenerated. The emission intensity decreases 

again with the addition of PA and the experiments can be repeated. 

The findings demonstrated that the detection of PA was reversible 

by treatment with Zn2+ ion, allowing the sensor to be utilized again 

to detect PA in the presence of majority of competing nitro 

compounds. 

 

Fig.22 Reversibility study of PMB3-Zn2+ in-situ complex in DMF (10 μM, λex= 
410 nm, λem= 507 nm) towards PA with addition of Zn2+ 
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3.1.4. Conclusions 

A novel simple and reusable organo-fluorescent sensor, PMB3, has 

been synthesized, which exhibits a very selective fluorescence 

emission response towards Zn2+ions. Association constant was 

evaluated from the Bensi-Hildebrand relation and stoichiometry of 

the complex was established by Job’s analysis (1:1). The binding of 

Zn2+ ions effectively increase the conformational rigidity and 

fluorescence of PMB3, due to the inhibition of C=N isomerization. 

The LOD was found to be 11.12×10-7M. This ensemble complex 

PMB3-Zn2+ system was again used as a sensor for PA and the limit of 

detection goes down to femtomolar level for picric acid in solution. 

Using the ensemble complex PMB3-Zn2+, the LOD for PA was 

calculated to be 42.40 fM. The fluorescence decay studies revealed 

that the generation of the complex takes place in ground-state and 

no change in the fluorescence lifetime was observed in the presence 

of PA indicating the mechanism to be the combination of static 

quenching and the Inner-Filter Effect (IFE). 
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Detection of copper in aqueous media using PMB3 as 
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3.2.1. Introduction 

The exploration of organic molecules exhibiting Aggregation-

Induced Emission Enhancement (AIEE) has been a focal point in 

recent scientific investigations of luminescent materials. This 

interest is driven by the broad spectrum of potential applications, 

including the detection of biomolecules, the development of 

chemosensors for the highly sensitive identification of hazardous 

heavy metal ions, the advancement of Organic Light-Emitting Diodes 

(OLED), and their utilization in cancer theranostics [1-9]. In the 

pursuit of detecting biologically significant metal ions, researchers 

are developing cost-effective fluorescent chemosensors with AIEE 

activity, emphasizing simplicity, sensitivity, and selectivity [10-13].  

Aggregation-Induced Enhancement (AIE) that transforms non-

emissive organic molecules in pure solvents into highly emissive 

species upon aggregation, can be exploited for metal ion sensing. 

These AIEE active materials have the advantages of greater 

photostability, great selectivity, and high sensitivity making them 

useful sensors for real-time applications [14, 15]. 

A wide range of mechanisms governs AIEE activity, encompassing 

Restriction of Intramolecular Rotation (RIR) [16-18], Twisted 

Intramolecular Charge Transfer (TICT) [19-21], Restriction of 

Intramolecular Charge Transfer (ICT) [22], and Cis–Trans 

isomerization [23]. Each mechanism is system-specific, and there is 

no general mechanism applicable to all systems.  

As the third most abundant essential trace metal ion in biochemical 

systems, after iron and zinc, bivalent copper exists in three forms: 
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Type I, Type II, and Type III. It functions as an oxygen management 

metalloprotein and as a catalytic cofactor for numerous 

metalloenzymes, including cytochrome c oxidase, plastocyanin, 

tyrosinase, ascorbic acid oxidase, and superoxide dismutase [24-

29]. Even so, the abnormal level of accumulation of copper can lead 

to harmful health effects, such as gastrointestinal issues, 

neurodegenerative illnesses like Parkinson's and Alzheimer's, 

Amyotrophic Lateral Sclerosis, Wilson disease, prion diseases, and 

damage to the liver or kidney [30-34]. The widespread use and 

applications of Cu2+ ions in chemistry, and medicine have emerged 

as one of the most important environmental contaminants due to its 

excess accumulation in the environment, which create serious 

imbalance in the release and consumption cycle of the metal ion. The 

World Health Organisation (WHO) mandates that the concentration 

of Cu2+ ions in drinking water should not exceed 31.3μM [35]. Hence, 

the development of selective fluorescent chemosensors with a low 

detection limit and high sensitivity becomes imperative for the fast 

and precise detection of Cu2+ ions in environmental systems. 

Compared to existing techniques fluorometric methods are superior 

and have great sensitivity, simplicity, and rapid response [36-40]. 

Numerous fluorophores, including quinoline, coumarin, fluorescein, 

naphthalimide, pyrene, pyrazine, and rhodamine-based fluorescent 

chemosensors [41-49], have been developed for the detection of 

cupric ions. However, a few of the probes have drawbacks, such as 

cumbersome procedure of synthesis, long response time, low 

fluorescence intensity, low selectivity and sensitivity, low stability, 
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less water solubility, etc. More importantly, very few fluorescent 

probes are available that are capable of detecting Cu2+ in both 

organic and aqueous systems. Therefore, the demand for a suitable 

fluorescent sensor for the quick and accurate detection of cupric 

ions at trace levels has paramount significance.  

Herein this section, we report a Schiff base 1,1'- ((1E,1'E)- ((2E,2'E)- 

(1,3-phenylen bis (methanylylidene)) bis (hydrazine-2,1-

diylidene)) bis (methanylylidene)) bis (naphthalen-2-ol) (PMB3) 

having AIEE activity for the selective detection Cu2+ in aqueous 

medium. The PMB3 aggregates display a bright greenish 

fluorescence and show a fluorescence switch-off response to Cu2+ 

ion with a detection limit of 16.08 fM. These observations clearly 

divulge that PMB3 aggregates are highly selective to Cu2+ ion and 

hence can be extended for the instant naked-eye detection of Cu2+. 

3.2.2. Results and Discussion 

The sensor molecule PMB3 was synthesized through a two-step 

condensation reaction (Scheme 2 in chapter 2) and is easily soluble 

in DMF, and DMSO and is insoluble in water. 

3.2.2.1 AIEE activity of PMB3  

The AIEE activity of PMB3 was investigated by leveraging its high 

solubility in DMF solvent and its insolubility in water. Fluorescence 

emission spectra were recorded in DMF containing varying volume 

percentage of water (0% to 99%) to assess the AIEE activity of PMB3 

at an excitation wavelength of 410nm by keeping the concentration 

of PMB3 as 10µM at room temperature. PMB3 in DMF with 0% water 

fraction was feebly emissive at 512nm and the intensity of emission 
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increased with a light green emission at 536nm as the percentage of 

water fraction increased. The fluorescence spectra presented in 

Fig.1 indicate that up to a 40% water fraction, there is no significant 

change in emission behaviour which is due to the active involvement 

of intramolecular rotation about C=N, N-N bonds [50]. Surprisingly, 

a light green emission at 536nm was observed on approaching the 

water fraction to 50% and intensity increased steadily with increase 

in the percentage of water fraction from 50 to 99. This drastic 

enhancement in the emission intensity as a function of volume 

percentage of water, Fig.2, indicates the AIEE effect. It was also clear 

from the emission profile (Fig.1) that despite of drastic emission 

enhancement, there was a 26nm red shift in emission and this 

redshift of the emission maxima divulged the process of 

transformation of a single organic molecule into aggregates by 

forming an intermolecular association between the organic 

Fig.1 Change in the fluorescence emission spectra of PMB3 in DMF 
(10µM, λex=410 nm, λem= 536 nm) in presence of increasing water 

fraction(fw) from 0% to 99%  
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molecules. Moreover, as the water fractions reaches 50%, 

aggregates start to form which blocks the intramolecular rotation 

about C=N and N-N bonds and hence leads to strong fluorescence 

emission (Scheme 1). 

 

Scheme 1 Proposed mechanism for AIEE behaviour of PMB3 

Apart from fluorescence measurements, the AIEE property of PMB3 

was also studied using an optical microscope. The Fig.3 represents 

the optical microscopic image of PMB3 in DMF with 0% water 

fraction and with 90% water fraction.  It was clear from the image 

that, the particle with greenish-yellow fluorescence increased with 

Fig.2 Fluorescence emission intensity as a function 
of volume percentage of water 
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increase in the water fraction, supporting the formation of 

nanoparticle aggregates.  

 

Fig.3 Optical fluorescence microscopy images (under UV excitation) of (a) 
PMB3 in pure DMF with 0% water fraction(fw) in solution state (fw = 0%) 
and (b) PMB3 in DMF-Water mixed solvent with water fraction(fw) of 90% 

in the aggregated state (fw = 90%) 

 

Furthermore, the effect of viscosity on the AIEE activity of PMB3 was 

investigated. The solvent viscosity was varied by switching the 

glycerol percentage ratio to the methanol percentage ratio. It is clear 

from Fig.4 that the emission intensity increases with increasing 

glycerol percentage which is the result of the viscosity effect and 

which hinder the C=N and N-N the intramolecular rotation [51] 

within PMB3. This observation validates the proposed mechanism 

of the enhancement of fluorescence emission intensity on 

aggregation and due to this restriction of intramolecular rotation the 

AIEE activity of PMB3 is significantly affected. Moreover, the 

photostability of PMB3 aggregates was examined by recording 

emission spectra of PMB3 aggregates periodically for 0 to 240 

minutes as displayed in Fig.5. The stable emission intensity over a 

period of time proves its photostability and probable use as a sensor. 
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Fig.4 Change in the fluorescence emission spectra of PMB3 in DMF (10 μM, 
λex= 410 nm, λem= 536 nm) with change in viscosity of the solvent mixture by 

varying the solvent ratio of methanol to glycerol 

 

 

Fig.5 Time-dependent emission intensity of PMB3 aggregates (fw = 90%) 

To get a vivid understanding of the AIEE activity of PMB3, the 

fluorescence lifetime was measured. The lifetime decay profile of 

PMB3 in DMF and in DMF-water mixed system with the percentage 

of water fraction 90 are depicted in Fig.6, which was well fitted with 
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a single exponential decay curve. PMB3 in DMF has a lifetime value 

of 1.032ns which significantly increases to 1.521ns with the increase 

of the percentage of water fraction due to the formation of PMB3 

aggregates. The suppression of intermolecular rotation brought on 

by PMB3 aggregates is the cause of the increased fluorescence 

lifetime in the DMF-Water mixture having a 90% water fraction. 

 

Fig.6 Fluorescence decay profile of PMB3 (10 μM) in pure DMF with 0% 
water fraction(fw) in solution state (fw = 0%) and in DMF-Water mixed 
solvent with 90% water fraction(fw) in the aggregated state (fw = 90%) 

The pH dependence on the emission intensity of aggregates of PMB3 

was investigated by recording the emission intensity of aggregates 

of PMB3 formed in DMF-Water mixture with water percentage 90 at 

different pH. It was clear from Fig.7, that the emission intensity of 

PMB3 aggregates increased as the pH increased from 2 to 7, and 

above pH 7 emission intensity decreased. The emission intensity 

was almost stable over the physiological pH range of 2-7, which 

increases potential application of the sensor in biological field. 
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Fig.7 Change in the emission intensity of PMB3 (10 μM), λex= 410 nm,  

λem= 536nm) in DMF-Water mixture with water fraction 90% (fw = 90%) at 
different pH 

To gather more insight into the AIEE activity of PMB3 aggregate, UV-

visible absorption spectral changes was also examined. Fig.8 

represents the UV-visible absorption spectra of PMB3 in DMF with 

0% water fraction and in DMF-Water mixture solvent with 90%  

Fig.8 UV-Visible spectra of PMB3 (10µM) in solution state in pure 
DMF and in DMF-Water mixed solvent with water fraction of 90% 

(aggregated state) 
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water fraction. The two broad bands at 332nm and 387nm in the 

absorption spectra of PMB3 in DMF (0% water fraction) observed 

were attributed to π-π* transitions and n-π* transitions in the 2-

hydroxy-1-naphthaldehyde moiety. Interestingly, as the percentage 

of water fraction increases from 0 to 99 the absorption profile shows 

significant changes, and the intensity of the absorption band at 

387nm was decreased with a slight red shift which reveals the 

formation of PMB3 aggregates. The presence of an additional peak 

observed at 465nm with levelled-off tails in the visible region was 

Fig. 9 The dynamic light scattering (DLS) measurements of PMB3 (a) 
with 0% water fraction, (b) with 50% water fraction, (c) with 60% water 

fraction, (d) with 70% water fraction, (e) with 80% water fraction, (f) 
with 90% water fraction, (g) with 99% water fraction 
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attributed to the Mie scattering caused by nanoparticle aggregates 

of PMB3 [52, 53]. The red shift in absorption spectra was the result 

of the formation of J-type aggregates (head-tail type) which resulted 

in the enhancement in emission intensity [54, 55]. Additionally, 

dynamic light scattering (DLS) measurement of PMB3 supports the 

size of PMB3 aggregates in the nano range (Fig.9). 

3.2.2.2. Sensing of Cu2+ ion 

The sensing characteristics of PMB3 aggregates, derived from DMF-

water mixture with a water percentage of 90, were evaluated for 

various metal ions, including Zn2+, Hg2+, Cd2+, Cu2+, Ni2+, Co2+, Cr3+, 

Al3+, Mn2+, Fe3+, Mg2+, Pb2+, Ba2+, Na+, and K+. Fluorescence spectra 

were recorded at an excitation wavelength of 410 nm (Fig.10). The 

addition of Cu2+ ion results in a significant decrease in the 

fluorescence emission profile of the PMB3 aggregate, whereas no 

discernible response was shown for other metal ions, suggesting 

Fig.10 Change in the fluorescence emission spectra of PMB3 in DMF 
(10 μM, λex= 410 nm, λem= 536 nm) with water fraction 90% (fw = 

90%) in the presence of different metal ions 
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that the aggregate of PMB3 is selectively detecting Cu2+ in aqueous 

medium.  

Through the incremental addition of Cu2+ ions to PMB3 aggregates, 

the fluorescence titration experiments were conducted to assess the 

sensing ability and selectivity of the aggregate of PMB3 towards Cu2+ 

ion. Figure 11 reveals that the stepwise addition of Cu2+ ions to 

PMB3 aggregates led to an effective quenching of the fluorescence 

emission of PMB3 aggregates. Upon reaching a concentration of 3.2 

equivalents of Cu2+, the fluorescence completely ceased, suggesting 

a robust associative interaction between Cu2+ and PMB3 aggregates.  

Using the Stern-Volmer plot (Fig.12), the efficiency of fluorescence 

quenching was calculated and the value is 3.75×1015M-1. The 

detection limit calculated was 16.08×10-15M (16.08fM) based on the 

equation 3σ/k (Fig.13). This limit of detection acquired is much 

Fig.11 Changes in the fluorescence emission spectra of PMB3 in DMF 
(10 μM, λex= 410 nm, λem= 536 nm) with water fraction 90% (fw = 

90%) up on the gradual increase in the concentration of Cu2+ from 0 
- 3.2 equivalent 
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lower than the value recommended by WHO in drinking water 

samples(31.5µM).  A comparison was carried out between the 

obtained LOD of PMB3 aggregates with some of the chemosensors 

that have already been reported (Table 1). Even at lower 

concentration levels, PMB3 aggregates possess comparatively better 

Cu2+ ion sensitivity than many of the reported probes.  

