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Chapter 1

Introduction and preliminaries

1.1 Introduction

Operator theory is a main branch of Mathematics, which mainly focuses on the

study of bounded and unbounded linear operators defined on a normed linear space.

A continuous linear operator on a normed linear space is called a bounded linear

operator. An operator which is not bounded is called an unbounded operator. It

is well known that the class of all closed densely defined operators is a subclass of

the set of all unbounded operators. Self adjoint densely defined operators play an

important role in the field of quantum mechanics ([12]).

Let H be an infinite dimensional complex Hilbert space. A linear operator T

on H is said to be bounded if there exist a constant c > 0 such that ∥Tx∥ ≤ c∥x∥

for all x ∈ H ([37]). Let B(H) denotes the algebra of all bounded linear operators

defined on H. For T ∈ B(H),

∥T∥ = sup {∥Tx∥ : x ∈ H, ∥x∥ = 1}

([37]). Let T ∈ B(H). Then there exist a unique operator S ∈ B(H) such that

⟨Tx, y⟩ = ⟨x, Sy⟩ for all x, y ∈ H. The operator S is called the adjoint of T and is

denoted by T ∗. An operator T is said to be normal if T ∗T = TT ∗ and is selfadjoint

if T ∗ = T ([37]). It is clear that every self- adjoint operators are normal. T is said

to be positive if ⟨Tx, x⟩ ≥ 0, for all x ∈ H and it is denoted by T ≥ 0.

1
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In the last two or three decades, there was much progress in the study of non

normal classes of operators. Some of the non normal classes operators are hy-

ponormal, M -hyponormal, paranormal, ∗-paranormal operators etc. P. R. Halmos

introduced hyponormal operator, which is an extension of normal operator. An op-

erator T ∈ B(H) is said to be hyponormal if ∥T ∗x∥ ≤ ∥Tx∥ for all x ∈ H ([16]).

In ([48, 50]), I. H. Sheth and J. G. Stampfli studied some characterizations of hy-

ponormal operators and its spectrum. Later, J. G. Stampfli introduced a class of

M -hyponormal operators, which contains the class of hyponormal operators. For

M > 0. T is said to be M-hyponormal if ∥(T − λI)∗x∥ ≤ M∥(T − λI)x∥ for all

λ ∈ C and for all x ∈ H ([55]). In ([44, 55]), M. Radjabalipour and B. L. Wadhwa

studied some properties of M -hyponormal operators. Note that M -hyponormal op-

erators are not normaloid. T is said to be dominant if for each λ ∈ C, there exist a

constant M(λ) ≥ 0 such that ∥(T − λI)∗x∥ ≤ M(λ)∥(T − λI)x∥ for all x ∈ H. It

is clear that every M -hyponormal operators are dominant. In ([51]), some spectral

properties of dominant operators were studied. It is clear that

selfadjoint ⊂ normal ⊂ hyponormal ⊂M − hyponormal ⊂ dominant

An operator T ∈ B(H) is said to be posinormal if TT ∗ ≤ λ2T ∗T for some

constant λ ≥ 0 ([47]). T is said to be polynomially (P)-posinormal if P (T )P (T ∗) ≤

λ2T ∗T, where P (z) is a polynomial with zero constant term and for some constant

λ ≥ 0 ([26]). It is clear that

hyponormal ⊂ posinormal ⊂ polynomially (P )− posinormal

T is said to be a normaloid if ∥T∥ = sup {|λ| : λ ∈ σ(T )}, where σ(T ) is the

spectrum of T. It can be seen that every hyponormal operators are normaloid ([50]),

but every dominant operators need not be normaloid.

T. Furuta introduced a new class of operators, paranormal operators, which contains

the class of hyponormal operators and are normaloid ([13, 28]). T is said to be

paranormal if ∥Tx∥2 ≤ ∥T 2x∥∥x∥ for all x ∈ H ([13]).
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T is said to be ∗-paranormal if ∥T ∗x∥2 ≤ ∥T 2x∥∥x∥ for all x ∈ H ([41]). It can be

seen that every ∗-paranormal operators are normaloid, but need not be paranormal

([53]). In ([53]), K. Tanahashi and A. Uchiyama studied some characterizations and

spectral properties of ∗-paranormal operators.

In ([5]), P. Dharmarha and S. Ram introduced (m,n)-paranormal and (m,n)∗-

paranormal operators, which are extensions of paranormal and ∗-paranormal op-

erators respectively. For m ∈ R+, n ∈ N. T is said to be (m,n)- paranormal if

∥Tx∥n+1 ≤ m∥T n+1x∥∥x∥n for all x ∈ H ([6]), and is said to be (m,n)∗- paranormal

if ∥T ∗x∥n+1 ≤ m∥T n+1x∥∥x∥n for all x ∈ H ([5]).

B. P. Duggal, C. S. Kubrusly and N. Levan introduced class Q operator, which is

an extensions of paranormal operator. An operator T ∈ B(H) is said to be class Q

if T ∗2T 2 − 2T ∗T + I ≥ 0 ([10]).

Many authors studied the properties of closed densely defined operators on a

Hilbert space ([1, 30, 31]). In ([31]), S. H. Kulkarni, M. T. Nair and G. Ramesh

studied certain spectral characterizations of such operators. J. Janas introduced

densely defined hyponormal operator and studied its properties ([23]). Some prop-

erties of closed densely defined paranormal operator are studied by N. Bala and G.

Ramesh ([1]).

”If a bounded linear map interwines two normal operators, then it interwines

their adjoint” is known as the famous Putnam - Fuglede theorem ([42]). It is known

that every subnormal operators need not satisfies Putnam - Fuglede theorem. Let

A,B ∈ B(H) be normal operators. If AX = XB∗ for some X ∈ B(H), then A∗X =

XB. This is known as asymmetric Putnam- Fuglede theorem. In ([14, 15]), T. Furuta

proved asymmetric Putnam - Fuglede theorem for bounded subnormal operators.

Asymmetric Putnam - Fuglede theorem for closed densely defined hyponormal and

closed densely defined subnormal operators are proved by Stochel ([52]).

In this thesis, we introduce some new classes of operators k-quasi (m,n)-paranormal,

k-quasi (m,n)∗-paranormal, (m,n)-class Q, (m,n)-class Q∗, k-quasi (m,n)-class Q

and k-quasi (m,n)-class Q∗ operators which contains some well known classes of

operators. Also we introduced totally (m,n)∗-paranormal operator, which is having

nice characteristics, like transilation invariance and finiteness. Moreover we studied
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some properties of polynomially P - posinormal operators namely, finiteness, spec-

tral continuity etc. Finally, we introduced a closed densely defined M - hyponormal

operator and proved asymmetric Fuglede- Putnam theorem for this class.

1.2 Outline of the thesis

Thesis is divided in to seven chapters.

In the second chapter, we introduce two classes of operators namely k-quasi

(m,n)∗-paranormal operators and k-quasi (m,n)-paranormal operators, which in-

cludes the classes of (m,n)∗-paranormal and (m,n)-paranormal operators respec-

tively. We proved some characteristics of the operators and its 2× 2 matrix repre-

sentation.

In the third chapter, we define (m,n)-class Q and (m,n)-class Q∗ operators,

which contains the classes of (m,n)-paranormal and (m,n)∗- paranormal operators

respectively. Also we characterize the classes of composition operators of (m,n)-

class Q and (m,n)-class Q∗ operators on L2 space.

In the fourth chapter, we introduce k-quasi (m,n)-class Q and k-quasi (m,n)-

class Q∗ operators, which are the extensions of k-quasi (m,n)-paranormal and k-

quasi (m,n)∗-paranormal operators respectively. Here we give some examples and

some properties of these classes of operators. Also we characterize the composition

operators of these classes on L2 space.

In the fifth chapter, we define two new classes of operator namely totally (m,n)∗-

paranormal and k-quasi totally (m,n)∗-paranormal operators. We study its spectral

continuity, finiteness and 2× 2 matrix representation.

In the sixth chapter, we mainly deal with totally P -posinormal operators. In

this we study its spectral properties, Riesz projection, spectral continuity and range

kernel orthoganality.

In the seventh chapter, we define a closed densely definedM - hyponormal opera-

tor which contains closed densely defined hyponormal operator. We prove asymmet-

ric Fuglede-Putnam theorem for closed densely defined M - hyponormal and closed

densely defined subnormal operators.
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1.3 Preliminaries

Let H be an infinite dimensional complex Hilbert space over the field of complex

numbers C. A linear operator T : H → H is said to be bounded if and only if

T is continuous on H ([37]). Let B(H) denotes the algebra of all bounded linear

operators defined on H. It is well known that for T ∈ B(H), there is a unique

operator T1 ∈ B(H) such that ⟨Tx, y⟩ = ⟨x, T1y⟩ for all x, y ∈ H. The operator T1

is called adjoint of T, and is denoted as T ∗. Let N(T ) and R(T ) denote the kernel

and range of T respectively. The point spectrum of T , σp(T ), approximate point

spectrum of T , σa(T ), residual spectrum of T , σr(T ) and resolvent set of T, ρ(T )

are defined as:

σp(T ) = {λ ∈ C : T − λI is not one-one}

σa(T ) = {λ ∈ C : T − λI is not bounded below}

σr(T ) = {λ ∈ C : T − λI is one-one and R(T − λI) is not dense in H}

ρ(T ) = {λ ∈ C : (T − λI)−1 ∈ B(H)}.

The compliment of ρ(T ) is called spectrum of T and is denoted by σ(T ). The joint

point spectrum, σjp(T ) and the joint approximate point spectrum, σja(T ) are defined

as:

σjp(T ) = {λ ∈ C : λ ∈ σp(T ) and λ̄ ∈ σp(T
∗)}

σja(T ) = {λ ∈ C : λ ∈ σa(T ) and λ̄ ∈ σa(T
∗)}.

Now we give some well known results in connection with spectra of operators.

Theorem 1.3.1. ([17]) Let T ∈ B(H). Then σ(T ) = σa(T ) ∪ {λ̄ : λ ∈ σa(T
∗)}.

Theorem 1.3.2. ([29]) Let T ∈ B(H). Then ∂σ(T ) ⊂ σa(T ), where ∂σ(T ) denotes

the boundary of σ(T ).

Now we give some characterizations and examples of some well known classes of

bounded operators on H namely subnormal, hyponormal, posinormal etc.

Let T ∈ B(H). T is said to be subnormal if there exist a Hilbert space K ⊇ H

and a normal operator S onK such that Tx = Sx for all x ∈ H. For example, let T :

l2(N) → l2(N) be defined by T (x1, x2, x3, · · · ) = (0, 1
2
x1,

2
3
x2,

3
4
x3, · · · ) is subnormal

([28]). Recall that T is said to be a normaloid if ∥T∥ = sup {|λ| : λ ∈ σ(T )}.
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For example, T : l2(N) → l2(N) defined by T (x1, x2, x3, · · · ) = (0, x1, x2, x3, x4, · · · )

is normaloid.

An operator T ∈ B(H) is hyponormal if and only if T ∗T ≥ TT ∗ ([16]). For ex-

ample, let T : l2(N) → l2(N) be defined by T (x1, x2, x3, · · · ) = (0, x1, x2, x3, · · · ) is

hyponormal.

T is M-hyponormal if and only if M2(T − λI)∗(T − λI)− (T − λI)(T − λI)∗ ≥ 0

for all λ ∈ C, for some M > 0 ([55]). In particular, by taking M = 1 and λ = 0

in the above relation, we get T ∗T ≥ TT ∗. That is, 1-hyponormal operators are hy-

ponormal. It is known that hyponormal operators preserves transilation invariant

property ([50]). Hence every hyponormal operators are 1-hyponormal. Thus the

class of all hyponormal operators is a subclass of the classes of all M - hyponormal

operators. But the converse need not be true. For example, let T : l2(N) → l2(N)

be defined by T (x1, x2, x3, · · · ) = (0, x1, 2x2, x3, x4, · · · ) is M -hyponormal for any

M > 1, but not hyponormal.

Recall that T is said to be dominant if for each λ ∈ C, there exist a constant

M(λ) ≥ 0 such that ∥(T − λI)∗x∥ ≤ M(λ)∥(T − λI)x∥ for all x ∈ H ([7]). If

M(λ) = M for all λ ∈ C, then the dominant operator is M -hyponormal. That is,

every M -hyponormal operators are dominant. But the converse need not be true.

For example, let {en} be an orthonormal basis of a Hilbert space l2(Z). Consider a

bilateral weighted shift operator T : l2(Z) → l2(Z) defined by Ten = 2−|n|en+1, for

all n ∈ Z. Then T is dominant but not M -hyponormal for any M > 0 ([44]).

It is evident that

selfadjoint ⊂ normal ⊂ hyponormal ⊂M − hyponormal ⊂ dominant

Recall that T ∈ B(H) is posinormal if TT ∗ ≤ λ2T ∗T for some constant λ ≥ 0

([47]). For example, let T : l2(N) → l2(N) be defined by T (x1, x2, x3, · · · ) =

(0, x1, 3x2, x3, x4, · · · ) is posinormal.

Recall that T ∈ B(H) is polynomially (P)-posinormal if P (T )P (T ∗) ≤ λ2T ∗T, where

P (z) is a polynomial with zero constant term and for some constant λ ≥ 0 ([26]). If

P (z) = z, then polynomially (P )-posinormal operator become posinormal.
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For example, let T : l2(N) → l2(N) be defined by T (x1, x2, x3, · · · ) = (0, x1, 5x2, x3, x4, · · · )

is polynomially (P)-posinormal. In General

hyponormal ⊂M − hyponormal ⊂ posinormal ⊂ polynomially (P )− posinormal

Recall that T ∈ B(H) is said to be paranormal if ∥Tx∥2 ≤ ∥T 2x∥∥x∥ for all x ∈ H

([13]). It is known that T is paranormal if and only if T ∗2T 2 − 2λT ∗T + λ2I > 0,

for all λ > 0 ([28]). Note that every paranormal operators are normaloid ([28]).

Lemma 1.3.1. Let T ∈ B(l2(N)) be a weighted shift operator with non zero weights

{αk}, (k = 1, 2, ....), defined by Tek = αk ek+1, where {ek}∞k=1 is an orthonormal

basis of l2(N). Then T is paranormal if and only if

|αk|2 ≤ |αk| |αk+1|, ∀ k ∈ N.

Proof. Since Tek = αk ek+1, we have T 2ek = αk αk+1 ek+2, ∀ k ∈ N. Now,

T is paranormal ⇔ ∥Tx∥2 ≤ ∥T 2x∥∥x∥, ∀x ∈ H.

⇔ ∥Tek∥2 ≤ ∥T 2ek∥∥ek∥,∀k ∈ N.

⇔ |αk|2 ≤ |αk| |αk+1|,∀k ∈ N.

Let T : l2(N) → l2(N) be defined by T (x1, x2, x3, · · · ) = (0, x1, x2, x3, x4, · · · ). Using

Lemma 1.3.1, we can see that T is paranormal.

Recall that T ∈ B(H) is said to be ∗-paranormal if ∥T ∗x∥2 ≤ ∥T 2x∥∥x∥ for all

x ∈ H ([41]).

Lemma 1.3.2. Let T ∈ B(l2(N)) be a weighted shift operator with non zero weights

{αk}, (k = 1, 2, ....), defined by Tek = αk ek+1, where {ek}∞k=1 is an orthonormal

basis of l2(N). Then T is ∗-paranormal if and only if

|αk|2 ≤ |αk+1| |αk+2|,∀ k ∈ N.
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Proof. Since Tek = αk ek+1, we have T 2ek = αk αk+1 ek+2, ∀ k ∈ N and

T ∗ek = αk−1 ek−1, ∀ k ≥ 2. Now,

T is ∗ -paranormal ⇔ ∥T ∗x∥2 ≤ ∥T 2x∥∥x∥,∀x ∈ H.

⇔ ∥T ∗ek∥2 ≤ ∥T 2ek∥∥ek∥, ∀k ∈ N.

⇔ |αk|2 ≤ |αk+1| |αk+2|,∀k ∈ N.

Consider T : l2(N) → l2(N) defined by T (x1, x2, x3, · · · ) = (0,
√
2x1, x2, 2x3, 2x4, · · · ).

From Lemma 1.3.2, we get T is ∗-paranormal.

Theorem 1.3.3. (Weighted Arithmetic Mean–Geometric Mean Inequality)([33])

If 0 ≤ ci ∈ R (i = 1, 2, · · ·n) and 0 ≤ λi ∈ R (i = 1, 2, · · ·n) such that
n∑

i=1

λi = 1,

then
n∏

k=1

cλk
k ≤

n∑
k=1

λkck (1.1)

Lemma 1.3.3. Let T ∈ B(H). Then T is a ∗-paranormal operator if and only if

T ∗2T 2 − 2λTT ∗ + λ2I ≥ 0, for all λ > 0.

Proof.

T is a ∗ -paranormal operator ⇔ ∥T ∗x∥2 ≤ ∥T 2x∥∥x∥, ∀x ∈ H.

⇔ ⟨T ∗x, T ∗x⟩ ≤ ⟨T 2x, T 2x⟩
1
2 ⟨x, x⟩

1
2 , ∀x ∈ H.

T is ∗ -paranormal ⇔ ⟨TT ∗x, x⟩ ≤ ⟨T ∗2T 2x, x⟩
1
2 ⟨x, x⟩

1
2 , ∀x ∈ H. (1.2)

For λ > 0, from weighted arithmetic mean-geometric mean inequality (1.1), we get

1

2
⟨λ−1T ∗2T 2x, x⟩+ 1

2
⟨λx, x⟩ ≥ ⟨λ−1T ∗2T 2x, x⟩

1
2 ⟨λx, x⟩

1
2 , ∀x ∈ H.

= ⟨T ∗2T 2x, x⟩
1
2 ⟨x, x⟩

1
2 , ∀x ∈ H.
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Now from (1.2), we get

T is a ∗ -paranormal operator ⇔ λ−1

2
⟨T ∗2T 2x, x⟩+ λ

2
⟨x, x⟩ ≥ ⟨TT ∗x, x⟩, ∀x ∈ H.

T is a ∗ -paranormal operator ⇔ T ∗2T 2 − 2λTT ∗ + λ2I ≥ 0, ∀λ > 0.

The classes of paranormal and ∗-paranormal operators are independent. This

can been seen as follows:

Consider T : l2(N) → l2(N) defined by T (x1, x2, x3, · · · ) = (0,
√
2x1, x2, 2x3, 2x4, · · · ).

From Lemma 1.3.2, we can see that T is ∗-paranormal. From Lemma 1.3.1, T is not

paranormal.

Now consider the operator T defined by the matrix

T =

1 1

0 1



Then for any λ > 0, we have T ∗2T 2−2λT ∗T+λ2I =

(λ− 1)2 2− 2λ

2− 2λ (λ− 2)2 + 1

 ≥ 0.

Hence T is paranormal. But

T ∗2T 2 − 2λTT ∗ + λ2I =

(λ− 2)2 − 3 2− 2λ

2− 2λ (λ− 1)2 + 4

 < 0, for λ = 2. Hence T is

not ∗-paranormal.

An operator T ∈ B(H) is said to be class Q if T ∗2T 2−2T ∗T + I ≥ 0. It is known

that T is paranormal if and only if λT is class Q for all λ ≥ 0 ([10]). In particular,

if λ = 1, we can see that all paranormal operators are class Q. Hence

hyponormal ⊂ paranormal ⊂ class Q

In general, every class Q operator need not be a paranormal operator. For example,

let T : l2(N) → l2(N) be defined by T (x1, x2, x3, · · · ) = (0, 1
2
x1,

1
3
x2,

1
4
x3, · · · ) is class

Q, but not paranormal since T is not normaloid ([10]).
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An operator T ∈ B(H) is said to be class Q∗ if T ∗2T 2 − 2TT ∗ + I ≥ 0 ([58]).

Lemma 1.3.4. Let T ∈ B(l2(N)) be a weighted shift operator with non zero weights

{αk}, (k = 1, 2, ....), defined by Tek = αk ek+1, where {ek}∞k=1 is an orthonormal

basis of l2(N). Then T is a class Q∗ operator if and only if

|αk+1|2|αk+2|2 − 2 |αk|2 + 1 ≥ 0,∀ k ∈ N.

Proof. Since Tek = αk ek+1, we have T 2ek = αk αk+1 ek+2, TT
∗ek = |αk−1|2 ek,

T ∗2T 2ek = |αk|2|αk+1|2ek, ∀ k ∈ N.

T is class Q∗ ⇔ T ∗2T 2 − 2TT ∗ + I ≥ 0.

⇔
〈
(T ∗2T 2 − 2TT ∗ + I)ek, ek

〉
≥ 0, ∀k ∈ N.

⇔ |αk+1|2|αk+2|2 − 2 |αk|2 + 1 ≥ 0,∀k ∈ N.

Consider T : l2(N) → l2(N) be defined by T (x1, x2, x3, · · · ) = (0,
√
2x1, x2, 2x3, · · · ).

From Lemma 1.3.4, we get T is class Q∗.

Lemma 1.3.5. Let T ∈ B(H). Then T is ∗-paranormal if and only if λ
−1
2 T is class

Q∗ for all λ > 0.

Proof. Let λ > 0.

λ
−1
2 T is class Q∗ ⇔ (λ

−1
2 T )∗2(λ

−1
2 T )2 − 2(λ

−1
2 T )(λ

−1
2 T )∗ + I > 0.

⇔ λ−2T ∗2T 2 − 2λ−1TT ∗ + I > 0.

⇔ T ∗2T 2 − 2λTT ∗ + λ2I > 0.

⇔ T is ∗ - paranormal.

From the above lemma it can be seen that ∗- paranormal ⊂ class Q∗.

In general every class Q∗ operators are need not be ∗- paranormal. For example,

let T : l2(N) → l2(N) be defined by T (x1, x2, x3, · · · ) = (0, 1
2
x1,

1
4
x2,

1
4
x3, · · · ).
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Here α1 =
1

2
, αk =

1

4
for k ≥ 2. Using Lemma 1.3.4, we get T is a class Q∗ operator.

From Lemma 1.3.2, T is a ∗- paranormal operator if and only if |αk|2 ≤ |αk+1| |αk+2|,

∀ k ∈ N. If k = 1, then the above relation is not satisfied. Hence T is not ∗-

paranormal.

Let m ∈ R+and n ∈ N. An operator T ∈ B(H) is said to be (m,n)- paranormal

if ∥Tx∥n+1 ≤ m∥T n+1x∥∥x∥n for all x ∈ H ([5]).

Lemma 1.3.6. Let T ∈ B(l2(N)) be a weighted shift operator with non zero weights

{αk}, (k = 1, 2, ....), defined by Tek = αk ek+1, where {ek}∞k=1 is an orthonormal

basis of l2(N). Then T is a (m,n)- paranormal operator if and only if

|αk|n+1 ≤ m |αk| |αk+1|......|αk+n|, ∀ k ∈ N.

Proof. Since Tek = αk ek+1, we have T n+1ek = αk αk+1.....αk+n ek+n+1. Hence,

T is (m,n)-paranormal ⇔ ∥Tx∥n+1 ≤ m∥T n+1x∥∥x∥n, ∀ x ∈ H.

⇔ ∥Tek∥n+1 ≤ m∥T n+1ek∥∥ek∥n, ∀ k ∈ N.

⇔ |αk|n+1 ≤ m |αk| |αk+1|......|αk+n|, ∀ k ∈ N.

Let T : l2(N) → l2(N) be defined by T (x1, x2, x3, · · · ) = (0, x1, 2x2, 3x3, 3x4, · · · ).

From Lemma 1.3.6, we get T is (m,n)- paranormal for m ≥ 1 and n ≥ 2.

It is known that T is (m,n)- paranormal if and only if

m
2

n+1T ∗n+1T n+1 − (n+ 1)anT ∗T +m
2

n+1n an+1 I ≥ 0,

for each a > 0 ([5]).

In particular if m = n = 1, then (m,n)- paranormal operator are paranormal. That

is, the class of all paranormal operators is a subclass of class of all (m,n)- paranormal

operators.

In general every (m,n)- paranormal operator need not be paranormal. For example,

let T : l2(N) → l2(N) be defined by T (x1, x2, x3, · · · ) = (0,
√
2x1, x2, 2x3, 2x4, · · · ).
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Here α1 =
√
2, α2 = 1, αk = 2 for k ≥ 3. Using Lemma 1.3.6, T is (1, 2)-

paranormal. But from Lemma 1.3.1, we can see that T is not paranormal.

For n ∈ N, T ∈ B(H) is said to be n∗- paranormal if ∥T ∗x∥n+1 ≤ ∥T n+1x∥∥x∥n,

for all x ∈ H ([45]). Equivalently T is n∗- paranormal if and only if

T ∗n+1T n+1 − (n+ 1)anTT ∗ + n an+1 I ≥ 0,∀a > 0 (1.3)

([45]). Let T : l2(N) → l2(N) be defined by T (x1, x2, x3, · · · ) = (0, 2x1, 3x2, 3x3, 3x4, · · · )

is 2∗- paranormal.

Let m ∈ R+, n ∈ N. An operator T ∈ B(H) is said to be (m,n)∗- paranormal

if ∥T ∗x∥n+1 ≤ m∥T n+1x∥∥x∥n for all x ∈ H ([5]). It is proved in ([5]) that T is

(m,n)∗- paranormal if and only if

m
2

n+1T ∗n+1T n+1 − (n+ 1)anTT ∗ +m
2

n+1n an+1 I ≥ 0,∀a > 0. (1.4)

In particular, if m = n = 1, (m,n)∗- paranormal operators are ∗-paranormal. That

is, every ∗-paranormal operators are (m,n)∗-paranormal.

In general, every (m,n)∗- paranormal operator need not be ∗- paranormal. For

example, let T be defined by the matrix

T =

1 3

0 1

 .

Then for any λ, we have T ∗2T 2 − 2λTT ∗ + λ2I =

1− 20λ+ λ2 6− 6λ

6− 6λ 37− 2λ+ λ2

 .

If λ = 1, it is evident that T ∗2T 2 − 2λTT ∗ + λ2I < 0. Hence T is not ∗-paranormal.

From (1.4), T is a (100
3
2 , 2)∗ - paranormal operator if and only if 100T ∗3T 3−3a2TT ∗+

200a3I ≥ 0, for all a > 0. Now

100T ∗3T 3 − 3a2TT ∗ + 200a3I =

100− 30a2 + 200a3 900− 9a2

900− 9a2 8200− 3a2 + 200a3

 ≥ 0,

for all a > 0. Hence T is (100
3
2 , 2)∗ - paranormal.
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It is clear that if m = 1, (m,n)∗- paranormal operators are n∗- paranormal. That

is, the class of all n∗- paranormal operators forms a subclass of class of all (m,n)∗-

paranormal operators. But every (m,n)∗- paranormal operators need not be n∗-

paranormal.

For proving this, we consider the above example,

T =

1 3

0 1

 .

We have T is (100
3
2 , 2)∗ -paranormal operator.

From (1.3), T is 2∗-paranormal if and only if T ∗3T 3 − 3a2TT ∗ + 2a3I ≥ 0,∀a > 0.

T ∗3T 3 − 3a2TT ∗ + 2a3I =

1− 30a2 + 2a3 9− 9a2

9− 9a2 82− 3a2 + 2a3

 < 0, for a = 1.

Hence T is not 2∗- paranormal operator.

An operator T ∈ B(H) is said to be a contraction if T ∗T ≤ I. For example, let T :

l2(N) → l2(N) be defined by T (x1, x2, x3, · · · ) = (0, x1, x2, x3, · · · ) is a contraction.

It is evident that, if T is a contraction then T ∗ is a contraction.