 

 

 

Fig. 12 Stern-Volmer plot of PMB3 in DMF (10 μM, λex= 410 nm, λem= 
536 nm) aggregate with water fraction 90% (fw = 90%) 

Fig.13 Limit of detection (LOD) of PMB3 in DMF with water fraction 
90% with Cu2+ 
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Table 1 Comparison of PMB3 with other reported probes 

Probe Sensing 
Analyte 

 

LOD 
[M] 

Quenching 
constant 

[M-1] 

AIEE 
Property 

Ref 

Probe-1 
 

Cu2+ 1.32×10-7 Not Found Yes [56] 

Probe-2 
 

Cu2+ 4.5×10-9 2.27×106 Yes [14] 

Probe-3 
 

Cu2+ 7.84×10-9 Not Found No [57] 

Probe-4 
 

Cu2+ 1.3×10-8 1.45×105 No [58] 

Probe-5 
 

Cu2+ 2.40×10-8 3.77×105 No [59] 

Probe-6 
 

Cu2+ 2.80×10-6 Not Found No [60] 

PMB3 Cu2+ 16.08×10-15 3.75×1015 Yes Present 
Study 

 



 

115 

 

Chapter 3 

The excited state fluorescence lifetime measurements have been 

used to examine the strong fluorescence quenching behaviour of 

PMB3 aggregates in the presence of Cu2+. The fluorescent lifetime 

decay profile of PMB3 aggregates in the presence and absence of 

Cu2+ is displayed in Fig.14. PMB3 aggregates with a lifetime value of 

1.521ns exhibit single exponential decay in the absence of Cu2+. The 

lifetime value of the PMB3 aggregates changed to 1.288ns after Cu2+ 

was added. This shift in the value of the fluorescence lifetime 

indicates that the dynamic quenching process is involved. 

 

Fig.14 Fluorescence decay profile of PMB3 in DMF (10µM) with water 
fraction(fw) percentage of 90 in aggregated state (fw = 90%) in absence 

and presence of Cu2+. 
 

Additionally, chelation between the imine-N atom, and phenolic-O 

atom of PMB3 aggregates with Cu2+ ion will lead to disassembling of 

PMB3 aggregates, which may be responsible for the fluorescence 

quenching process (Scheme 2) of PMB3 aggregates in the presence 

of Cu2+[61]. Job's plot analysis was used to investigate the 
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stoichiometry of complex formation between PMB3 and Cu2+ and the 

results showed that the binding stoichiometry was 1:1 (Fig.15).  

 

Scheme 2 Proposed mechanism of interaction of PMB3 aggregate (fw = 
90%) with Cu2+ 

 

 

Fig.15 Job’s plot of PMB3 in DMF solvent 

Metal competitive analysis was conducted to ascertain selectivity of 

PMB3 aggregates to Cu2+( Fig.16). This was accomplished by 

recording the fluorescence spectra of PMB3 aggregates in the 

presence of one equivalent of Cu2+ and an equivalent quantity of 

other metal ions and observed that the spectral properties of Cu2+ 

remains unchanged. Photographs of PMB3 aggregates with various 

metal ions exposed to a UV lamp, is shown in Fig.17. These results 
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indicate that the PMB3 aggregate possesses remarkable sensitivity 

and selectivity to Cu2+ and can be extended to the biological and 

environmental samples containing Cu2+ ions.  

 

 

Fig.16 The selectivity of PMB3 in DMF (10 μM, λex= 410 nm, λem= 536 nm) 
with water fraction 90% (fw = 90%) towards Cu2+ (1 equivalent) in the 

presence of other metal ions (1 equivalent) 

 

 

Fig.17 Fluorescence emission of PMB3 in DMF (10 μM) with water fraction 
90% (fw =90%) in the presence of fixed concentration (10 μM) of different 

metal ions under UV lamp 

Anion competitive analysis of PMB3 aggregates was conducted in 

the presence of CH3COO-, CN-, NO3-, F-, Cl-, Br-, I-, and H3PO4-. It is clear 

from Fig.18, that these anions do not alter the fluorescence emission 

profile of PMB3-Cu2+ system.  
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Fig.18 The selectivity of PMB3 in DMF (10 μM, λex= 410 nm, λem= 536 nm) 
with water fraction 90% (fw = 90%) towards Cu2+ (1 equivalent) in the 

presence of other anions (1 equivalent) 

The reversibility and reusability of the sensor system is studied 

using Na2EDTA solution as a potent chelating ligand. The addition of 

Na2EDTA solution to the PMB3-Cu2+ system restored the 

fluorescence of free PMB3 aggregates (Fig.19) which again 

quenched on adding Cu2+ into the system. This observation suggests 

Fig.19 Reversibility study of the PMB3 in DMF (10 μM, λex= 410 nm, 
λem= 536 nm) with water fraction 90% (fw = 90%) towards Cu2+ with 

addition of EDTA 
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that the PMB3 free aggregates are regenerating, and the binding of 

PMB3 aggregates with Cu2+ is reversible and hence can be used as a 

suitable reusable sensor for detecting the Cu2+ ion. 

3.2.2.3. Application of PMB3 aggregates in real sample analysis 

To explore the fluorescence property of PMB3 aggregates in real 

samples analysis well water, tap water, and river water samples 

were studied using the standard spiking method. The data generated 

are given in Table 2. The percentage recoveries varied from 100.16 

to 105.07. The spiked data obtained was again compared with 

ICPMS data. 

3.2.2.4. PMB3 aggregates coated test strips 

Since the on-site detection of Cu2+ has received a lot of attention, a 

strip sensor for Cu2+ has been developed using PMB3 aggregates. To 

explore this method, we have prepared two filter paper that has 

been coated with PMB3 aggregates. The Cu2+ solution was then 

dropped into one of the coated filter papers. Fig.20 show the 

changes that were produced. The changes in emission colour are 

easily visible to the naked eye on exposure to UV light. Thus, this 

technique can be extended to the development of highly sensitive 

paper strip sensors for Cu2+. 

Fig.20 Photographic image under UV-lamb (a) PMB3 aggregates formed 
in DMF-Water mixture of water fraction 90% (fw =90%) coated on filter 

paper (b) PMB3 aggregates coated filter paper dropped with Cu2+ ion 
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Table 2 Detection of Copper in Real samples

Water 

sample 

Added 

Cu2+ 

(µM) 

Found 

(µM) 

Recove

ry 

(%) 

Error 

(%) 

SD 

(%) 

RSD 

(%) 

ICPMS 

(µM) 

ICPMS 

(SD) 

(%) 

ICPMS 

(RSD) 

(%) 

 

Well Water 

1.97 1.98 100.50 0.50 0.74 0.37 1.98 0.83 0.41 

3.94 3.97 101.79 0.76 0.83 0.20 3.96 0.83 0.20 

5.90 5.91 100.16 0.16 1.58 0.26 5.93 0.54 0.09 

 

Tap Water 

1.97 2.01 102.03 2.03 0.54 0.26 1.99 1.14 0.57 

3.94 3.99 101.26 1.26 0.54 0.13 3.98 0.83 0.20 

5.90 5.96 101.01 1.01 2.06 0.34 5.94 0.59 0.09 

 

River Water 

1.97 2.07 105.07 5.07 0.54 0.26 1.98 0.89 0.45 

3.94 4.02 102.03 2.03 0.54 0.13 3.97 0.54 0.13 

5.90 6.03 102.20 2.20 1.00 0.16 5.96 0.89 0.14 
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3.2.3. Conclusions 

A novel Schiff base PMB3 having AIEE activity and excellent 

sensitivity and selectivity for Cu2+ in the presence of diverse metal 

ions was designed and synthesized. The PMB3 aggregates show a 

greenish emission in DMF-Water mixture having a switch-off 

fluorescence response to Cu2+ ion, which makes the PMB3 

aggregates a suitable sensing probe for the naked eye detection of 

Cu2+ under UV lamp. The detection limit was calculated to be 

16.08×10-15 M (16.08 fM) range and the quenching constant value 

obtained from the Stern-Volmer plot was 3.75×1015 M-1. The 

measurements of fluorescence lifetime indicate the involvement of 

the dynamic quenching process. The quenching of PMB3 aggregates 

is mainly due to the disassembling of PMB3 aggregates by chelation 

between the imine-N atom and phenolic -O atom of PMB3 and Cu2+ 

ion. The method was extended to real sample analysis and the result 

are quite promising and hence can be developed as real time Cu2+ 

sensor. 
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SECTION 3.3 

Selective detection of picric acid in aqueous media using 

PMB3 as a “turn-off” fluorescent sensor  
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3.3.1. Introduction 

Design, synthesis and development of AIE active simple and multi-

functional organic compounds in an easy way for the selective 

detection of chemical species of multiple significance have a great 

attraction in luminescence materials research. Luminescent 

methods of detection have great interest in chemical and life 

sciences because of its simplicity, selectivity, sensitivity, economic 

viability, and quick responses  [1-3]. Many organic molecules in their 

dilute solution state are highly emissive but loss their activity by 

Aggregation Caused Quenching effect (ACQ) [4, 5]. Since most 

organic molecules possess a π-conjugated chromophore system, the 

ACQ effect reduces its practical applications. To overcome the ACQ 

effect,  a new photophysical phenomenon called Aggregation 

Induced Emission (AIE), was reported by Tang and co-workers [6, 

7]. Molecules which are non-emissive in the free state becomes 

highly emissive in their aggregated form and is referred to as the 

aggregation induced emission effect [8-11]. This distinctive 

characteristic increases the utility of such systems in optical sensor 

developments. The AIEE characteristics are quite useful in the 

development of light-emitting diodes using organic molecules 

(OLEDs), electroluminescent materials, photo emitters, and sensors 

[12-19]. The AIEE property of such systems can be explained by 

Restriction of Interamolecular Rotation (RIR) [20], formation of 

Excited-State Proton Transfer [21], Intramolecular Charge-Transfer 

(ICT) [22, 23], and intramolecular hydrogen bonds [24], etc. 
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Selective recognition of traces of aromatic nitro explosives has great 

significance and considerable importance in recent times due to 

their devastating effects on environmental safety. Picric acid is one 

among them to be detected in very low level as it is used in 

landmines and industrial sectors commonly  [25]. Since picric acid is 

more water soluble than other nitro compounds, it contaminates soil 

and groundwater more. Prolonged exposure to picric acid may cause 

health issues in humans, including skin irritation, anaemia, 

headache, respiratory problems, and liver damage [26-28]. 

Considering these adverse effects of picric acid, it is necessary to 

develop a simple and suitable method for the real-time monitoring 

for PA. Methods  such as gas chromatography coupled with energy-

dispersive X-ray diffraction [29], surface-enhanced Raman 

spectroscopy[30], mass spectrometry[31], nuclear quadruple 

resonance spectroscopy [32], are applied to detect explosives, but 

such methods need expensive instrumentation and trained 

personals. Thus, a highly sensitive and quick fluorescence sensor 

development is still challenging and is highly desirable for the 

efficient detection of picric acid in the aqueous medium.  

Herein, we introduce a AIEE fluorescent sensor, 1,1'-((1E,1'E)- 

((2E,2'E)- (1,3-phenylenebis (methanylylidene)) bis (hydrazine-2,1-

diylidene)) bis (methanylylidene)) bis (naphthalen-2-ol) [PMB3] for 

the selective detection of PA in low level in aqueous medium. 

3.3.2. Experimental section  

3.3.2.1. Method of Preparation of PMB3 aggregates  
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A 1mM solution of PMB3 in DMF was prepared. An aliquot of 100µl 

of PMB3 stock solution was then added to 10ml standard flask and 

diluted to a concentration of 10µM with an appropriate ratio of a 

DMF-Water mixture. The above solution was then sonicated for 20 

minutes and absorption and emission spectrum recorded 

immediately. 

3.3.2.2. Fluorescence and its Measurement 

A stock solution of PMB3 (1mM) was prepared using DMF and the 

stock solutions of nitroaromatic compounds (NACs) of 1mM 

concentration were prepared in double-distilled water. The 

fluorescent spectra were recorded by excitation at 410 nm in DMF 

and fluorescent sensing analysis was performed by recording the 

fluorescence spectra of PMB3 aggregates in DMF/water mixture 

(1:9) and 1 equivalent of the nitro compounds at room temperature. 

The limit of detection was calculated using the formula 3σ/slope 

from the fluorescence titration profile. 

3.3.3.  Results and discussion  

The Schiff base PMB3 was synthesized through the condensation 

reaction of isophthalaldehyde with 1-(hydrazonomethyl) 

naphthalen-2-ol in an ethanol medium under reflux conditions at 

room temperature (Scheme 2 in chapter 2). PMB3 was readily 

soluble in DMF and DMSO. 

3.3.3.1 Emission Enhancement due to Molecular Aggregation 

The AIEE characteristics of PMB3 were studied at room temperature 

by recording the emission spectrum with the addition of different 

volumes of double distilled water to PMB3 solution prepared in 
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DMF. The amount of water fraction percentage (fw) in the DMF-

Water mixture changed from 0 to 99 and emission characteristics 

were recorded by using 410 nm as the excitation wavelength. PMB3 

of concentration 10 μM was weakly emissive in DMF solution at 

512nm. However, the emission intensity increases with an increase 

in the percentage of water fraction and light green emission is 

observed at 536nm. It is evident from the fluorescence spectra in 

Fig.1 that there is no noticeable change in the emission behaviour as 

the percentage of water fraction increases from 0 to 40. Surprisingly, 

as the percentage of the water fraction reaches 50, the emission 

intensity increases drastically and light green emission is observed 

at 536nm. As the percentage of water fraction increased to 60,70, 80, 

and 90, the intensity of emission increased steadily and at 99%, a 

drastic increase in fluorescence emission intensity was observed, 

indicating the AIEE effect. It was also observed from the emission 

Fig.1 Fluorescence emission spectra of PMB3in DMF (10µM) in 
presence of increasing water fraction(fw) from 0% to 99% 
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profile that along with emission enhancement, there was a 26 nm 

red shift and the red shift of emission maxima revealed the 

transformation of a single organic molecule into aggregates by 

forming an intermolecular association between them. 