An operator T ∈ B(H) is said to be unitarily equivalent to an operator B ∈ B(H)

if there exist an unitary operator U ∈ B(H) such that B = U∗TU. For example, let

T : R2 → R2 be defined by T (x1, x2) = (x1 + x2, x2), is unitarily equivalent to an

operator B : R2 → R2 defined by B(x1, x2) = (x1 − x2, x2).

An operator U ∈ B(H) is said to be a partial isometry if there exist a closed subspace

M of H such that ∥Ux∥ = ∥x∥,∀x ∈ M and Ux = 0,∀x ∈ M⊥. In this case, M is

said to be the initial space of U and R(U) is said to be the final space of U ([16]).

Now we give the matrix representation of T ∈ B(H) as follows:

Let M be a closed subspace of H. The block matrix representation of T ∈ B(H) on

H = M⊕M⊥ is

T =

A B

C D

 ,

where A ∈ B(M), B ∈ B(M⊥,M), C ∈ B(M,M⊥) and D ∈ B(M⊥) ([28]).
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For example, let T : R3 → R3 be defined by T (x1, x2, x3) = (x1, x2, 0).

Let M = {(x1, x2, 0) : x1, x2 ∈ R}, M⊥ = {(0, 0, x3) : x3 ∈ R}. Then

T =


1 0 0

0 1 0

0 0 0

 on R3 = M⊕M⊥.

Here A =

1 0

0 1

 andB = C = D = 0.

It is well known that T =

 A B

B∗ C

 is positive if and only if A ≥ 0, C ≥ 0 and

B = A
1
2WC

1
2 , for some contraction W ([6]).

A closed subspace M of H is said to be invariant under T ∈ B(H) if T (M) ⊂ M

([28]). For example, let T : R3 → R3 be defined by T (x1, x2, x3) = (x1 + x2, x2, x3).

Then M = {(x, 0, 0) : x ∈ R} is invariant under T.

Let M be a closed subspace of H which is invariant under T. Then the block matrix

representation of T ∈ B(H) on H = M⊕M⊥ is given by

T =

A B

0 D

 ,

where A = T |M, B ∈ B(M⊥,M) and D ∈ B(M⊥) ([28]).

A closed subspace M of H is said to reduces T ∈ B(H) if M and M⊥ are invariant

under T. Note that a closed subspace M of H reduces T ∈ B(H) if and only if M is

invariant under T and T ∗ ([28]).

Theorem 1.3.4. ([20]) Let T =

A B

0 D

 be the matrix representation of T on

H = M ⊕ M⊥, where M is a closed subspace of H which is invariant under T. If

σ(A) ∩ σ(D) has no interior point, then σ(T ) = σ(A) ∪ σ(D).
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Next we define Riesz projection for bounded operators. Let T ∈ B(H) and λ be

an isolated point of σ(T ). Then there exist a Dλ = {z ∈ C : |z − λ| ≤ r} for some

r ≥ 0 with Dλ ∩ σ(T ) = {λ}. The operator defined by

Eλ =
1

2πi

∫
∂Dλ

(zI − T )−1dz

is called Riesz projection of T with respect to λ, where ∂Dλ denotes the boundary

of Dλ ([29]). The Riesz projection Eλ satisfies the following properties:

Theorem 1.3.5. ([4, 29]) Suppose T ∈ B(H). Then the following holds.

(i) Eλ is a projection.

(ii) R(Eλ) and N(Eλ) are invariant under T.

(iii) σ(T |R(Eλ)) = {λ} and σ(T |N(Eλ)) = σ(T ) \ {λ}.

(iv) N(T − λI) ⊆ R(Eλ).

(v) EλT = TEλ.

Theorem 1.3.6. ([2, 57]) Let H be a complex Hilbert space. Then there exists a

Hilbert space K ⊃ H and ϕ : B(H) −→ B(K) satisfying the following properties for

every A,B ∈ B(H) and α, β ∈ C.

(i) ϕ(A∗) = ϕ(A)∗, ϕ(IH) = IK, ϕ(αA+ βB) = αϕ(A) + βϕ(B),

ϕ(AB) = ϕ(A)ϕ(B), ∥ϕ(A)∥ = ∥A∥, ϕ(A) ≤ ϕ(B) if A ≤ B.

(ii) ϕ(A) ≥ 0 whenever A ≥ 0.

(iii) σa(A) = σa(ϕ(A)) = σp(ϕ(A)) = σ(ϕ(A)).

(iv) σja(A) = σjp(ϕ(A)).

Let L denotes the set of all compact subsets of C. The map σ : B(H) −→ L,

which maps T ∈ B(H) to its spectrum is known as spectral map ([9]).
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Theorem 1.3.7. ([9]) Let C(i) denotes the collection of all operators T ∈ B(H)

satisfying the following properties

(i) If σ(T ) = {0}, then T is nilpotent.

(ii) The matrix representation of ϕ(T ) on N(ϕ(T )− λ)⊕N(ϕ(T )− λ)⊥ is

ϕ(T ) =

λI 0

0 B

 ,

where λ is a nonzero eigen value of ϕ(T ). Also λ /∈ σp(B) and σ(ϕ(T )) =

{λ} ∪ σ(B).

Then the spectral map is continuous on C(i).

Numerical range of T ∈ B(H) is defined as

W (T ) = {⟨Tx, x⟩ : x ∈ H, ∥x∥ = 1}.

An operator T ∈ B(H) is said to be a finite operator if 0 ∈ W (TX −XT ),

for all X ∈ B(H) ([56]). For example, let T : l2(N) → l2(N) be defined by

T (x1, x2, x3, · · · ) = (0, x1, 2x2, 3x3, 3x4, · · · ) is finite.

Theorem 1.3.8. ([56]) Let T ∈ B(H). Then T is a finite operator if and only if

∥I − (TX −XT )∥ ≥ 1, for all X ∈ B(H).

Note that every hyponormal, paranormal and finite rank operators operators are

finite ([35, 56]).

It is well known that if ∥A∥ ≤ ∥A− (TX −XT )∥ for all X ∈ B(H) and for all

A ∈ N(δT ), where δT (X) = TX −XT, then R(δT ) is orthogonal to N(δT ) ([35]).

Theorem 1.3.9. ([34, 56]) Let T ∈ B(H). If σja(T ) ̸= ∅, then T is a finite operator.

Theorem 1.3.10. (Putnam- Fuglede Theorem)([42])

Let A,B ∈ B(H) be normal operators. If AX = XB for some X ∈ B(H), then

A∗X = XB∗.
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Theorem 1.3.11. (Asymmetric Putnam- Fuglede Theorem)

Let A,B ∈ B(H) be normal operators. If AX = XB∗ for some X ∈ B(H), then

A∗X = XB.

Now we give some basic definitions and results related to densely defined oper-

ators.

Consider a linear map T : H ⊃ D(T ) → H, where D(T ) denotes the domain of T.

Let L(H) denotes the space of all linear operators on H. An operator T ∈ L(H) is

said to be closed if for any sequence (xn) in D(T ) such that xn → x and Txn → y

implies Tx = y for some x ∈ D(T ). Let C(H) denotes the space of all closed linear

operators on H. A closed subspace M of H is said to be invariant under T ∈ L(H)

if for any x ∈ D(T ) ∩ M, then Tx ∈ M. A closed subspace M of H is said to be

reduces under T ∈ L(H) if M and M⊥ are invariant under T. A closed subspace M

is said to be a core for T ∈ L(H) if G(T ) ⊆ G(T |M), where G(T ) denotes the graph

of T.

An operator T ∈ L(H) is said to be densely defined ifD(T ) = H ([1]). For exam-

ple, let T : l2(N) ⊃ D(T ) → l2(N) be defined by T (x1, x2, x3, · · · ) = (2x1, 3x2, 4x3, · · · )

with D(T ) = {(x1, x2, x3, · · · ) ∈ l2(N) :
∞∑
j=1

|(j + 1)xj|2 <∞} is densely defined.

Theorem 1.3.12. ([1]) If T ∈ L(H) is a densely defined operator, then there exist a

unique operator T ∗ ∈ L(H) which satisfies

⟨Tx, y⟩ = ⟨x, T ∗y⟩ for all x ∈ D(T ), y ∈ D(T ∗),

where D(T ∗) = {y ∈ H : x −→ ⟨Tx, y⟩ is continuous on D(T )}.

The operator T ∗ is called the adjoint of T .

T ∈ C(H) is said to be subnormal if there exist a Hilbert space K ⊇ H and a

normal operator S on K such that T ⊆ S i.e, D(T ) ⊂ D(S) and Tx = Sx, ∀x ∈

D(T ) ([52]). For example, let T : D(T ) → l2(N) be defined by T (x1, x2, x3, · · · ) =

(0, 2x2, 3x3, 4x4, · · · ) with D(T ) = {(x1, x2, x3, · · · ) ∈ l2(N) :
∞∑
j=1

|jxj|2 < ∞} is

subnormal.

A densely defined operator T ∈ C(H) is said to be normal if D(T ) = D(T ∗) and

∥T ∗x∥ = ∥Tx∥ for all x ∈ D(T ) ([36]).
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Theorem 1.3.13. ([1]) Let T ∈ C(H). Then

(i) N(T ) = R(T ∗)⊥.

(ii) N(T ∗) = R(T )⊥.

(iii) N(T ∗T ) = N(T ).

Let H1,H2 be subspaces ofH and H = H1⊕H2. Let PHi
, denotes the projection

onto Hi, i = 1, 2. Then T ∈ C(H) has the block matrix representation on H =

H1 ⊕H2 as

T =

T11 T12

T21 T22

 ,

where Tij : D(T ) ∩Hj → Hi is defined by Tij = PHi
TPHj

|D(T )∩Hj
for j = 1, 2 (see

[54, Page No. 287]).

Note that if H1 is invariant under T then T21 = 0.

Theorem 1.3.14. ([7]) Let T1, T2 ∈ C(H). If R(T1) ⊂ R(T2), then there exist an

operator T3 ∈ C(H) such that T1 = T2T3.

Theorem 1.3.15. ([43, 52]) Let T ∈ C(H) be normal. Then
⋂

λ∈σ(T )

R(T − λI) = {0}.

Theorem 1.3.16. ([52]) Let M be a core for T ∈ C(H) and A ∈ B(H) be a selfadjoint

operator with N(A) = {0}. If AT ⊆ TA, then A(M) is a core for T .

Let X be a nonempty set and A be a σ-algebra of subsets of X. A spectral

measure on a measure space (X,A) is a mapping E : A −→ B(H) such that

(i) E(Λ) is an orthogonal projection for every Λ ∈ A.

(ii) E(∅) = 0 and E(X) = 1.

(iii) E(Λ1 ∩ Λ2) = E(Λ1)E(Λ2),∀Λ1,Λ2 ∈ A.

(iv) E(
⋃
k

Λk) =
∑
k

E(Λk) whenever {Λk} is a countable collection of pairwise sets

in A.

A spectral measure is said to be regular if E(Λ) = sup{E(C) : C ⊂ Λ, C is compact},

for all Λ ∈ A. A spectral measure is said to be complex if X = C. Note that complex

spectral measure is regular.
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Theorem 1.3.17. ([29, 52]) If T ∈ C(H) is normal, then there is a unique complex

spectral measure E : Aσ(T ) −→ C(H) such that T =
∫
λdEλ, where Aσ(T ) is the σ-

algebra of Borel subsets of σ(T ).

Theorem 1.3.18. ([29, 52]) Let T =
∫
λdEλ be the spectral decomposition of the

normal operator in C(H) and S ∈ C(H). Then the following are equivalent:

(i) S commutes with T.

(ii) S commutes with T ∗.

(iii) S commutes with every E(Λ), where Λ ∈ Aσ(T ).

(iv) R(E(Λ)) reduces S for every Λ ∈ Aσ(T ).

Theorem 1.3.19. ([52]) Let E be the spectral measure of a normal operator N in

C(H). If Ω is a Borel subset of C and x ∈
⋂
z∈Ω

R(N − λI), then E(Ω)x = 0.

1.4 Composition operators

Composition operators play an important role in classical mechanics and ergotic

theory ([24]). In this section, we give some basic definition and results related with

composition operators.

For a non empty set X, we denote A as the collection of all measurable subsets

of X. Let µ : A → [0,∞] be a measure on A. The measure µ is said to be a σ finite

measure if X can be covered with atmost countably many measurable subsets of X

with finite measure.

A function T : X → X is said to be measurable if T−1(B) ∈ A, for every B ∈ A.

The measurable function T is said to be nonsingular if µ(T−1(B)) = 0 whenever

µ(B) = 0. Let µ andm be two measures on A. The measure µ is said to be absolutely

continuous with respect to m if µ(B) = 0 whenever m(B) = 0, for every B ∈ A.

Note that if T is a nonsingular measurable function, the measure µT−1 defined

by µT−1(B) = µ(T−1(B)), B ∈ A is absolutely continuous with respect to µ.
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Theorem 1.4.1. ([49]) Let (X,A, µ) be a σ finite measure space and m be a σ finite

measure defined on A which is absolutely continuous with respect to µ. Then there

exist a non negative function f on X which is measurable with respect to A and

m(B) =
∫
B

fdµ for all B ∈ A.

From the above theorem, we get a non negative measurable function fT such that

µT−1(B) =
∫
B

fTdµ, for all B ∈ A. The measurable function fT is called Radon-

Nikodym derivative of µT−1 with respect to µ and is denoted by h. We denote the

Radon-Nikodym derivative of µ(T−1)k with respect to µ by hk.

Definition 1.4.1. ([49]) Let T : X → X be a non singular measurable transformation.

A composition operator CT on L2(µ) is defined by CTf = f ◦ T, f ∈ L2(µ).

More details on general properties of (measure based) composition operators

can be found in ([39, 49]). In ([32]), A. Lambert studied hyponormal composition

operators. Composition operators of class Q and (m,n)-paranormal composition

operators were studied in ([27, 40]).

Let T be a measurable function defined on a nonempty set X and E be a func-

tion defined on the set of all non-negative functions f ∈ Lp(µ), 1 ≤ p < ∞. The

conditional expectation operator E is uniquely determined by the following condi-

tions:

(i) E(f) is T−1(A) measurable.

(ii)
∫
B

fdµ =
∫
B

E(f)dµ, for any T−1(A) measurable set B.

Theorem 1.4.2. ([11, 22]) Let T be a measurable function defined on a nonempty

set X. The conditional expectation operator E satisfies the following properties:

For f, g ∈ L2(µ),

(i) E(g) = g if and only if g is T−1(A) measurable.

(ii) If g is T−1(A) measurable, then E(fg) = E(f)g.

(iii) E(fg ◦ T ) = (E(f))(g ◦ T ) and E(E(f)g) = E(f)E(g).

(iv) E(1) = 1.
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(v) E is the identity operator on L2(µ) if and only if T−1(A) = A.

(vi ) E is a projection operator from L2(µ) onto R(CT ).

Theorem 1.4.3. ([3, 21]) Let T be a measurable function defined on X and P be

a projection from L2(µ) onto R(CT ). Then the following results holds for every

f ∈ L2(µ) :

(i) C∗
Tf = h.E(f) ◦ T−1.

(ii) Ck
Tf = f ◦ T k, C∗k

T f = hkE(f) ◦ T−k, for any k ∈ N.

(iii) CTC
∗
Tf = (h ◦ T )Pf, C∗

TCTf = hf.

1.5 Weighted composition operators

Definition 1.5.1. Let (X,A, µ) be a σ- finite measure space. The weighted composi-

tion operator W on L2(µ) induced by a measurable transformation T and a complex

valued measurable function π is defined as Wf = π.(f ◦ T ), for all f ∈ L2(µ).

Theorem 1.5.1. ([3]) Let W be the weighted composition operator induced by T and

π. The following statements hold: For f ∈ L2(µ) and k ∈ N,

(i) W kf = πk.f ◦ T k

(ii) W ∗kf = hkE(πf) ◦ T−k

(iii) W ∗W (f) = hE(|π|2) ◦ T−1(f)

(iv) WW ∗(f) = π(h ◦ T )E(πf)

(v) W ∗kW k(f) = hkE(|πk|2) ◦ T−k(f)

(vi) W kW ∗kf = πk(hk ◦ T k)E(π̄kf)

where πk = π(π ◦ T )(π ◦ T 2) . . . (π ◦ T k−1).



Chapter 2

k-quasi (m,n)-paranormal and k-quasi

(m,n)∗- paranormal operators

In this chapter, we introduce two new classes of operators namely, k-quasi (m,n)∗-

paranormal and k-quasi (m,n)-paranormal operators, which contains known class

of operators (m,n)∗-paranormal and (m,n)-paranormal operators respectively. We

prove that the restriction of the operator to its closed subspace is the corresponding

operator. Also we prove some characterizations and we give 2×2 matrix representa-

tion of these operators. We show that these two classes of operators are independent.

2.1 k-quasi (m,n)∗- paranormal operators

Let H be a Hilbert space and T ∈ B(H). For m ∈ R+ and n ∈ N, T is said to

be (m,n)∗-paranormal if ∥T ∗x∥n+1 ≤ m∥T n+1x∥∥x∥n, for all x ∈ H ([5]). Now we

define a new classes of operator namely k-quasi (m,n)∗-paranormal operator which

contains the class of (m,n)∗-paranormal operators.

Definition 2.1.1. Let m ∈ R+, n ∈ N and k be a non-negative integer. An operator

T ∈ B(H) is said to be a k-quasi (m,n)∗-paranormal if

∥T ∗T kx∥n+1 ≤ m∥T n+1T kx∥∥T kx∥n, ∀x ∈ H.

If k = 0, then k-quasi (m,n)∗-paranormal operator becomes (m,n)∗-paranormal

22
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operator. That is, the class of all (m,n)∗-paranormal operators is a subclass of class

of all k-quasi (m,n)∗-paranormal operators. In general, k-quasi (m,n)∗-paranormal

operator need not be (m,n)∗-paranormal operator.

For example, let T =

0 0

1 0

 . Then T 2 = 0. From the definition, it is clear that if

k ≥ 2 then T is a k-quasi (m,n)∗-paranormal operator for any m,n. Recall that T

is (m,n)∗-paranormal if and only if

m
2

n+1T ∗n+1T n+1 − (n+ 1)anTT ∗ +m
2

n+1n an+1 I ≥ 0, ∀a > 0 ([5]).

For m = 25, n = 3 and for any a > 0, we have

m
2

n+1T ∗n+1T n+1 − (n+ 1)anTT ∗ +m
2

n+1n an+1 I = −4a3TT ∗ + 15a4I

=

15a4 0

0 −4a3 + 15a4


If a = 1

5
, then −4a3TT ∗ + 15a4I < 0. Hence T is not (25, 3)∗-paranormal.

Note that if k = 0 and m = 1, then k-quasi (m,n)∗-paranormal operator co-

incides with the class of n∗-paranormal operators introduced by M. H. M. Rashid

([45]). If k = 0 and m = n = 1, then k-quasi (m,n)∗-paranormal operators coincide

with ∗-paranormal operators ([53]).

Now we give some characterizations of k-quasi (m,n)∗-paranormal operators.

Theorem 2.1.1. Let T ∈ B(H). Then T is a k-quasi (m,n)∗-paranormal operator if

and only if

m
2

n+1T ∗kT ∗n+1T n+1T k − (n+ 1) anT ∗kTT ∗T k +m
2

n+1 n an+1T ∗kT k ≥ 0 (2.1)

for all a > 0.

Proof. T is a k-quasi (m,n)∗-paranormal operator

⇔ m∥T n+1T kx∥∥T kx∥n ≥ ∥T ∗T kx∥n+1, ∀x ∈ H.

⇔ m
2

n+1∥T n+1T kx∥
2

n+1∥T kx∥
2n
n+1 ≥ ∥T ∗T kx∥2, ∀x ∈ H.
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⇔ m
2

n+1 ⟨T ∗n+1T n+1T kx, T kx⟩
1

n+1 ⟨T kx, T kx⟩
n

n+1 ≥ ⟨TT ∗T kx, T kx⟩, ∀x ∈ H.

⇔ m
2

n+1 ⟨|T n+1|2T kx, T kx⟩
1

n+1 ⟨T kx, T kx⟩
n

n+1 ≥ ⟨|T ∗|2T kx, T kx⟩, ∀x ∈ H. (2.2)

Hence T is a k-quasi (m,n)∗-paranormal operator if and only if T satisfies (2.2).

For a > 0 and x ∈ H, using the weighted arithmetic mean-geometric mean inequality

(1.1) and (2.2), it follows that

1
n+1

⟨a−nm
2

n+1 |T n+1|2T kx, T kx⟩+ n
n+1

⟨a m
2

n+1T kx, T kx⟩

≥ ⟨a−nm
2

n+1 |T n+1|2T kx, T kx⟩
1

n+1 ⟨a m
2

n+1T kx, T kx⟩
n

n+1

= m
2

n+1 ⟨|T n+1|2T kx, T kx⟩
1

n+1 ⟨T kx, T kx⟩
n

n+1

≥ ⟨|T ∗|2T kx, T kx⟩.

Thus,

a−n

n+1
m

2
n+1 ⟨T ∗kT ∗n+1T n+1T kx, x⟩+ na

n+1
m

2
n+1 ⟨T ∗kT kx, x⟩ − ⟨T ∗kTT ∗T kx, x⟩ ≥ 0,

for all x ∈ H and a > 0.

Hence,

m
2

n+1T ∗kT ∗n+1T n+1T k−(n+1) anT ∗kTT ∗T k+m
2

n+1 n an+1T ∗kT k ≥ 0, for all a ≥ 0.

Conversely, suppose that (2.1) holds. Hence for every x ∈ H,

m
2

n+1 ⟨T ∗kT ∗n+1T n+1T kx, x⟩−(n+1) an⟨T ∗kTT ∗T kx, x⟩+m
2

n+1 n an+1⟨T ∗kT kx, x⟩ ≥ 0.

Hence,

m
2

n+1 ⟨|T n+1|2T kx, T kx⟩ − (n+ 1) an⟨|T ∗|2T kx, T kx⟩+m
2

n+1 n an+1⟨T kx, T kx⟩ ≥ 0.

(2.3)

Let x ∈ H, with ⟨|T n+1|2T kx, T kx⟩ = 0. From (2.3) we get,

m
2

n+1 n a ⟨T ∗kT kx, x⟩ − (n+ 1)⟨|T ∗|2T kx, T kx⟩ ≥ 0, ∀a ≥ 0.
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Letting a→ 0, we get ⟨|T ∗|2T kx, T kx⟩ = 0. Hence,

m
2

n+1 ⟨|T n+1|2T kx, T kx⟩
1

n+1 ⟨T kx, T kx⟩
n

n+1 ≥ ⟨|T ∗|2T kx, T kx⟩

is satisfied. Thus (2.2) holds.

Let x ∈ H, with ⟨|T n+1|2T kx, T kx⟩ > 0. Hence, ⟨T kx, T kx⟩ ≠ 0.

By taking a =
(

⟨|Tn+1|2Tkx,Tkx⟩
⟨Tkx,Tkx⟩

) 1
n+1

in (2.3), we get

m
2

n+1 ⟨|T n+1|2T kx, T kx⟩+m
2

n+1 n
⟨|T n+1|2T kx, T kx⟩

⟨T kx, T kx⟩
⟨T kx, T kx⟩

≥ (n+ 1)⟨|T ∗|2T kx, T kx⟩
(
⟨|T n+1|2T kx, T kx⟩

⟨T kx, T kx⟩

) n
n+1

Hence,

m
2

n+1 (1 + n)⟨|T n+1|2T kx, T kx⟩ ≥ (n+ 1)⟨|T ∗|2T kx, T kx⟩
(
⟨|T n+1|2T kx, T kx⟩

⟨T kx, T kx⟩

) n
n+1

Thus m
2

n+1 ⟨|T n+1|2T kx, T kx⟩1−
n

n+1 ⟨T kx, T kx⟩
n

n+1 ≥ ⟨|T ∗|2T kx, T kx⟩. Hence,

m
2

n+1 ⟨|T n+1|2T kx, T kx⟩
1

n+1 ⟨T kx, T kx⟩
n

n+1 ≥ ⟨|T ∗|2T kx, T kx⟩.

Thus (2.2) holds for all x ∈ H. Hence T is k-quasi (m,n)∗-paranormal.

Theorem 2.1.2. Let T ∈ B(H) be a k-quasi (m,n)∗-paranormal operator and M be

a closed subspace of H which is invariant under T. Then T |M is a k-quasi (m,n)∗-

paranormal operator.

Proof. Let B = T |M and P be an orthogonal projection onto M. Then we can see

that B = TP = PTP. Hence B∗jBj = PT ∗jT jP, for all j ∈ N.
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Now for any a > 0, we have

m
2

n+1B∗kB∗n+1Bn+1Bk − (n+ 1) anB∗kBB∗Bk +m
2

n+1 n an+1B∗kBk

= m
2

n+1PT ∗k+n+1T k+n+1P − (n+ 1)anPT ∗kTPPT ∗T kP +m
2

n+1 n an+1PT ∗kT kP

= PT ∗k(m
2

n+1T ∗n+1T n+1 − (n+ 1)anTPT ∗ +m
2

n+1nan+1I)T kP

≥ PT ∗k(m
2

n+1T ∗n+1T n+1 − (n+ 1)anTT ∗ +m
2

n+1nan+1I)T kP.

Since T is k-quasi (m,n)∗-paranormal operator, we get

m
2

n+1B∗kB∗n+1Bn+1Bk − (n+ 1) anB∗kBB∗Bk +m
2

n+1 n an+1B∗kBk ≥ 0.

Hence T |M is a k-quasi (m,n)∗-paranormal operator.

Now we give a matrix representation for k-quasi (m,n)∗-paranormal operators.

Theorem 2.1.3. Let T ∈ B(H) and R(T k) ̸= H. If T is a k-quasi (m,n)∗-paranormal

operator, then

T =

A B

0 C

 on R(T k)⊕N(T ∗k),

where A is a (m,n)∗-paranormal operator on R(T k), Ck = 0 and σ(T ) = σ(A)∪{0}.

Proof. Assume that T is a k-quasi (m,n)∗-paranormal operator. Then

∥T ∗T kx∥n+1 ≤ m∥T n+1T kx∥∥T kx∥n, for all x ∈ H.

Let T kx = z. Then from the above equation we have

∥T ∗z∥n+1 ≤ m∥T n+1z∥∥z∥n. (2.4)

Since R(T k) is not dense in H and R(T k) is invariant under T, we have

T =

A B

0 C

 on H = R(T k) ⊕ N(T ∗k), where A = T |
R(Tk)

. Hence from (2.4), we

get ∥A∗z∥n+1 ≤ m∥An+1z∥∥z∥n for all z ∈ R(T k). Hence A is a (m,n)∗-paranormal

operator on R(T k).
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Let x ∈ N(T ∗k). Then,

T k(x) =

Ak
k−1∑
i=0

AiBCk−1−i

0 Ck


0

x

 .

Thus Ckx = T kx−
k−1∑
i=0

AiBCk−1−ix. Since A = T |
R(Tk)

, we have Ckx ∈ R(T k). Also

Ckx ∈ N(T ∗k) since C = T |N(T ∗k). Thus C
kx ∈ R(T k) ∩ N(T ∗k). Hence Ck = 0.

Thus σ(C) = {0}. Hence σ(A) ∩ σ(C) = σ(A) ∩ {0} has no interior point. From

Theorem 1.3.4, we get σ(T ) = σ(A) ∪ {0}.

2.2 k-quasi (m,n)-paranormal operators

In this section, we introduce a new class of operators, k-quasi (m,n)-paranormal

operators which contains the class of all (m,n)-paranormal operators. Recall that

T ∈ B(H) is said to be (m,n)-paranormal if ∥Tx∥n+1 ≤ m∥T n+1x∥∥x∥n, for all

x ∈ H ([5]).