3.3.3.2. Absorption Studies 

Fig.2 displays the UV-visible spectra of PMB3 in pure DMF and 

DMF/water mixture with a 90% water content. The absorption 

spectra of PMB3 in DMF consisted of two broad bands at 332nm and 

387nm respectively and were assigned to π-π* transitions and n-π* 

transitions in the 2-hydroxy-1-naphthaldehyde moiety. However, 

the absorption spectral profile significantly changed as the 

percentage of water fraction increased. As the water fraction 

increases, the intensity of absorption maxima of the PMB3 at 387nm 

decreases with a slight red shift, indicating the formation of 

aggregates. The appearance of a new peak with low intensity with 

levelled-off tails formed at 465 nm in the visible region was 

Fig.2 UV-Visible spectra of PMB3 (10µM) in solution state in pure DMF 
and in DMF-Water mixed solvent with water fraction of 90% 

(aggregated state) 
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attributed to the Mie scattering of nanoparticles [33, 34]. On the 

other hand, the ligand PMB3 exhibits a weak charge transfer band in 

pure DMF, and as the percentage of water increases in the mixture, 

PMB3 begins to aggregate, and the weak charge transfer band gets 

intensified as a result of the higher concentration of charge transfer 

excitons in the aggregated state. Generally, the red shift of the 

absorption in the UV-Visible spectrum originated from J-type (head-

tail type) aggregates and which results in a significant enhancement 

of the emission intensity. 

3.3.3.3 Optical microscopic study 

Optical microscopic images of PMB3 obtained in the isolated states 

(a) and in the aggregated states (b) are shown in Fig.3. Particles in 

their isolated states have no fluorescence, while upon aggregation 

exhibit a greenish yellow emission. Optical image supports the 

formation of nanoparticles in the aggregated states, which is 

responsible for the fluorescence emission behaviour. The size of the 

PMB3 aggregates was analysed using the FE-SEM image (Fig.4) and 

Fig.3 Optical fluorescence microscopy images (under UV excitation) 
of (a) PMB3 in solution state (fw = 0%) and 
 (b) PMB3 in aggregated state (fw = 90%) 
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was found to be 54.95nm. FE-SEM image showed the presence of 

spherical shaped nano aggregates. 

3.3.3.4 Fluorescence decay study 

The luminescence lifetime measurement was carried out to gather 

more insights into the aggregation phenomenon and consequent 

emission enhancement. The results of lifetime decay measurements 

Fig.5 Fluorescence decay profile of PMB3(10 μM) in pure DMF (fw = 
0%) and in DMF-Water mixture (1:9) (fw = 90%) 

 

Fig.4 FE-SEM image of PMB3 in aggregated state (fw = 90%) 
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of PMB3 in pure DMF and DMF/water mixture with 90% water 

content are well fit by a single-exponential decay curve (Fig.5). The 

lifetime value for PMB3 in pure DMF is 1.032ns which is significantly 

increased to 1.521ns on aggregation. This increase in the lifetime of 

the system in DMF-Water mixture with a relatively greater 

percentage of water content (90%) is attributed to the decrease of 

radiation-less decay in the aggregated state. 

3.3.3.5 The Effect of Viscosity on Fluorescence Emission 

To validate the mechanism of the enhancement of fluorescence 

emission intensity on aggregation, the effect of viscosity was 

examined by integrating methanol with glycerol, and the solvent 

viscosity was adjusted by changing the glycerol percentage ratio to 

the methanol percentage ratio. As the glycerol fraction is increased, 

the intensity of emission maxima also increased (Fig.6) and this 

emission enhancement is the result of the change in the viscosity of 

the medium and associated restriction of intramolecular rotation.  

Fig.6 Fluorescence emission spectra of aggregates of PMB3 (10 μM) with 
change in viscosity of the solvent mixture by varying the solvent ratio of 

glycerol to methanol 
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As it is clear from Fig.1, the emission spectral profile changed with 

increasing the percentage of water fraction, and up to 40%, the 

active participation of N-N and C-N intramolecular rotation persists 

which reduces the emission intensity. When the water fraction 

reaches 50%, aggregation starts and because of physical constraints, 

the intramolecular motion was inhibited, and strong emission 

happens (Scheme 1). 

 

Scheme 1 Proposed mechanism for AIEE behaviour of PMB3 

3.3.3.6 The effect of pH on emission intensity 

Fig.7 Variation of emission intensity of PMB3 (10 μM) in DMF-
Water mixture (1:9 v/v) at different pH. 
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For practical applications, the influence of pH on the intensity of 

emission of PMB3 aggregate in DMF-Water mixture with a water 

fraction of 90% using 4-(2-hydroxyethyl)-1-piperazineethanesulfo 

nic acid (HEPES) buffer was studied. As shown in Fig.7, the 

fluorescence intensity of PMB3 aggregate increased from pH 2 to 7 

and then decreased. No appreciable variations in the emission 

intensity were observed over the physiological pH range of 2-7, 

indicating the potential applications of PMB3 aggregate in the 

biological environments. 

3.3.3.7 Picric acid sensing 

The sensing ability of the PMB3 aggregates formed in DMF /water 

mixture (1:9) towards various nitro derivatives including picric acid 

(PA) has been investigated by recording fluorescence spectra 

(Fig.8). PMB3 aggregates exhibit a prominent emission peak at 

536nm in its fluorescence spectra and the emission intensity 

Fig.8 Fluorescence emission spectra of aggregate of PMB3 (10 μM) 
with water fraction 90% (fw = 90%) in presence of different nitro 

compounds 
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decreases gradually with the addition of PA without any change in 

the position of peak (Fig.9). This decrease in emission intensity 

indicates that the quenching efficiency increases with increase in 

concentration of PA. 

Fig.9 Fluorescence emission spectra of aggregate of PMB3 in presence of 
increasing concentration of PA 

There was a considerable ‘turn-off’ fluorescence response for PA 

among all other tested nitro compounds, which indicates that the 

fluorescence quenching is caused by ground-state complexation 

between electron-rich PMB3 aggregates and electron-deficient 

picric acid through charge transfer process (Scheme 2). In addition, 

the strong electron-withdrawing property of three nitro groups 

present in PA makes it more acidic and make the phenyl group to an 

electron-deficient π-system. The naphthyl group present in PMB3 

aggregates is an electron rich π -system and hence PA could bind 

with this group through donor-acceptor π-π interactions[35-37]. 

This donor-acceptor   π-π interaction and proton transfer induced 

intermolecular charge transfer between PA and PMB3 aggregates, 
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induces fluorescent quenching of PMB3 aggregate. The Stern-

Volmer plot was used to determine the fluorescence quenching 

constant, which was found to be 2.33× 106 M-1 (Fig.10). 

 

Scheme 2 Proposed mechanism of interaction of PMB3 aggregates with PA 

Fig.10 Stern-Volmer plot for the interaction of PMB3 aggregates with PA 

The strong quenching in the fluorescence intensity of PMB3 

aggregates with the addition of PA may be attributed to the static or 

dynamic or combinations thereof which was confirmed from the 

excited state fluorescence lifetime measurements. For that, the 

lifetime decay profile of PMB3 aggregates with and without PA was 
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recorded (Fig.11). The lifetime value of aggregates of PMB3 was 

found to be 1.521ns and remains unchanged after the addition of PA. 

This unchanged fluorescence lifetime value suggests the 

involvement of the static quenching process. Moreover, the non-

Fig.11.Fluorescence decay profile of PMB3 in DMF (10µM) 
with water fraction (fw) percentage of 90 in aggregated state 

(fw = 90%) in absence and presence of PA 
 

Fig.12 Stern-Volmer plot of aggregate of PMB3 
with increasing concentration of PA 
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linearity observed in the Stern-Volmer plot further supports the 

combined effect of both static and dynamic quenching processes 

(Fig.12). The linearity of the plot in the lower concentration of PA 

Fig.13 Limit of detection (LOD) 

 

Fig.14 The selectivity of aggregate of PMB3 (10 μM) towards PA 
(1 equivalent) in the presence of other nitro compounds (1 

equivalent) 
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indicated the static quenching process which was confirmed by 

excited state lifetime measurements and an upward bending at a 

higher concentration of PA indicated a dynamic quenching process. 

The limit of detection was calculated using the formula, 3σ / k, and 

the detection limit was found to be 2.43µM (Fig. 13). 

To confirm the high selectivity of PMB3 aggregates with PA, the 

fluorescence competitive experiments were also studied by 

recording the emission spectra of PMB3 aggregates in the addition 

of 1 equivalent of PA and an equivalent amount of other nitro 

compounds. It was observed from the bar diagram depicted in 

Fig.14 that PA has a significantly higher quenching efficiency than 

other nitro compounds. 

3.3.3.8 Analysis of Real Sample 

The method of using PMB3 aggregates for the analysis of PA was 

extended to real samples made from natural resources such as well 

water, tap water, and river water samples respectively by the 

standard addition method. The results obtained are presented in 

Table 1. The recoveries varied in 99-101% range, which 

demonstrates the applicability and reliability of PMB3 aggregates in 

PA detection in real samples. 

3.3.3.9 PMB3 aggregates coated paper sensor 

This method has been further extended to the development of a 

paper sensor for PA. To explore this, we have prepared a TLC plate 

coated with PMB3 aggregates and PA solution dropped onto the test 

plate. The changes obtained are depicted in Fig. 15. The changes in 

the emission colour can be easily visualized when exposed to UV 
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light with the naked eye. So, this method can be well extended to the 

development of paper sensor for PA. 

Fig. 15. Photographs of TLC plate containing (a) TLC plate only (b) 
TLC plate coated with PMB3 aggregates (c) TLC plate coated with 

PMB3 aggregates and PA. 
 

Table 1 Detection of Picric acid (PA) in real samples 

3.3.4. Conclusions 

A novel fluorescent sensor based on naphthaldehyde, PMB3, have 

been designed and synthesized for the first time. The feeble emissive 

characteristics of PMB3 in the solution state display strong emission 

in the aggregated state, exhibiting AIEE properties. This strong 

Water 

sample 

Added PA 

(µM) 

Found 

(µM) 

Error 

(%) 

Recovery 

(%) 

 

Well 

Water 

3.98 4.0 0.50 100.50 

5.96 5.98 0.33 100.33 

7.93 7.92 0.12 99.57 

 

Tap 

Water 

3.98 3.96 0.50 99.49 

5.96 5.94 0.66 99.33 

7.93 7.89 0.50 99.49 

 

River 

Water 

3.98 4.01 0.75 100.75 

5.96 6.01 0.83 100.83 

7.93 7.97 0.50 100.53 
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emission behaviour in the aggregated state is due to the restricted 

intramolecular rotation of the molecules. The AIEE properties of 

PMB3 have been explained using UV-visible spectra, fluorescence 

decay study, and optical microscopic study. The utility of AIEE active 

property of PMB3 aggregate was further used for the selective 

sensing of PA and the detection limit was 2.43µM with a quenching 

constant value of 2.33×106 M-1. Moreover, the quenching 

fluorescence emission intensity of PMB3 aggregates in presence of 

PA was explained with the steady-state fluorescence lifetime 

measurement and Stern-Volmer plots which confirm that the 

fluorescence quenching follows both static and dynamic processes. 
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SECTION 3.4 

Simultaneous detection of bivalent Copper and Nickel in 

aqueous media using PMB3 as a Colourimetric probe 
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3.4.1. Introduction 

A colourimetric sensor is an ingenious device that undergoes a 

visible colour change immediately when it detects specific 

substances, facilitating swift and simple sensing without 

the demand for intricate apparatus. The primary allure of 

colourimetric strategies lies in their simplicity, combined with 

sensitivity and selectivity (SSS). This method perpetually carves out 

a unique niche on account of its distinctive characteristics, including 

naked eye detection under visible light, rapid response, and 

inexpensive instrumental facilities. Formulating a colorimetric 

sensor with exceptional selectivity for the detection and estimation 

of cations has consistently been an acute challenge for researchers. 

The achievement of efficient and simultaneous detection of multiple 

target ions with a single sensor seems more appealing and cost-

effective than one-to-one testing methods, as it alleviates the hurdles 

associated with using multiple indicators [1-3]. 

Considering the multifaceted significance of copper in diverse 

physiological and pathological contexts, and its crucial role in 

maintaining human organs and functions, the development of a 

selective colourimetric sensor for Cu2+ is quite imperative. 

Nickel is another indispensable metal that finds applications in both 

industrial and biological domains. In industry, it is widely used for 

stainless steel production and other alloy formulations, while it 

plays a key role in biological processes such as enzyme protein 

development, cytohormone regulation, and pigment metabolism[4, 

5]. However, excessive Ni2+ ions can be detrimental to human health, 
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as they can readily accumulate in the liver, spleen, and kidneys, 

triggering ‘lung cancer’ and ‘nasopharyngeal carcinoma’[6, 7]. In 

1990, "International Agency for Research on Cancer" (IARC) 

proclaimed nickel compounds as Group 1 human carcinogens, 

emphasizing their proclivity to cause human cancer[8]. Hence, 

ensuring social and environmental safety necessitates the 

development and deployment of a robust monitoring system and a 

proficient technique for nickel detection, which indeed poses an 

intriguing and formidable endeavour. 

The determination of copper and nickel currently relies on 

conventional methods, such as spectroscopic techniques. However, 

the high cost and complexity of these techniques make them quixotic 

for rudimentary testing laboratories. Thus, it is essential to explore 

novel alternatives for selectively detecting bivalent copper and 

nickel with superior responses in the presence of several heavy and 

trace metal ions.  

Herein, I have acquainted a novel colourimetric sensor, 1,1'-

((1E,1'E)-((2E,2'E)-(1,3-phenylenebis(methanylylidene))bis(hydra 

zine-2,1-diylidene)) bis (methanylylidene)) bis (naphthalen-2-ol) 

[PMB3] synthesized from (E)-1-(hydrazonomethyl)naphthalen-2-ol  

and isophthalaldehyde  for the synchronous and selective detection 

of Cu2+ and Ni2+ with a very low limit of detection. The PMB3 sensor 

exhibits an evident colour change, thus rendering it suitable for 

naked-eye detection of bivalent copper and nickel ions and 

facilitating real sample analysis. 
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3.4.2. Experimental section  

3.4.2.1. Colourimetric Measurements 

A 1mM stock solution of PMB3 was prepared in dimethylformamide 

(DMF), while 1mM stock solutions of diverse metal ions were 

prepared from their nitrate salts, using double-distilled water. The 

experimental protocol of colourimetric sensing involved recording 

absorption spectra for mixtures formed by combining 2.5mL of a 

10µM PMB3 solution with an equimolar quantity of metal ion stock 

solutions. The detection limit (LOD) was determined from the UV-

visible spectral titration curve utilizing the formula 3σ/slope. 

Furthermore, the Benesi-Hildebrand equation was applied to 

ascertain the association constant. 

3.4.3. Results and Discussion 

The sensor PMB3 was synthesized through a two-step condensation 

reaction, as outlined Scheme 2 in chapter.2. PMB3 demonstrated 

pronounced solubility in organic solvents like dimethyl sulfoxide 

(DMSO) and dimethylformamide (DMF). 

3.4.3.1 Colourimetric analysis  

The sensing efficacy of PMB3 was systematically evaluated using a 

visual assessment in the presence and absence of diverse metal ions. 

Upon the addition of Cu2+ and Ni2+ ions, an immediate colour change 

of the PMB3 solution in DMF was observed, transitioning from 

colourless to yellow (Fig.1). On another hand the addition of other 

metal ions (Al3+, Hg2+, Zn2+, Co2+, Fe3+, Cd2+, Ag+, Mn2+, Mg2+, Ba2+, 

Ca2+, Cr3+, Pb2+, and Na+) yielded no discernible effect on the colour. 

This remarkable finding underscores the ability of PMB3 for visual 
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detection, specifically demonstrating its selectivity for divalent 

copper and nickel ions.  

 

Fig.1 Colour changes of PMB3(10µM) before and after addition of 
respective metal ions. 

3.4.3.2. UV-Visible Absorption studies 

Fig.2 depicts the UV-visible absorption spectrum of PMB3 in DMF in 

the presence of diverse metal ions. The DMF solution of PMB3 

exhibited two broad bands at 332nm and 387nm, corresponding 

respectively to the π-π* and n-π* transitions of the 2-hydroxy-1-

naphthaldehyde moiety. The addition of Cu2+ and Ni2+ induced 

substantial alterations in the absorption spectral profile. 

Specifically, the introduction of bivalent copper led to a reduction in 

the peak intensity at 387nm and the emergence of a new peak at 

Fig.2 UV–Visible spectra of PMB3 (10µM) in 
presence of various metal ions 
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454nm. Similarly, the addition of bivalent nickel resulted in a 

diminished intensity of the peak at 387nm, accompanied by the 

appearance of a new peak at 472nm. Notably, the position or 

intensity of the absorption peaks remained relatively unaffected 

with the introduction of other metal ions under investigation. 

3.4.3.3 UV -Visible absorption titration on Cu2+ and Ni2+ ions 

The sensitivity of the PMB3 sensor to Cu2+ and Ni2+ is delineated in 

Fig. 3a and b. Regarding Cu2+ ions, with increasing concentration, 

the absorption band at 387nm gradually attenuated, concomitant 

with the emergence of a new absorption band at 454nm, and a 

distinct isosbestic point was observed at 416nm, indicating the 

formation of the PMB3-Cu2+ complex in the solution state. 

Furthermore, the initially colourless solution underwent a 

transition to a pale-yellow hue, intensifying with higher 

concentrations of Cu2+, and the absorption peak exhibited a red shift. 

In assessing the specificity of PMB3 towards Ni2+, the absorption 

Fig.3a UV -Visible absorption titration spectra of 
PBM3(10µM) with Cu2+ 
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peak of PMB3 at 387nm systematically shifted downwards with the 

gradual addition of Ni2+ ions and subsequently, an additional intense 

peak is registered at 472nm. This spectral alteration, coupled with a 

distinct isosbestic point at 418nm, confirms the formation of the 

PMB3-Ni2+ complex.  

Fig.3b UV -Visible absorption titration spectra of 
PBM3(10µM) with Ni2+ 

 

Fig.4a Job’s plot of PMB3 (10µM) with Cu2+ 
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3.4.3.4 Stoichiometry of metal complexes  

The Job's plot, given in Fig.4 a and b, illustrates the variation in the 

maximum absorption at 454nm and 472nm concerning the mole 

fraction. This analysis reveals that in PMB3-Cu2+ and PMB3-Ni2+ 

complexes have1:1 binding ratio.  

 

Fig.4b Job’s plot of PMB3 (10µM) with Ni2+ 

3.4.3.5 Limit of Detection (LOD) 

The determination of detection limits for these metal ions was 

conducted by employing standard deviation method, as provided in 

Fig. 5. The detection limits were found to be 4.56µM for PMB3-Cu2+ 

and 2.68µM for PMB3-Ni2+. A comparison was carried out between 

the obtained LOD value of PMB3 and some of the colourimetric 

probes that have been already reported (Table 1). Even at lower 

concentration levels, PMB3 found to have better Cu2+ and Ni2+ ion 

sensitivity than many of the other reported probes, which is a 

desired quality of an effective colourimetric probe. The assessment 

of binding interactions between the metal ions and PMB3 was done 
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using the Benesi-Hildebrand equation, disclosing association 

constants of 3.47×104M-1 and 8.02×104M-1 for the PMB3-Cu2+ and 

PMB3-Ni2+ complexes respectively (Fig.6).  

 

 

 

 

 

Fig.5 Limit of detection (LOD) for (a) Cu2+ (b) Ni2+ metal ions. 
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Table 1 Comparison of PMB3 with other reported colourimetric probes 

Probe Sensing 

Analyte 

LOD 

[M] 

Binding constant 

[M-1] 

Mode of 

detection 

Ref 

Probe-1 Cu2+ 0.66×10-6 1.90×104 Colourimetric [9] 

Probe-2 Cu2+ 5.80×10-6 1.20×104 Colourimetric [10] 

Probe-3 Cu2+ 8.0×10-6 4.49×102 Colourimetric [11] 

Probe-4 Cu2+ 28.0×10-6 1.87×104 Colourimetric [12] 

Probe-5 Cu2+ 8.77×10-6 2.70×103 Colourimetric [13] 

Probe-6 Ni2+ 0.5×10-6 2.343×104 Colourimetric [8] 

Probe-8 Ni2+ 1.71×10-6 1.10×104 Colourimetric [14] 

Probe-9 Ni2+ 1.8×10-6 1.45×103 Colourimetric [15] 

Probe-10 Ni2+ 1.47×10-6 2.5×105 Colourimetric [16] 

Probe-11 Ni2+ 0.14×10-6 3.07×103 Colourimetric [17] 

PMB3 Cu2+ 

 

Ni2+ 

45.63×10-7 

 

26.85×10-7 

3.47×104 

 

8.02×104 

Colourimetric Present 

Work 
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Fig.6 Benesi-Hildebrand plot of PMB3 with (a) Cu2+ (b) Ni2+ metal ions 

To validate the enhanced selectivity of PMB3 toward Cu2+ and Ni2+, the 

sensing performance in the presence of other competitive metal ions was 

conducted. Various metal ions, including Al3+, Zn2+, Co2+, Fe3+, Cr3+, Cd2+, 

Hg2+, Ag+, Mn2+, Mg2+, Pb2+, Ba2+, Ca2+, and Na+, which could potentially 

interact with PMB3, were examined. In Fig.7a, the proportional changes 

in PMB3 absorbance induced by the addition of various metal ions are 

depicted, and the figure clearly illustrates that the sensing characteristics 

of PMB3 for Cu2+ and Ni2+ remained largely unaffected by the addition of 



 

156 
 

Chapter 3 

different metal ions. Additionally, the interaction between PMB3 and Cu2+ 

or Ni2+ in the presence of diverse anions was examined, and the resultant 

shifts in absorption are illustrated in Fig.7b. PMB3 manifested a pink 

colour upon the introduction of anions such as fluoride, cyanide, and 

acetate, followed by a transition to yellow upon the subsequent addition 

of Cu2+ and Ni2+. This observation distinctly underscores the selectivity of 

PMB3 in the presence of competing anions. 

 

 

 

Fig.7 Selectivity PMB3(10µM) (a) in presence of metal ions (b) in presence of 

anions 
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3.4.3.6 Selectivity and reversibility of the complexation reaction 

The reversible sensing behaviour stands as a pivotal characteristic of the 

sensor, in enhancing the practical utility of novel sensors. To prove the 

regeneration and reversibility of complexation of PMB3 with Cu2+ and 

Ni2+, interaction with a potent chelator, the disodium salt of EDTA was 

studied. The absorbance bands at 454nm and 472nm corresponding to 

the PMB3-Cu2+ and PMB3-Ni2+ complex, respectively, disappeared upon 

the addition of Na2EDTA to the mixtures, confirming restoration and 

regeneration of free PMB3. Furthermore, reintroducing Cu2+ and Ni2+ ions 

into the solution mixture reinstated the absorption bands (Fig.8). 

Consequently, the PMB3 sensor proves to be effective and reusable for 

real-time applications owing to its regeneration capability. 

 

Fig.8 Reversibility study of the PMB3(10 μM) towards Cu2+ and Ni2+ with addition 
of EDTA. 

3.4.3.7 Effect of pH on sensing behaviour of PMB3 

The effect of pH on the sensing behaviour of PMB3 towards Cu2+ and Ni2+ 

was investigated. The absorption spectra of PMB3, PMB3 with the 

addition of Cu2+, and PMB3 with the addition of Ni2+ were recorded at 

different pH values and depicted in Fig.9.  The absorbance of PMB3 at 
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387nm has almost similar absorbance value from pH 3 to 10 and after it 

goes decreasing. With the addition of Cu2+ ion the absorbance value at 

454nm and with the addition of Ni2+ the absorbance value at 472nm 

shows similar trends and hence PMB3 can be used for sensing Cu2+ and 

Ni2+ ions at a biological pH range also. 

 

Fig.9 Change in the absorption spectra of PMB3 (10 μM) at different pH 

3.4.3.8 Distinction of PMB3-Cu2+ and PMB3-Ni2+ 

It is essential to figure out how to differentiate between PMB3-Cu2+ and 

PMB3-Ni2+ because both displayed the same yellow colour with a slight 

difference in wavelength. It is commonly known that amino acids and 

peptides containing thiols bind strongly to Cu2+ion[9, 18-20]. Thus, to 

address the issue, we employed glutathione as a selective complexing 

agent. Upon addition of glutathione to PMB3-Cu2+ and PMB3-Ni2+ 

complex, only PMB3-Cu2+ complex demonstrated spectral and discernible 

colour changes from yellow to colourless as displayed in Fig.10 and 

PMB3-Ni2+ complex did not show any spectral and noticeable colour 

change. This finding showed that the chelation of Cu2+ with glutathione 

caused PMB3-Cu2+ to return to free PMB3. 
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Fig.10 Distinction between PMB3-Cu2+ and PMB3-Ni2+ 

3.4.3.9 Analysis of Real Sample 

To demonstrate the practical applicability of PMB3 in quantifying Cu2+ 

and Ni2+, these metal ions were scrutinized in real samples sourced from 

the natural environment. The assessment of metal ion recovery involved 

the examination of real samples spiked with varying concentrations of the 

metal ions, facilitating an evaluation of the accuracy of the procedure. The 

presented results in Tables 2 and 3 indicated successful recovery for 

both analytes, affirming the practical viability of PMB3 for the precise 

detection of Cu2+ and Ni2+ in real environmental samples. 
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Table 2 Detection of Copper in real samples 

 

 

 

Table 3 Detection of Nickel in real samples 

 

 

Water 

sample 

Added Cu2+ 

(µM) 

Found 

(µM) 

Error 

(%) 

Recovery 

(%) 

 

Well Water 

5.90 5.89 0.16 99.83 

7.85 7.83 0.25 99.74 

9.80 9.76 0.40 99.59 

 

Tap Water 

5.90 5.87 0.50 99.49 

7.85 7.86 0.12 100.12 

9.80 9.86 0.61 100.61 

 

River Water 

5.90 5.93 0.50 100.50 

7.85 7.87 0.25 100.25 

9.80 9.82 0.20 100.20 

Water 

sample 

Added Ni2+ 

(µM) 

Found 

(µM) 

Error 

(%) 

Recovery 

(%) 

 

Well Water 

3.94 3.96 1.01 101.01 

5.90 5.86 0.67 99.32 

7.85 7.84 0.12 99.87 

 

Tap Water 

3.94 4.00 1.52 101.50 

5.90 5.87 0.50 99.49 

7.85 7.83 0.25 99.74 

 

River Water 

3.94 4.00 1.52 101.50 

5.90 5.89 0.16 99.83 

7.85 7.82 0.38 99.60 
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3.4.4. Conclusion 

We have designed and synthesized a facile colorimetric sensor PMB3 that 

showed efficient selectivity towards Cu2+ and Ni2+ ions compared to other 

heavy and trace metal ions in aqueous medium. Visual inspection and UV-

visible experimental analysis were used to examine the sensing ability of 

PMB3. Amid various metal ions, the sensor PMB3 demonstrated 

remarkable selectivity and sensitivity toward Cu2+ and Ni2+ with a colour 

shift from colourless to yellow. Based on Job's plot, it was suggested that 

the stoichiometry of Cu2+ and Ni2+ complexes would be 1:1. The formation 

of the PMB3-metal complex is reversible and the LOD was calculated to 

be 4.56 µM and 2.68 µM for Cu2+, and Ni2+ respectively using standard 

deviations and the linear fittings methods. These findings demonstrate 

that PMB3, may be successfully employed for on-site, real-time, naked-

eye detection of bivalent copper and nickel in aqueous media. 
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 Chapter 4 presents an in-

depth exploration of the 

Schiff base BBHN's versatile 

sensing capabilities, divided 

into two sections. Firstly, 

BBHN demonstrates 

selective fluorescence "Turn 

off" behavior for copper ions 

in aqueous medium, 

exhibiting high selectivity 

and sensitivity with a 

detection limit of 35.52 nM. 

Secondly, its Aggregation-

Induced Emission 

Enhancement (AIEE) 

property is harnessed for the 

sensitive detection of picric 

acid (PA) in aqueous 

medium, showcasing a 

detection limit of 4.04µM 

and employing π-π 

interactions and other non-

covalent interactions for 

fluorescence quenching. 

These observations 

underscore BBHN's 

potential as a robust sensor 

for various analytes, offering 

valuable insights into its 

applicability in 

environmental monitoring 

and analysis. 
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Nanoscale detection of copper using BBHN as AIEE 

fluorescent sensor  
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4.1.1 Introduction 

The development of an efficient fluorescent sensor for the sensitive 

and selective detection of biologically important metal ions has 

received great attention in the present scenario due to their 

simplicity, economic viability, sensitivity, easy visualization, and fast 

response for detection [1-6]. Recently, luminescent material 

research has focused on the development of organic molecules with 

the feature of Aggregation Induced Emission Enhancement (AIEE) 

[7]. As of today, many kinds of fluorophores such as quinoline, 

coumarin, fluorescein, and rhodamine-based fluorescent 

chemosensors [8-14] have been developed for the detection of 

copper ions. But some of the probes have serious limitations, 

including poor water solubility, low fluorescence intensity, poor 

selectivity and sensitivity, and long response times [15]. More 

significantly, there are very few fluorescent probes that can detect 

Cu2+ in both aqueous and organic systems. Hence, the growing 

concern has impelled the development of suitable fluorescent 

sensors for the rapid and selective detection of cations at trace 

levels. Conventional instrumental methods [16-20], used for the 

detection of bivalent copper, demand expensive equipment, 

carefully monitored experimental conditions, multi-step, 

challenging sample preparations, etc. On the other hand, 

fluorometric methods have many advantages such as simplicity, 

rapid response, low cost, high sensitivity, and reproducibility. 

Hence, the design and development of a novel fluorescent 



 

164 

 

Chapter 4 

chemosensor having a very low detection limit is still very 

challenging and significant.  

Herein, we have introduced a novel AIEE active Schiff base BBHN, 

derived from 2-hydroxy-1-naphthaldehyde and 4-benzyloxybenz 

aldehyde as a selective fluorescence “turn off” sensor for copper ion 

in aqueous medium. The aggregates of BBHN exhibit strong green 

emission and demonstrate fluorescence “turn off” behaviour on 

interaction with Cu2+ ions, which could be very well applied for the 

instant “naked eye” detection of the metal ion.  