Definition 2.2.1. Let m ∈ R+, n ∈ N and k be a non-negative integer. An operator

T ∈ B(H) is said to be k-quasi (m,n)-paranormal if

∥TT kx∥n+1 ≤ m∥T n+1T kx∥∥T kx∥n, for all x ∈ H.

If k = 0, then k-quasi (m,n)-paranormal operator becomes (m,n)-paranormal

operator. That is, the class of all (m,n)-paranormal operators forms a subclass of

class of all k-quasi (m,n)-paranormal operators. In general, every k-quasi (m,n)-

paranormal operator need not be (m,n)-paranormal operator.

For example, let T =

0 1

0 0

 . Then T 2 = 0. Hence T is a k-quasi (m,n)-paranormal

operator for k ≥ 2 and for any m,n.

Recall that T is (m,n)-paranormal if and only if

m
2

n+1T ∗n+1T n+1 − (n+ 1)anT ∗T +m
2

n+1n an+1 I ≥ 0, ∀a > 0.
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If m = 25, n = 3 and for any a > 0, we have

m
2

n+1T ∗n+1T n+1 − (n+ 1)anT ∗T +m
2

n+1n an+1 I = −4a3T ∗T + 15a4I

=

15a4 0

0 −4a3 + 15a4

 .

In particular, if a = 1
5
, then −4a3TT ∗ + 15a4I < 0. Hence T is not a (25, 3)-

paranormal operator.

Note that if k = 0 and m = n = 1, then k-quasi (m,n)-paranormal operators

coincide with paranormal operators ([13]).

Now we give some characterizations of k-quasi (m,n)-paranormal operators.

Theorem 2.2.1. Let T ∈ B(H). Then T is k-quasi (m,n)-paranormal if and only if

m
2

n+1T ∗kT ∗n+1T n+1T k − (n+ 1) anT ∗kT ∗TT k +m
2

n+1 n an+1T ∗kT k ≥ 0, (2.5)

for all a > 0.

Proof. T is a k-quasi (m,n)-paranormal operator

⇔ m∥T n+1T kx∥∥T kx∥n ≥ ∥TT kx∥n+1, ∀x ∈ H.

⇔ m
2

n+1∥T n+1T kx∥
2

n+1∥T kx∥
2n
n+1 ≥ ∥TT kx∥2, ∀x ∈ H.

⇔ m
2

n+1 ⟨T ∗n+1T n+1T kx, T kx⟩
1

n+1 ⟨T kx, T kx⟩
n

n+1 ≥ ⟨T ∗TT kx, T kx⟩, ∀x ∈ H.

⇔ m
2

n+1 ⟨|T n+1|2T kx, T kx⟩
1

n+1 ⟨T kx, T kx⟩
n

n+1 ≥ ⟨|T |2T kx, T kx⟩, ∀x ∈ H. (2.6)

Hence T is a k-quasi (m,n)-paranormal operator if and only if T satisfies (2.6).

For a > 0 and x ∈ H, using the weighted arithmetic mean-geometric mean inequality

(1.1) and (2.6), it follows that

1
n+1

⟨a−nm
2

n+1 |T n+1|2T kx, T kx⟩+ n
n+1

⟨a m
2

n+1T kx, T kx⟩

≥ ⟨a−nm
2

n+1 |T n+1|2T kx, T kx⟩
1

n+1 ⟨a m
2

n+1T kx, T kx⟩
n

n+1

= m
2

n+1 ⟨|T n+1|2T kx, T kx⟩
1

n+1 ⟨T kx, T kx⟩
n

n+1

≥ ⟨|T |2T kx, T kx⟩.
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Thus,

a−n

n+1
m

2
n+1 ⟨T ∗kT ∗n+1T n+1T kx, x⟩+ na

n+1
m

2
n+1 ⟨T ∗kT kx, x⟩ − ⟨T ∗kT ∗TT kx, x⟩ ≥ 0, for

all x ∈ H and a > 0.

Hence,

m
2

n+1T ∗kT ∗n+1T n+1T k − (n+1) anT ∗kT ∗TT k +m
2

n+1 n an+1T ∗kT k ≥ 0, for all a ≥ 0.

Assume that (2.5) holds. Then for every x ∈ H,

m
2

n+1 ⟨T ∗kT ∗n+1T n+1T kx, x⟩−(n+1) an⟨T ∗kT ∗TT kx, x⟩+m
2

n+1 n an+1⟨T ∗kT kx, x⟩ ≥ 0.

Hence,

m
2

n+1 ⟨|T n+1|2T kx, T kx⟩ − (n+ 1) an⟨|T |2T kx, T kx⟩+m
2

n+1 n an+1⟨T kx, T kx⟩ ≥ 0.

(2.7)

Let x ∈ H with ⟨|T n+1|2T kx, T kx⟩ = 0. From (2.7), we get

m
2

n+1 n a⟨T ∗kT kx, x⟩ − (n+ 1)⟨|T |2T kx, T kx⟩ ≥ 0.

Letting a→ 0, we get ⟨|T |2T kx, T kx⟩ = 0. Hence,

m
2

n+1 ⟨|T n+1|2T kx, T kx⟩
1

n+1 ⟨T kx, T kx⟩
n

n+1 ≥ ⟨|T |2T kx, T kx⟩.

Thus (2.6) is satisfied.

Let x ∈ H with ⟨|T n+1|2T kx, T kx⟩ > 0. Hence ⟨T kx, T kx⟩ ≠ 0.

By taking a =
(

⟨|Tn+1|2Tkx,Tkx⟩
⟨Tkx,Tkx⟩

) 1
n+1

in (2.7), we get

m
2

n+1 ⟨|T n+1|2T kx, T kx⟩+m
2

n+1 n
⟨|T n+1|2T kx, T kx⟩

⟨T kx, T kx⟩
⟨T kx, T kx⟩

≥ (n+ 1)⟨|T |2T kx, T kx⟩
(
⟨|T n+1|2T kx, T kx⟩

⟨T kx, T kx⟩

) n
n+1

m
2

n+1 (1 + n)⟨|T n+1|2T kx, T kx⟩ ≥ (n+ 1)⟨|T |2T kx, T kx⟩
(
⟨|T n+1|2T kx, T kx⟩

⟨T kx, T kx⟩

) n
n+1
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m
2

n+1 ⟨|T n+1|2T kx, T kx⟩1−
n

n+1 ⟨T kx, T kx⟩
n

n+1 ≥ ⟨|T |2T kx, T kx⟩

m
2

n+1 ⟨|T n+1|2T kx, T kx⟩
1

n+1 ⟨T kx, T kx⟩
n

n+1 ≥ ⟨|T |2T kx, T kx⟩.

Thus (2.6) holds for all x ∈ H. Hence T is k-quasi (m,n)-paranormal.

Now we show that the newly defined classes of operators, k-quasi (m,n)-paranormal

and k-quasi (m,n)∗-paranormal are independent.

For example, consider the operator T defined by the matrix

T =

1 0

1 0

 .

Let m = n = 1. Then for any a > 0, we have

m
2

n+1T ∗kT ∗n+1T n+1T k − (n+ 1) anT ∗kT ∗TT k +m
2

n+1 n an+1T ∗kT k

=T ∗k(T ∗2T 2 − 2aT ∗T + a2I)T k

=

1 1

0 0

a2 − 4a+ 2 0

0 a2

1 0

1 0


=

2(a− 1)2 0

0 0

 ≥ 0.

Hence T is k-quasi (1, 1)-paranormal for any k ≥ 1.

But for m = n = 1and a > 0, we have

m
2

n+1T ∗kT ∗n+1T n+1T k − (n+ 1)anT ∗kTT ∗T k +m
2

n+1n an+1 T ∗kT k

=T ∗k(T ∗2T 2 − 2aTT ∗ + a2I)T k

=

1 1

0 0

a2 − 2a+ 2 −2a

−2a a2 − 2a

1 0

1 0


=

2a2 − 8a+ 2 0

0 0

 .
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In particular if a = 1, then

m
2

n+1T ∗kT ∗n+1T n+1T k − (n+ 1)anT ∗kTT ∗T k +m
2

n+1n an+1 T ∗kT k < 0.

Hence T is not k-quasi (1, 1)∗-paranormal for any k.

Now we give an example of a k-quasi (m,n)∗-paranormal, which is not k-quasi

(m,n)-paranormal. For this, we prove the following result.

Theorem 2.2.2. Let T ∈ B(l2(N)) be a weighted shift operator with non zero weights

{αn}, (n = 1, 2, ....), defined by Ten = αn en+1, where {en}∞n=1 is an orthonormal

basis of l2(N). Then T is a k-quasi (1, 1)-paranormal operator if and only if

|αn+k|2|αn+k+1|2 − 2 a |αn+k|2 + a2 ≥ 0, ∀a > 0, ∀n ∈ N. (2.8)

Proof. Since Ten = αn en+1, we have T ∗en = αn−1 en−1. Hence, T ∗Ten = |αn|2 en,

and T ∗2T 2en = |αn|2|αn+1|2en. Therefore,

T ∗(T ∗2T 2)Ten = |αn|2|αn+1|2|αn+2|2en

T ∗2(T ∗2T 2)T 2en = |αn|2|αn+1|2|αn+2|2|αn+3|2en

Hence we get,

T ∗l(T ∗2T 2)T len = |αn|2|αn+1|2 · · · |αn+l−1|2|αn+l|2|αn+l+1|2en, for any l ∈ N.

Also,

T ∗(T ∗T )Ten = |αn|2|αn+1|2en

T ∗2(T ∗T )T 2en = |αn|2|αn+1|2|αn+2|2en

Hence we get,

T ∗l(T ∗T )T len = |αn|2|αn+1|2 · · · |αn+l−1|2|αn+l|2en, for any l ∈ N.
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In the similar way we get,

T ∗lT len = |αn|2|αn+1|2 · · · |αn+l−1|2en, for any l ∈ N.

Using the above equations and (2.5) we get, T is k-quasi (1, 1)-paranormal

⇔T ∗k(T ∗2T 2 − 2aT ∗T + a2I)T k ≥ 0, ∀a > 0.

⇔
〈
(T ∗k(T ∗2T 2 − 2aT ∗T + a2I)T k)en, en

〉
≥ 0, ∀a > 0, ∀n ∈ N.

⇔|αn|2|αn+1|2 · · · |αn+k−1|2(|αn+k|2|αn+k+1|2 − 2 a |αn+k|2 + a2) ≥ 0, ∀a > 0, ∀n ∈ N.

⇔|αn+k|2|αn+k+1|2 − 2 a |αn+k|2 + a2 ≥ 0,∀a > 0, ∀n ∈ N.

Theorem 2.2.3. Let T ∈ B(l2(N)) be a weighted shift operator with non zero weights

{αn}, (n = 1, 2, ....), defined by Ten = αn en+1, where {en}∞n=1 is an orthonormal

basis of l2(N). Then T is k-quasi (1, 1)∗-paranormal if and only if

|αn+k|2|αn+k+1|2 − 2 a |αn+k−1|2 + a2 ≥ 0, ∀a > 0, ∀n ∈ N. (2.9)

Proof. Since Ten = αn en+1, we have T ∗en = αn−1 en−1. Hence, T ∗Ten = |αn|2 en,

and T ∗2T 2en = |αn|2|αn+1|2en. Therefore,

T ∗(T ∗2T 2)Ten = |αn|2|αn+1|2|αn+2|2en

T ∗2(T ∗2T 2)T 2en = |αn|2|αn+1|2|αn+2|2|αn+3|2en

Hence we get,

T ∗l(T ∗2T 2)T len = |αn|2|αn+1|2 · · · |αn+l−1|2|αn+l|2|αn+l+1|2en, for any l ∈ N.

Also,

T ∗(TT ∗)Ten = |αn|2|αn|2en

T ∗2(TT ∗)T 2 = |αn|2|αn+1|2|αn+1|2en
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Hence we get,

T ∗l(TT ∗)T len = |αn|2|αn+1|2 · · · |αn+l−1|2|αn+l−1|2en, for any l ∈ N.

In the similar way we get,

T ∗lT len = |αn|2|αn+1|2 · · · |αn+l−1|2en, for any l ∈ N.

Using above equations and (2.1), we get T is k-quasi (1, 1)∗-paranormal

⇔T ∗k(T ∗2T 2 − 2aTT ∗ + a2I)T k ≥ 0, ∀a > 0.

⇔⟨(T ∗k(T ∗2T 2 − 2aTT ∗ + a2I)T k)en, en⟩ ≥ 0, ∀a > 0, ∀n ∈ N.

⇔|αn|2|αn+1|2 · · · |αn+k−1|2(|αn+k|2|αn+k+1|2 − 2 a |αn+k−1|2 + a2) ≥ 0, ∀a > 0, ∀n ∈ N.

⇔|αn+k|2|αn+k+1|2 − 2 a |αn+k−1|2 + a2 ≥ 0, ∀a > 0, ∀n ∈ N.

Let T : l2(N) → l2(N) be defined by T (x1, x2, x3, · · · ) = (0, 2x1, x2, 2x3, x4, 6x5, 6x6, · · · ).

Here α1 = 2 α2 = 1, α3 = 2, α4 = 1, αn = 6 for n ≥ 5.

From (2.9), T is 2-quasi (1, 1)∗-paranormal if and only if

|αn+2|2|αn+3|2 − 2 a |αn+1|2 + a2 ≥ 0, ∀a > 0, ∀n ∈ N. (2.10)

If n = 1, |α3|2|α4|2 − 2a |α2|2 + a2 = (a− 1)2 + 3 ≥ 0,∀a > 0.

If n = 2, |α4|2|α5|2 − 2a |α3|2 + a2 = (a− 4)2 + 20 ≥ 0,∀a > 0.

If n = 3, |α5|2|α6|2 − 2a |α4|2 + a2 = (a− 1)2 + 1295 ≥ 0,∀a > 0.

If n ≥ 4, |αn+2|2|αn+3|2 − 2 a |αn+1|2 + a2 = (a− 36)2 ≥ 0,∀a > 0.

Thus, (2.10) holds for all a > 0, for all n ∈ N.

Hence, T is 2-quasi (1, 1)∗-paranormal.

From (2.8), T is 2-quasi (1, 1)-paranormal if and only if

|αn+2|2|αn+3|2 − 2 a |αn+2|2 + a2 ≥ 0, ∀a > 0, ∀n ∈ N. (2.11)
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If n = 1, |α3|2|α4|2 − 2a |α3|2 + a2 = (a− 4)2 − 12 < 0, for a = 4.

Hence T is not 2-quasi (1, 1)-paranormal.

Theorem 2.2.4. Let T ∈ B(H).

(i) If T is a (k + 1)-quasi (m,n)∗-paranormal, then T is k-quasi (m,n + 1)-

paranormal.

(ii) If T is a k-quasi (m,n)∗-paranormal operator, then T is (k+1)-quasi (m,n)∗-

paranormal operator.

Proof. (i) Suppose that T is a (k + 1)-quasi (m,n)∗-paranormal operator. Then

∥T ∗T k+1x∥n+1 ≤ m∥T n+1T k+1x∥∥T k+1x∥n, for all x ∈ H.

Hence, for every x ∈ H we have

∥T k+1x∥2n+2 = ⟨T ∗T k+1x, T kx⟩n+1

≤ ∥T ∗T k+1x∥n+1∥T kx∥n+1

≤ m∥T n+1T k+1x∥∥T k+1x∥n∥T kx∥n+1.

Thus, ∥TT kx∥n+2 ≤ m∥T n+2T kx∥∥T kx∥n+1, for all x ∈ H.

Hence T is a k-quasi (m,n+ 1)-paranormal operator.

(ii) Assume that T is a k-quasi (m,n)∗-paranormal operator. Then

∥T ∗T kx∥n+1 ≤ m∥T n+1T kx∥∥T kx∥n, for all x ∈ H.

Replacing x by Tx, we get

∥T ∗T k+1x∥n+1 ≤ m∥T n+1T k+1x∥∥T k+1x∥n, for all x ∈ H.

Hence T is a (k + 1)-quasi (m,n)∗-paranormal operator.
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Theorem 2.2.5. If T ∈ B(H) is a k-quasi (m,n)-paranormal operator, then T is a

(k + 1)-quasi (m,n)-paranormal operator.

Proof. Assume that T is a k-quasi (m,n)-paranormal operator. Then

∥TT kx∥n+1 ≤ m∥T n+1T kx∥∥T kx∥n, for all x ∈ H.

Replacing x by Tx, we get

∥TT k+1x∥n+1 ≤ m∥T n+1T k+1x∥∥T k+1x∥n, for all x ∈ H.

Hence T is a (k + 1)-quasi (m,n)-paranormal operator.

Remark 2.2.1.

From Theorem 2.2.4 it is clear that for any non negative integer k,

k-quasi (m,n)∗-paranormal ⊂ (k + 1)-quasi (m,n)∗-paranormal.

But the converse need not be true always. For, we give an example of a 2-quasi

(1, 1)∗-paranormal operator which is not 1-quasi (1, 1)∗-paranormal.

Let T : l2(N) → l2(N) be defined by

T (x1, x2, x3, · · · ) = (0, 2x1, x2, 2x3, x4, 6x5, 6x6, · · · ).

In this section, we proved that T is a 2-quasi (1, 1)∗-paranormal operator . From

Theorem 2.2.3, T is 1-quasi (1, 1)∗-paranormal operator if and only if

|αn+1|2|αn+2|2 − 2 a |αn|2 + a2 ≥ 0, ∀a > 0, ∀n ∈ N. (2.12)

If n = 1 and a = 4, (2.12) is not satisfied. Hence T is not 1-quasi (1, 1)∗-paranormal

operator.
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Remark 2.2.2.

From Theorem 2.2.5 it is clear that for any non negative integer k,

k-quasi (m,n)-paranormal ⊂ (k + 1)-quasi (m,n)-paranormal.

But the converse need not be true. Here we give an example of a 3-quasi (1, 1)-

paranormal operator, which is not 2-quasi (1, 1)-paranormal.

Consider T : l2(N) → l2(N) defined by

T (x1, x2, x3, · · · ) = (0,
1

2
x1,

1

2
x2,

1

4
x3,

1

5
x4,

1

4
x5,

1

4
x6, · · · ).

From Theorem 2.2.2, T is 3-quasi (1, 1)-paranormal. Using Theorem 2.2.2, T is

2-quasi (1, 1)-paranormal if and only if

|αn+2|2|αn+3|2 − 2 a |αn+2|2 + a2 ≥ 0, ∀a > 0, ∀n ∈ N. (2.13)

If n = 1 and a = 1
16
, (2.13) is not satisfied. Hence T is not 2-quasi (1, 1)-paranormal.

Now we give a matrix representation for k-quasi (m,n)-paranormal operators.

Theorem 2.2.6. Let T ∈ B(H) and R(T k) ̸= H. Then the following are equivalent:

(i) T is a k-quasi (m,n)- paranormal operator.

(ii) T =

A B

0 C

 on R(T k) ⊕ N(T ∗k), where A is a (m,n)-paranormal operator

on R(T k), Ck = 0 and σ(T ) = σ(A) ∪ {0}.

Proof. Assume that T is a k-quasi (m,n)-paranormal operator. Since R(T k) is

not dense in H and R(T k) is invariant under T, we have T =

A B

0 C

 on H =

R(T k)⊕N(T ∗k). Since A = T |
R(Tk)

, we have
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⟨(T ∗k(m
2

n+1T ∗n+1T n+1 − (n+ 1) anT ∗T +m
2

n+1 n an+1I)T k)x, x⟩

=⟨(m
2

n+1T ∗n+1T n+1 − (n+ 1) anT ∗T +m
2

n+1 n an+1I)T kx, T kx⟩, ∀x ∈ H.

=⟨(m
2

n+1T ∗n+1T n+1 − (n+ 1) anT ∗T +m
2

n+1 n an+1I)y, y⟩,∀y ∈ R(T k).

=⟨(m
2

n+1A∗n+1An+1 − (n+ 1) anA∗A+m
2

n+1 n an+1I)y, y⟩,∀y ∈ R(T k).

Since T is a k-quasi (m,n)- paranormal operator, we have

⟨(m
2

n+1A∗n+1An+1 − (n + 1) anA∗A + m
2

n+1 n an+1I)y, y⟩ ≥ 0, for all y ∈ R(T k).

Hence A is a (m,n)-paranormal operator on R(T k).

Let x ∈ N(T ∗k). Then

T k(x) =

Ak
k−1∑
i=0

AiBCk−1−i

0 Ck


0

x

 .

Thus Ckx = T kx−
k−1∑
i=0

AiBCk−1−ix. Since A = T |
R(Tk)

, we have Ckx ∈ R(T k). From

the matrix representation of T, we have Ckx ∈ N(T ∗k). Thus Ckx ∈ R(T k)∩N(T ∗k).

Hence Ck = 0. From Theorem 1.3.4, we get σ(T ) = σ(A) ∪ {0}.

Conversely, let T =

A B

0 C

 on H = R(T k) ⊕ N(T ∗k), where A is a (m,n)-

paranormal operator on R(T k) and Ck = 0. Thus

T k =

Ak
k−1∑
i=0

AiBCk−1−i

0 0



and T kT ∗k =

AkA∗k +
k−1∑
i=0

AiBCk−1−i(
k−1∑
i=0

AiBCk−1−i)∗ 0

0 0

 =

S 0

0 0

 , where

S = AkA∗k +
k−1∑
i=0

AiBCk−1−i(
k−1∑
i=0

AiBCk−1−i)∗. Since, S is a positive operator on

R(T k) and A = T |
R(Tk)

is a (m,n)-paranormal operator, we have
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T kT ∗k(m
2

n+1T ∗n+1T n+1 − (n+ 1)anT ∗T +m
2

n+1nan+1I)T kT ∗k

=

S(m 2
n+1A∗n+1An+1 − (n+ 1)anA∗A+m

2
n+1nan+1I)S 0

0 0

 ≥ 0.

Let D = T ∗k(m
2

n+1T ∗n+1T n+1−(n+1)anT ∗T+m
2

n+1nan+1I)T k. Then, T kDT ∗k ≥ 0.

Let x ∈ H. Then x = y + z where y ∈ R(T ∗k), z ∈ N(T k). Since y ∈ R(T ∗k), there

exists a sequence (xn) in H such that T ∗k(xn) → y. Since z ∈ N(T k), Dz = 0. Since

T kDT ∗k ≥ 0, we have

⟨Dx, x⟩ = ⟨D(lim T ∗k(xn) + z), lim T ∗k(xn) + z⟩

= ⟨D lim T ∗k(xn), lim T ∗k(xn)⟩+ ⟨D lim T ∗k(xn), z⟩

= lim⟨DT ∗k(xn), T
∗k(xn)⟩+ lim⟨DT ∗k(xn), z⟩

= lim⟨DT ∗k(xn), T
∗k(xn)⟩+ lim⟨T ∗k(xn), Dz⟩

≥ 0.

Hence T is a k-quasi (m,n)-paranormal operator.



Chapter 3

(m,n)-class Q and (m,n)-class Q∗

operators

In this chapter, we define two independent new classes of operators (m,n)-class

Q and (m,n)-class Q∗, which contains some well known class of operators, (m,n)-

paranormal and (m,n)∗-paranormal operators respectively. Here we prove that the

restriction of the operator to its closed subspace is the corresponding operator. Also,

we give characterizations for the weighted shift operators to become (m,n)-class Q

and (m,n)-class Q∗ operators. Finally we characterize the composition operators of

these two classes on L2 space.

3.1 (m,n)-class Q operators

Let m ∈ R+ and n ∈ N. Recall that T ∈ B(H) is (m,n)-paranormal if and only if

m
2

n+1T ∗n+1T n+1 − (n+ 1)anT ∗T +m
2

n+1n an+1 I ≥ 0,

for all a > 0 ([5]).

Let Q(m,n) = m
2

n+1T ∗n+1T n+1 − (n+ 1)T ∗T +m
2

n+1 n I.

Now we define (m,n)-class Q operator as follows:

Definition 3.1.1. Let m ∈ R+, n ∈ N. An operator T ∈ B(H) is said to be (m,n)-

class Q if Q(m,n) ≥ 0.

39
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For example, let T : l2(N) → l2(N) be defined by T (x1, x2, x3, · · · ) = (0, x1, x2, x3, · · · ).

Hence T ∗T = I and T ∗n+1T n+1 = I. Therefore,

Q(m,n) = m
2

n+1T ∗n+1T n+1 − (n+ 1)T ∗T +m
2

n+1 n I

= (m
2

n+1 − 1)(1 + n)I ≥ 0, for all m ≥ 1 and n ∈ N.

Hence if m ≥ 1, then T is a (m,n)-class Q operator for every n ∈ N.

Note that if m = n = 1, then (m,n)-class Q operator become class Q ([10]). That

is, class Q operators form a subclass of the classes of all (m,n)-class Q operators. In

general, every (m,n)-class Q operators need not be class Q.

For example, let T =

0 1

0 0

 . Then T ∗T =

0 0

0 1

 and T 2 = 0.

If m = 25, n = 3, then

m
2

n+1T ∗n+1T n+1 − (n+ 1) T ∗T +m
2

n+1 n I = −4T ∗T + 15I

=

15 0

0 11

 ≥ 0.

Hence T is a (25, 3)- class Q operator.

By definition, T is class Q if and only if T ∗2T 2 − 2 T ∗T + I ≥ 0.

T ∗2T 2 − 2 T ∗T + I = −2T ∗T + I =

1 0

0 −1

 < 0.

Hence T is not a class Q operator.

Now we prove some characterizations of (m,n)-class Q operators.

Theorem 3.1.1. Let T ∈ B(H). Then T is (m,n)-class Q if and only if

∥Tx∥2 ≤ m
2

n+1

n+ 1

(
∥T n+1x∥2 + n∥x∥2

)
, ∀x ∈ H.

Proof. T is a (m,n)-class Q operator

⇔ m
2

n+1T ∗n+1T n+1 − (n+ 1)T ∗T +m
2

n+1 n I ≥ 0.
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⇔ m
2

n+1 ⟨T ∗n+1T n+1x, x⟩ − (n+ 1) ⟨T ∗Tx, x⟩ +m
2

n+1 n ⟨x, x⟩ ≥ 0, ∀x ∈ H.

⇔ m
2

n+1 ∥T n+1x∥2 − (n+ 1)∥Tx∥2 +m
2

n+1 n ∥x∥2 ≥ 0, ∀x ∈ H.

⇔ ∥Tx∥2 ≤ m
2

n+1

n+ 1

(
∥T n+1x∥2 + n∥x∥2

)
, ∀x ∈ H.

Theorem 3.1.2. Let T ∈ B(H). T is (m,n)-paranormal if and only if λT is (m,n)-

class Q operator, for each λ > 0.

Proof. λT is (m,n)-class Q

⇔ m
2

n+1 |λ|2(n+1)T ∗n+1T n+1 − (n+ 1) |λ|2 T ∗T +m
2

n+1 n I ≥ 0, ∀λ > 0.

⇔ m
2

n+1T ∗n+1T n+1 − (n+ 1)

(
1

λ2

)n

T ∗T +m
2

n+1 n

(
1

λ2

)n+1

I ≥ 0, ∀λ > 0.

⇔ m
2

n+1T ∗n+1T n+1 − (n+ 1) an T ∗T +m
2

n+1 n an+1 I ≥ 0, a =
1

λ2
> 0.

⇔ T is (m,n)-paranormal.

From the above theorem, it is clear that every (m,n)-paranormal operator is (m,n)-

class Q.

Theorem 3.1.3. Let T ∈ B(H) be a (m,n)-class Q operator and M be a closed

subspace of H which is invariant under T. Then T |M is a (m,n)-class Q operator.