4.1.2 Experimental section  

4.1.2.1 Method of Preparation of BBHN Aggregates 

A stock solution of BBHN in DMSO (1 mM) was prepared. An aliquot 

of 100µl of this solution was transferred into a 10ml standard flask 

using a micropipette and diluted to get a final concentration of 10µM 

using DMSO-Water solvent mixture of appropriate water fractions 

(fw) ratio of 0 to 99 volume percentage under vigorous stirring. The 

above solution was then sonicated for 20 minutes and UV-visible 

and emission spectra of resultant solution mixtures were recorded 

immediately. 

4.1.2.2 Fluorescence activity measurements 

A stock solution of BBHN of 1mM concentration was prepared in 

DMSO and the stock solutions of different metal ions of 1mM 

concentration were prepared in double-distilled water.  

Fluorescence sensing studies were performed using aggregates of 

BBHN in a DMSO-Water mixture (1:9) and 1 equivalent of different 

metal ions at room temperature at an excitation wavelength of 410 
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nm. Using the equation, 3σ/slope, the detection limit (LOD) was 

determined from the fluorescence titration profile. 

4.1.2.3 Fluorescence Quantum Yield 

Fluorescence quantum yield was determined using rhodamine (Фr = 

0.95) as standard at an excitation wavelength of 537 nm. The 

quantum yield is calculated using the following equation, 

Фs = Фr (Ar/As) (Fs/Fr) (ηs/ηr)2 

where As and Ar are the absorbance of the sample and reference 

solutions, Fs and Fr are the corresponding relative integrated 

fluorescence intensities, and η is the refractive index of the solvents. 

4.1.3 Results and Discussion 

A novel Schiff base BBHN was synthesized as detailed in the 

synthetic route shown in Scheme 3 in chapter 2. BBHN has good 

solubility in organic solvents like DMF, DMSO, CH3CN, THF, CHCl3, 

and DCM. 

4.1.3.1 Aggregation-Induced Emission Enhancement (AIEE) 

The AIE characteristics of BBHN were investigated at room 

temperature by recording the UV-Visible and fluorescence spectra 

by adding poor solvent such as water with different water fractions 

to a solution of BBHN in DMSO. The concentration of the Schiff base 

BBHN was kept at 10µM throughout the studies. 

4.1.3.1.1 UV-Visible Spectral Study 

UV-Visible absorption spectra of BBHN in pure DMSO and DMSO-

Water mixture of water fraction 90% are shown in Fig.1. The 

absorption spectra of BBHN in DMSO showed an intense band at 

332, 409, and 432nm, which can be assigned to π-π* transitions of 
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the 2-hydroxy-1-naphthaldehyde moiety,    n-π* transition of imine 

bonds and π-π* transitions originating from the extended 

conjugation between the nitrogen atom and aromatic ring 

respectively. However, the absorption spectral profile shows 

significant changes in increasing the water fraction from 0 to 99%. 

With increasing water fraction, aggregates begin to form, and the 

intensity of the absorption band at 409nm decreased followed by a 

slight red shift of 15nm. In addition, an additional peak at 453nm 

was detected in spectra of BBHN in DMSO with 90% water fraction, 

which indicated the change of a single molecule into aggregates via 

intermolecular interaction. Meanwhile, there was a level-off tail 

phenomenon in the long absorption wavelength in the visible region, 

which was attributed to Mie scattering caused by nanoparticles [21]. 

Furthermore, the red shift in absorption generally originated from J-

type aggregates(head-tail) [22]. 

Fig.1 UV–visible spectra of BBHN (10µM) in solution state in pure 
DMSO and in DMSO-Water mixed solvent with water fraction of 90% 

(aggregated state) 
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4.1.3.1.2 Fluorescence Spectral Study 

The fluorescence spectra were recorded with an excitation 

wavelength of 410 nm and emission behaviour was monitored by 

varying the water fraction(fw) from 0 to 99% in DMSO-Water 

mixture, keeping the overall concentration of the solution to 10µM. 

In the DMSO solution, BBHN (10µM) was feebly emissive and 

exhibited a weakly structured emission band at 510nm. 

Interestingly, as the water fraction increases the emission intensity 

was enhanced, and bright green emission is observed at 531nm with 

a redshift of about 21nm. It was clear from  the fluorescence spectra 

of BBHN (Fig.2), that when the water fraction increased from 0 to 

30%, BBHN had no significant fluorescence emission which could be 

due to intramolecular rotation[23]. However, as the water fraction 

reaches 40%, the emission intensity increases drastically and the 

intensity of emission continuously increased as the water fraction 

increased to 60%, 70%, 80%, 90%, and 99%, which indicated the 

AIE effect. It was observed from the emission profile Fig.2, that along 

with emission enhancement, there was a red shift of emission 

maxima, which could be attributed to the change of a single molecule 

into aggregates via intermolecular interaction between them. Up to 

30% of water fraction, there was the active involvement of N-N and 

C=N intramolecular rotation in the excited state, which weakens the 

fluorescence emission of BBHN. However, when the water fraction 

reaches 40% aggregation starts, which blocks the intramolecular 

rotation due to C=N isomerization and results in strong fluorescence 

emission (Scheme 1). 
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Fig.2 Change in fluorescence emission spectra of BBHN (10µM, λex= 410 nm, 
λem= 530 nm) in presence of increasing volume of water fraction(fw) 

percentage from 0 to 99% 
 

 

Scheme 1 Proposed mechanism for AIEE behaviour of BBHN 

4.1.3.1.3 Optical microscopy 

To gather more insights into AIEE and optical properties of BBHN, 

an optical microscopic study was done at room temperature, and the 

corresponding image is depicted in Fig.3. This optical microscopic 

image showed that there was no noticeable number of particles with 

fluorescence when BBHN is in the isolated state, whereas with 

increasing the water fraction, the particles were visible and show 

greenish yellow emission due to aggregation upon UV light 

excitation at 365nm. Thus, the optical microscopic images support 
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the formation of nanoparticles in the aggregated state which results 

in fluorescence behaviour. 

 

Fig.3 Optical microscopy images (under UV excitation) of (a) BBHN in pure 
DMSO with water fraction(fw) a percentage of 0 in solution state (fw = 0%) 

and (b) BBHN in DMSO-Water mixed solvent with water fraction(fw) a 
percentage of 90 in the aggregated state (fw = 90%) 

4.1.3.1.4 Fluorescence decay study 

The luminescence lifetime measurements were carried out to get 

further information about the AIEE property of BBHN. The lifetime 

decay profile of the BBHN in pure DMSO and DMSO-Water mixture 

Fig.4 Fluorescence decay profile of BBHN (10 μM) in pure DMSO 
with water fraction(fw) of 0% in solution state (fw = 0%) and in 

DMSO-Water mixed solvent with water fraction(fw) of 90% in the 
aggregated state (fw = 90%) 
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of water fraction 90% is depicted in Fig.4 which is well fitted with a 

single-exponential decay curve and BBHN in pure DMSO, shows an 

average fluorescence lifetime value of 1.177ns which is significantly 

increased (2.108ns) with an increase in water fraction. The increase 

in fluorescence lifetime in the DMSO-Water mixture is due to 

suppression of the intramolecular rotation due to aggregation of 

BBHN, which results in longer fluorescence lifetime.   

4.1.3.1.5 The effect of viscosity on AIE 

In addition, the solvent viscosity effect on the AIE property of BBHN 

was inspected in a viscous glycerol-methanol solvent mixture by 

blending methanol with glycerol, and the viscosity of the solvent 

mixture was varied by changing the ratio of glycerol to methanol. It 

is observed from Fig.5 that the emission intensity of BBHN was 

increased with increasing the viscosity of the solution and this 

emission enhancement is attributed to the hindrance of 

intramolecular rotation which results in a decrease in non-radiative 

Fig.5 Change in the fluorescence emission spectra of BBHN (10 μM, 
λex= 410 nm, λem= 530 nm) with change in viscosity of the solvent 

mixture by varying the solvent ratio of glycerol to methanol 
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decay, thereby enhancing the emission intensity. The outcomes 

specify that the restriction of intramolecular rotation has a 

significant effect on the AIE property of BBHN and has a key role in 

stimulating the emission characteristics of the molecule.  

4.1.3.1.6 The effect of pH on AIE 

To further evaluate the practical applications of the aggregate of 

BBHN, the pH dependence of the aggregate of BBHN in DMSO-Water 

mixture with a water fraction of 90% using buffers were 

investigated. It can be seen from Fig.6, that the fluorescence 

emission intensity of aggregate increased on increasing the pH from 

2 to 7, and above pH 7 it is decreased. The emission intensity is 

stable over the pH range of 2-7, which covers the physiological pH 

range and increases the potential applications of the aggregates of 

BBHN in such environments. 

 

Fig.6 Change in the emission spectra of BBHN (10 μM), λex= 410 
nm, λem= 530nm) in DMSO-Water mixture with water fraction 90% 

(fw = 90%) at different pH. 
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4.1.3.2 Sensing of Cu2+ ions in aqueous media 

In order to investigate the metal ion binding property and the 

sensing ability of aggregate of BBHN formed in DMSO-Water (1:9) 

mixture, towards various metal ions such as Cd2+, Hg2+, Zn2+, Ag+, 

Al3+, Co2+, Cr3+, Cu2+, Fe3+, Ni2+, Mn2+, Ca2+, Mg2+, Ba2+, Na+, Pb2+, K+, a 

series of sensing experiments were performed by recording 

fluorescence spectra at an excitation wavelength of 410 nm as 

shown in Fig.7. The fluorescence emission profile of aggregate of 

BBHN decreases drastically with the addition of Cu2+ ion, while other 

metal ions gave no distinct response which implied the ability of 

aggregate of BBHN to selectively detect Cu2+ in aqueous medium. To 

further evaluate the sensing property and the selectivity of the 

aggregate of BBHN toward Cu2+, the fluorescence titration 

experiments were performed by the incremental addition of Cu2+ 

ions (Fig.8). Upon the incremental addition of Cu2+ ions to the  

Fig.7 Change in the fluorescence emission spectra of BBHN (10 μM, 
λex= 410 nm, λem= 530 nm) with water fraction 90% (fw = 90%) in 

the presence of different metal ions 
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aggregate of BBHN, an efficient quenching of fluorescence emission 

was observed and a complete fluorescence turn off was noticed 

when the Cu2+ ion concentration reaches to 4.6 equivalents, 

suggesting that there is a strong association between Cu2+ ions and 

aggregates of BBHN.  

Fig.8 Changes in the fluorescence emission spectra of BBHN (10 μM, 
λex= 410 nm, λem= 530 nm) with water fraction 90% (fw = 90%) up 
on the increase in the concentration of Cu2+ from 0 - 4.6 equivalent 

 

Fig. 9 Stern-Volmer plot of BBHN aggregate in DMSO (10 
μM, λex= 410 nm, λem= 530 nm) with water fraction 90% (fw 

= 90%) 
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The efficiency of the fluorescence quenching was calculated from the 

Stern-Volmer plot (Fig.9) and was found to be 2.58×108 M-1. The 

detection limit was calculated by the 3σ method as shown in Fig.10 

using the equation 3σ/k and was calculated to be 35.52nM. The 

comparison of BBHN with other reported probes in the literature 

was shown in Table 1.  

Table 1 Comparison of BBHN with other reported probes 

Probe 
 

Sensing 
analyte 

LOD Ref 

Probe-1 Cu2+ 8.68µM [24] 
Probe-2 Cu2+ 0.27 µM [25] 
Probe-3 Cu2+ 6.0 µM [26] 
Probe-4 Cu2+ 9.6 µM [27] 
Probe-5 Cu2+ 0.036 µM [28] 
Probe-6 Cu2+ 0.18 µM [29] 
Probe-7 Cu2+ 2.4×10-8M [30] 
Probe-8 Cu2+ 1.8 µM [31] 
BBHN Cu2+ 35.52nM Present 

study 

Fig.10 Limit of detection (LOD) of BBHN in DMSO 
with water fraction 90% with Cu2+ 
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Further, the strong fluorescence quenching behaviour of aggregates 

of BBHN in the presence of Cu2+ ions in an excited state has been 

investigated by the excited state fluorescence lifetime 

measurements. Fig.11 shows the fluorescence lifetime decay profile 

of aggregates of BBHN in the presence and absence of Cu2+ions. In 

the absence of Cu2+ions, aggregates of BBHN show a single 

exponential decay with a lifetime value of 2.108ns. After the addition 

of Cu2+ ions to the aggregates of BBHN the lifetime value changed to 

1.614ns. The change in fluorescence lifetime value suggests the 

involvement of the dynamic quenching process. Furthermore, the 

fluorescence quenching mechanism of aggregates of BBHN in the 

presence of Cu2+ ions may be attributed to the chelation between the 

imine-N atom, phenolic -O atom, and Cu2+ ions[32]. The possible 

quenching mechanism is depicted in Scheme 2.  The quantum yield 

of BBHN aggregates was calculated to be 54.89% which is 

significantly reduced to 41.77% with the addition of Cu2+ ion. The 

Fig. 11 Fluorescence decay profile of BBHN in DMSO (10µM) with 
water fraction(fw) percentage of 90% in aggregated state (fw = 90%) 

in absence and presence of Cu2+ 
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stoichiometry of the complex formed between BBHN and Cu2+ was 

examined by using Job’s plot analysis and is found to be 1:1 (Fig.12).  

Scheme 2 Proposed mechanism for BBHN aggregate (fw = 90%) with Cu2+ 

 

 

Fig.12 Job’s plot of BBHN in DMSO solvent 

To establish the specificity of aggregates of BBHN towards Cu2+ions, 

metal competitive analysis was carried out by recording the 

fluorescence spectra of aggregates of BBHN in the presence of 1 

equivalent of Cu2+ ions and an equivalent amount of other metal 

ions, as shown in Fig.13. When 1 equivalent of Cu2+ ions were added 

to the aggregates of BBHN in the presence of 1 equivalent of other 

metal ions, the fluorescence emission profile exhibited a similar 
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pattern to that with Cu2+ions. The photographs of aggregates of 

BBHN with different metal ions under a UV lamp is given in Fig.14, 

Fig.15 The selectivity of BBHN (10 μM, λex= 410 nm, λem= 530 nm) with 
water fraction 90% (fw = 90%) towards Cu2+ (1 equivalent) in the 

presence of anions (1 equivalent). 

Fig.13 The selectivity of BBHN (10 μM, λex= 410 nm, λem= 530 nm) 
with water fraction 90% (fw = 90%) towards Cu2+ (1 equivalent) in 

the presence of other metal ions (1 equivalent) 

Fig.14 Fluorescence emission of BBHN (10 μM) with water fraction 90% 
(fw =90%) in the presence of fixed concentration (10 μM) of different 

metal ions under UV lamp 
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verified the exceptional sensitivity and selectivity of the aggregate 

of BBHN to distinguish Cu2+ ions in the presence of various 

environmentally and biologically important competing metal ions 

with very high accuracy.  