Proof. Let x ∈ M. Since T is (m,n)-class Q, we have

∥T |M x∥2 = ∥Tx∥2

≤ m
2

n+1

n+ 1

(
∥T n+1x∥2 + n∥x∥2

)
=
m

2
n+1

n+ 1

(
∥(T |M)n+1x∥2 + n∥x∥2

)
.

Hence T |M is a (m,n)-class Q operator.

Theorem 3.1.4. Let T ∈ B(H) and c =
l

m
2

n+1 n
, where l ≥ n + 1. If

√
c T is a

contraction, then T is a (m,n)-class Q operator.
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Proof. Since
√
c T is a contraction, (

√
c T )∗(

√
c T ) ≤ I. Therefore, −c T ∗T +I ≥ 0.

Since
T ∗n+1T n+1

n
is a positive operator, we have

T ∗n+1T n+1

n
− c T ∗T + I ≥ 0.

Hence,
T ∗n+1T n+1

n
− l

m
2

n+1 n
T ∗T + I ≥ 0.

m
2

n+1T ∗n+1T n+1 − l T ∗T +m
2

n+1 n I ≥ 0.

Therefore,

m
2

n+1T ∗n+1T n+1−(n+1)T ∗T +m
2

n+1 n I ≥ m
2

n+1T ∗n+1T n+1− l T ∗T +m
2

n+1 n I ≥ 0.

Thus T is a (m,n)-class Q operator.

From Theorem 3.1.2, every (m,n)-paranormal operator is (m,n)-class Q. In gen-

eral, the converse need not be true. For proving this, we use the following result.

Theorem 3.1.5. Let T ∈ B(l2(N)) be a weighted shift operator with non zero weights

{αk}, (k = 1, 2, ....), defined by Tek = αk ek+1, where {ek}∞k=1 is an orthonormal

basis of l2(N). Then T is a (m,n)-class Q operator if and only if

n+ 1

m
2

n+1

(
|αk|2

)
≤ |αk|2 |αk+1|2......|αk+n|2 + n, ∀ k ∈ N.

Proof. Since Tek = αk ek+1, we have T n+1ek = αk αk+1.....αk+n ek+n+1.

T is a (m,n)-class Q

⇔ ∥Tx∥2 ≤ m
2

n+1

n+ 1

(
∥T n+1x∥2 + n∥x∥2

)
, ∀ x ∈ H.

⇔ ∥Tek∥2 ≤
m

2
n+1

n+ 1

(
∥T n+1ek∥2 + n∥ek∥2

)
, ∀ k ∈ N.

⇔ n+ 1

m
2

n+1

|αk|2 ≤ |αk|2 |αk+1|2.....|αk+n|2 + n, ∀ k ∈ N.
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Let T : l2(N) → l2(N) be defined by

T (x1, x2, x3, ......) = (0,
1

2
x1,

1

4
x2,

1

4
x3, ......).

Here α1 =
1
2
, αk = 1

4
for k ≥ 2. From Theorem 3.1.5, we get T is a (1

3
, 3)-class Q

operator. From Lemma 1.3.6, T is (m,n)-paranormal if and only if

|αk|n+1 ≤ m |αk| |αk+1|......|αk+n|, ∀ k ∈ N. (3.1)

If m = 1
3
, n = 3, k = 4, then (3.1) is not satisfied. Hence T is not a (1

3
, 3)-

paranormal operator.

Theorem 3.1.6. Let T ∈ B(H) be a (m,n)-class Q operator and A ∈ B(H) be an

isometric operator such that AT = TA. Then TA is a (m,n)-class Q operator.

Proof. Let S = TA. Since AT = TA and A∗A = I, we have

m
2

n+1S∗n+1Sn+1 − (n+ 1)S∗S +m
2

n+1 n I

=m
2

n+1 (A∗T ∗)n+1(TA)n+1 − (n+ 1)A∗T ∗TA+m
2

n+1 nI

=m
2

n+1T ∗n+1T n+1 − (n+ 1)T ∗T +m
2

n+1 n I

Since T is (m,n)-class Q, m
2

n+1S∗n+1Sn+1 − (n + 1)S∗S + m
2

n+1 n I ≥ 0. Hence

S = TA is a (m,n)-class Q operator.

Theorem 3.1.7. Let T ∈ B(H) be a (m,n)-class Q operator and T be unitarily

equivalent to an operator B ∈ B(H). Then B is a (m,n)-class Q operator.

Proof. Since T is unitarily equivalent to B, there exist an unitary operator U such

that B = U∗TU. Now,

m
2

n+1B∗n+1Bn+1 − (n+ 1)B∗B +m
2

n+1 n I

=m
2

n+1U∗T ∗n+1T n+1U − (n+ 1)U∗T ∗TU +m
2

n+1 nI

=U∗
(
m

2
n+1T ∗n+1T n+1 − (n+ 1)T ∗T +m

2
n+1 n I

)
U
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Since T is (m,n)-class Q, U∗
(
m

2
n+1T ∗n+1T n+1 − (n+ 1)T ∗T +m

2
n+1 n I

)
U ≥ 0.

Hence B is a (m,n)-class Q operator.

3.2 (m,n)- class Q∗ operators

Let T ∈ B(H). Let m ∈ R+, n ∈ N. Recall that T is said to be (m,n)∗-paranormal

if ∥T ∗x∥n+1 ≤ m∥T n+1x∥∥x∥n, for all x ∈ H. Equivalently, T is (m,n)∗-paranormal

if and only if

m
2

n+1T ∗n+1T n+1 − (n+ 1)anTT ∗ +m
2

n+1 n an+1 I ≥ 0,

for each a > 0 ([5]). Now we define a new classes of operator namely (m,n)-class

Q∗ operators, which contains the classes of all (m,n)∗-paranormal operators.

Let Q(m,n)∗ = m
2

n+1T ∗n+1T n+1 − (n+ 1)TT ∗ +m
2

n+1 n I.

Definition 3.2.1. Let m ∈ R+, n ∈ N. An operator T ∈ B(H) is said to be (m,n)-

class Q∗ if Q(m,n)∗ ≥ 0.

For example, let T : l2(N) → l2(N) be defined by T (x1, x2, x3, · · · ) = (0, x1, x2, x3, · · · ).

Then TT ∗(x1, x2, x3, ......) = (0, x2, x3, ......) and T ∗n+1T n+1 = I, for all n ∈ N.

Hence, for every x = (x1, x2, x3, ......) ∈ l2(N)

⟨Q(m,n)∗x, x⟩ =
〈(
m

2
n+1T ∗n+1T n+1 − (n+ 1)TT ∗ +m

2
n+1 n I

)
x, x

〉
=

〈
(1 + n)

(
m

2
n+1 I − TT ∗

)
x, x

〉
= (1 + n)

(
m

2
n+1 |x1|2 + (m

2
n+1 − 1)|x2|2 + · · ·

)
≥ 0,

for every n ∈ N and m ≥ 1. Hence T is a (m,n)-class Q∗ operator, for m ≥ 1 and

n ∈ N.

Note that if m = n = 1, then (m,n)-class Q∗ is class Q∗. That is, class Q∗ operators

form a subclass of the classes of all (m,n)-class Q∗ operators. But, every (m,n)-class

Q∗ operator need not be a class Q∗ operator.

For example, let T =

0 1

0 0

 . Then TT ∗ =

1 0

0 0

 and T 2 = 0.



3.2. (m,n)- CLASS Q∗ OPERATORS 45

If m = 25, n = 3, then

m
2

n+1T ∗n+1T n+1 − (n+ 1) TT ∗ +m
2

n+1n I = −4TT ∗ + 15I

=

11 0

0 15

 ≥ 0.

Hence T is a (25, 3)-class Q∗ operator.

By definition, T is class Q∗ if and only if T ∗2T 2 − 2 TT ∗ + I ≥ 0. Here

T ∗2T 2 − 2 TT ∗ + I = −2TT ∗ + I

=

−1 0

0 1

 < 0.

Hence T is not a class Q∗ operator.

That is, every (m,n)-class Q∗ need not be class Q∗.

Now we prove some characterizations of (m,n)-class Q∗ operators.

Theorem 3.2.1. Let T ∈ B(H). Then T is (m,n)-class Q∗ if and only if

∥T ∗x∥2 ≤ m
2

n+1

n+ 1

(
∥T n+1x∥2 + n∥x∥2

)
, ∀x ∈ H.

Proof. T is a (m,n)-class Q∗ operator

⇔ m
2

n+1T ∗n+1T n+1 − (n+ 1)TT ∗ +m
2

n+1 n I ≥ 0.

⇔ m
2

n+1 ⟨T ∗n+1T n+1x, x⟩ − (n+ 1) ⟨TT ∗x, x⟩ +m
2

n+1 n ⟨x, x⟩ ≥ 0,∀x ∈ H.

⇔ m
2

n+1 ∥T n+1x∥2 − (n+ 1)∥T ∗x∥2 +m
2

n+1 n ∥x∥2 ≥ 0, ∀x ∈ H.

⇔ ∥T ∗x∥2 ≤ m
2

n+1

n+ 1

(
∥T n+1x∥2 + n∥x∥2

)
,∀x ∈ H.

Now we give a characterization for the weighted shift operator become (m,n)-

class Q∗.
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Theorem 3.2.2. Let T ∈ B(l2(N)) be a weighted shift operator with non zero weights

{αk}, (k = 1, 2, ....), defined by Tek = αk ek+1, where {ek}∞k=1 is an orthonormal

basis of l2(N). Then T is a (m,n)-class Q∗ operator if and only if

n+ 1

m
2

n+1

(
|αk|2

)
≤ |αk+1|2 |αk+2|2 · · · |αk+n+1|2 + n,∀ k ∈ N.

Proof. Since Tek = αk ek+1, we have T n+1ek = αk αk+1.....αk+n ek+n+1, ∀ k ∈ N.

and T ∗ek = αk−1 ek−1, ∀ k ≥ 2. Now,

T is (m,n)-class Q∗

⇔ ∥T ∗x∥2 ≤ m
2

n+1

n+ 1

(
∥T n+1x∥2 + n∥x∥2

)
,∀x ∈ H.

⇔ ∥T ∗ek∥2 ≤
m

2
n+1

n+ 1

(
∥T n+1ek∥2 + n∥ek∥2

)
,∀ k ∈ N.

⇔ n+ 1

m
2

n+1

|αk|2 ≤ |αk+1|2 |αk+2|2.....|αk+n+1|2 + n,∀ k ∈ N.

Theorem 3.2.3. Let T ∈ B(H) and c =
l

m
2

n+1 n
, where l ≥ n + 1. If

√
c T ∗ is a

contraction, then T is a (m,n)-class Q∗ operator.

Proof. Since
√
c T ∗ is a contraction, we have −c TT ∗ + I ≥ 0. Hence

T ∗n+1T n+1

n
− c TT ∗ + I ≥ 0.

T ∗n+1T n+1

n
− l

m
2

n+1 n
TT ∗ + I ≥ 0.

m
2

n+1T ∗n+1T n+1 − l TT ∗ +m
2

n+1 n I ≥ 0.

m
2

n+1T ∗n+1T n+1−(n+1)TT ∗+m
2

n+1 n I ≥ m
2

n+1T ∗n+1T n+1− l TT ∗+m
2

n+1 n I ≥ 0.

Thus T is a (m,n)-class Q∗ operator.

Now we show that the class of all (m,n)∗-paranormal operators is contained in

the class of all (m,n)-class Q∗ operators.
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Theorem 3.2.4. Let T ∈ B(H). Then T is (m,n)∗-paranormal if and only if λT is

(m,n)-class Q∗, for each λ > 0.

Proof. We have λT is (m,n)-class Q∗

⇔ m
2

n+1 |λ|2(n+1)T ∗n+1T n+1 − (n+ 1) |λ|2 TT ∗ +m
2

n+1 n I ≥ 0, ∀λ > 0.

⇔m
2

n+1T ∗n+1T n+1 − (n+ 1)

(
1

λ2

)n

TT ∗ +m
2

n+1 n

(
1

λ2

)n+1

I ≥ 0,∀λ > 0.

⇔ m
2

n+1T ∗n+1T n+1 − (n+ 1) an TT ∗ +m
2

n+1 n an+1 I ≥ 0, a =
1

λ2
> 0.

⇔ T is (m,n)∗-paranormal.

By the above theorem, every (m,n)∗-paranormal operators is (m,n)-class Q∗

operator. In general, the converse need not be true.

For example, let T =

0 1

0 0

 . Then TT ∗ =

1 0

0 0

 and T 2 = 0.

If m = 25, n = 3, then

m
2

n+1T ∗n+1T n+1 − (n+ 1) TT ∗ +m
2

n+1n I = −4TT ∗ + 15I

=

11 0

0 15

 ≥ 0.

Hence T is a (25, 3)-class Q∗ operator.

If m = 25, n = 3, then

m
2

n+1T ∗n+1T n+1 − (n+ 1) an TT ∗ +m
2

n+1n an+1I = −4a3TT ∗ + 15a4I

=

−4a3 + 15a4 0

0 15a4


If a = 1

5
, then −4a3TT ∗ + 15a4I < 0. Hence T is not (25, 3)∗-paranormal.

Theorem 3.2.5. Let T ∈ B(H) be a (m,n)-class Q∗ operator and M be a closed

subspace of H which is invariant under T. Then T |M is a (m,n)-class Q∗ operator.
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Proof. Let x ∈ M. Then

∥(T |M)∗x∥2 = ∥T ∗x∥2

≤ m
2

n+1

n+ 1

(
∥T n+1x∥2 + n∥x∥2

)
=
m

2
n+1

n+ 1

(
∥(T |M)n+1x∥2 + n∥x∥2

)
.

Hence T |M is a (m,n)-class Q∗ operator.

Theorem 3.2.6. Let T ∈ B(H) be a (m,n)-class Q∗ operator and T be unitarily

equivalent to an operator B ∈ B(H). Then B is a (m,n)-class Q∗ operator.

Proof. Since T is unitarily equivalent to an operator B, there exist an unitary op-

erator U such that B = U∗TU.

m
2

n+1B∗n+1Bn+1 − (n+ 1)BB∗ +m
2

n+1 n I

= m
2

n+1U∗T ∗n+1T n+1U − (n+ 1)U∗TT ∗U +m
2

n+1 n I.

= U∗
(
m

2
n+1T ∗n+1T n+1 − (n+ 1)TT ∗ +m

2
n+1 n I

)
U.

Since T is (m,n)-class Q∗, U∗
(
m

2
n+1T ∗n+1T n+1 − (n+ 1)TT ∗ +m

2
n+1 n I

)
U ≥ 0.

Hence B is a (m,n)-class Q∗ operator.

Now we show that the newly defined classes of operators, (m,n)-class Q and class

of (m,n)-class Q∗ are independent. For example, let T : l2(N) → l2(N) be defined

by

T (x1, x2, x3, · · · ) = (0,
1

2
x1,

1

4
x2,

1

4
x3, · · · ).

Here α1 =
1
2
, αk = 1

4
for k ≥ 2. If m =

1

9.00033
, n = 3, using Theorem 3.1.5, T is

a (m,n)-class Q operator.

From Theorem 3.2.2, we have T is a (m,n)-class Q∗ operator if and only if

n+ 1

m
2

n+1

(
|αk|2

)
≤ |αk+1|2 |αk+2|2 · · · |αk+n+1|2 + n,∀ k ∈ N. (3.2)
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If m =
1

9.00033
, n = 3 and k = 1, (3.2) is not satisfied. Hence T is not a

(m,n)-class Q∗ operator.

Next we consider an operator T : l2(N) → l2(N) defined by

T (x1, x2, x3, · · · ) = (0, 2x1, 4x2, 3x3, 4x4, 6x5, 6x6, · · · ).

Here α1 = 2 α2 = 4, α3 = 3, α4 = 4, αn = 6 for n ≥ 5.

If m = 2× 10−7, n = 3, using Theorem 3.2.2, T is a (m,n)-class Q∗ operator.

From Theorem 3.1.5, T is a (m,n)-class Q operator if and only if

n+ 1

m
2

n+1

(
|αk|2

)
≤ |αk|2|αk+1|2......|αk+n|2 + n,∀ k ∈ N. (3.3)

If m = 2× 10−7, n = 3 and k = 2, (3.3) is not satisfied.

Hence T is not a (m,n)-class Q operator.

That is, the classes of operators (m,n)-class Q and (m,n)-class Q∗ are independent.

3.3 (m,n)-class Q and (m,n)-class Q∗ Composition op-

erators

In this section, we give some characterizations of (m,n)-class Q and (m,n)-class Q∗

composition operators defined on L2 space. For a non singular measurable function

T on X, let CT denotes the composition operator of T on L2(µ) and hn denotes the

Radon-Nikodym derivative of µ(T−1)n with respect to µ. We denote h1 by h and

adjoint of CT by C∗
T .

Theorem 3.3.1. CT is a (m,n)-class Q operator if and only if m
2

n+1 (hn+1 + nI) ≥

(n+ 1)h

Proof. By definition, we have CT is a (m,n)-class Q operator if and only if

m
2

n+1C∗n+1
T Cn+1

T − (n+ 1)C∗
TCT +m

2
n+1 n I ≥ 0.
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From Theorem 1.4.3, for any f ∈ L2(µ), we have (n+ 1)C∗
TCTf = (n+ 1)hf and

m
2

n+1C∗n+1
T Cn+1

T f = m
2

n+1C∗n+1
T (f ◦ T n+1).

= m
2

n+1hn+1E(f ◦ T n+1) ◦ T−(n+1).

= m
2

n+1hn+1E(1.f ◦ T n+1) ◦ T−(n+1).

= m
2

n+1hn+1E(1)f.

= m
2

n+1hn+1f.

Hence, CT is a (m,n)-class Q operator if and only if

⟨m
2

n+1hn+1f − (n+ 1)hf +m
2

n+1nf, f⟩ ≥ 0, for every f ∈ L2(µ).

That is, CT is a (m,n)-class Q operator if and only if

m
2

n+1 (hn+1 + nI) ≥ (n+ 1)h.

Example 3.3.1. Let X = N ∪ {0}, A = P (X) and µ be the measure defined by

µ(A) =
∑
k∈A

mk,

where

mk =

 1 if k = 0.
1

4k−1
if k ≥ 1.

Let T : X → X be defined by

T (k) =

 0 if k = 0, 1.

k − 1 if k ≥ 2.
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Then for q > 1, we have

T q(k) =

 0 if k = 0, 1, 2, . . . , q.

k − q if k ≥ q + 1.

Hence, h(k) = µT−1({k})
µ{k} =

 2 if k = 0

1
4

if k ≥ 1.

For q > 1, hq(k) =
µT−q({k})

µ{k} =

 2 + 1
4
+ 1

42
+ . . .+ 1

4q−1 if k = 0.

1
4q

if k ≥ 1.

By computation, it can be seen that if m ≥ 2 and n = 1, then m(h2 + I) ≥ 2h.

Hence CT is a (m,n)-class Q operator for m ≥ 2 and n = 1.

Theorem 3.3.2. C∗
T is a (m,n)-class Q operator if and only if

m
2

n+1 (hn+1 ◦ T n+1 + nI) ≥ (n+ 1)h ◦ T.

Proof. We have, C∗
T is a (m,n)-class Q operator if and only if

m
2

n+1Cn+1
T C∗n+1

T − (n+ 1)CTC
∗
T +m

2
n+1 n I ≥ 0.

Let f ∈ L2(µ). From Theorem 1.4.3, we have

(n+ 1)CTC
∗
Tf = (n+ 1)(h ◦ T )Pf = (n+ 1)(h ◦ T )f,

where P is a projection onto R(CT ). Also from Theorem 1.4.3, for any f ∈ L2(µ)

we get

m
2

n+1Cn+1
T C∗n+1

T f = m
2

n+1Cn+1
T (hn+1.E(f) ◦ T−(n+1)).

= m
2

n+1 (hn+1.E(f) ◦ T−(n+1)) ◦ T n+1.

= m
2

n+1

(
(hn+1 ◦ T n+1).(E(f) ◦ T−(n+1) ◦ T n+1)

)
.

= m
2

n+1hn+1 ◦ T n+1E(f).

= m
2

n+1hn+1 ◦ T n+1f.
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Thus C∗
T is a (m,n)-class Q operator

⇔ ⟨m
2

n+1hn+1 ◦ T n+1f − (n+ 1)(h ◦ T )f +m
2

n+1nf, f⟩ ≥ 0,∀f ∈ L2(µ).

⇔ m
2

n+1 (hn+1 ◦ T n+1 + nI) ≥ (n+ 1)h ◦ T.

Example 3.3.2. In example 3.3.1, if we choose m ≥ 2 then C∗
T is a (m, 1)-class Q

operator.

Theorem 3.3.3. CT is a (m,n)-class Q∗ operator if and only if m
2

n+1 (hn+1 + nI) ≥

(n+ 1)h ◦ T.

Proof. We have, CT is a (m,n)-class Q∗ operator if and only if

m
2

n+1C∗n+1
T Cn+1

T − (n+ 1)CTC
∗
T +m

2
n+1 n I ≥ 0.

From Theorem 1.4.3, we get

(n+ 1)CTC
∗
Tf = (n+ 1)(h ◦ T )Pf = (n+ 1)(h ◦ T )f, ∀f ∈ L2(µ).

Also, for every f ∈ L2(µ), we have

m
2

n+1C∗n+1
T Cn+1

T f = m
2

n+1C∗n+1
T (f ◦ T n+1).

= m
2

n+1hn+1E(f ◦ T n+1) ◦ T−(n+1).

= m
2

n+1hn+1E(1.f ◦ T n+1) ◦ T−(n+1).

= m
2

n+1hn+1E(1)f.

= m
2

n+1hn+1f.

Hence CT is a (m,n)-class Q∗ operator

⇔
〈
m

2
n+1hn+1f − (n+ 1)(h ◦ T )f +m

2
n+1nf, f

〉
≥ 0,∀f ∈ L2(µ).

⇔ m
2

n+1 (hn+1 + nI) ≥ (n+ 1)h ◦ T.
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Example 3.3.3. In example 3.3.1, if we choose m ≥ 4 and n = 1 then CT is a

(m,n)-class Q∗ operator.

Theorem 3.3.4. C∗
T is (m,n)-class Q∗ if and only ifm

2
n+1 (hn+1◦T n+1+nI) ≥ (n+1)h.

Proof. By definition, C∗
T is a (m,n)-class Q∗ operator if and only if

m
2

n+1Cn+1
T C∗n+1

T − (n+ 1)C∗
TCT +m

2
n+1 n I ≥ 0.

From Theorem 1.4.3, we get (n+ 1)C∗
TCTf = (n+ 1)hf, ∀f ∈ L2(µ). Also,

m
2

n+1Cn+1
T C∗n+1

T f = m
2

n+1Cn+1
T (hn+1.E(f) ◦ T−(n+1)).

= m
2

n+1 (hn+1.E(f) ◦ T−(n+1)) ◦ T n+1.

= m
2

n+1

(
(hn+1 ◦ T n+1).(E(f) ◦ T−(n+1) ◦ T n+1)

)
.

= m
2

n+1hn+1 ◦ T n+1E(f).

= m
2

n+1hn+1 ◦ T n+1f, ∀f ∈ L2(µ).

Hence C∗
T is a (m,n)-class Q∗ operator

⇔
〈
m

2
n+1hn+1 ◦ T n+1f − (n+ 1)hf +m

2
n+1nf, f

〉
≥ 0, ∀f ∈ L2(µ).

⇔ m
2

n+1 (hn+1 ◦ T n+1 + nI) ≥ (n+ 1)h.

Example 3.3.4. In example 3.3.1, if we choose m ≥ 2 then C∗
T is a (m, 1)-class Q∗

operator.

Now we prove some characterizations of (m,n)-class Q and (m,n)-class Q∗ weighted

composition operators. For a non empty set X, let T : X → X be a measurable

function and π be a complex valued measurable function defined on X. Let W de-

notes the weighted composition operator on L2(µ), induced by T and π.

For f ∈ L2(µ) and k ∈ N, let Jkf = hkE(|πk|2)◦T−kf and Lkf = πk(hk◦T k)E(π̄kf),

where πk = π(π ◦ T )(π ◦ T 2) . . . (π ◦ T k−1).
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Theorem 3.3.5. W is a (m,n)-class Q operator if and only if

m
2

n+1 (Jn+1 + nI) ≥ (n+ 1)J1.

Proof. We have, W is a (m,n)-class Q operator if and only if

m
2

n+1W ∗n+1W n+1 − (n+ 1)W ∗W +m
2

n+1 n I ≥ 0.

By Theorem 1.5.1, for any f ∈ L2(µ), we have

(n+ 1)W ∗Wf = (n+ 1)hE(|π|2) ◦ T−1f.

= (n+ 1)J1f.

m
2

n+1W ∗n+1W n+1f = m
2

n+1 hn+1 E(|πn+1|2) ◦ T−(n+1)f.

= m
2

n+1Jn+1f.

Hence, W is a (m,n)-class Q operator

⇔
〈
m

2
n+1Jn+1f − (n+ 1)J1f +m

2
n+1nf, f

〉
≥ 0,∀f ∈ L2(µ).

⇔ m
2

n+1 (Jn+1 + nI) ≥ (n+ 1)J1.

Theorem 3.3.6. W is a (m,n)-class Q∗ operator if and only if

m
2

n+1 (Jn+1 + nI) ≥ (n+ 1)L1.

Proof. We have, W is a (m,n)-class Q∗ operator if and only if

m
2

n+1W ∗n+1W n+1 − (n+ 1)WW ∗ +m
2

n+1 n I ≥ 0.
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By Theorem 1.5.1, for any f ∈ L2(µ), we have

(n+ 1)WW ∗f = (n+ 1)(h ◦ T )E(πf).

= (n+ 1)L1f.

m
2

n+1W ∗n+1W n+1f = m
2

n+1 hn+1 E(|πn+1|2) ◦ T−(n+1)f.

= m
2

n+1Jn+1f.

Hence, W is a (m,n)-class Q∗ operator

⇔
〈
m

2
n+1Jn+1f − (n+ 1)L1f +m

2
n+1nf, f

〉
≥ 0,∀f ∈ L2(µ).

⇔ m
2

n+1 (Jn+1 + nI) ≥ (n+ 1)L1.

Theorem 3.3.7. W ∗ is a (m,n)-class Q operator if and only if

m
2

n+1 (Ln+1 + nI) ≥ ((n+ 1)L1.

Proof. By definition, W ∗ is a (m,n)-class Q operator if and only if

m
2

n+1W n+1W ∗n+1 − (n+ 1)WW ∗ +m
2

n+1 n I ≥ 0.

Let f ∈ L2(µ). From Theorem 1.5.1, we have

(n+ 1)WW ∗f = (n+ 1)(h ◦ T )E(πf).

= (n+ 1)L1f.

m
2

n+1W n+1W ∗n+1f = m
2

n+1 πn+1(hn+1 ◦ T n+1)E( ¯πn+1f).

= m
2

n+1 Ln+1f.
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Hence, W ∗ is a (m,n)-class Q operator

⇔
〈
m

2
n+1 Ln+1f − (n+ 1)L1f +m

2
n+1nf, f

〉
≥ 0,∀f ∈ L2(µ).

⇔ m
2

n+1 (Ln+1 + nI) ≥ ((n+ 1)L1.

Theorem 3.3.8. W ∗ is a (m,n)-class Q∗ operator if and only if

m
2

n+1 (Ln+1 + nI) ≥ (n+ 1)J1.

Proof. W ∗ is a (m,n)-class Q∗ operator if and only if

m
2

n+1W n+1W ∗n+1 − (n+ 1)W ∗W +m
2

n+1 n I ≥ 0.

From Theorem 1.5.1, for any f ∈ L2(µ), we have

(n+ 1)W ∗Wf = (n+ 1)hE(|π|2) ◦ T−1f.