The analysis of aggregates of BBHN towards Cu2+ ions in the 

presence of biologically significant anions such as F-, Cl-, Br-, I-, 

CH3COO-, CN-, NO3-, and H3PO4- was also carried out and found that 

there are no significant changes in the fluorescence emission profile 

in the presence of these anions (Fig.15). The reversibility and 

reusability were monitored using Na2EDTA. Upon the addition of 

Na2EDTA solution to BBHN aggregates with Cu2+ ion, the 

fluorescence regains and reach back to the original state of the free 

aggregates which indicates the regeneration of aggregates of BBHN 

(Fig.16) and hence can be reused. 

 

Fig.16 Reversibility study of the BBHN in DMSO (10 μM, λex= 410 
nm, λem= 530 nm) ) with water fraction 90% (fw = 90%) towards 

Cu2+  with addition of EDTA. 
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4.1.3.3 Application of BBHN aggregates in real sample analysis 

The property of BBHN aggregates to distinguish Cu2+ ions in the 

presence of other ions was further extended to real samples such as 

well water, tap water, and river water by the standard addition 

method. The results obtained are presented in Table 2. The 

recoveries varied in the 100.50-104.56% range, which 

demonstrates the applicability and reliability of BBHN aggregates in 

Cu2+ detection. 

Table 2 Detection of copper in real samples 

 

4.1.4. Conclusions 

A novel cost-effective Schiff base sensor BBHN having AIEE activity 

was synthesized, and used for the sensitive detection of Cu2+ ion for 

the first time. The aggregates of BBHN exhibited a green emission in 

DMSO-Water mixture and displayed a fluorescence switch-off 

response for Cu2+ ion with a low detection limit of 35.52nM. The 

Water 

sample 

Added 

Cu2+ 

(µM) 

Found 

(µM) 

Error 

(%) 

Recovery 

(%) 

 

Well 

Water 

1.97 2.00 1.52 101.52 

3.94` 3.96 0.52 100.50 

5.90 6.02 2.03 102.03 

 

Tap  

Water 

1.97 2.02 2.53 102.53 

3.94 3.97 0.76 100.76 

5.90 6.08 3.05 103.05 

 

River 

Water 

1.97 2.06 4.56 104.56 

3.94 3.99 1.26 101.26 

5.90 6.11 3.55 103.55 
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change in the fluorescence emission in the presence of Cu2+ 

demonstrated that the aggregate of BBHN could be useful for naked-

eye detection of Cu2+ ions under UV lamp. The fluorescence 

quenching was calculated from the fluorescence titration profile and 

was found to be 2.58×108 M-1. The mechanism of quenching was 

further confirmed by a time-resolved emission study which revealed 

the involvement dynamic quenching process. 
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SECTION 4.2 

Sensing of picric acid using BBHN as an AIEE active “turn 

off” fluorescent probe 
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4.2.1. Introduction 

A fluorescent sensor having aggregation-based enhancement in 

emission characteristics with excellent selectivity and sensitivity to 

picric acid (PA) has been synthesized, and characterized as the 

sensing and determination of aromatic nitro compounds got great 

attraction globally in recent times due to security and safety reasons 

[1-3]. The designing of a proper chemosensor for the detection of PA 

follows the essential criteria that, the molecule contains a π-electron 

cloud that can combine with the electron-poor PA efficiently through 

π-π interactions and Lewis basic sites to interact through 

noncovalent hydrogen bonding interactions.  Considering these 

challenges, herein this work, AIEE active fluorescent sensor was 

synthesized from 1-(hydrazonomethyl) naphthan-2-ol and 4-

benzyloxybenzaldehyde by simple condensation reaction.  

4.2.2. Experimental section  

4.2.2.1. Development of BBHN Aggregates 

In DMSO, a 1mM solution of BBHN was prepared. 100 µl of this stock 

solution was transferred into a 10ml flask, diluted to a final 

concentration of 10µM using a DMSO/Water solvent mixture with 

the water fractions (fw) ratios of 0 to 99 volume percentage under 

vigorously stirring conditions. After 20-minutes of sonication, UV-

visible and emission spectra of solution mixtures were recorded. 

4.2.2.2. Fluorescence activity studies 

A 1mM solution of BBHN was prepared in DMSO, and a 1mM nitro 

aromatic compound stock solutions was prepared in double-

distilled water.  Fluorescence sensing experiments were carried out 
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at an excitation wavelength of 410 nm using aggregates of BBHN in 

a DMSO/Water solution combination (1:9) and 1 equivalent of the 

standard solution of nitro compounds at room temperature. The 

LOD was calculated from the titration fluorescence profile using the 

equation 3σ/slope. 

4.2.3. Results and Discussion 

The method of synthesis of BBHN is shown in Scheme 3 in chapter 

2. BBHN has good solubility in some organic solvents including DMF, 

DMSO, CH3CN, THF, CHCl3, and DCM. 

4.2.3.1 AIE Properties 

The BBHN was water insoluble compound with a strong tendency to 

dissolve in solvents like DMF, DMSO, CH3CN, THF, CHCl3, and DCM. 

The AIE properties of BBHN were examined at room temperature by 

recording the absorption spectrum and fluorescence spectrum of 

the solution mixture after adding water with various water fractions 

to a solution of BBHN dissolved in DMSO. The concentration of BBHN 

was kept at 10µM. 

4.2.3.2. Absorption- Emission Spectra 

In Fig.1, absorption spectra of BBHN in DMSO and DMSO with 90% 

water content are given. The UV-visible spectra of BBHN in DMSO 

register an intense bands at 332, 409, and 432 nm, due to π to π* 

transition of substituted naphthaldehyde, n to π* transition of imine 

bonds, and π to π* transition from the extended conjugation 

between the nitrogen atom and aromatic ring, respectively. 

However, as the water percentage increased from 0 to 99, the 

absorption spectral profile exhibited noticeable changes. Aggregates 
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start to develop as the water fraction rises, and as a result, the 

intensity of the absorption band at 409nm was reduced with a slight 

red shift of 15nm. Also, a new peak at 453nm was found in the 

spectra of BBHN in DMSO with a 90% water fraction, suggesting the 

formation of aggregates from a single molecule through 

intermolecular interaction. A level-off tail phenomenon was also 

observed in the visible region at long absorption wavelengths due to 

Mie scattering by nanoparticles [4]  and the red shift in 

absorption[5] is formed to be the result of  J-type aggregates. 

 

Fig.1 UV–visible spectra of BBHN (10µM) in solution state in pure DMSO 
and in DMSO-Water mixed solvent with water fraction of 90% (aggregated 

state) 

4.2.3.3. Fluorescence Spectra 

The fluorescence spectra were recorded by varying the water 

fraction in a DMSO-Water mixture from 0 to 99%, maintaining the 

overall concentration of the solution to 10µM using an excitation 

wavelength of 410 nm. BBHN (10 µM) was weekly emissive and 

registered an emission band at 510 nm in DMSO solution. 
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Interestingly, the emission intensity was increased as the water 

fraction increased, and green emission was observed at 531nm with 

a red shift of 21nm. The fluorescence spectra of BBHN (Fig.2) clearly 

show that no detectable fluorescence emission is reported as the 

water fraction increased from 0 to 30%, which might be due to the 

intramolecular rotation.  

 

Fig.2 Fluorescence emission spectra of BBHN in DMSO (10µM) in presence 
of increasing the presence of water fraction(fw)  

from 0 to 99% 

However, as the water fraction increases to 40%, the intensity of the 

emission significantly increases, and this trend continues as the 

water fraction increases to 60% - 99%, indicating the AIE effect 

(Fig.3). It can be noticed from the emission profile in Fig. 2 that 

there was a red shift of emission maxima along with emission 

enhancement, which could be explained by formation of aggregates 

through intermolecular interaction between molecules. The 

intramolecular C=N and N-N bond rotation were actively involved 

up to 30% of water fraction in the excited state, which diminishes 
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the fluorescence emission of BBHN. However, once the water 

content reaches 40%, aggregation begins, which prevents 

intramolecular rotation brought on by C=N isomerization and 

triggers a significant increase in fluorescence emission (Scheme 1). 

 

Fig.3 Change in fluorescence intensity of BBHN with water fraction in 
DMSO (fw varies from 0% to 99%). Inset Fluorescence emission of 

aggregates of BBHN under UV-lamp 

 

 

Scheme 1 Proposed mechanism for AIEE behaviour of BBHN 

4.2.3.4. Microscopic study 

The optical microscopic image was recorded at room temperature 

to gather more information into the AIEE and optical characteristics 

of BBHN, and the results are shown in Fig.4. It was clear from the 

image that BBHN in the isolated state had no discernible particles 
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that fluoresce, but on increasing water percentage, the particles 

became visible and emitted a greenish yellow colour due to 

aggregation in response to 365 nm UV light excitation. Thus, optical 

microscopic images obtained are consistent with the formation of 

nanoparticles in their aggregated state, which results in 

fluorescence behaviour. 

 

Fig.4 Optical fluorescence microscopic images (under UV excitation) of (a) 
BBHN in solution state (fw = 0%) and (b) BBHN in aggregated state (fw = 

90%) 

4.2.3.5. Fluorescence decay study 

To explore the emission enhancement property of BBHN further, 

luminescence lifetime studies were performed. Figure 5 illustrates 

Fig.5 Fluorescence decay profile of BBHN (10 μM) in pure DMSO (fw = 
0%) and in DMSO/Water mixture (1:9) (fw = 90%) 
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the lifetime decay profile of the BBHN in DMSO and DMSO with 90% 

water content which is well-fitted with a single-exponential decay 

curve. The decay profile of BBHN in DMSO exhibits an average 

fluorescence lifetime value of 1.177ns, which is substantially 

increased in the presence of aggregates (2.108ns). The increase in 

fluorescence lifetime is believed to be the consequence of the 

suppression of intramolecular rotation. 

4.2.3.6. Fluorescence emission and viscosity effect 

To understand the impact of solvent viscosity on the AIE property of 

BBHN, the system was examined in a viscous glycerol-methanol 

solvent mixture by blending the two substances, and the viscosity of 

the mixture was varied by adjusting the proportion of glycerol and 

methanol. As seen in Fig. 6, the emission intensity of BBHN increases 

with an increase in viscosity. This emission enhancement of BBHN 

at higher viscosity is attributed to the restricted intramolecular 

rotation, which causes a decrease in non-radiative decay and 

Fig.6 Fluorescence emission spectra of aggregates of BBHN (10 
μM) with change in viscosity of the solvent mixture by varying the 

solvent ratio of glycerol to methanol 
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increases the emission intensity. The outcomes specify that the 

restricted intramolecular rotation affects the AIEE property of 

BBHN significantly and plays a prominent role in triggering the light 

emission properties of the molecule.  

4.2.3.7. Emission enhancement and pH influence 

The influence of pH on BBHN aggregates in DMSO with 90% water 

using HEPES buffer was studied to explore the practical applications. 

It is evident from Fig.7, that the fluorescence emission intensity of 

aggregates increased with pH between 2 and 7 and decreased 

further above pH 7. Since the emission intensity is stable over the pH 

range of 2 to 7, the sensor system may be extended to bio-

environments for similar applications.  

 

Fig.7 Emission spectra of BBHN (10 μM) in DMSO-Water mixture (fw = 
90%) at different pH 

4.2.3.8. Sensing of Picric acid  

2,4,6-trinitrophenol (PA) is one of the most used explosives among 

other nitroaromatic compounds and fluorescence techniques have 

emerged as an effective tool for picric acid sensing due to fast 

response, high sensitivity, and easy visualization. Taking advantage 
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of the easiness of the method of synthesis and enhanced AIE 

property of BBHN, we investigated its application for the sensing 

and quantification of picric acid from among other nitroaromatics in 

aqueous media. 

For the sensing of various nitro aromatics, the respective 

compounds was mixed with the aggregates of BBHN formed in 

DMSO-Water (1:9) mixture and then the fluorescence emission 

profile was recorded and which does not show any significant 

change on adding different nitroaromatic compounds except PA 

(Fig.8). With the addition of PA, the emission was quenched 

significantly which implied that the aggregate of BBHN could 

selectively detect PA in aqueous medium. The photographic image 

of the aggregates of BBHN with different nitroaromatic compounds 

under a UV lamp is given in Fig.9, verifying its sensitivity and 

selectivity. To explore the sensitivity of BBHN aggregate to PA, the 

titration experiments were carried out by the addition of PA into 

Fig.8 Fluorescence emission spectra of aggregate of BBHN (10 μM) 
with water fraction 90% (fw = 90%) in presence of different Nitro 

compounds 
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BBHN aggregate, and changes in the emission intensity were 

recorded (Fig.10). Upon addition of PA to the aggregate of BBHN, 

quenching of fluorescence emission was observed and fluorescence 

emission turned off completely when the PA concentration reaches 

to 9.6 equivalent. The quenching efficiency was calculated using the 

Stern-Volmer method (Fig.11) and was found to be 2.03×106 M-1. On 

further increasing the concentration of PA, the stern-Volmer curve 

shows an upward bending which indicates that the efficiency of 

quenching increased with PA concentration which suggests the 

Fig.9 Fluorescence emission of aggregate of BBHN (10 μM) with water 
fraction 90% (fw = 90%) in presence of different nitro compounds under UV 

lamp 
 

Fig.10 Fluorescence emission spectra of aggregate of BBHN in 
DMSO (10 μM) with water fraction 90% (fw = 90%) up on the 

gradual increase in the concentration of PA from 0-9.6 equivalent 



 

193 

 

Chapter 4 

super amplified quenching effect[6]. The Limit of detection, 4.04µM, 

was calculated from the slope of the calibration curve (Fig.12) using 

the equation 3σ/k. 

Fig.11 Stern-Volmer plot of aggregate of BBHN with PA 

Fig.12 Limit of detection (LOD) 
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To understand further the interaction between BBHN aggregates 

and PA and the strong fluorescence quenching process, the 

fluorescence lifetime measurements were carried out in the excited 

state. The decay (lifetime) of BBHN aggregates in the presence and 

absence of PA is depicted in Fig.13. From the decay profile, the 

lifetime value of the aggregate of BBHN was found to be 2.108ns 

which remains almost constant in the presence of PA (2.083ns) and 

this constancy in the fluorescence lifetime value strongly suggests 

the involvement of static quenching processes. The non-linearity 

observed in the Stern-Volmer plot further supports the combined 

effect of both static and dynamic quenching processes (Fig.14)[7]. 