= (n+ 1)J1f.

m
2

n+1W n+1W ∗n+1f = m
2

n+1 πn+1(hn+1 ◦ T n+1)E( ¯πn+1f).

= m
2

n+1 Ln+1f.

Hence, W ∗ is a (m,n)-class Q∗ operator

⇔
〈
m

2
n+1Ln+1f − (n+ 1)J1f +m

2
n+1nf, f

〉
≥ 0,∀f ∈ L2(µ).

⇔ m
2

n+1 (Ln+1 + nI) ≥ (n+ 1)J1.



Chapter 4

k-quasi (m,n)-class Q and k-quasi

(m,n)-class Q∗ operators

In this chapter, we define two independent new classes of operators namely k-quasi

(m,n)-class Q and k-quasi (m,n)-class Q∗ operators which contains some well known

classes of operators, k-quasi (m,n)-paranormal and k-quasi (m,n)∗-paranormal op-

erators respectively. Here we give some characterizations, examples and a 2 × 2

matrix representation for these classes of operators. Finally we characterize the

composition operators of these classes on L2 space.

4.1 k-quasi (m,n)-class Q operators

Let T ∈ B(H) and m ∈ R+, n ∈ N. Recall that T is said to be (m,n)-class Q if

m
2

n+1T ∗n+1T n+1 − (n+ 1)T ∗T +m
2

n+1 n I ≥ 0,

(Definition 3.1.1). Also, T is k-quasi (m,n)-paranormal if and only if

m
2

n+1T ∗kT ∗n+1T n+1T k − (n+ 1) anT ∗kT ∗TT k +m
2

n+1 n an+1T ∗kT k ≥ 0,∀a > 0,

(Theorem 2.2.1).

57
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Definition 4.1.1. ([19]) Let k be a non-negative integer. An operator T ∈ B(H) is

said to be k-quasi class Q operator if T ∗k (T ∗2T 2 − 2T ∗T + I)T k ≥ 0.

Now we define k-quasi (m,n)-class Q operators which includes k-quasi (m,n)-

paranormal and (m,n)-class Q operators.

Definition 4.1.2. Let m ∈ R+, n ∈ N and k be a non-negative integer. An operator

T ∈ B(H) is said to be k-quasi (m,n)-class Q operator if

T ∗k
(
m

2
n+1T ∗n+1T n+1 − (n+ 1)T ∗T +m

2
n+1 n I

)
T k ≥ 0.

Note that 1-quasi (m,n)-class Q operator is said to be quasi (m,n)-class Q op-

erator.

For example, let T =

0 0

1 0

 . Then T 2 = 0. From the definition, it is clear that if

k ≥ 2, then T is a k-quasi (m,n)-class Q operator for any m,n.

If m = n = 1, then k-quasi (m,n)-class Q operators coincides with k-quasi class Q

operators ([19]).

Note that if k = 0, then k-quasi (m,n)-class Q operator becomes (m,n)-class Q

operator introduced in chapter 3 (refer definition 3.1.1). That is, the class of all

(m,n)-class Q operator forms a subclass of the classes all k-quasi (m,n)-class Q op-

erators. In general, every k-quasi (m,n)-class Q operator need not be (m,n)-class

Q operator.

For example, the operator T defined by the matrix T =

1 0

1 0

 .

If m = n = 1 and for any integer k ≥ 1, we have

m
2

n+1T ∗kT ∗n+1T n+1T k − (n+ 1) T ∗kT ∗TT k +m
2

n+1 n T ∗kT k

=T ∗k(T ∗2T 2 − 2T ∗T + I)T k

=

1 1

0 0

−1 0

0 1

1 0

1 0


=

0 0

0 0

 .
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Hence T is a k-quasi (1, 1)-class Q operator for any k ≥ 1.

Now for m = n = 1, we have

m
2

n+1T ∗n+1T n+1 − (n+ 1)T ∗T +m
2

n+1n I =T ∗2T 2 − 2T ∗T + I

= T ∗T − 2T ∗T + I

=

−1 0

0 1

 < 0.

Hence T is not a (1, 1)-class Q operator.

That is, T is a k-quasi (1, 1)-class Q operator for any k ≥ 1 but T is not (1, 1)-class

Q operator.

Now we give some characterizations of k-quasi (m,n)-class Q operators.

Theorem 4.1.1. Let T ∈ B(H). Then T is a k-quasi (m,n)-class Q operator if and

only if
m

2
n+1

n+ 1

(
∥T k+n+1x∥2 + n∥T kx∥2

)
≥ ∥T k+1x∥2 for all x ∈ H

Proof. Let x ∈ H. T is a k-quasi (m,n)-class Q operator

⇔
〈(
T ∗k

(
m

2
n+1T ∗n+1T n+1 − (n+ 1)T ∗T +m

2
n+1 n I

)
T k

)
x, x

〉
≥ 0.

⇔ m
2

n+1 ⟨T ∗k+n+1T k+n+1x, x⟩ − (n+ 1) ⟨T ∗k+1T k+1x, x⟩ +m
2

n+1 n ⟨T ∗kT kx, x⟩ ≥ 0.

⇔ m
2

n+1 ∥T k+n+1x∥2 − (n+ 1)∥T k+1x∥2 +m
2

n+1 n ∥T kx∥2 ≥ 0.

⇔ m
2

n+1

n+ 1

(
∥T k+n+1x∥2 + n∥T kx∥2

)
≥ ∥T k+1x∥2.

Theorem 4.1.2. Let T ∈ B(H). Then λ
−m
n+1T is k-quasi (m,n)-class Q for all λ > 0

if and only if T is k-quasi (m,n)-paranormal.

Proof. Let λ > 0. λ
−m
n+1T is a k-quasi (m,n)-class Q operator

⇔ (λ
−m
n+1T )∗k

[
m

2
n+1 (λ

−m
n+1T )∗n+1(λ

−m
n+1T )n+1 − (n+ 1)λ

−2m
n+1 T ∗T +m

2
n+1n I

]
(λ

−m
n+1T )k ≥ 0.
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⇔ (λ
−2mk
n+1 )T ∗k

[
m

2
n+1λ−2mT ∗n+1T n+1 − (n+ 1)λ

−2m
n+1 T ∗T +m

2
n+1nI

]
T k ≥ 0.

⇔ (λ
−2mk
n+1 )λ−2mT ∗k

[
m

2
n+1T ∗n+1T n+1 − (n+ 1)λ

2mn
n+1 T ∗T +m

2
n+1nλ2mI

]
T k ≥ 0.

⇔ T ∗k
[
m

2
n+1T ∗n+1T n+1 − (n+ 1)(λ

2m
n+1 )nT ∗T +m

2
n+1 n (λ

2m
n+1 )n+1I

]
T k ≥ 0.

⇔ T ∗k
[
m

2
n+1T ∗n+1T n+1 − (n+ 1)anT ∗T +m

2
n+1 n an+1I

]
T k ≥ 0, a > 0.

⇔ T is a k-quasi (m,n)-paranormal operator.

From the above theorem it is clear that every k-quasi (m,n)-paranormal operator

is k-quasi (m,n)-class Q. In general, the converse need not be true. For proving this,

we use the following theorem.

Theorem 4.1.3. Let T ∈ B(l2(N)) be a weighted shift operator with non zero weights

{αn}, (n = 1, 2, ....), defined by Ten = αn en+1, where {en}∞n=1 is an orthonormal

basis of l2(N). Then T is k-quasi (1, 1)-class Q if and only if

|αn+k|2|αn+k+1|2 − 2 |αn+k|2 + 1 ≥ 0, ∀n ∈ N. (4.1)

Proof. From the proof of Theorem 2.2.2, we get

T ∗k(T ∗2T 2)T ken = |αn|2|αn+1|2 · · · |αn+k−1|2|αn+k|2|αn+k+1|2en, for any k ∈ N.

T ∗k(T ∗T )T ken = |αn|2|αn+1|2 · · · |αn+k−1|2|αn+k|2en, for any k ∈ N.

and

T ∗kT ken = |αn|2|αn+1|2 · · · |αn+k−1|2en, for any k ∈ N.

Now, T is k-quasi (1, 1)-class Q

⇔T ∗k(T ∗2T 2 − 2T ∗T + I)T k ≥ 0.

⇔⟨(T ∗k(T ∗2T 2 − 2T ∗T + I)T k)en, en⟩ ≥ 0, ∀n ∈ N.
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⇔|αn|2|αn+1|2 · · · |αn+k−1|2(|αn+k|2|αn+k+1|2 − 2 |αn+k|2 + 1) ≥ 0, ∀n ∈ N.

⇔|αn+k|2|αn+k+1|2 − 2 |αn+k|2 + 1 ≥ 0, ∀n ∈ N.

Let T : l2(N) → l2(N) be defined by

T (x1, x2, x3, · · · ) = (0,
1

2
x1,

1

2
x2,

1

4
x3,

1

5
x4,

1

4
x5,

1

4
x6, · · · ).

Here α1 =
1
2
, α2 =

1
2
, α3 =

1
4
, α4 =

1
5
and αn = 1

4
forn ≥ 5.

From Theorem 4.1.3, it can be seen that T is a 2-quasi (1, 1)-class Q operator.

Also, from Theorem 2.2.2, T is k-quasi (1, 1)- paranormal if and only if

|αn+k|2|αn+k+1|2 − 2 a |αn+k|2 + a2 ≥ 0, ∀a > 0, ∀n ∈ N. (4.2)

If k = 2, n = 1 and a = 1
16
, we get |α3|2|α4|2 − 2 a |α3|2 + a2 < 0. Hence, from (4.2),

T is not 2-quasi (1, 1)- paranormal.

That is, every k-quasi (m,n)-class Q operators need not be k-quasi (m,n)- paranor-

mal.

Now, we give some characterization of k-quasi (m,n)-class Q operators.

Theorem 4.1.4. Let T ∈ B(H) be a k-quasi (m,n)-class Q operator and A ∈ B(H)

be an isometric operator such that AT = TA. Then TA is a k-quasi (m,n)-class Q

operator.

Proof. Let S = TA. Since AT = TA, and A∗A = I, we have

m
2

n+1S∗k+n+1Sk+n+1 − (n+ 1)S∗k+1Sk+1 +m
2

n+1 n S∗kSk

= m
2

n+2 (A∗T ∗)k+n+1(TA)k+n+1 − (n+ 1)(A∗T ∗)k+1(TA)k+1 +m
2

n+1n(A∗T ∗)k(TA)k

= m
2

n+1T ∗k+n+1T k+n+1 − (n+ 1)T ∗k+1T k+1 +m
2

n+1 n T ∗kT k

Since T is a k-quasi (m,n)-class Q operator, we get

m
2

n+1S∗k+n+1Sk+n+1 − (n+ 1)S∗k+1Sk+1 +m
2

n+1 n S∗kSk ≥ 0.
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Hence S = TA is a k-quasi (m,n)- class Q operator.

Theorem 4.1.5. Let T ∈ B(H) be a k-quasi (m,n)-class Q operator and T be uni-

tarily equivalent to an operator B ∈ B(H). Then B is a k-quasi (m,n)-class Q

operator.

Proof. Since T is unitarily equivalent to B, there exist an unitary operator U such

that B = U∗TU.

Now, for any non-negative integer k we have,

B∗k
(
m

2
n+1B∗n+1Bn+1 − (n+ 1)B∗B +m

2
n+1 n I

)
Bk

=U∗T ∗kU
[
U∗

(
m

2
n+1T ∗n+1T n+1 − (n+ 1)T ∗T +m

2
n+1 nI

)
U
]
U∗T kU

=U∗T ∗k
(
m

2
n+1T ∗n+1T n+1 − (n+ 1)T ∗T +m

2
n+1 n I

)
T kU

Since T is a k-quasi (m,n)-class Q operator, we get

U∗
(
T ∗k

(
m

2
n+1T ∗n+1T n+1 − (n+ 1)T ∗T +m

2
n+1 n I

)
T k

)
U ≥ 0.

Thus, B∗k
(
m

2
n+1B∗n+1Bn+1 − (n+ 1)B∗B +m

2
n+1 n I

)
Bk ≥ 0. Hence B is a k-

quasi (m,n)-class Q operator.

Theorem 4.1.6. Let T ∈ B(H) be a k-quasi (m,n)-class Q operator. If R(T k) = H,

then T is a (m,n)-class Q operator.

Proof. Let y ∈ H. Since R(T k) = H, there exist a sequence (xi) in H such that(
T k(xi)

)
converges to y in H. Since T is a k-quasi (m,n)-class Q operator, we have

〈(
T ∗k

(
m

2
n+1T ∗n+1T n+1 − (n+ 1)T ∗T +m

2
n+1 n I

)
T k

)
xi, xi

〉
≥ 0,∀i.

Hence,
〈(
m

2
n+1T ∗n+1T n+1 − (n+ 1)T ∗T +m

2
n+1 n I

)
T kxi, T

kxi

〉
≥ 0,∀i.

Since
(
T k(xi)

)
→ y, we get

〈
(m

2
n+1T ∗n+1T n+1 − (n+ 1)T ∗T +m

2
n+1 n I)y, y

〉
≥ 0.

Hence T is a (m,n)-class Q operator.
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Theorem 4.1.7. Let T ∈ B(H) be a k-quasi (m,n)-class Q operator and R(T k) ̸= H.

If

T =

A B

0 C

 on R(T k)⊕N(T ∗k),

then A is a (m,n)-class Q operator on R(T k), Ck = 0 and σ(T ) = σ(A) ∪ {0}.

Proof. Since T is a k-quasi (m,n)-class Q operator, we have

m
2

n+1

(
∥T k+n+1y∥2 + n∥T ky∥2

)
≥ (n+ 1)∥T k+1y∥2, ∀y ∈ H.

Let z = T ky, then we get

m
2

n+1

(
∥T n+1z∥2 + n∥z∥2

)
≥ (n+ 1)∥Tz∥2

Since A = T |
R(Tk)

, we get

m
2

n+1

(
∥An+1z∥2 + n∥z∥2

)
≥ (n+ 1)∥Az∥2, ∀z ∈ R(T k).

Hence A is a (m,n)-class Q operator on R(T k).

Let x ∈ N(T ∗k). Then

T k(x) =

Ak
∑k

i=0A
iBCk−1−i

0 Ck

0

x


Hence, Ckx = T kx −

∑k−1
i=0 A

iBCk−1−ix. Since A = T |
R(Tk)

, we get Ckx ∈ R(T k).

We have C = T |N(T ∗k). Hence, C
kx ∈ N(T ∗k). Thus Ckx ∈ R(T k) ∩N(T ∗k). Hence

Ck = 0. Therefore, σ(C) = {0}. Now σ(A) ∩ σ(C) = σ(A) ∩ {0} and hence it has

no interior point. Using Theorem 1.3.4, we get σ(T ) = σ(A) ∪ {0}.

4.2 k-quasi (m,n)-class Q∗ operators

In this section we define a new class of operator, k-quasi (m,n)-class Q∗ operator,

which contains the classes of k-quasi (m,n)∗-paranormal and (m,n)-class Q∗. Recall
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that an operator T ∈ B(H) is k-quasi (m,n)∗-paranormal if and only if

m
2

n+1T ∗kT ∗n+1T n+1T k − (n+ 1) anT ∗kTT ∗T k +m
2

n+1 n an+1T ∗kT k ≥ 0,∀a > 0,

(Theorem 2.1.1). T ∈ B(H) is said to be (m,n)-class Q∗ operator if

m
2

n+1T ∗n+1T n+1 − (n+ 1)TT ∗ +m
2

n+1 n I ≥ 0,

(Definition 3.2.1).

Definition 4.2.1. Let m ∈ R+, n ∈ N and k be a non-negative integer. An operator

T ∈ B(H) is said to be a k-quasi (m,n)-class Q∗ operator if

T ∗k
(
m

2
n+1T ∗n+1T n+1 − (n+ 1)TT ∗ +m

2
n+1 n I

)
T k ≥ 0.

For example, let T =

0 1

0 0

 . Then T 2 = 0. Hence T is k-quasi (m,n)-class Q∗

operator for k ≥ 2 and for any m,n.

Note that if k = 1, then T is said to be a quasi (m,n)-class Q∗ operator. Also, every

(m,n)-class Q∗ operators are 0-quasi (m,n)-class Q∗ operators. It can be proved

that every k-quasi (m,n)-class Q∗ operators need not be (m,n)-class Q∗ operators.

For proving this, we use the following theorem.

Theorem 4.2.1. Let T ∈ B(l2(N)) be a weighted shift operator with non zero weights

{αn}, (n = 1, 2, ....), defined by Ten = αn en+1, where {en}∞n=1 is an orthonormal

basis of l2(N). Then T is k-quasi (1, 1)-class Q∗ if and only if

|αn+k|2|αn+k+1|2 − 2 |αn+k−1|2 + 1 ≥ 0, ∀n ∈ N. (4.3)

Proof. From the proof of Theorem 2.2.3, we get

T ∗k(T ∗2T 2)T ken = |αn|2|αn+1|2 · · · |αn+k−1|2|αn+k|2|αn+k+1|2en, for any k ∈ N.

T ∗k(TT ∗)T ken = |αn|2|αn+1|2 · · · |αn+k−1|2|αn+k−1|2en, for any k ∈ N.
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and

T ∗kT ken = |αn|2|αn+1|2 · · · |αn+k−1|2en, for any k ∈ N.

Thus, T is k-quasi (1, 1)-class Q∗

⇔T ∗k(T ∗2T 2 − 2TT ∗ + I)T k ≥ 0.

⇔⟨(T ∗k(T ∗2T 2 − 2TT ∗ + I)T k)en, en⟩ ≥ 0, ∀n ∈ N.

⇔|αn|2|αn+1|2 · · · |αn+k−1|2(|αn+k|2|αn+k+1|2 − 2 |αn+k−1|2 + 1) ≥ 0, ∀n ∈ N.

⇔|αn+k|2|αn+k+1|2 − 2 |αn+k−1|2 + 1 ≥ 0, ∀n ∈ N.

Let T : l2(N) → l2(N) be defined by T (x1, x2, x3, · · · ) = (0, 2x1, x2, 2x3, x4, 6x5, 6x6, · · · )

Here α1 = 2 α2 = 1, α3 = 2, α4 = 1 and αn = 6 for n ≥ 5. From Theorem 4.2.1,

we get T is a 2-quasi (1, 1)-class Q∗ operator.

From Theorem 3.2.2, T is a (m,n)- class Q∗ operator if and only if

n+ 1

m
2

n+1

(
|αl|2

)
≤ |αl+1|2 |αl+2|2 · · · |αl+n+1|2 + n,∀ l ∈ N. (4.4)

If m = n = l = 1, (4.4) is not satisfied. Hence, T is not (1, 1)- class Q∗.

That is, every k-quasi (m,n)-class Q∗ operators need not be (m,n)-class Q∗.

Now we show that the classes of operators k-quasi (m,n)-class Q and k-quasi (m,n)-

class Q∗ are independent.

For example, let T : l2(N) → l2(N) be defined by

T (x1, x2, x3, · · · ) = (0, 2x1, x2, 2x3, x4, 6x5, 6x6, · · · ).

From Theorem 4.2.1, we get T is 2-quasi (1, 1)-class Q∗.

Also from (4.1), T is 2-quasi (1, 1)-class Q if and only if

|αn+2|2|αn+3|2 − 2 |αn+2|2 + 1 ≥ 0, ∀n ∈ N. (4.5)

If n = 1, the above relation does not holds. Hence T is not 2-quasi (1, 1)-class Q.
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Next we consider the operator T defined by the matrix

T =

1 0

1 0

 .

In section 4.1, we proved that T is k-quasi (1, 1)-class Q for any k ≥ 1.

But, for m = n = 1,

m
2

n+1T ∗kT ∗n+1T n+1T k − (n+ 1)T ∗kTT ∗T k +m
2

n+1n T ∗kT k

=T ∗k(T ∗2T 2 − 2TT ∗ + I)T k

=

1 1

0 0

 1 −2

−2 −1

1 0

1 0


=

−4 0

0 0

 < 0, for any k.

Hence T is not k-quasi (1, 1)-class Q∗ for any k.

Now we give some characterizations for k-quasi (m,n)-class Q∗ operators.

Theorem 4.2.2. Let T ∈ B(H). Then T is a k-quasi (m,n)-class Q∗ operator if and

only if
m

2
n+1

n+ 1

(
∥T k+n+1x∥2 + n∥T kx∥2

)
≥ ∥T ∗T kx∥2, ∀x ∈ H.

Proof. Let x ∈ H. T is a k-quasi (m,n)-class Q∗ operator

⇔
〈(
T ∗k

(
m

2
n+1T ∗n+1T n+1 − (n+ 1)TT ∗ +m

2
n+1 n I

)
T k

)
x, x

〉
≥ 0.

⇔ m
2

n+1 ⟨T ∗k+n+1T k+n+1x, x⟩ − (n+ 1) ⟨T ∗kTT ∗T kx, x⟩ +m
2

n+1 n ⟨T ∗kT kx, x⟩ ≥ 0.

⇔ m
2

n+1 ∥T k+n+1x∥2 − (n+ 1)∥T ∗T kx∥2 +m
2

n+1 n ∥T kx∥2 ≥ 0.

⇔ m
2

n+1

n+ 1

(
∥T k+n+1x∥2 + n∥T kx∥2

)
≥ ∥T ∗T kx∥2.

Theorem 4.2.3. Let T ∈ B(H). Then λ
−m
n+1T is a k-quasi (m,n)-class Q∗ operator

for all λ > 0 if and only if T is a k-quasi (m,n)∗-paranormal operator.
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Proof. Let λ > 0. λ
−m
n+1T is a k-quasi (m,n)-class Q∗ operator

⇔ (λ
−m
n+1T )∗k

[
m

2
n+1 (λ

−m
n+1T )∗n+1(λ

−m
n+1T )n+1 − (n+ 1)λ

−2m
n+1 TT ∗ +m

2
n+1n I

]
(λ

−m
n+1T )k ≥ 0.

⇔ (λ
−2mk
n+1 )T ∗k

[
m

2
n+1λ−2mT ∗n+1T n+1 − (n+ 1)λ

−2m
n+1 TT ∗ +m

2
n+1nI

]
T k ≥ 0.

⇔ (λ
−2mk
n+1 )λ−2mT ∗k

[
m

2
n+1T ∗n+1T n+1 − (n+ 1)λ

2mn
n+1 TT ∗ +m

2
n+1nλ2mI

]
T k ≥ 0.

⇔T ∗k
[
m

2
n+1T ∗n+1T n+1 − (n+ 1)(λ

2m
n+1 )nTT ∗ +m

2
n+1n(λ

2m
n+1 )n+1I

]
T k ≥ 0.

⇔T ∗k
[
m

2
n+1T ∗n+1T n+1 − (n+ 1)anTT ∗ +m

2
n+1nan+1I

]
T k ≥ 0, a > 0.

⇔ T is k-quasi (m,n)∗-paranormal .

From the above theorem, it is clear that every k-quasi (m,n)∗-paranormal oper-

ator is k-quasi (m,n)-class Q∗ operator. But the converse need not be true.

For example, let T : l2(N) → l2(N) be defined by

T (x1, x2, x3, ......) = (0,
1

2
x1,

1

4
x2,

1

4
x3, ......).

From Theorem 4.2.1, T is k-quasi (1, 1)-class Q∗ if and only if

|αl+k|2|αl+k+1|2 − 2 |αl+k−1|2 + 1 ≥ 0, ∀ l ∈ N. (4.6)

If k = 1, (4.6) holds. Hence T is 1-quasi (1, 1)-class Q∗.

From Theorem 2.2.3, we have T is k-quasi (1, 1)∗-paranormal if and only if

|αl+k|2|αl+k+1|2 − 2 a |αl+k−1|2 + a2 ≥ 0, ∀a > 0, ∀ l ∈ N. (4.7)

If k = 1, l = 1 and a = 1
4
, (4.7) is not satisfied. Hence T is not 1-quasi (1, 1)∗-

paranormal.

That is, every k-quasi (m,n)-class Q∗ operators need not be k-quasi (m,n)∗-paranormal

operators.

Theorem 4.2.4. Let T ∈ B(H) be a quasi (m,n)-class Q∗ operator and A ∈ B(H)

be an isometric operator such that AT = TA. Then TA is quasi (m,n)-class Q∗.
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Proof. Let S = TA. Since AT = TA and A∗A = I, we have

m
2

n+1S∗n+2Sn+2 − (n+ 1)S∗SS∗S +m
2

n+1 n S∗S

= m
2

n+2 (A∗T ∗)n+2(TA)n+2 − (n+ 1)A∗T ∗TAA∗T ∗TA+m
2

n+1 n A∗T ∗TA

= m
2

n+1T ∗n+2T n+2 − (n+ 1)T ∗TT ∗T +m
2

n+1 n T ∗T

Since T is a quasi (m,n)-class Q∗ operator, we get

m
2

n+1S∗n+2Sn+2 − (n+ 1)S∗SS∗S +m
2

n+1 n S∗S ≥ 0.

Hence S = TA is a quasi (m,n)-class Q∗ operator.

Theorem 4.2.5. Let T ∈ B(H) be a k-quasi (m,n)-class Q∗ operator and is unitarily

equivalent to an operator B ∈ B(H). Then B is a k-quasi (m,n)-class Q∗ operator.

Proof. Since T is unitarily equivalent to B, there exist an unitary operator U such

that B = U∗TU. Now,

B∗k
(
m

2
n+1B∗n+1Bn+1 − (n+ 1)BB∗ +m

2
n+1 n I

)
Bk

= U∗T ∗kU
[
U∗

(
m

2
n+1T ∗n+1T n+1 − (n+ 1)TT ∗ +m

2
n+1 nI

)
U
]
U∗T kU

= U∗T ∗k
(
m

2
n+1T ∗n+1T n+1 − (n+ 1)TT ∗ +m

2
n+1 n I

)
T kU

Since T is a k-quasi (m,n)-class Q∗ operator, we get

U∗
(
T ∗k

(
m

2
n+1T ∗n+1T n+1 − (n+ 1)TT ∗ +m

2
n+1 n I

)
T k

)
U ≥ 0.

Thus B∗k
(
m

2
n+1B∗n+1Bn+1 − (n+ 1)BB∗ +m

2
n+1 n I

)
Bk ≥ 0. Hence B is a k-

quasi (m,n)-class Q∗ operator.

Theorem 4.2.6. Let T ∈ B(H) be a k-quasi (m,n)-class Q∗ operator. If R(T k) = H,

then T is a (m,n)-class Q∗ operator.
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Proof. Let y ∈ H. Since R(T k) = H, there exist a sequence (xi) in H such that(
T k(xi)

)
converges to y in H. Since T is a k-quasi (m,n)-class Q∗ operator,

〈[
T ∗k

(
m

2
n+1T ∗n+1T n+1 − (n+ 1)TT ∗ +m

2
n+1 n I

)
T k

]
xi, xi

〉
≥ 0,∀i.

Then,
〈(
m

2
n+1T ∗n+1T n+1 − (n+ 1)TT ∗ +m

2
n+1 n I

)
T kxi, T

kxi

〉
≥ 0,∀i.

Since
(
T k(xi)

)
converges to y, we get

〈
(m

2
n+1T ∗n+1T n+1 − (n+ 1)TT ∗ +m

2
n+1 n I)y, y

〉
≥ 0.

Hence T is a (m,n)-class Q∗ operator.

Theorem 4.2.7. Let T ∈ B(H) be a k-quasi (m,n)-class Q∗ operator and R(T k) ̸= H.

If

T =

A B

0 C

 on R(T k)⊕N(T ∗k),

then A is a (m,n)-class Q∗ operator on R(T k), Ck = 0 and σ(T ) = σ(A) ∪ {0}.