The linearity of the plot in the lower concentration of PA indicated 

the static quenching process which was confirmed by excited state 

lifetime measurements and an upward bending at a higher 

concentration of PA indicated a dynamic quenching process. It is 

Fig.13 Fluorescence decay profile of BBHN in DMSO (10µM) with 
water fraction (fw) percentage of 90 in aggregated state (fw = 90%) 

in the absence and presence of PA 
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therefore concluded that fluorescence quenching is followed by both 

static and dynamic processes.  Moreover, the quenching of 

fluorescence is due to ground-state complexation between electron-

rich fluorescent aggregates of BBHN and electron-deficient picric 

acid through noncovalent interactions like charge transfer 

mechanism and π−π interactions (Scheme 2). 

 

Fig.14 Stern-Volmer plot of aggregate of BBHN with increasing of 

concentration of PA 

 

Scheme 2 Proposed mechanism for BBHN aggregate (fw = 90%) with PA 

 

To understand the high selectivity of BBHN aggregates towards PA, 

among other nitroaromatics, competitive selectivity experiments 
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were conducted by recording the fluorescence spectra of BBHN 

aggregates in the presence of 1 equivalent of PA and an equivalent 

amount of other nitro compounds. It was clear from Fig.15, that the 

quenching efficiency of PA is much higher compared to other nitro 

aromatics which suggests the exceptional selectivity and sensitivity 

of BBHN towards PA. The comparison of BBHN with other reported 

probes was done and the data are shown in Table 1. 

 

Fig.15 The selectivity of aggregate of BBHN in DMSO (10 
μM) with water fraction 90% (fw = 90%) towards PA (1 
equivalent) in the presence of other nitro compounds (1 

equivalent) 
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Table 1 Comparison of BBHN with other reported probes 

Probe Sensing 
analyte 

LOD 
[M] 

Quenching 
Constant [M-1] 

AIEE 
Property 

Ref 

Probe-1 PA 9.5×10-6 1.59×105 yes [8] 

Probe-2 PA 0.11×10-6 1.91×105 yes [9] 

Probe-3 PA 1.96×10-6 2.37×104 yes [10] 

Probe-4 PA 2.85×10-7 3.36×105 yes 10] 

Probe-5 PA 1.74×10-6 4.14×105 yes [11] 

Probe-6 PA 1.22×10-4 Not found No [12] 

Probe-7 PA 4.32×10-6 10.5×103 No [13] 

Probe-8 PA 4.15×10-6 29.4×103 No [13] 

Probe-9 PA 0.4×10-6 1.2×103 No [14] 

Probe-10 PA 1.7×10-5 Not found No [15] 

Probe-11 PA 1.5×10-6 Not found No [16] 

BBHN PA 40.4×10-7M 2.03×106 Yes Present 
work 
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4.2.4. Conclusions 

A novel chemosensor, BBHN is designed and synthesized with AIEE 

properties via a condensation reaction. The AIEE activity of BBHN 

was used as a sensor probe for picric acid (PA) in the aqueous 

medium. The aggregate of BBHN exhibited excellent sensitivity 

towards PA with fluorescence “turn off” response among various 

other nitroaromatics. The fluorescence quenching of BBHN was due 

to π-π interactions, and non-covalent hydrogen bonding 

interactions. The steady-state fluorescence lifetime measurement 

and Stern−Volmer plots confirm that the fluorescence quenching 

follows both static and dynamic processes. These results indicated 

that BBHN can act as a very reliable probe for the sensitive naked-

eye detection of PA. 
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AHN functions as a 

fluorescent sensor for PA, 

exhibiting a fluorescence 

switch-off response with a 

detection limit of 2.45 µM, 

and as a colourimetric 

sensor for Cu2+ in aqueous 

media, showing a colour 

change from colourless to 

yellow with a detection limit 

of 3.16 µM. The fluorescence 

quenching mechanism for 

PA involves both static and 

dynamic processes, 

mediated by π-π interactions 

and intramolecular 

hydrogen bonding, as 

indicated by Stern-Volmer 

plots and lifetime 

measurements. For Cu2+, the 

colourimetric response is 

due to the complexation of 

AHN with Cu2+ in a 2:1 

stoichiometry, confirmed by 

Job’s plot method. These 

findings underscore AHN's 

potential as a versatile 

sensor for environmental 

analytes, providing 

significant insights for 

practical applications in 

environmental monitoring 
and analysis. 
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Chapter 5 

5.1 Introduction 

Simultaneous detection of multiple target ions using facile 

chemosensors has garnered great attention on account of their 

simplicity and it has often succeeded in triumphing over the 

difficulties of employing multiple indicators by one-to-one analysis. 

Among the array of sensing methods, fluorescence, and 

colourimetric approaches have captivated considerable interest 

owing to their numerous advantages, such as simplicity, selectivity, 

visual detectability, non-destructive nature, cost-effectiveness, and 

quick real-time monitoring capabilities [1-4].  

Herein we reported a novel 9-anthraldehyde based Schiff base, 1-

((E)-((E)-(anthracen-9-ylmethylene) hydrazono) methyl) 

naphthalen-2-ol (AHN) with AIEE activity having responses to PA 

and bivalent copper in different contexts. The probe AHN with 

AIEEF (Aggregation Induced Emission Enhancement Fluorescence) 

property, acts as a fluorescent sensor for the selective detection of 

PA through fluorescence switch-off response and acts as a 

colourimetric sensor for Cu2+ in aqueous medium through a shift of 

colour from colourless to yellow. Hence, AHN is very useful for the 

selective detection of PA and Cu2+ through naked-eye for quick real-

time monitoring. 

5.2 Results and Discussion 

The Schiff base AHN was synthesized through a facile condensation 

reaction between 9-anthraldehyde and (E)-1-(hydrazonomethyl) 

naphthalen-2-ol (Scheme 4 in chapter 2) and was soluble in organic 

solvents like DMSO and DMF. 
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5.2.1 Aggregation-Induced Emission Characteristics of AHN 

AHN was readily soluble in DMSO and was insoluble in pure water. 

The AIEE activity of AHN was studied by fluorescence spectrometry 

by varying the water percentage in DMSO solvent from 0 to 99. The 

fluorescence spectra of AHN depicted in Fig.1 embody that as the 

water fraction increases from 0% to 70% the fluorescence intensity 

increases slightly. Later, when the water fraction reaches 80% the 

system shows a drastic enhancement in fluorescence intensity, and 

red emission was observed at 570nm with a shift of 60nm. Further, 

as the water fraction varies from 80% to 90% and then to 99%, the 

fluorescence emission intensity increases considerably which 

indicates the AIEE activity of AHN. Along with emission 

enhancement, there was a red shift in emission maxima which 

implies the transformation of a single molecule into aggregates by 

intramolecular association. Up to 70% of the water fraction there is 

Fig.1 Change in the fluorescence emission spectra of AHN in DMSO 
(10µM, λex=425 nm, λem= 570 nm) in presence of increasing water 

fraction (fw) from 0% to 99% 
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an active involvement of C=N isomerization and intramolecular 

rotation about the N-N bond which suppresses the fluorescence 

emission of AHN and as the water fraction reaches 80% aggregation 

starts and blocks the intramolecular rotations and hence increases 

the fluorescence emission (Scheme 1). 

Scheme 1 Proposed mechanism for AIEE behaviour of AHN aggregate 

 

Besides, the fluorescence emission property was studied using an 

optical microscope, and the optical microscopic image of AHN with 

0% water fraction and 90% water fraction is shown in Fig.2. The 

obtained images clearly show that there are no noticeable particles 

at 0% water fraction with fluorescence and as the water fraction 

Fig.2 Optical fluorescence microscopic images (under UV excitation) of (a) 
AHN in pure DMSO with percentage water fraction(fw) of 0 in solution 

state (fw = 0%) and (b) AHN in DMSO-Water mixed solvent with 
percentage water fraction(fw) of 90 in the aggregated state (fw = 90%) 
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increases the number of particles with fluorescence also increases, 

which supports the nanoparticle formation in the aggregated state. 

The dynamic light scattering (DLS) measurement of AHN aggregates 

supports that the size of AHN aggregates is in the nano range (Fig.3). 

 

Fig.3 The dynamic light scattering (DLS) measurements of AHN (a) with 
0% water fraction, (b) with 80% water fraction, (c) with 90% water 

fraction, (d) with 99% water fraction. 

To investigate the AIEE property of AHN, the absorption spectra of 

AHN in DMSO with 0% water fraction and with 90% water fraction 

were studied. From the absorption spectra depicted in Fig.4, AHN in 

DMSO shows two broad bands at 330nm and 425nm corresponding 

to π - π* and n - π* transitions in the 2-hydroxy-1-naphthaldehyde 

moiety. As the water fraction increases from 0% to 70% there are no 

remarkable changes in absorption spectra. However, as the water 

fraction reaches 80% the intensity of the band decreases with the 
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formation of new peaks at 468nm and 499nm in the visible region. 

The new peaks with levelled-off tails at the visible region are due to 

the formation Mie scattering effect by nanoparticle aggregates of 

AHN suspension [5]. Generally, aggregates of J-type (head-tail type) 

Fig.4 UV–visible spectra of AHN (10µM) in solution state in 
pure DMSO and in DMSO-Water mixed solvent with water 

fraction of 90% (aggregated state) 

 

Fig.5 Change in the fluorescence emission spectra of AHN in DMSO 
(10 μM, λex= 425 nm, λem= 570 nm) with change in viscosity of the 

solvent mixture by varying the solvent ratio of glycerol to methanol 
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are responsible for the red shift in the absorption spectra which 

significantly enhances the emission intensity [6, 7].  

To validate the mechanism of fluorescence enhancement, the effect 

of viscosity is also studied by using methanol glycerol mixture. The 

viscosity of the mixture is varied by increasing the percentage of 

glycerol to methanol. It is evident from Fig.5, that as the glycerol 

percentage increases, the emission intensity also increases and this 

enhancement in emission is due to the viscosity effect. The 

significant enhancement in emission at higher glycerol fraction is 

due to suppression of intramolecular rotations.  

Moreover, the photostability of AHN aggregate was studied by 

recording emission spectra periodically for 0 to 240 minutes and the 

results obtained are given in Fig.6. It is clear from Fig.6, that the 

emission intensity of AHN aggregate was stable over the time range 

and which indicates its photostability. 

 

 

Fig.6 Time-dependent emission intensity of AHN aggregates 
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To understand more about AIEE activity, the fluorescence lifetime 

measurements are also studied. Fig.7 shows the fluorescence decay 

profile of AHN in DMSO with 0% water fraction and with 90% water 

fraction. It was observed from the decay profile, that the lifetime 

value obtained for AHN with 0% water fraction (1.191ns) is 

significantly increased to 2.108ns as the water fraction reaches 90% 

due to aggregate formation. 

 

Fig.7 Fluorescence decay profile of AHN (10 μM) in pure DMSO (fw = 0%) 
and in DMSO-Water mixed solvent in the aggregated state (fw = 90%) 

The influence of pH on emission intensity was carried out to extend 

the application of AHN aggregates in practical situations. As 

illustrated in Fig.8, it was clear that the emission intensity of AHN in 

DMSO with 90% water fraction increased from pH 2 to 7 and then 

decreased. The emission intensity is almost similar in the range of 2-

7, which indicates its potential application in the physiological pH 

range.  
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Fig.8 Change in the emission spectra of AHN (10 μM), λex= 425 nm, λem= 
570nm) in DMSO/Water mixture with water fraction 90% (fw = 90%) at 

different pH 

5.2.2 Detection of picric acid (PA) 

The AHN aggregates in DMSO with 90 % water fraction were tested 

for the sensing of PA, 2,4- dinitrophenol (2,4-DNP), 2,4,6-

trinitrotoluene (TNT), nitrobenzene (NB), 2-nitrophenol (2-NP), 4-

nitrophenol (4-NP), 4-nitroaniline (4-NA), 2-nitrotoluene (2-NT), 4-

nitrotoluene (4-NT), 3-nitroaniline (3-NA), 3- nitrobenzoic acid(3-

NBA) 2-nitroaniline (2-NA), 3-nitrotoluene (3-NT), and 2,4-

dinitroaniline (2,4-DNA). The fluorescence emission profile of AHN 

aggregates with different nitro compounds is delineated in Fig.9. It 

is ascertained from Fig .9, that the emission intensity was quenched 

significantly on the addition of PA while other nitro compounds do 

not affect the intensity of the emission of AHN aggregate, which 

indicates the selectivity of AHN aggregates towards PA. 

Furthermore, to investigate the sensitivity of AHN aggregates 

towards PA, the fluorescence titration experiments were carried out 
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by the incremental addition of PA (Fig.10). Up on the gradual 

addition of PA, the fluorescence intensity also decreased gradually 

and the fluorescence completely switched off when the 

concentration of PA reaches 5.2 equivalents.  

Fig.9 Change in the fluorescence emission spectra of AHN in DMSO 
(10 μM, λex= 425 nm, λem= 570 nm) with water fraction 90% (fw = 

90%) in the presence of different nitro compounds 
 

Fig.10 Changes in the fluorescence emission spectra of AHN in DMSO 
(10 μM, λex= 425 nm, λem= 570 nm) with water fraction 90% (fw = 90%) 

up on the gradual increase in the concentration of PA from 0 – 5.2 
equivalent 
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The quenching constant value is calculated from the Stern-Volmer 

plot (Fig.11) and was found to be 6.21×107M-1. The limit of detection 

was calculated from the calibration curve (Fig.12) using the 

equation 3σ/k and was found to be 2.45µM. The comparison of AHN 

with other reported probes was done and the data are shown in 

Table 1. 

 

Fig. 11 Stern-Volmer plot of AHN in DMSO (10 μM, λex= 425 nm, λem= 570 
nm) aggregate with water fraction 90% (fw = 90%) 

 

 

Fig.12 Limit of detection (LOD) of AHN in DMSO with water fraction 90% 
with PA 
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Table 1 Comparison of AHN with other reported probes 

Probe Sensing 

analyte 

LOD 

[M] 

Quenching 

constant 

[M-1] 

AIEE 

Property 

Ref 

Probe-1 PA 9.5×10-6 1.59×105 yes [8] 

Probe-2 PA 0.11×10-6 1.91×105 yes [9] 

Probe-3 PA 1.96×10-6 2.37×104 yes [10] 

Probe-4 PA 2.85×10-7 3.36×105 yes [10] 

Probe-5 PA 1.74×10-6 4.14×105 yes [11] 

Probe-6 PA 4.32×10-6 10.5×103 No [12] 

Probe-7 PA 4.15×10-6 29.4×103 No [12] 

Probe-8 PA 0.4×10-6 1.2×103 No [13] 

Probe-9 PA 1.7×10-5 Not Found No [14] 

Probe-10 PA 1.5×10-6 Not Found No [15] 

AHN PA 24.57×10-7 6.215×107 Yes Present 

work 
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To investigate further the interactions and the quenching process, 

lifetime measurements were carried out. Figure 13 shows the 

lifetime decay profile of AHN aggregate both with and without PA. 

The lifetime value of the aggregate of AHN was determined from the 

decay profile to be 2.108ns, which remains almost constant in the 

presence of PA (2.009ns). The unchanging fluorescence lifetime 

Fig. 13 Fluorescence decay profile of AHN in DMSO (10µM) with 
percentage water fraction(fw) of 90 in aggregated state (fw = 90%) in 

absence and presence of PA 

 

Scheme 3 Proposed mechanism of the interaction of AHN aggregate (fw = 
90%) with PA 
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value of the aggregate and aggregate PA system shows that the 

mechanism of the quenching process is more or less static. 

Additionally, the combined effect of static and dynamic quenching 

was shown by the non-linearity seen in the Stern-Volmer plot (Fig. 

11). An upward bending at a higher concentration of PA indicated a 

Fig.14 The selectivity of AHN in DMSO (10 μM, λex= 425 nm, λem= 570 nm) 
with water fraction 90% (fw = 90%) towards (a) PA (10 μM) (1 
equivalent) in the presence of other nitro compounds (10 μM) (1 

equivalent), (b) PA (1 equivalent) in the presence of other metal ions (10 
μM) (1 equivalent) 
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dynamic quenching process, whereas the linearity of the curve in the 

lower concentration of PA showed a static quenching process, which 

was supported by excited state lifetime measurements. As a result 

of the above observations and findings, it is clear that both static and 

dynamic quenching processes were involved in the present case of 

fluorescence quenching[16]. Additionally, the static quenching is 

due to ground-state complexation between electron-rich fluorescent 

AHN aggregates and electron-deficient PA and the dynamic 

quenching is due to energy transfer through π-π interactions and 

intramolecular hydrogen bonding interaction between AHN and PA 

(Scheme 3)[17, 18]. 

A series of competitive selectivity studies were conducted by 

recording the fluorescence spectra of AHN aggregates in the 

presence of 1 equivalent of PA and an equivalent quantity of other 

nitro compounds. It was evident from Fig.14a, that the quenching 

efficiency of PA is obviously much higher than that of other nitro 

compounds, and this fact shows that the aggregate of AHN exhibits 

excellent sensitivity and selectivity towards PA, even in the presence 

of other nitro compounds in aqueous solution. In addition to that 

selectivity of AHN aggregates were investigated in the presence of 

diverse metal ions (Fig.14b). It is clear from Fig.14b, that the 

selectivity of AHN aggregates towards PA was not affected by the 

presence of other metal ions. 

5.2.3 Colourimetric Sensing of Copper 

The colour change of AHN in DMSO upon the addition of various 

metal ions such as Al3+, Hg2+, Zn2+, Co2+, Fe3+, Cd2+, Mn2+, Mg2+, Cr3+, 
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Cu2+and Ni2+ nitrates in aqueous medium was investigated. Only the 

Cu2+ ion induced an immediate visible colour change to light yellow. 

This result demonstrated the high selectivity of AHN in DMSO 

towards Cu2+ and the usefulness of AHN for recognizing Cu2+ in 

aqueous media with naked eye (Fig.15).  

 

Fig.15 Colour change of AHN in DMSO (10 μM) in the presence of fixed 
concentration (10 μM) of different metal ions 

Furthermore, using the UV-visible absorption studies, the binding 

affinity of AHN of 10µM concertation towards different metal ions in 

aqueous solution was investigated. The AHN in DMSO solvent shows 

two broad bands at 330nm and 425nm corresponding to π - π* and 

n - π* transitions in the 2-hydroxy-1-naphthaldehyde moiety. With 

Fig.16 Change in the Absorption spectra of AHN in DMSO in the presence 
of different metal ions 
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the addition of Cu2+ ion, the intensity of the peak at 425nm gets 

shifted to 447nm region, which indicates an extensive complexation 

of AHN with Cu2+. However, the addition of other metal ions did not 

produce any change in the intensity of absorption of AHN as shown 

in Fig.16. To examine the selectivity of AHN with Cu2+, the titration 

experiments were done by increasing the concentration of Cu2+.  The 

changes in the absorption titration profile of AHN are shown in Fig. 

17. The titration profile clearly shows that the absorption intensity 

of AHN at 425 nm steadily decreases as the concentration of Cu2+ 

was increased, followed by the shift of the absorption band to 447 

nm with a distinct isosbestic point at 444 nm. Intriguingly, during 

the titration studies, the colour of the AHN solution changed to 

yellow, and the intensity of the colour increased with increasing Cu2+ 

concentration, indicating the development of the AHN-Cu2+ complex 

in the solution (Scheme 4). 

Fig.17 Changes in the Absorption spectra of AHN in DMSO (10 μM) up on 
the increase in the concentration of Cu2+ from 0 – 2.0 equivalent 
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Scheme 4 Proposed mechanism of interaction of AHN with Cu2+ 

Using Job's plot analysis, the stoichiometry of the complex formed 

between AHN and Cu2+ was investigated, and a 2:1 binding 

stoichiometry was identified (Fig.18).Using the equation 3σ/k, the 

limit of detection was estimated from the absorption titration profile 

(Fig.19) and was found to be 3.16µM which is far below the 

acceptable limit of copper recommended by the World Health 

Organisation in drinking water[19]. The association constant (Ka) 

for AHN with Cu2+ was calculated using Benesi-Hildebrand equation 

was found to be 2.4× 104M-1 (Fig.20). 

Fig.18 Job’s plot of AHN with addition of Cu2+ 
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Fig.19 Limit of detection (LOD) for Cu2+ 

 

Fig.20 Benesi-Hildebrand plot of AHN with Cu2+ 

Moreover, competitive experiments were carried out both in the 

presence and absence of metal ions to investigate the selectivity of 

AHN towards the Cu2+ ion. It is evident from Fig.21a that AHN 

exhibits high selectivity with Cu2+ in the presence of competing 

metal ions. Furthermore, the selectivity of AHN towards Cu2+ in the 

presence of anions was investigated. The addition of anions did not 
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show any observable change in the absorption spectrum of AHN 

except for F-, CN-, and CH3COO- ions. With the addition of F-, CN-, and 

Fig.21 (a) The selectivity of AHN in DMSO (10 μM) towards Cu2+(10 μM) 
(1 equivalent) in the presence of other metal ions (1 equivalent) (b) 

Sensing ability of AHN with addition of anions (10 μM), (c) Selectivity of 
AHN towards Cu2+ in presence of anions 
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CH3COO- ions absorption peak significantly changed and the colour 

of the AHN solution shifted from colourless to pink (Fig.21b). To 

prove the selectivity of AHN towards copper, the competing 

experiments in the presence of F-, CN-, and CH3COO- ions were also 

conducted, and the result obtained is shown in Fig.21c. As it is clear 

from Fig.21c, that the addition of Cu2+ ion to the AHN solution 

containing a mixture of anions such as F-, CN-, and CH3COO- ions, 

results in the change of colour from pale pink to yellow with a 

significant change in the absorption spectrum profile. Therefore, the 

results obtained revealed that the absorption spectral response of 

AHN towards Cu2+ is better and is highly useful for the selective 

detection of Cu2+ in aqueous medium. 

The reversibility of complexation between AHN and Cu2+ was 

examined by the addition of disodium salt of EDTA to the solution 

mixture. The addition of EDTA results in the regeneration of the AHN 

Fig.22 The reversibility of AHN in DMSO (10μM) 
towards Cu2+ (1 equivalent) in the presence of 

EDTA (1 equivalent) 
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peak at 425nm with a shift of colour from yellow to colourless. 

Moreover, the AHN-Cu2+ peak was further regenerated with the 

addition of metal salt solution to the same solution mixture (Fig.22). 

This result proves AHN regeneration and its applicability in 

subsequent sensing analysis. 

5.2.4. Application of AHN for the detection of PA and Cu2+ in real 

samples 

The practical application of AHN aggregates was investigated by 

employing the AHN aggregates for the detection of the picric acid in 

real samples made from natural resources such as well water, tap 

water, and river water by the standard addition method. The results 

obtained are presented in Table 2. The recoveries varied in 101-  

Table 2 Detection of PA in real samples 

Water 

sample 

Added PA 

(µM) 

Found 

(µM) 

Error 

(%) 

Recovery 

(%) 

 

Well 

Water 

3.94 3.98 1.05 101.01 

5.90 5.98 1.35 101.35 

7.85 7.89 0.50 100.52 

 

Tap 

Water 

3.94 4.01 1.77 101.77 

5.90 6.02 2.03 102.03 

7.85 7.93 1.09 101.01 

 

River 

Water 

3.94 4.05 2.79 102.79 

5.90 6.09 3.22 103.22 

7.85 8.06 2.67 102.67 
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103% range, which demonstrates the applicability and reliability of 

AHN aggregates in PA detection. Moreover, the AHN is also 

employed for the detection of copper in real samples through 

colourimetric responses and the results obtained are presented in 

Table 3. The recoveries varied in 100 - 102% range, which 

demonstrates the applicability of AHN for Cu2+ detection. 

5.2.5 AHN aggregate-coated test strips 

The on-site detection of PA has great attention and hence this 

method has been extended to the development of a paper sensor for 

PA. To explore this, we have prepared a TLC plate coated with AHN 

aggregates and PA solution dropped onto the test plate. The changes 

obtained are depicted in Fig.23.  These changes in the emission 

Table 3 Detection of Cu2+ in real samples 

Water 

sample 

Added Cu2+ 

(µM) 

Found 

(µM) 

Error 

(%) 

Recovery 

(%) 

 

Well 

Water 

5.90 5.95 0.84 100.84 

7.85 7.91 0.76 100.76 

9.80 9.83 0.30 100.30 

 

Tap 

Water 

5.90 5.98 1.35 101.35 

7.85 7.96 1.40 101.40 

9.80 9.88 0.81 100.81 

 

River 

Water 

5.90 6.03 2.20 102.20 

7.85 8.04 2.42 102.42 

9.80 9.93 1.32 101.32 
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colour can be easily visualized when exposed to UV light with naked 

eye. So, this method can be well extended to the development of 

paper strip sensors for PA with excellent sensitivity.  

 

Fig. 23 Test strips of TLC plate (a) coated with AHN aggregate only (10 
μM) and (b) AHN aggregate dropped with PA solution under UV light 

 

5.3 Conclusions 

A novel chemosensor (AHN) with dual functionality has been 

designed and synthesized. The AIEE activity of AHN has been 

explored for the selective detection of PA through a fluorescence 

switch-off response (fluorescence probe) and serving as a 

colourimetric sensor for selective detection of Cu2+ (colourimetric 

probe) among other biologically and environmentally important 

metal cations. The AHN aggregate exhibited a fluorescence switch-

off response to PA with a detection limit of 2.45µM, resulting from 

ground-state complexation between the electron-rich fluorescent 

aggregates of AHN and electron-deficient PA through π-π 

interactions and intramolecular hydrogen bonding interactions, as 

determined from a Stern-Volmer plot with a quenching constant of 

6.21×107M-1. The ligand, AHN additionally displayed selectivity for 

Cu2+ with a distinct colour change from colourless to yellow with a 

2:1 stoichiometry, alleging a low limit of detection for Cu2+ at 
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3.16µM, significantly below the acceptable limit recommended by 

the WHO.  
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Summary and future outlook 

In this piece of work, three Schiff base receptors PMB3, BBHN, and 

AHN have been designed and synthesized, and their chemosensing 

activity has been investigated using colourimetric and fluorometric 

techniques in the presence of different analytes. The efficient and 

simultaneous detection of multiple target ions with a single sensor 

molecule having different characteristics would be more attractive 

and less expensive than a one-to-one analysis. This novel feature is 

the highlight of this work. The Schiff bases synthesized are 

possessing different characteristics and thus can be utilized for the 

detection of various analytes. 

The Schiff base PMB3 acts as an organo-fluorescent sensor for 

successive detection of bivalent Zinc and Picric acid through an 

“OFF-ON-OFF” response. The PMB3 exhibits a significant emission 

enhancement in intensity with Zn2+ with a limit of detection of  

11.12×10-7M, however, the intensity of emission of the in-situ 

produced complex PMB3-Zn2+ ensemble is quenched selectively 

upon the progressive addition of PA with a detection limit of 

42.4×10-15M. PMB3 has shown AIEE characteristics which are 

applied for the detection of Cu2+ with a detection limit of 16.08 fM 

and picric acid (PA) with a detection limit of 2.43µM. PMB3, 

exhibited a sensitive colourimetric response to Cu2+ and Ni2+ ions 

too among other competing metal ions with a detection limits of 

4.56µM and 2.68µM.  
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Schiff base BBHN possesses AIEE characteristics and is applied for 

the selective fluorescence “Turn off” sensing studies for copper and 

PA with a detection limit of 35.52 nM and 4.04µM. The fluorescence 

quenching behaviour of BBHN in the presence of Cu2+ ions take place 

through dynamic quenching whereas the fluorescence “Turn off” 

response in the presence of PA is mainly due to π-π interactions, and 

non-covalent hydrogen bonding interactions.  

Schiff base AHN, exhibiting multiple analytical responses 

comprising AIEE and colourimetric activity towards distinct 

analytes. The probe AHN with AIEE property acts as a fluorescent 

sensor for the selective detection of PA through fluorescence switch-

off response with a detection limit of 2.45µM and as a colourimetric 

sensor for Cu2+ in aqueous medium with a detection limit of 3.16µM 

through a change in colour from colourless to yellow. 

SCOPE FOR FUTURE WORK 

The current investigation focussed only on the designing and 

synthesis of three novel Schiff base ligands that have great potential 

for use in environmental applications. Our research revealed a 

number of interesting directions for further investigation, such as:  

1. Metal-organic frameworks functionalized with Schiff bases can act 

as effective adsorbent for the removal of heavy metals from water. 

This method of heavy metal removal is more energy-efficient and 

cost-effective technique. This method has many advantages 

including low cost, ease of use, quick separation, and simple 

recycling of adsorbents and hence is to be explored. 
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2. Metal complexes of Schiff bases can act as effective catalyst which 

enhances the yield and selectivity of the different chemical 

processes. Schiff base metallo-systems can attract industry because 

of their high efficiency, excellent selectivity, mild reaction 

conditions, reusability, and simple operation conditions. 

3. Metal complexes of these Schiff bases do offer anti-corrosive 

properties and hence can be used as corrosion inhibitors and for 

coating purposes with polymer support to prevent metal corrosion. 

4. Schiff bases and their complexes find lots of applications in the 

field of medicinal chemistry and pharmaceutical chemistry as 

potential metallodrug, anticancer drugs, DNA cleavage agents, 

therapeutics sensors, enzyme mimics, artificial enzyme cofactors, 

etc. and hence is to be explored.  

5. Schiff bases with optical properties can be used for the 

development of optoelectronic devices (OLED and thin film organic 

solar cells) and photonic devices since they provide cheaper and 

simpler routes to optoelectronic materials and hence open new 

avenues. 

6. Entrapping of polymeric Schiff bases with metal oxide 

nanoparticles will serve as a good candidate for the removal dye and 

other pollutants and hence may open new environmental 

remediation strategies. 
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