Proof. Since T is a k-quasi (m,n)-class Q∗ operator, we have

m
2

n+1

(
∥T k+n+1y∥2 + n∥T ky∥2

)
≥ (n+ 1)∥T ∗T ky∥2, ∀y ∈ H.

Let z = T ky. Then we get

m
2

n+1

(
∥T n+1z∥2 + n∥z∥2

)
≥ (n+ 1)∥T ∗z∥2.

Hence, m
2

n+1 (∥An+1z∥2 + n∥z∥2) ≥ (n+1)∥A∗z∥2, ∀z ∈ R(T k). Thus A is a (m,n)-

class Q∗ operator on R(T k).

Let x ∈ N(T ∗k). Then

T k(x) =

Ak
∑k

i=0A
iBCk−1−i

0 Ck

0

x


Hence, Ckx = T kx−

∑k−1
i=0 A

iBCk−1−ix. Since A = T |
R(Tk)

, we have Ckx ∈ R(T k).
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Also, Ckx ∈ N(T ∗k). Thus Ckx ∈ R(T k) ∩ N(T ∗k). Hence Ck = 0. Therefore

σ(C) = {0}. From Theorem 1.3.4, we get σ(T ) = σ(A) ∪ {0}.

Remark 4.2.1.

(i) From the earlier sections, it can be seen that

(m,n)-paranormal ⊂ k-quasi (m,n)-paranormal ⊂ k-quasi (m,n)-class Q and

(m,n)∗-paranormal ⊂ k-quasi (m,n)∗-paranormal ⊂ k-quasi (m,n)-class Q∗

Also, (m,n)-class Q ⊂ k-quasi (m,n)-class Q and

(m,n)-class Q∗ ⊂ k-quasi (m,n)-class Q∗

(ii) The classes of k-quasi (m,n)-paranormal and (m,n)-class Q are independent.

For example, consider the operator T defined by the matrix T =

1 0

1 0

 .

In section 2.2, we proved that T is k-quasi (1, 1)-paranormal for any k ≥ 1.

We know that T is (1, 1)-class Q if and only if T ∗2T 2 − 2T ∗T + I ≥ 0. Now,

T ∗2T 2 − 2T ∗T + I =

1 1

0 0

1 0

1 0

− 2

2 0

0 0

+

1 0

0 1


=

−1 0

0 1

 < 0.

Hence T is not (1, 1)-class Q.

Next let T : l2(N) → l2(N) be defined by

T (x1, x2, x3, · · · ) = (0,
1

2
x1,

1

2
x2,

1

4
x3,

1

5
x4,

1

4
x5,

1

4
x6, · · · ).

Here α1 =
1
2
α2 =

1
2
, α3 =

1
4
, α4 =

1
5
, αn = 1

4
for n ≥ 5.

From Theorem 3.1.5, we get T is a (1, 1)-class Q operator. From Theorem

2.2.2, T is k-quasi (1, 1)- paranormal if and only if

|αl+k|2|αl+k+1|2 − 2 a |αl+k|2 + a2 ≥ 0, ∀a > 0, ∀ l ∈ N. (4.8)



4.3. k-QUASI (m,n)-CLASS COMPOSITION OPERATORS 71

If a = 1
16
, l = 1, then (4.8) is not satisfied for k = 2. Hence T is not 2-quasi

(1, 1)- paranormal.

(iii) The classes of operators, k-quasi (m,n)∗-paranormal and (m,n)-class Q∗ are

independent.

Consider T : l2(N) → l2(N) defined by

T (x1, x2, x3, · · · ) = (0, 2x1, x2, 2x3, x4, 6x5, 6x6, · · · ).

In section 2.2, we proved that T is 2-quasi (1, 1)∗-paranormal.

From Theorem 3.2.2, T is a (m,n)-class Q∗ operator if and only if

n+ 1

m
2

n+1

(
|αk|2

)
≤ |αk+1|2 |αk+2|2 · · · |αk+n+1|2 + n,∀ k ∈ N. (4.9)

If m = n = k = 1, (4.9) is not satisfied. Hence, T is not (1, 1)-class Q∗.

Let T : l2(N) → l2(N) be defined by

T (x1, x2, x3, · · · ) = (0, 2x1, 4x2, 3x3, 4x4, 6x5, 6x6, · · · ).

Here α1 = 2 α2 = 4, α3 = 3, α4 = 4, αn = 6 for n ≥ 5. Using Theorem 3.2.2,

T is a (1, 1)-class Q∗ operator.

From Theorem 2.2.3, T is 1-quasi (1, 1)∗-paranormal if and only if

|αl+1|2|αl+2|2 − 2 a |αl|2 + a2 ≥ 0, ∀a > 0, ∀l ∈ N. (4.10)

If a = 16, (4.10) is not satisfied for l = 2. Hence T is not 1-quasi (1, 1)∗-

paranormal.

4.3 k-quasi (m,n)-class Q and k-quasi (m,n)-class Q∗

Composition operators

In this section, we give some characterizations for k-quasi (m,n)-class Q and k-quasi

(m,n)-class Q∗ composition operators on L2-spaces. For a non singular measurable
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function T on X, let CT denotes the composition operator of T on L2(µ) and C∗
T be

the adjoint of CT . Let hn denotes the Radon-Nikodym derivative of µ(T−1)n with

respect to µ. We denote h1 by h.

Theorem 4.3.1. CT is a k-quasi (m,n)-class Q operator if and only if

m
2

n+1 (hk+n+1 + n hk) ≥ (n+ 1)hk+1 (4.11)

Proof. CT is a k-quasi (m,n)-class Q if and only if

〈(
m

2
n+1C∗k+n+1

T Ck+n+1
T − (n+ 1)C∗k+1

T Ck+1
T +m

2
n+1 n C∗k

T C
k
T

)
f, f

〉
≥ 0,∀f ∈ L2(µ).

For any f ∈ L2(µ), using Theorem 1.4.3 we get,

C∗k+n+1
T Ck+n+1

T f = C∗k+n+1
T (f ◦ T k+n+1)

= hk+n+1E(f ◦ T k+n+1) ◦ T−(k+n+1)

= hk+n+1E(1.f ◦ T k+n+1) ◦ T−(k+n+1)

= hk+n+1E(1)(f ◦ T k+n+1 ◦ T−(k+n+1))

= hk+n+1f.

C∗k+1
T Ck+1

T f = hk+1f.

C∗k
T C

k
Tf = hkf.

Hence, CT is k-quasi (m,n)-class Q

⇔
〈
m

2
n+1hk+n+1f − (n+ 1)hk+1f +m

2
n+1 n hkf, f

〉
≥ 0,∀f ∈ L2(µ).

⇔ m
2

n+1 (hk+n+1 + n hk) ≥ (n+ 1)hk+1.

Example 4.3.1. Let X = N ∪ {0}, A = P (X) and µ be the measure defined by

µ(A) =
∑
k∈A

mk,
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where

mk =

 1 if k = 0.
1

4k−1
if k ≥ 1.

Let T : X → X be defined by

T (k) =

 0 if k = 0, 1.

k − 1 if k ≥ 2.

Then for q > 1, we have

T q(k) =

 0 if k = 0, 1, 2, . . . , q.

k − q if k ≥ q + 1.

Hence, h(k) = µT−1({k})
µ{k} =

 2 if k = 0.

1
4

if k ≥ 1.

For q > 1, hq(k) =
µT−q({k})

µ{k} =

 2 + 1
4
+ 1

42
+ . . .+ 1

4q−1 if k = 0.

1
4q

if k ≥ 1.

If m ≥ 2 and n = 3, (4.11) is satisfied for k = 2. Hence CT is a 2-quasi

(m, 3)-class Q operator for m ≥ 2.

Theorem 4.3.2. C∗
T is a k-quasi (m,n)-class Q operator if and only if

m
2

n+1

(
hk+n+1 ◦ T k+n+1 + n (hk ◦ T k)

)
≥ (n+ 1)hk+1 ◦ T k+1.

Proof. By definition, C∗
T is a k-quasi (m,n)-class Q operator if and only if

〈
(m

2
n+1Ck+n+1

T C∗k+n+1
T − (n+ 1)Ck+1

T C∗k+1
T +m

2
n+1 n Ck

TC
∗k
T )f, f

〉
≥ 0,∀f ∈ L2(µ).

For f ∈ L2(µ), using Theorem 1.4.3 we get,

Ck+n+1
T C∗k+n+1

T f = Ck+n+1
T

(
hk+n+1E(f) ◦ T−(k+n+1)

)
=

(
hk+n+1. E(f) ◦ T−(k+n+1)

)
◦ T k+n+1
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=
(
(hk+n+1 ◦ T k+n+1).(E(f) ◦ T−(k+n+1) ◦ T k+n+1)

)
= hk+n+1 ◦ T k+n+1E(f)

= hk+n+1 ◦ T k+n+1f

Ck+1
T C∗k+1

T f = hk+1 ◦ T k+1f

Ck
TC

∗k
T f = hk ◦ T kf.

Hence, C∗
T is a k-quasi (m,n)-class Q operator

⇔
〈
m

2
n+1hk+n+1 ◦ T k+n+1f − (n+ 1)hk+1 ◦ T k+1f +m

2
n+1 n (hk ◦ T k)f, f

〉
≥ 0,

for every f ∈ L2(µ).

⇔ m
2

n+1

(
hk+n+1 ◦ T k+n+1 + n (hk ◦ T k)

)
≥ (n+ 1)hk+1 ◦ T k+1.

Example 4.3.2. In example 4.3.1, if m ≥ 14 and n = 3 then C∗
T is 2-quasi (m, 3)-

class Q operator.

Theorem 4.3.3. Let P be a projection from L2(µ) onto R(CT ). Then

(i) CT is a k-quasi (m,n)-class Q∗ operator if and only if

m
2

n+1 (hk+n+1 + n hk) ≥ (n+ 1)hk.h ◦ T 1−k.

(ii) C∗
T is a k-quasi (m,n)-class Q∗ operator if and only if

m
2

n+1

(
hk+n+1 ◦ T k+n+1 + n (hk ◦ T k)

)
≥ (n+ 1)(h ◦ T k)(hk ◦ T k).

Proof. (i) CT is k-quasi (m,n)-class Q∗ if and only if

〈(
m

2
n+1C∗k+n+1

T Ck+n+1
T − (n+ 1)C∗k

T CTC
∗
TC

k
T +m

2
n+1 n C∗k

T C
k
T

)
f, f

〉
≥ 0,∀f ∈ L2(µ).
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From Theorem 1.4.3, for any f ∈ L2(µ) we have

C∗k+n+1
T Ck+n+1

T f = C∗k+n+1
T (f ◦ T k+n+1)

= hk+n+1E(f ◦ T k+n+1) ◦ T−(k+n+1)

= hk+n+1f.

C∗k
T C

k
Tf = hkf.

Also, from Theorem 1.4.3 and for any f ∈ L2(µ), we have

C∗k
T CTC

∗
TC

k
Tf = C∗k

T CTC
∗
T (f ◦ T k)

= C∗k
T (h ◦ T )P (f ◦ T k)

= hk.E
(
(h ◦ T )P (f ◦ T k)

)
◦ T−k

= hk.
(
E(h ◦ T )P (f ◦ T k)

)
◦ T−k

= hk.E(h ◦ T ) ◦ T−kf

= hk.h ◦ T 1−kf.

Hence CT is k-quasi (m,n)-class Q∗

⇔
〈
m

2
n+1hk+n+1f − (n+ 1)hk.h ◦ T 1−kf +m

2
n+1 n hkf, f

〉
≥ 0,∀f ∈ L2(µ).

⇔ m
2

n+1 (hk+n+1 + n hk) ≥ (n+ 1)hk.h ◦ T 1−k.

(ii) C∗
T is a k-quasi (m,n)-class Q∗

⇔ m
2

n+1Ck+n+1
T C∗k+n+1

T − (n+ 1)Ck
TC

∗
TCTC

∗k
T +m

2
n+1 n Ck

TC
∗k
T ≥ 0.

⇔
〈(
m

2
n+1Ck+n+1

T C∗k+n+1
T − (n+ 1)Ck

TC
∗
TCTC

∗k
T +m

2
n+1 n Ck

TC
∗k
T

)
f, f

〉
≥ 0,

for every f ∈ L2(µ).
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From Theorem 1.4.3, for any f ∈ L2(µ) we have

Ck+n+1
T C∗k+n+1

T f = Ck+n+1
T

(
hk+n+1E(f) ◦ T−(k+n+1)

)
=

(
hk+n+1 E(f) ◦ T−(k+n+1)

)
◦ T k+n+1

= hk+n+1 ◦ T k+n+1f.

Ck
TC

∗k
T f = hk ◦ T kf.

Also, for every f ∈ L2(µ) and from Theorem 1.4.3, we have

Ck
TC

∗
TCTC

∗k
T f = Ck

TC
∗
TCT

(
hkE(f) ◦ T k

)
= Ck

T h.
(
hkE(f) ◦ T−k

)
=

[
h.

(
hkE(f) ◦ T−k

)]
◦ T k

= (h ◦ T k)
(
hk.E(f) ◦ T−k

)
◦ T k

= (h ◦ T k)(hk ◦ T k)E(f)

= (h ◦ T k)(hk ◦ T k)f.

Hence C∗
T is k-quasi (m,n)-class Q∗

⇔
〈
m

2
n+1hk+n+1 ◦ T k+n+1f − (n+ 1)(h ◦ T k)(hk ◦ T k)f +m

2
n+1 n (hk ◦ T k)f, f

〉
≥ 0,

for every f ∈ L2(µ).

⇔ m
2

n+1

(
hk+n+1 ◦ T k+n+1 + n (hk ◦ T k)

)
≥ (n+ 1)(h ◦ T k)(hk ◦ T k).

Example 4.3.3. Consider the example 4.3.1. It can be seen that if m ≥ 4 and n = 3,

CT is a 1- quasi (m,n)-class Q∗ operator.

Also if m ≥ 4 and n = 3, C∗
T is a 2- quasi (m,n)-class Q∗ operator.

Now we give some characterizations for k-quasi (m,n)-class Q weighted compo-

sition operators on L2(µ).
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Let T : X → X be a measurable transformation on X and π be complex valued

measurable transformation on X. Let πk = π(π ◦T )(π ◦T 2) · · · (π ◦T k−1) and W be

the weighted composition operator induced by T and π. For f ∈ L2(µ), we denote

hkE(|πk|2) ◦ T−k(f) by Jkf and πk(hk ◦ T k)E(π̄kf) by Lkf.

Theorem 4.3.4. W is a k-quasi (m,n)-class Q operator if and only if

m
2

n+1 (Jk+n+1 + nJk) ≥ (n+ 1)Jk+1.

Proof. We have, W is a k-quasi (m,n)-class Q operator if and only if

〈
(m

2
n+1W ∗k+n+1W k+n+1 − (n+ 1)W ∗k+1W k+1 +m

2
n+1 n W ∗kW k)f, f

〉
≥ 0,

∀f ∈ L2(µ). Let f ∈ L2(µ). Using Theorem 1.5.1, we get

W ∗k+n+1W k+n+1f = hk+n+1 E(|πk+n+1|2) ◦ T−(k+n+1)f

= Jk+n+1f

W ∗k+1W k+1f = hk+1E(|πk+1|2) ◦ T−(k+1)f

= Jk+1f

W ∗kW kf = hk E(|πk|2) ◦ T−kf

= Jkf.

Hence W is a k-quasi (m,n)-class Q operator

⇔
〈
(m

2
n+1Jk+n+1f − (n+ 1)Jk+1f +m

2
n+1 n Jkf, f

〉
≥ 0, ∀f ∈ L2(µ).

⇔ m
2

n+1 (Jk+n+1 + nJk) ≥ (n+ 1)Jk+1.

Theorem 4.3.5. W ∗ is a k-quasi (m,n)-class Q operator if and only if

m
2

n+1 (Lk+n+1 + nLk) ≥ (n+ 1)Lk+1.
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Proof. We have W ∗ is a k-quasi (m,n)-class Q operator if and only if

〈
(m

2
n+1W k+n+1W ∗k+n+1 − (n+ 1)W k+1W ∗k+1 +m

2
n+1 n W kW ∗k)f, f

〉
≥ 0,

for every f ∈ L2(µ). From Theorem 1.5.1, for any f ∈ L2(µ), we have

W k+n+1W ∗k+n+1f = πk+n+1(hk+n+1 ◦ T k+n+1)E( ¯πk+n+1f)

= Lk+n+1f

W k+1W ∗k+1f = πk+1(hk+1 ◦ T k+1)E( ¯πk+1f)

= Lk+1f

W kW ∗kf = πk(hk ◦ T k)E(π̄kf)

= Lkf

Hence W ∗ is a k-quasi (m,n)-class Q operator

⇔
〈
m

2
n+1Lk+n+1f − (n+ 1)Lk+1f +m

2
n+1 n Lkf, f

〉
≥ 0,∀f ∈ L2(µ).

⇔ m
2

n+1 (Lk+n+1 + nLk) ≥ (n+ 1)Lk+1.

Theorem 4.3.6. Let W be the weighted composition operator induced by T on L2(µ).

Then

(i) W is k-quasi (m,n)-class Q∗ if and only if

〈
(m

2
n+1Jk+n+1f − (n+ 1)hk|E(π̄kπ)|2 ◦ T−k.h ◦ T 1−kf +m

2
n+1 n Jkf, f

〉
≥ 0,

for every f ∈ L2(µ).

(ii) W ∗ is k-quasi (m,n)-class Q∗ if and only if

〈
(m

2
n+1Lk+n+1f − (n+ 1)πk(J1 ◦ T k)(hk ◦ T k)E(π̄kf) +m

2
n+1 n Lkf, f

〉
≥ 0,

for every f ∈ L2(µ).
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Proof. (i) W is a k-quasi (m,n)-class Q∗ if and only if

〈
(m

2
n+1W ∗k+n+1W k+n+1 − (n+ 1)W ∗kWW ∗W k +m

2
n+1 n W ∗kW k)f, f

〉
≥ 0,

∀f ∈ L2(µ). From Theorem 1.5.1, for any f ∈ L2(µ), we have

W ∗k+n+1W k+n+1f = hk+n+1 E(|πk+n+1|2) ◦ T−(k+n+1)f

= Jk+n+1f.

W ∗kW kf = hk E(|πk|2) ◦ T−kf

= Jkf.

W ∗kWW ∗W kf = W ∗kWW ∗(πk.f ◦ T k)

= W ∗k (π(h ◦ T )E(π̄πk.f ◦ T k)
)

= hkE
[(
π̄kπ(h ◦ T )E(π̄πk.f ◦ T k)

)]
◦ T−k

= hk
[
E (π̄kπ(h ◦ T ))E(π̄πk.f ◦ T k)

]
◦ T−k

= hk
[
|E(π̄kπ)|2(h ◦ T ).(f ◦ T k)

]
◦ T−k

= hk |E(π̄kπ)|2 ◦ T−k.h ◦ T 1−kf

Hence W is a k-quasi (m,n)-class Q∗ operator if and only if

〈
(m

2
n+1Jk+n+1f − (n+ 1)hk |E(π̄kπ)|2 ◦ T−k.h ◦ T 1−kf +m

2
n+1 n Jkf, f

〉
≥ 0,

for every f ∈ L2(µ).

(ii) W ∗ is k-quasi (m,n)-class Q∗ if and only if

〈
(m

2
n+1W k+n+1W ∗k+n+1 − (n+ 1)W kW ∗WW ∗k +m

2
n+1 n W kW ∗k)f, f

〉
≥ 0,

for every f ∈ L2(µ). Let f ∈ L2(µ). From Theorem 1.5.1, we have

W k+n+1W ∗k+n+1f = πk+n+1(hk+n+1 ◦ T k+n+1)E( ¯πk+n+1f)

= Lk+n+1f.
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W kW ∗kf = πk(hk ◦ T k)E(π̄kf)

= Lkf.

W kW ∗WW ∗kf = W kW ∗W
(
hkE(π̄kf) ◦ T−k

)
= W k

(
J1hkE(π̄kf) ◦ T−k

)
= πk

[(
J1hkE(π̄kf) ◦ T−k

)]
◦ T k

= πk(J1 ◦ T k)(hk ◦ T k)E(π̄kf)

Hence W ∗ is a k-quasi (m,n)-class Q∗ operator if and only if

〈
(m

2
n+1Lk+n+1f − (n+ 1)πk(J1 ◦ T k)(hk ◦ T k)E(π̄kf) +m

2
n+1 n Lkf, f

〉
≥ 0,

for every f ∈ L2(µ).



Chapter 5

Totally (m,n)∗-paranormal operators

In this chapter, we introduce a new class of operators namely totally (m,n)∗-

paranormal operators which is contained in the class of (m,n)∗- paranormal op-

erators. Here we show that this class of operators has certain nice properties like

translation invariant, finiteness, spectral continuity and range kernel orthogonality.

Moreover, we define another class of operators, k-quasi totally (m,n)∗-paranormal,

which contains the class of totally (m,n)∗-paranormal operators. Also we give a

2× 2 matrix representation for k-quasi totally (m,n)∗-paranormal operators.

5.1 Totally (m,n)∗-paranormal operators

Let T ∈ B(H). T is said to be (m,n)∗- paranormal if ∥T ∗x∥n+1 ≤ m∥T n+1x∥∥x∥n,

for all x ∈ H ([5]). Recall that, T is said to be ∗-paranormal if ∥T ∗x∥2 ≤ ∥T 2x∥∥x∥,

for all x ∈ H. In ([25]), E. Ko, H. Nam and Y. Yang defined the class of totally ∗-

paranormal operators which is a sub class of ∗-paranormal operators. T is said to be

totally ∗-paranormal if ∥(T −λI)∗x∥2 ≤ ∥(T −λI)2x∥∥x∥, for all x ∈ H and λ ∈ C.

Now we define, totally (m,n)∗-paranormal operators.

Definition 5.1.1. Let m ∈ R+, n ∈ N. An operator T ∈ B(H) is said to be totally

(m,n)∗-paranormal if

∥(T − λI)∗x∥n+1 ≤ m∥(T − λI)n+1x∥∥x∥n, for all x ∈ H and λ ∈ C.

81
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If m = 1, then totally (m,n)∗-paranormal operator is totally n∗-paranormal

([46]). If λ = 0, then totally (m,n)∗-paranormal operator is (m,n)∗-paranormal. If

λ = 0, m = n = 1, then totally (m,n)∗-paranormal operator is ∗-paranormal.

Lemma 5.1.1. ([25]) Let T ∈ B(l2(N)) be a weighted shift operator with non zero

weights {αn}, (n = 1, 2, ....), defined by Ten = αn en+1, where {en}∞n=1 is an or-

thonormal basis of l2(N). If 2|αk|2 < |αk−1|2 for some k ∈ N, then T is not totally

∗-paranormal.

We know that every totally (m,n)∗-paranormal operator is (m,n)∗-paranormal

operator. But the converse need not be true.

For example, let T : l2(N) → l2(N) be defined by

T (x1, x2, x3, · · · ) = (0,
1

2
x1,

1

3
x2, x3, x4, x5, x6, · · · ).

From Lemma 1.3.2, T is a (1, 1)∗-paranormal operator. We can see that the in-

equality 2|αk|2 < |αk−1|2 holds for k = 2. Hence from Lemma 5.1.1, T is not totally

∗-paranormal. Therefore, T is not a totally (1, 1)∗-paranormal operator.

Next we give some characterizations for totally (m,n)∗-paranormal operators.

Theorem 5.1.1. Let T ∈ B(H). Then T is totally (m,n)∗-paranormal if and only if

m
2

n+1 (T − λI)∗n+1(T−λI)n+1−(n+1) an(T−λI)(T−λI)∗+m
2

n+1 n an+1I ≥ 0 (5.1)

for all a ≥ 0 and λ ∈ C.

Proof. T is a totally (m,n)∗-paranormal operator

⇔∥(T − λI)∗x∥n+1 ≤ m∥(T − λI)n+1x∥∥x∥n,∀x ∈ H, ∀λ ∈ C.

⇔∥(T − λI)∗x∥2 ≤ m
2

n+1∥(T − λI)n+1x∥
2

n+1∥x∥
2n
n+1 ,∀x ∈ H, ∀λ ∈ C.

⇔ ⟨(T − λI)(T − λI)∗x, x⟩ ≤ m
2

n+1 ⟨(T − λI)∗n+1(T − λI)n+1x, x⟩
1

n+1 ⟨x, x⟩
n

n+1 ,

for every x ∈ H and λ ∈ C.
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⇔ ⟨|(T − λI)∗|2x, x⟩ ≤ m
2

n+1 ⟨|(T − λI)n+1|2x, x⟩
1

n+1 ⟨x, x⟩
n

n+1 ,∀x ∈ H,∀λ ∈ C.

(5.2)

Thus, T is a totally (m,n)∗-paranormal operator if and only if T satisfies (5.2).

For any a > 0, by weighted arithmetic mean-geometric mean inequality (1.1) and

(5.2), we have

1
n+1

⟨a−nm
2

n+1 |(T − λI)n+1|2x, x⟩+ n
n+1

⟨a m
2

n+1x, x⟩

≥ ⟨a−nm
2

n+1 |(T − λI)n+1|2x, x⟩
1

n+1 ⟨a m
2

n+1x, x⟩
n

n+1

= m
2

n+1 ⟨|(T − λI)n+1|2x, x⟩
1

n+1 ⟨x, x⟩
n

n+1

≥ ⟨|(T − λI)∗|2x, x⟩,∀x ∈ H, ∀λ ∈ C.

Thus,

a−n

n+1
m

2
n+1 ⟨|(T − λI)n+1|2x, x⟩+ na

n+1
m

2
n+1 ⟨x, x⟩ − ⟨(T − λI)(T − λI)∗x, x⟩ ≥ 0,

∀x ∈ H,∀a > 0,∀λ ∈ C.

Hence,

m
2

n+1 (T − λI)∗n+1(T − λI)n+1 − (n+ 1) an(T − λI)(T − λI)∗ +m
2

n+1 n an+1I ≥ 0,

for all a ≥ 0,∀λ ∈ C.

Conversely, suppose that (5.1) holds. Then

m
2

n+1 ⟨(T − λI)∗n+1(T−λI)n+1x, x⟩−(n+1) an⟨(T−λI)(T−λI)∗x, x⟩+m
2

n+1 n an+1⟨x, x⟩ ≥ 0,

(5.3)

for every x ∈ H and λ ∈ C.

Let x ∈ H be such that ⟨|(T − λI)n+1|2x, x⟩ = 0. From (5.3), we get

m
2

n+1 n a⟨x, x⟩ − (n+ 1)⟨(T − λI)(T − λI)∗x, x⟩ ≥ 0

Letting a→ 0, we get ⟨(T − λI)(T − λI)∗x, x⟩ = 0. Hence

⟨|(T − λI)∗|2x, x⟩ ≤ m
2

n+1 ⟨|(T − λI)n+1|2x, x⟩
1

n+1 ⟨x, x⟩
n

n+1 .



5.1. TOTALLY (m,n)∗-PARANORMAL OPERATORS 84

Thus (5.2) is satisfied.

Let x ∈ H be such that ⟨|(T − λI)n+1|2x, x⟩ > 0. Hence ⟨x, x⟩ > 0.

By taking a =
(

⟨|(T−λI)n+1|2x,x⟩
⟨x,x⟩

) 1
n+1

in (5.3), we get

m
2

n+1 ⟨(T − λI)∗n+1(T − λI)n+1x, x⟩+m
2

n+1 n
⟨|(T − λI)n+1|2x, x⟩

⟨x, x⟩
⟨x, x⟩

≥ (n+ 1)

(
⟨|(T − λI)n+1|2x, x⟩

⟨x, x⟩

) n
n+1

⟨(T − λI)(T − λI)∗x, x⟩

m
2

n+1 ⟨|(T − λ)n+1|2x, x⟩+m
2

n+1 n ⟨|(T − λ)n+1|2x, x⟩

≥ (n+ 1)

(
⟨|(T − λ)n+1|2x, x⟩

⟨x, x⟩

) n
n+1

⟨(T − λ)(T − λ)∗x, x⟩.

Hence, m
2

n+1 (1 + n)⟨|(T − λI)n+1|2x, x⟩

≥ (n+ 1)

(
⟨|(T − λI)n+1|2x, x⟩

⟨x, x⟩

) n
n+1

⟨(T − λI)(T − λI)∗x, x⟩.

Therefore, m
2

n+1 ⟨|(T−λI)n+1|2x, x⟩1−
n

n+1 ⟨x, x⟩
n

n+1 ≥ ⟨(T−λI)(T−λI)∗x, x⟩. Hence,

m
2

n+1 ⟨|(T − λI)n+1|2x, x⟩
1

n+1 ⟨x, x⟩
n

n+1 ≥ ⟨|(T − λI)∗|2x, x⟩

Thus (5.2) is satisfied. Therefore, T is totally (m,n)∗-paranormal.

Theorem 5.1.2. Suppose that T ∈ B(H) is a totally (m,n)∗-paranormal operator

and M is a closed subspace of H which is invariant under T. Then T |M is a totally

(m,n)∗-paranormal operator.

Proof. Let T1 = T |M and P be an orthogonal projection ontoM. SinceM is invariant

under T, we have (T |M)∗ = PT ∗|M. Let x ∈ M.

∥(T1 − λI)∗x∥n+1 = ∥PT ∗x− λx∥n+1

= ∥P (T ∗ − λI)Px∥n+1

≤ ∥(T ∗ − λI)x∥n+1

≤ m∥(T − λI)n+1x∥∥x∥n
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= m∥(T1 − λI)n+1x∥∥x∥n

Hence T |M is a totally (m,n)∗-paranormal operator.

Theorem 5.1.3. Let T ∈ B(H) be a totally (m,n)∗-paranormal operator. Then

T − αI and αT are totally (m,n)∗-paranormal operator for every α ∈ C.

Proof. Suppose that T is a totally (m,n)∗-paranormal operator. Let x ∈ H and

λ, α ∈ C, we have

∥[(T − αI)− λI]∗x∥n+1 = ∥[T − (α + λ)I]∗x∥n+1

≤ m∥[T − (α + λ)I]n+1x∥∥x∥n

= m∥[(T − αI)− λI]n+1x∥∥x∥n

Thus T − αI is totally (m,n)∗-paranormal.

If α = 0, then αT is totally (m,n)∗-paranormal.

Let α ̸= 0. For x ∈ H and λ ∈ C, we have

∥(αT − λI)∗x∥n+1 =

∥∥∥∥ᾱ(
T − λ

α
I

)∗

x

∥∥∥∥n+1

≤ m|α|n+1

∥∥∥∥∥
(
T − λ

α
I

)n+1

x

∥∥∥∥∥ ∥x∥n
= m∥(αT − λI)n+1x∥∥x∥n

Hence αT is totally (m,n)∗-paranormal.

Theorem 5.1.4. Let T ∈ B(H) be a totally (m,n)∗-paranormal operator. Then

N(T − λI) ⊂ N(T − λI)∗, for all λ ∈ C.

Proof. Since T is a totally (m,n)∗-paranormal operator, we have

∥(T − λI)∗x∥n+1 ≤ m∥(T − λI)n+1x∥∥x∥n, for all x ∈ H and λ ∈ C. (5.4)

Let x ∈ N(T − λI). Then (T − λI)n+1x = 0. From (5.4), we get (T − λI)∗x = 0.

Hence x ∈ N(T − λI)∗. Thus N(T − λI) ⊂ N(T − λI)∗, for all λ ∈ C.
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Lemma 5.1.2. Let T ∈ B(H) be a totally (m,n)∗-paranormal operator. If σ(T ) =

{λ}, then T = λI.

Proof. Since T is totally (m,n)∗-paranormal, using Theorem 5.1.3 we have T −λI is

totally (m,n)∗-paranormal. Also, σ(T −λI) = {0.} But every quasinilpotent totally

(m,n)∗-paranormal operator is a zero operator. Hence T = λI.

Let Eλ denotes the Riesz projection of T with respect to an isolated spectral value

λ. In ([46]), M. H. M. Rashid proved that if T ∈ B(H) is a totally n∗-paranormal

operator, then N(T − λI) = R(Eλ). Now we prove that this result holds for totally

(m,n)∗-paranormal operators also.

Theorem 5.1.5. Let T ∈ B(H) be a totally (m,n)∗-paranormal operator and λ be an

isolated point of σ(T ). Then N(T − λI) = R(Eλ),

Proof. From Theorem 1.3.5, we have N(T − λI) ⊆ R(Eλ) and R(Eλ) is invariant

under T. Since T is totally (m,n)∗-paranormal operator, from Theorem 5.1.2, T |R(Eλ)

is totally (m,n)∗-paranormal. Hence from Theorem 1.3.5, σ(T |R(Eλ)) = {λ}.

If λ = 0, then σ(T |R(Eλ)) = {0}. Hence from Lemma 5.1.2, T |R(Eλ) = 0. Therefore,

R(Eλ) ⊆ N(T ).

If λ ̸= 0, then σ(T |R(Eλ) − λI|R(Eλ)) = {0}. From Lemma 5.1.2, (T − λI)|R(Eλ) = 0.

Hence R(Eλ) ⊆ N(T − λI).

5.2 Spectral properties of totally (m,n)∗-paranormal

operators

In this section, we prove some properties of different kinds of spectra for totally

(m,n)∗- paranormal operators.

Theorem 5.2.1. If T ∈ B(H) is a totally (m,n)∗-paranormal operator then σja(T ) =

σa(T ).

Proof. Let λ ∈ σa(T ). Then there exist a sequence (xn) in H with ∥xn∥ = 1 such

that ∥(T−λI)xn∥ −→ 0 as n→ ∞. Since T is a totally (m,n)∗-paranormal operator,
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we have

∥(T − λI)∗xn∥n+1 ≤ m∥(T − λI)n+1xn∥∥xn∥n ≤ m∥(T − λI)n∥∥(T − λI)xn∥

Hence, ∥(T − λI)∗xn∥ −→ 0 as n→ ∞. Therefore, λ̄ ∈ σa(T
∗).

Hence σa(T ) ⊂ σja(T ). Also, we have σja(T ) ⊂ σa(T ). Hence σja(T ) = σa(T ).

Theorem 5.2.2. Let T ∈ B(H) be a totally (m,n)∗-paranormal operator. Then

{λ̄ : λ ∈ σa(T
∗)} = σ(T ).

Proof. Let Sa(T ) = {λ̄ : λ ∈ σa(T
∗)} and Sja(T ) = {λ̄ : λ ∈ σja(T

∗)}. Since

T is a totally (m,n)∗-paranormal operator, we have σja(T ) = σa(T ). Obviously,

σja(T ) = Sja(T ) ⊂ Sa(T ). Therefore, σa(T ) ⊂ Sa(T ). From Theorem 1.3.1, we

have σ(T ) = σa(T ) ∪ Sa(T ). Hence σ(T ) ⊂ Sa(T ). Also, Sa(T ) ⊂ σ(T ). Hence

Sa(T ) = σ(T ).

Let K be a Hilbert space containing H and ϕ : B(H) → B(K) be a linear

transformation satisfies certain properties defined in Theorem 1.3.6.

Theorem 5.2.3. Let T ∈ B(H) be a totally (m,n)∗-paranormal operator. Then ϕ(T )

is a totally (m,n)∗-paranormal operator.

Proof. Since T is totally (m,n)∗-paranormal, we have

m
2

n+1 (T − λI)∗n+1(T−λI)n+1−(n+1) an(T−λI)(T−λI)∗+m
2

n+1 n an+1I ≥ 0 (5.5)

for all a > 0. From Theorem 1.3.6, we have

m
2

n+1 (ϕ(T )− λI)∗n+1(ϕ(T )−λI)n+1−(n+1) an(ϕ(T )−λI)(ϕ(T )−λI)∗+m
2

n+1 n an+1I

= m
2

n+1 (ϕ(T − λI))∗n+1(ϕ(T − λI))n+1 − (n+ 1) anϕ(T − λI)(ϕ(T − λI))∗ +m
2

n+1nan+1I

= m
2

n+1ϕ
(
(T − λI)∗n+1)ϕ ((T − λI)n+1)− (n+ 1) anϕ(T − λI)(ϕ(T − λI)∗) +m

2
n+1nan+1I

= ϕ
(
m

2
n+1 (T − λI)∗n+1(T − λI)n+1 − (n+ 1) an(T − λI)(T − λI)∗ +m

2
n+1 n an+1I

)
From (5.5) and Theorem 1.3.6, we have

ϕ
(
m

2
n+1 (T − λI)∗n+1(T − λI)n+1 − (n+ 1) an(T − λI)(T − λI)∗ +m

2
n+1 n an+1I

)
≥ 0.
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Hence,

m
2

n+1 (ϕ(T )− λI)∗n+1(ϕ(T )−λI)n+1−(n+1) an(ϕ(T )−λI)(ϕ(T )−λI)∗+m
2

n+1 n an+1I ≥ 0.

Thus ϕ(T ) is a totally (m,n)∗-paranormal operator.

Theorem 5.2.4. Assume that T ∈ B(H) is a totally (m,n)∗-paranormal operator.

Then the following holds:

(i) If σ(T ) = {0}, then T is nilpotent.

(ii) The matrix representation of T on H = N(T − λI)⊕N(T − λI)⊥ is given by

T =

λI 0

0 B

 ,

where λ is a nonzero eigen value of T. Also λ /∈ σp(B) and σ(T ) = {λ}∪σ(B).

Proof. Let T ∈ B(H) be a totally (m,n)∗-paranormal operator.

(i) Assume that σ(T ) = {0}. Hence by Lemma 5.1.2, we have T = 0. Thus T is

nilpotent.

(ii) Let λ be a nonzero eigen value of T . Since T is totally (m,n)∗-paranormal,

from Theorem 5.1.4, we get N(T−λI) ⊂ N(T−λI)∗. Hence, N(T−λI)⊥ is in-

variant under T. Thus, N(T −λI) reduces T. Hence, the matrix representation

of T on H = N(T − λI)⊕N(T − λI)⊥ is given by

T =

λI 0

0 B

 ,

where B = T |N(T−λI)⊥ . Let x ∈ N(B − λI). Then

(T − λI)

0

x

 =

 0

(B − λI)x

 =

0

0

 .
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Hence x ∈ N(T −λI). Since B = T |N(T−λI)⊥ , we have x ∈ N(T −λI)⊥. Thus,

x = 0. Hence, N(B − λI) = {0}. i.e, λ /∈ σp(B). Since T = λI ⊕ B, we have

σ(T ) = {λ} ∪ σ(B).

Let L denotes the set of all compact subsets of C. Recall that the spectral map

σ is the function from B(H) to L, which maps T ∈ B(H) to its spectrum.

Theorem 5.2.5. The spectral map, σ on the class of totally (m,n)∗-paranormal op-

erators is continuous.

Proof. Let T ∈ B(H) be a totally (m,n)∗-paranormal operator. If σ(T ) = {0},

then from Theorem 5.2.4, we have T is nilpotent. Also from Theorem 5.2.3, we have

ϕ(T ) is totally (m,n)∗-paranormal. Hence from Theorem 5.2.4 and Theorem 1.3.7

we have, the spectral map σ is continuous on the set of all totally (m,n)∗-paranormal

operators.

Theorem 5.2.6. Let T ∈ B(H) be a totally (m,n)∗-paranormal operator. Then

σr(T
∗), residual spectrum of T ∗ is empty and σa(T

∗) = σ(T ∗).

Proof. Assume that T has no eigen value. Then N(T − λI) = {0}, for all λ ∈ C.

Therefore R(T ∗ − λI) = H, for all λ ∈ C. Thus σr(T ∗) = ∅.

Suppose that T has eigen value. Since T is totally (m,n)∗-paranormal operator,

from Theorem 5.1.4, we have N(T − λI) ⊂ N(T ∗ − λ̄I). Therefore, (T ∗ − λ̄I) is not

one-one for every λ ∈ C. Hence, σr(T ∗) = ∅. Since σ(T ∗) = σr(T
∗) ∪ σa(T

∗) and

σr(T
∗) = ∅, we have σa(T

∗) = σ(T ∗).

5.3 Finite operator

In this section, we prove that every totally (m,n)∗-paranormal operators are finite

operators. An operator T ∈ B(H) is finite if and only if ∥I − (TX −XT )∥ ≥ 1 for

all X ∈ B(H).

Theorem 5.3.1. Let T ∈ B(H) be a totally (m,n)∗-paranormal operator. Then T is

a finite operator.
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Proof. Assume that T ∈ B(H) is a totally (m,n)∗-paranormal operator. From

Theorem 5.2.1, we have σja(T ) = σa(T ). Also from Theorem 1.3.2, ∂σ(T ) ⊂ σa(T ).

Hence σja(T ) ̸= ∅. Now using Theorem 1.3.9, we have T is a finite operator.

Let T ∈ B(H). For X ∈ B(H), let δT (X) = TX − XT. Now we show that

R(δT ) is orthogonal to N(δT ) for totally (m,n)∗-paranormal operators. We use the

following lemma for proving the result.

Lemma 5.3.1. Let T ∈ B(H) be a totally (m,n)∗-paranormal operator and A ∈ B(H)

be a normal operator with AT = TA. Then for all λ ∈ σp(A) and for all X ∈ B(H),

|λ| ≤ ∥A− (TX −XT )∥

Proof. Let λ ∈ σp(A). If λ = 0, then the result holds trivially.

Let λ ̸= 0. Since A is normal and AT = TA, from Fuglede-Putnam Theorem

1.3.10 we get A∗T = TA∗. Hence N(A − λI) reduces T and A. Thus the matrix

representation of T and A on H = N(A− λI)⊕N(A− λI)⊥ is given by

T =

T1 0

0 T2

 , A =

λI 0

0 A2


Let

X =

X1 X2

X3 X4



Hence A−(TX−XT ) =

λI − (T1X1 −X1T1) C

D E

 , where C,D,E ∈ B(H). Now

∥A− (TX −XT )∥ ≥ ∥λI − (T1X1 −X1T1)∥

= |λ| ∥I −
(
T1
X1

λ
− X1

λ
T1

)
∥

Since N(A − λI) is invariant under T and T1 = T |N(A−λI), from Theorem 5.1.2 we

have T1 is totally (m,n)∗-paranormal. From Theorem 5.3.1, T1 is a finite operator.

Hence ∥A− (TX −XT )∥ ≥ |λ|.
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Theorem 5.3.2. If T ∈ B(H) is a totally (m,n)∗-paranormal operator and A ∈ B(H)

is a normal operator with AT = TA, then R(δT ) is orthogonal to N(δT ).

Proof. Since A is normal, we have ϕ(A) is normal. From Theorem 5.2.3, we have

ϕ(T ) is totally (m,n)∗-paranormal. Hence ϕ(T ) is finite. Since AT = TA, we have

ϕ(A)ϕ(T ) = ϕ(T )ϕ(A). Let λ ∈ σp(ϕ(A)). From Lemma 5.3.1, we have

|λ| ≤ ∥ϕ(A)− (ϕ(T )ϕ(X)− ϕ(X)ϕ(T ))∥

= ∥ϕ(A− (TX −XT ))∥

= ∥A− (TX −XT )∥

Hence

|λ| ≤ ∥A− (TX −XT )∥, ∀X ∈ B(H), λ ∈ σp(ϕ(A)). (5.6)

Since ϕ(A) is normal, we have ∥ϕ(A)∥ = sup
λ∈σ(ϕ(A))

|λ|

From Theorem 1.3.6, we have σp(ϕ(A)) = σ(ϕ(A)). Thus from (5.6) , we get

∥ϕ(A)∥ ≤ ∥A− (TX −XT )∥, for all X ∈ B(H).

Thus, ∥A∥ ≤ ∥A − (TX −XT )∥, for all X ∈ B(H). Hence R(δT ) is orthogonal to

N(δT ).

5.4 k-quasi totally (m,n)∗-paranormal operators

In this section, we introduce a new classes of operators namely k-quasi totally

(m,n)∗-paranormal operators which includes the class of totally (m,n)∗-paranormal

operators.

Definition 5.4.1. Let m ∈ R+, n ∈ N and k be a non-negative integer. An operator

T ∈ B(H) is said to be k-quasi totally (m,n)∗-paranormal operator if

∥(T − λI)∗T kx∥n+1 ≤ m∥(T − λI)n+1T kx∥∥T kx∥n, for all x ∈ H and λ ∈ C.
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Equivalently by proceeding in the similar way as in Theorem 5.1.1, it can be

proved that T is a k-quasi totally (m,n)∗-paranormal operator if and only if

T ∗k
(
m

2
n+1 (T − λI)∗n+1(T − λI)n+1 − (n+ 1) an(T − λI)(T − λI)∗ +m

2
n+1 n an+1I

)
T k ≥ 0

for all a > 0 and λ ∈ C.

If k = 0, then k-quasi totally (m,n)∗-paranormal operator is totally (m,n)∗-

paranormal operator. In particular, if k = 0, m = n = 1, then T is totally ∗-

paranormal ([25]).

For example, let T : l2(N) → l2(N) be defined by T (x1, x2, x3, · · · ) = (0, x1, x2, x3, · · · )

is 2-quasi totally (1, 1)∗-paranormal operator.

Theorem 5.4.1. Let T ∈ B(H) and R(T k) ̸= H. Then T is a k-quasi totally (m,n)∗-

paranormal operator if and only if T =

A B

0 C

 on R(T k)⊕N(T ∗k), where

m
2

n+1 (A− λI)∗n+1(A−λI)n+1−(n+1) an(A−λI)(A−λI)∗+m
2

n+1 n an+1I ≥ (n+1)anBB∗,

for all a > 0 and λ ∈ C. Also Ck = 0 and σ(T ) = σ(A) ∪ {0}.

Proof. Assume that T is a k-quasi totally (m,n)∗-paranormal operator.

Let T =

A B

0 C

 on R(T k) ⊕ N(T ∗k) and P be the orthogonal projection onto

R(T k). Since T is a k-quasi totally (m,n)∗-paranormal operator, we have

P
(
m

2
n+1 (T − λI)∗n+1(T − λI)n+1 − (n+ 1) an(T − λI)(T − λI)∗ +m

2
n+1 n an+1I

)
P ≥ 0,

for all a > 0 and λ ∈ C. Since A = T |
R(Tk)

, from the above relation we get

m
2

n+1 (A− λI)∗n+1(A−λI)n+1−(n+1) an(A−λI)(A−λI)∗+m
2

n+1 n an+1I ≥ (n+1)anBB∗,

for all a > 0 and λ ∈ C.
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Let x ∈ N(T ∗k). we have

T k(x) =

Ak
∑k−1

i=0 A
iBCk−1−i

0 Ck

0

x


Hence Ckx = T kx −

∑k−1
i=0 A

iBCk−1−ix. Since A = T |
R(Tk)

, we have Ckx ∈ R(T k).

Also Ckx ∈ N(T ∗k). Thus Ckx ∈ R(T k) ∩ N(T ∗k). Hence Ck = 0. Therefore,

σ(C) = {0}. Hence σ(A)∩σ(C) = σ(A)∩{0}, has no interior point. From Theorem

1.3.4, we get σ(T ) = σ(A) ∪ {0}.

Conversely assume that T =

A B

0 C

 on R(T k)⊕N(T ∗k), where

m
2

n+1 (A− λI)∗n+1(A−λI)n+1−(n+1) an(A−λI)(A−λI)∗+m
2

n+1 n an+1I ≥ (n+1)anBB∗,

for all a > 0, for all λ ∈ C and Ck = 0. Thus

T k =

Ak
∑k−1

i=0 A
iBCk−1−i

0 0



and T kT ∗k =

AkA∗k +
∑k−1

i=0 A
iBCk−1−i(

∑k−1
i=0 A

iBCk−1−i)∗ 0

0 0

 =

S 0

0 0

 ,

where S = AkA∗k +
∑k−1

i=0 A
iBCk−1−i(

∑k−1
i=0 A

iBCk−1−i)∗. Let

Tλ = T ∗k
(
m

2
n+1 (T − λ)∗n+1(T − λ)n+1 − (n+ 1) an(T − λ)(T − λ)∗ +m

2
n+1 n an+1I

)
T k.

Then for any a > 0 and λ ∈ C,

T kTλT
∗k =

SDS 0

0 0

 ,

where

D = m
2

n+1 (A− λI)∗n+1(A−λI)n+1−(n+1) an[(A−λI)(A−λI)∗+BB∗]+m
2

n+1 n an+1I.
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Since D ≥ 0, we have T kTλT
∗k ≥ 0.

Let x ∈ H. Then there exist y ∈ R(T ∗k), z ∈ N(T k) such that x = y + z. Since

y ∈ R(T ∗k), there exists a sequence (xn) in H such that T ∗k(xn) → y as n → ∞.

Also Tλz = 0, since z ∈ N(T k). Hence, ⟨Tλx, x⟩ = ⟨Tλy, y⟩ ≥ 0. Thus T is a k-quasi

totally (m,n)∗-paranormal operator.

Corollary 5.4.1. Let T ∈ B(H) and R(T k) ̸= H. If T is a k-quasi totally (m,n)∗-

paranormal operator, then

T =

A B

0 C

 on R(T k)⊕N(T ∗k),

where A is a totally (m,n)∗-paranormal operator on R(T k), Ck = 0 and σ(T ) =

σ(A) ∪ {0}.

Proof. Assume that T is a k-quasi totally (m,n)∗-paranormal operator. Then

∥(T − λ)∗T kx∥n+1 ≤ m∥(T − λ)n+1T kx∥∥T kx∥n, for all x ∈ H and λ ∈ C.

Let x ∈ H. Let z = T kx in the above equation we get

∥(T − λ)∗z∥n+1 ≤ m∥(T − λ)n+1z∥∥z∥n.

Since A = T |
R(Tk)

, we have ∥(A−λ)∗z∥n+1 ≤ m∥(A−λ)n+1z∥∥z∥n, for all z ∈ R(T k).

Hence A is a totally (m,n)∗-paranormal operator on R(T k).

Let x ∈ N(T ∗k). Then

T k(x) =

Ak
∑k−1

i=0 A
iBCk−1−i

0 Ck

0

x


Therefore, Ckx = T kx −

∑k−1
i=0 A

iBCk−1−ix. Thus Ckx ∈ R(T k) ∩ N(T ∗k). Hence

Ck = 0. Thus σ(C) = {0}. From Theorem 1.3.4, we get σ(T ) = σ(A) ∪ {0}.



Chapter 6

Totally P -posinormal operators

In this chapter, we concentrate on studying the class of totally P -posinormal op-

erators. Here we show that the restriction of totally P -posinormal to its closed

subspace is again totally P -posinormal. Also we show that these operators are finite

and spectral continuous. Finally we study about range kernel orthogonality and

Riesz projection for this operator.

6.1 Totally P -posinormal operators

Definition 6.1.1. ([38]) An operator T ∈ B(H) is said to be totally P -posinormal if

∥(P (T − zI))∗x∥ ≤ M(z)∥(T − zI)x∥ for all x ∈ H and z ∈ C, where P (z) is a

polynomial with zero constant term and M(z) is bounded on compact sets of C.

If P (z) = z and M(z) = M a constant, then totally P -posinormal operator

is M -hyponormal. If P (z) = z, M(z) = C, a constant and z = 0, then totally

P -posinormal operator is posinormal. If M(z) = C and z = 0, then totally P -

posinormal operator is polynomially P -posinormal.

For example, let T : Rn → Rn defined by T (x1, x2, · · · , xn) = (x1, 2x2, 2x3 · · · , 2xn)

is totally P -posinormal ([26]).

Let T be a nilpotent operator. Hence T n = 0, for some n ∈ N. Then T is totally

z2n−1-posinormal ([26]).

Now, we prove that restriction of a totally P -posinormal operator on a closed sub-

space is again a totally P -posinormal operator.

95
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Theorem 6.1.1. Let T ∈ B(H) and M be a closed subspace of H which is invariant

under T. If T is a totally P -posinormal operator, then T |M is totally P -posinormal.

Proof. Let x, y ∈ M and Q be an orthogonal projection onto M.

Since M is invariant under T,

⟨(T |M)∗x, y⟩ = ⟨x, T |M y⟩

= ⟨x, Ty⟩

= ⟨x, TQy⟩

= ⟨QT ∗x, y⟩

= ⟨QT ∗|M x, y⟩

Hence QT ∗|M = (T |M)∗. Therefore, (T |M − zI)∗x = Q(T − zI)∗x.

Also since M is invariant under T, we have Q(T ∗)2|M = (T 2|M)∗.

Thus ((T |M − zI)2)
∗
x = Q(T − zI)∗2x. Hence ((T |M − zI)n)∗ x = Q(T − zI)∗nx,

for all n ∈ N. Thus (P (T |M − zI))∗ x = Q (P (T − zI))∗ x. Since T is totally P -

posinormal, we have

∥ (P (T |M − zI))∗ x∥ = ∥Q (P (T − zI))∗ x∥

≤M(z)∥(T − zI)x∥

=M(z)∥(T |M − zI)x∥.

Hence T |M is totally P -posinormal.

Let PB denotes the collection of all totally P -posinormal operators, where P (z) =

zn +
n−1∑
j=1

cjz
j, c1 > 0.

Theorem 6.1.2. If T ∈ PB, then N(T − zI) ⊆ N(T − zI)∗.

Proof. Since T is totally P -posinormal operator, we have

(P (T − zI)) (P (T − zI))∗ ≤M(z)2(T − zI)∗(T − zI), ∀z ∈ C (6.1)
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Let x ∈ N(T − zI). From above equation, we get

(P (T − zI)) (P (T − zI))∗ x = 0.

Therefore, ∥ (P (T − zI))∗ x∥2 = 0. Hence x ∈ N((P (T − zI))∗).

Thus, c̄1(T − zI)∗x = −(T − zI)∗nx+
n−1∑
j=2

−c̄j(T − zI)∗jx.

Hence,

∥c1(T − zI)∗x∥ ≤ ∥ (P (T − zI))∗ x∥

≤M(z)∥(T − zI)x∥.

Since x ∈ N(T − zI), we have c1(T − zI)∗x = 0. As c1 > 0, we have (T − zI)∗x = 0.

Hence N(T − zI) ⊆ N(T − zI)∗.

For T ∈ B(H), define H0(T ) = {x ∈ H : limn→∞ ∥T nx∥
1
n = 0}. Let q ∈ N. T is

said to satisfy the property H(q), if H0(T −λI) = N(T −λI)q for all λ ∈ C. In ([8]),

B. P. Duggal proved that totally P -posinormal operators satisfy the property H(q).

It is known that if T satisfies the property H(q) with σ(T ) = {λ}, then T = λI

([8]). Hence the following theorem holds for totally P -posinormal operators.

Theorem 6.1.3. ([8]) If T ∈ B(H) is a totally P -posinormal operator and σ(T ) =

{λ}, then T = λI.

In ([4]), M. Cho and Y. M. Han proved that if T ∈ B(H) is a M -hyponormal

operator, then N(Eλ) = R(T − λI), where Eλ is the Reisz projection of T with

respect to an isolated spectral value λ. Now we prove this result holds for totally

P -posinormal operators also.

Theorem 6.1.4. Suppose T is a totally P -posinormal operator and λ is an isolated

point of σ(T ). Then N(T − λI) = R(Eλ).

Proof. From Theorem 1.3.5, we have N(T − λI) ⊆ R(Eλ).

From Theorem 6.1.1, T |R(Eλ) is totally P -posinormal. Since λ is an isolated point

of σ(T ), from Theorem 1.3.5 we have σ(T |R(Eλ)) = {λ}.
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If λ = 0, then σ(T |R(Eλ)) = {0}. Hence from Theorem 6.1.3, we have T |R(Eλ) = 0.

Therefore, R(Eλ) ⊆ N(T ).

If λ ̸= 0, then σ(T |R(Eλ) − λI|R(Eλ)) = {0}. Now from Theorem 6.1.3, we have

(T − λI)|R(Eλ) = 0. Hence R(Eλ) ⊆ N(T − λI).

Theorem 6.1.5. If T ∈ PB, then σa(T ) = σja(T ).

Proof. Since T is totally P -posinormal,

M(z)2(T − zI)∗(T − zI)− (P (T − zI)) (P (T − zI))∗ ≥ 0, ∀z ∈ C.

Let z ∈ C. Hence from Theorem 1.3.6, we have

M(z)2(ϕ(T )− zI)∗(ϕ(T )− zI)− (P (ϕ(T )− zI)) (P (ϕ(T )− zI))∗

=M(z)2ϕ((T − zI)∗)ϕ(T − zI)− ϕ (P (T − zI))ϕ (P (T − zI)∗)

= ϕ
(
M(z)2(T − zI)∗(T − zI)− (P (T − zI)) (P (T − zI))∗

)
≥ 0.

Hence, ϕ(T ) is totally P -posinormal. Now, from Theorem 1.3.6, σa(T ) = σp(ϕ(T )).

Also, from Theorem 6.1.2 N(ϕ(T ) − zI) ⊂ N(ϕ(T ) − zI)∗. Hence, σp(ϕ(T )) =

σjp(ϕ(T )). Also from Theorem 1.3.6, σjp(ϕ(T )) = σja(T ). Hence σa(T ) = σja(T ).

Theorem 6.1.6. If T ∈ PB, then the following holds:

(i) If σ(T ) = {0}, then T is nilpotent.

(ii) Let λ be a nonzero eigen value of T. Then the matrix representation of T on

H = N(T − λI)⊕ (N(T − λI))⊥ is given by

T =

λI 0

0 B

 .

Also λ /∈ σp(B) and σ(T ) = {λ} ∪ σ(B).

Proof. Since σ(T ) = {0}, it follows from Theorem 6.1.3 that T = 0. Hence T is

nilpotent.
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Let λ be a nonzero eigen value of T. Since T ∈ PB, from Theorem 6.1.2, we

have N(T − λI) ⊆ N(T − λI)∗. Therefore, N(T − λI)⊥ is invariant under T. Hence

N(T − λI) reduces T. Thus,

T =

λI 0

0 B

 on H = N(T − λI)⊕N(T − λI)⊥,

where B = T |N(T−λI)⊥ . Let x ∈ N(B − λI). Then

(T − λI)

0

x

 =

 0

(B − λI)x

 =

0

0

 .

Hence x ∈ N(T − λI). Since B = T |N(T−λI)⊥ and x ∈ N(B − λI), x ∈ N(T − λI)⊥.

Thus, x = 0. Hence N(B − λI) = 0. i.e, λ /∈ σp(B). Since T = λI ⊕ B, we have

σ(T ) = {λ} ∪ σ(B).

Let σ be the spectral map which sends T ∈ B(H) to its spectrum. Now we discuss

the continuity of spectral map on the set of all totally P -posinormal operators.

Theorem 6.1.7. The spectral map σ is continuous on the class of all PB operators.

Proof. Let T ∈ PB. Then from Theorem 6.1.6, if σ(T ) = {0}, then T is nilpotent.

Also we have, ϕ(T ) is totally P -posinormal. From Theorem 6.1.6 and Theorem

1.3.7, we have the spectral map σ is continuous on PB.

6.2 Finite operator

Recall that, T ∈ B(H) is finite if and only if ∥I − (TX −XT )∥ ≥ 1, ∀X ∈ B(H).

Now we show that every PB operators are finite.

Theorem 6.2.1. If T ∈ PB, then T is a finite operator.

Proof. First we show that σja(T ) ̸= ∅. Let z ∈ σa(T ). Then there exist a sequence

(xn) in H with ∥xn∥ = 1 such that ∥(T − zI)xn∥ → 0 as n→ ∞. Since T is totally

P -posinormal, we have

∥(P (T − zI))∗xn∥ ≤M(z)∥(T − zI)xn∥.
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Hence ∥(P (T − zI))∗xn∥ → 0 as n→ ∞. We have,

(P (T − zI))∗xn = (T − zI)∗nxn +
n−1∑
j=1

cj(T − zI)∗jxn,∀n ∈ N.

Hence, c1(T − zI)∗xn = (P (T − zI))∗xn − (T − zI)∗nxn +
n−1∑
j=2

−cj(T − zI)∗jxn.

Therefore,

∥c1(T − zI)∗xn∥ ≤ ∥ (P (T − zI))∗ xn∥+ ∥(T − zI)∗nxn +
n−1∑
j=2

cj(T − zI)∗jxn∥

≤ 2∥ (P (T − zI))∗ xn∥.

Since ∥(P (T − zI))∗xn∥ → 0 as n → ∞, we have ∥c1(T − zI)∗xn∥ → 0 as n → ∞.

Hence ∥(T − zI)∗xn∥ → 0 as n → ∞. Therefore, z ∈ σa(T
∗). Thus, z ∈ σja(T ).

Hence σa(T ) = σja(T ). From Theorem 1.3.2, ∂σ(T ) ⊂ σa(T ). Hence σja(T ) ̸= ∅.

Now by using Theorem 1.3.9, we have T is a finite operator.

Next we show that if T is a PB operator, then R(δT ) is orthogonal to N(δT ).

For proving the result we use the following lemma.

Lemma 6.2.1. If T ∈ PB and A ∈ B(H) is a normal operator with AT = TA. Then

|λ| ≤ ∥A− (TX −XT )∥

for all λ ∈ σp(A) and X ∈ B(H).

Proof. Let λ ∈ σp(A). If λ = 0, the result trivially holds.

If λ ̸= 0. Let Dλ = N(A− λI). Since A is a normal operator with AT = TA and by

Fuglede-Putnam theorem 1.3.10, we have A∗T = TA∗. Hence Dλ reduces T and A.

Thus the matrix representation of T and A on Dλ ⊕D⊥
λ is

T =

T1 0

0 T2

 , A =

λI 0

0 A2


Let

X =

X1 X2

X3 X4


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Hence A− (TX −XT ) =

λI − (T1X1 −X1T1) B

R S

 ,

where B,R, S ∈ B(H). Then

∥A− (TX −XT )∥ ≥ ∥λI − (T1X1 −X1T1)∥

= |λ| ∥I −
(
T1
X1

λ
− X1

λ
T1

)
∥

Since Dλ is invariant under T and T1 = T |Dλ
, we have T1 is a totally P -posinormal

operator from Theorem 6.1.1. Also from Theorem 6.2.1, T1 is a finite operator.

Therefore, ∥A− (TX −XT )∥ ≥ |λ|.

Theorem 6.2.2. Let T ∈ B(H). If T ∈ PB and A ∈ B(H) is a normal operator with

AT = TA, then R(δT ) is orthogonal to N(δT ).

Proof. Let ϕ be the function as mentioned in Theorem 1.3.6. Since A is normal,

ϕ(A) is normal. Since T is totally P -posinormal and from the proof of Theorem

6.1.5, we have ϕ(T ) is totally P -posinormal. Also from Theorem 6.2.1, ϕ(T ) is a

finite operator. Since AT = TA, ϕ(A)ϕ(T ) = ϕ(T )ϕ(A). Let λ ∈ σp(ϕ(A)). From

Theorem 6.2.1, we have

|λ| ≤ ∥ϕ(A)− (ϕ(T )ϕ(X)− ϕ(X)ϕ(T ))∥ = ∥A− (TX −XT )∥, (6.2)

for all X ∈ B(H). Since ϕ(A) is normal, we have

∥ϕ(A)∥ = sup
λ∈σ(ϕ(A))

|λ|

From Theorem 1.3.6, we have σp(ϕ(A)) = σ(ϕ(A)). Hence from (6.2), we have

∥ϕ(A)∥ ≤ ∥A− (TX −XT )∥, for all X ∈ B(H).

Thus,

∥A∥ ≤ ∥A− (TX −XT )∥, for all X ∈ B(H).



Chapter 7

Closed densely defined M -hyponormal

operators

In this chapter, we define closed densely definedM -hyponormal operator which con-

tains some well known classes of operators namely, closed densely defined hyponor-

mal operators. In this chapter we mainly focus on proving asymmetric Fuglede -

Putnam theorem for this classes of operators.

7.1 Closed densely defined M -hyponormal operators

Let H be a Hilbert Space. We denote the classes of all linear operators and closed

linear operatos on H by L(H) and C(H) respectively. Recall that a closed operator

T ∈ L(H) is said to be densely defined if D(T ) = H. Recall that a densely defined

operator T ∈ C(H) is said to be hyponormal if D(T ) ⊂ D(T ∗) and ∥T ∗x∥ ≤ ∥Tx∥

for all x ∈ D(T ).

Now, we define a new classes of operators, closed densely definedM -hyponormal

operators which contains the class of all closed densely defined hyponormal opera-

tors.

Definition 7.1.1. A densely defined operator T ∈ C(H) is said to be M-hyponormal

if D(T ) ⊂ D(T ∗) and ∥ (T −zI)∗x ∥≤M ∥ (T −zI)x ∥ for all z ∈ C and x ∈ D(T ),

for some constant M > 0.

102
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In particular, if z = 0 andM = 1 then theM -hyponormal operator are hyponor-

mal. In general, the converse need not be true.

For example, let T : l2(N) −→ l2(N) be defined by

T (x1, x2, x3, · · · ) = (0, x1, 2x2, x3, 4x4, 5x5, · · · ).

Here the weights are given by αj =

 1 if j = 1, 3

j if j = 2 and j ≥ 4

Let D(T ) = {(x1, x2 · · · ) ∈ l2(N) :
∑∞

j=1 |αjxj|2 < ∞}. Since C00 ⊆ D(T ), and C00

is dense in l2(N), D(T ) is dense in l2(N). Since (αn) is eventually increasing, T is

M -hyponormal ([18]). The adjoint of T, T ∗ is given by

T ∗(x1, x2, x3, · · · ) = (x2, 2x3, 3x4, 4x5, 5x6, · · · ).

Let ei = (0, 0, · · · , 1, 0, 0, · · · ), where 1 occurs in the ith place. Then

Te1 = e2, T e2 = 2e3, T e3 = e4, T ei = iei+1 for i ⩾ 4.

T ∗e1 = 0, T ∗e2 = e1, T
∗e3 = 2e2, T

∗e4 = e3, T
∗ei = (i− 1)ei−1 for i ⩾ 5.

Since ∥T ∗e3∥ = 2 and ∥Te3∥ = 1, it follows that T is not hyponormal.

Let M be a closed subspace of H. We define T |M as an operator on M with

domain

D(T |M) = {x ∈ D(T ) ∩M : Tx ∈ M} and T |M x = Tx, x ∈ D(T |M).

Let B = T |M, then we say that M reduces T to an operator B.

Now we show that restriction of a closed densely defined M - hyponormal operator

is again M -hyponormal.

Lemma 7.1.1. Let T ∈ C(H) be a densely defined M-hyponormal operator and M

be a closed subspace of H which is invariant under T. Then T |M is a closed M-

hyponormal operator.
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Proof. Let x ∈ D(T |M) and P be an orthogonal projection onto M. Since T is

M -hyponormal, we have

∥ (T |M − λI)∗x ∥ =∥ P (T − λI)∗x ∥

≤M ∥ (T − λI)x ∥

=M ∥ (T |M − λI)x ∥ .

Hence T |M is a closed M -hyponormal operator.

Now we prove a characterization for closed densely defined M -hyponormal op-

erators.

Lemma 7.1.2. Let T ∈ C(H) be a densely defined M-hyponormal operator. Then

there exist a contraction Cλ ∈ B(H) such that
1

M
(T − λI) ⊆ (T − λI)∗Cλ for every

λ ∈ C.

Proof. Define K : R(T − λI) → R(T ∗ − λI) by

K ((T − λI)x) =
1

M
(T ∗ − λI)x, for all x ∈ D(T ).

Since T isM -hyponormal,K is a contraction withK(T−λI) ⊆ 1

M
(T ∗−λI). Now we

extend K to K ′ ∈ B
(
R(T − λI), R(T ∗ − λI)

)
such that K ′(T−λI) ⊆ 1

M
(T ∗−λI).

Let A ∈ B(H) be defined by Ax =

 K ′x if x ∈ R(T − λI)

0 if x ∈ R(T − λI)
⊥

It is clear that A ia a contraction. Also

A(T − λI) ⊆ 1

M
(T ∗ − λI).

Hence,
1

M
(T − λI) ⊆ (T − λI)∗A∗.

Let A∗ = Cλ, then
1

M
(T − λI) ⊆ (T − λI)∗Cλ, where Cλ is a contraction.

Stochel ([52]) proved if T ∈ C(H) is hyponormal operator and M is a closed

subspace of H which is invariant under T with T |M is normal, then M reduces T.
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Now we prove this result holds for closed densely defined M -hyponormal operators.

Theorem 7.1.1. Let T ∈ C(H) be a densely defined M-hyponormal operator. Let M

be a closed subspace of H which is invariant under T and T |M is normal. Then M

reduces T.

Proof. Let H1 = M and H2 = M⊥. Then H = H1 ⊕ H2. Let PHi
denotes the or-

thogonal projection onto Hi, for i = 1, 2. Then T has a block matrix representation,

T =

T11 T12

T21 T22

 ,

where Tij : D(T )∩Hj → Hi is defined by Tij = PHi
TPHj

|D(T )∩Hj
for j = 1, 2. Since

M is invariant under T , we have

T =

T11 T12

0 T22

 .

Let y ∈ D(T ) ∩M⊥. By Lemma 7.1.2, we have

1

M
(T − λI) ⊆ (T − λI)∗Cλ

for every λ ∈ C, where Cλ is a contraction. Thus, R(T − λI) ⊆ R(T − λI)∗ for

every λ ∈ C. From Theorem 1.3.14, there exist a densely defined operator B such

that (T − λI) = (T − λI)∗B. Then on H = M⊕M⊥ we have

T11 − λI T12

0 T22 − λI

0

y

 =

(T11 − λI)∗ 0

T ∗
12 (T22 − λI)∗

B11 B12

B21 B22

0

y

 ,

where Bij : D(T ) ∩ Hj → Hi is defined by Bij = PHi
TPHj

|D(T )∩Hj
for j = 1, 2.

Hence T12(y) = (T11 − λI)∗B12y. Then T12(y) = (T11 − λI)∗u, where u = B12y ∈ M.

Since T11 = T |M is normal, we have N(T11 − λI)∗ = N(T11 − λI). From Theorem

1.3.13, we have R(T11−λI)∗ = R(T11−λI). Thus we can choose v ∈ D(T )∩M such

that (T11 − λI)∗u = (T11 − λI)v. Therefore, T12(y) = (T11 − λI)v for every λ ∈ C.
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Hence,

T12(y) ∈
⋂
λ∈C

R(T11 − λI).

From Theorem 1.3.15, we have T12(y) = 0. Hence T12 = 0.

Now we prove some properties of closed densely defined M -hyponormal opera-

tors.

Theorem 7.1.2. Let H and K be Hilbert spaces. Assume that S ∈ C(H) is normal

and T ∈ C(K) is M-hyponormal. Let A ∈ B(H,K) be such that AS ⊆ TA. Then

the following holds:

(i) |A|S ⊆ S|A|

(ii) If A ≥ 0, N(A) = {0} and K = H, then S = T.

Proof. (i) Suppose T is M -hyponormal. Then by Lemma 7.1.2, there exist a con-

traction Cλ such that

1

M
(T − λI) ⊆ (T − λI)∗Cλ for all λ ∈ C. (7.1)

Let E be a spectral measure of S. Let Ω be a compact subset of C and x ∈ R(E(Ω)).

We have E is regular. Hence from Theorem 1.3.18, it is sufficient to prove that

|A|E(Ω) = E(Ω)|A| for every compact set Ω of C. Since S is normal, from Theorem

1.3.18, we have R(E(Ω)) reduces S − λ and R(E(Ω)) ⊂ D(S − λ) for every λ ∈ C.

Define the function ψ : C \ Ω → R(E(Ω)) by

ψ(λ) =

∫
Ω

1

(z − λI)
E(dz)x = (S|R(E(Ω)) − λI)−1x, λ /∈ Ω

([52]). Then x = (S − λI)ψ(λ), λ /∈ Ω. Thus, Ax = A(S − λI)ψ(λ), for λ /∈ Ω.

Since AS ⊆ TA, we have Ax = (T − λ)Aψ(λ), for λ /∈ Ω. Hence from (7.1), we

get A∗Ax = MA∗(T − λ)∗CλAψ(λ). Since A(S − λ) ⊆ (T − λ)A, for λ ∈ C,

A∗Ax = M(S − λ)∗A∗CλAψ(λ), for λ /∈ Ω. Hence A∗Ax ∈
⋂

z∈C\Ω∗
R(S∗ − z), where

Ω∗ = {z : z ∈ Ω}. From Theorem 1.3.19, we have E(C \ Ω)A∗Ax = 0.
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Therefore, A∗Ax = E(Ω)A∗Ax. Since x ∈ R(E(Ω)) is arbitrary,

A∗A(R(E(Ω))) ⊆ R(E(Ω)).

Since A∗A is selfadjoint, R(E(Ω)) reduces A∗A. From Theorem 1.3.18, we have

A∗AE(Ω) = E(Ω)A∗A, for every compact set Ω of C.

(ii) Since A ≥ 0, from (i) we have SAx = ASx = TAx for x ∈ D(S). Thus,

S|AD(S) ⊆ T. Since D(S) is a core for S, AD(S) is a core for S from Theorem 1.3.16.

Hence,

G(S) ⊆ G(S|AD(S)) ⊆ G(T ) = G(T ),

where G(S) is the graph of S. Therefore, S ⊆ T . Thus D(S) ⊂ D(T ). Since S is

normal, we have D(S∗) = D(S). Hence D(T ) ⊆ D(T ∗) ⊆ D(S). Thus, S = T.

Let A ∈ B(H,K), we denote R(A∗) by R(A∗) and R(A) by R(A). It is known

that R(A∗) = R(|A|), where |A| = (A∗A)
1
2 ([16]). It is known that the polar

decomposition of A is given by A = U |A| where U ∈ B(H,K) is a partial isometry

with initial space R(A∗) and final space R(A) ([16]). Also N(U) = N(A) and

U |R(A∗), A|R(A∗) are in B(R(A∗),R(A)). Also U |R(A∗) is a bounded unique unitary

isomorphism from R(A∗) into R(A) with

U |R(A∗) |A|x = Ax, x ∈ H ([52]).

Lemma 7.1.3. ([52]) For A ∈ B(H,K). The following holds:

(i) N
(
A|R(A∗)

)
= {0}.

(ii) R(A) = R
(
A|R(A∗)

)
.

(iii) A∗|R(A) =
(
A|R(A∗)

)∗
.

(iv) (|A|)|R(|A|∗)=
∣∣A|R(A∗)

∣∣ .
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Lemma 7.1.4. ([52]) Let T and B be closed densely defined operators in H and K

respectively and A ∈ B(H,K) be such that AT ∗ ⊆ BA.

(i) If R(A∗) reduces T, then B|R(A) is a closed densely defined operator in R(A) and

A|R(A∗) (T |R(A∗))
∗ ⊆ B|R(A) A|R(A∗).

(ii) If R(A∗) reduces T and R(A) reduces B to normal operators, then

AT ⊆ B∗A, |A|T ⊆ T |A|, |A∗|B ⊆ B|A∗| and

(T |R(A∗))
∗ = (U |R(A∗))

∗B|R(A) U |R(A∗).

Now we prove the asymmetric Fuglede-Putnam theorem for closed densely de-

fined M -hyponormal and normal operators.

Theorem 7.1.3. Suppose S ∈ C(H) is normal and T ∈ C(K) is M-hyponormal. If

A ∈ B(H,K) is such that AS ⊆ TA. Then R(A∗) reduces S, R(A) reduces T and

T |R(A), S|R(A∗) are unitarily equivalent normal operators.

Proof. Let Ω be a Borel subset of C and let E be the spectral measure of S. We

have E(Ω) is an orthogonal projection. To prove R(A∗) reduces S, it is sufficient to

prove that R(A∗) := R(|A|) is invariant under E(Ω).

Let y ∈ R(|A|). Then there exist a sequence (yn) ∈ R(|A|) such that yn converges

to y. Since E(Ω) is bounded, E(Ω)yn converges to E(Ω)y . Since yn ∈ R(|A|), there

exist xn ∈ D(|A|) such that yn = |A|xn. Therefore, E(Ω)|A|xn converges to E(Ω)y.

From Theorem 7.1.2 (i), |A|E(Ω) = E(Ω)|A|. Hence, |A|E(Ω)xn converges to E(Ω)y.

Thus R(A∗) is invariant under E(Ω).

Since AS ⊆ TA and R(A∗) reduces S, from Lemma 7.1.1, we have T |R(A) is a

closed densely defined operator in R(A) and

A|R(A∗) S|R(A∗) ⊆ T |R(A) A|R(A∗). (7.2)

Since T is M -hyponormal, T |R(A) is a closed M -hyponormal operator in R(A).
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Since U |R(A∗) is unitary, we have

| A|R(A∗) | S|R(A∗) ⊆ (U |R(A∗))
∗ T |R(A) U |R(A∗) |A|R(A∗)|. (7.3)

Let W = U |R(A∗) and V = W ∗ T |R(A) W. Also we have W is unitary isomorphism

and T |R(A) is M -hyponormal. Then for x ∈ R(A∗),

∥ (V − zI)∗x ∥ =∥ W ∗(T |R(A) − zI)∗ Wx ∥

=∥ (T |R(A) − zI)∗ Wx ∥

≤M ∥ (T |R(A) − zI)Wx ∥

=M ∥ W ∗(T |R(A) − zI)Wx ∥

=M ∥ (V − zI)x ∥ .

Hence (U |R(A∗))
∗ T |R(A) U |R(A∗) is a closed M -hyponormal operator.

Also, we have N(|A|R(A∗) |) = N(A|R(A∗)). From Lemma 7.1.3, N(A|R(A∗)) = {0}.

Thus N(|A|R(A∗) |) = {0}. From (7.3) and Theorem 7.1.2 (ii), we get S|R(A∗) =

(U |R(A∗))
∗ T |R(A) U |R(A∗). Thus, T |R(A), S|R(A∗) are unitarily equivalent normal op-

erators. From Theorem 7.1.1, R(A) reduces T.

Stochel ([52]) proved the following result for closed hyponormal and closed sub-

normal operators. Now we extend the result to closed M -hyponormal and closed

subnormal operators.

Theorem 7.1.4. Let B ∈ C(H) be subnormal (resp. a closed M-hyponormal operator

in H ), T ∈ C(K) be M-hyponormal (resp. a closed subnormal operator in K ) and

A ∈ B(H,K) is such that AB∗ ⊆ TA. Then

(i) AB ⊆ T ∗A.

(ii) R(A∗) reduces B to the normal operator B|R(A∗).

(iii) R(A) reduces T to the normal operator T |R(A).
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Proof. Assume that B ∈ C(H) is subnormal and T ∈ C(K) isM -hyponormal. Since

B is subnormal, there exist a normal extension S on the Hilbert Space L ⊇ H.

Define Y ∈ B(K,L) by Y x = A∗x, x ∈ K.

Let J ∈ B(H,L) defined by Jx = x, x ∈ H. Then for x ∈ K, JA∗x = A∗x = Y x.

Thus, Y = JA∗. Hence, Y ∗ = AP, where P is an orthogonal projection of L on to

H. Hence, R(Y ∗) = R(A). Since AB∗ ⊆ TA, we have

A∗T ∗ ⊆ BA∗. (7.4)

Since from equation (7.4) and Y x = A∗x, we have

Y T ∗x = A∗T ∗x

= BA∗x

= SA∗x

= SY x, x ∈ D(T ∗).

Thus Y T ∗ ⊆ SY. Hence Y ∗S∗ ⊆ TY ∗. Since R(Y ∗) = R(A), we have T |R(A) and

S|R(A∗) are unitarily equivalent normal operators by Theorem 7.1.3. Thus, R(A)

reduces T to the normal operator T |R(A).

Since A∗T ∗ ⊆ BA∗ and R(A) reduces T , we have B|R(A∗) is closed densely defined

in R(A∗) and

(A|R(A∗))
∗ (T |R(A))

∗ ⊆ B|R(A∗) (A|R(A∗))
∗ (7.5)

by Lemma 7.1.4 (i) and Lemma 7.1.3. Since B|R(A∗) ⊆ B ⊆ S, B|R(A∗) is subnormal.

Then B|R(A∗) is M -hyponormal. Thus, R(A|R(A∗))
∗ = R(A∗) reduces B|R(A∗) to the

normal operator from equation (7.5) and Theorem 7.1.3. Hence by Theorem 7.1.1,

R(A∗) reduces B to the normal operator B|R(A∗). The result (i) follows from Lemma

7.1.4 (ii).

Next we assume that B ∈ C(H) isM -hyponormal and T ∈ C(K) is subnormal. Since

A∗T ∗ ⊆ BA∗, R(A) and R(A∗) are reducing subspace for T and B respectively. Also

the part T |R(A) and B|R(A∗) are normal. By Proposition 7.1.4 (ii), AB ⊆ T ∗A.
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Corollary 7.1.1. Let B ∈ C(H) be subnormal (resp. a closedM-hyponormal operator

in H ), T ∈ C(K) be M-hyponormal (resp. a closed subnormal operator in K ) and

A ∈ B(H,K) is such that AB∗ ⊆ TA. Then

(i) If N(A) = {0}, then B is normal.

(ii) If N(A∗) = {0}, then T is normal.

Proof. Assume that N(A) = {0}. From Theorem 1.3.13, we have R(A∗)⊥ = {0}.

Thus R(A∗) = H. That is, R(A∗) = H. From Theorem 7.1.4 (ii), B is normal.

Assume that N(A∗) = {0}. From Theorem 1.3.13, we have R(A)⊥ = {0}. Thus,

R(A) = K. That is, R(A) = K. From Theorem 7.1.4 (iii), T is normal.



Conclusion

In this thesis, we introduced some new classes of bounded operators namely k-quasi

(m,n)-paranormal, (m,n)-class Q, k-quasi (m,n)-class Q operators which are the

extensions of (m,n)-paranormal operators. Also we introduced k-quasi (m,n)∗-

paranormal, (m,n)-class Q∗ and k-quasi (m,n)-class Q∗ operators which contains

(m,n)∗-paranormal operators. Here we obtained some characterizations and ma-

trix representations of these classes of operators with proper illustrations. Next we

defined totally (m,n)∗-paranormal, which is having nice characteristics, like transi-

lation invariance and finiteness. Also, we studied some properties of polynomially

P -posinormal operators namely, finiteness, spectral continuity etc. Finally, we in-

troduced a closed densely defined M - hyponormal operator and proved asymmetric

Fuglede- Putnam theorem for this class of operators.
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Recommendations

In this thesis, we defined some new classes of operators which are the extensions of

well defined classes of operators such as (m,n)-paranormal, (m,n)∗-paranormal and

closed densely defined hyponormal operators. In future, we are aim to introduce

some new classes of operators which are extensions of newly introduced class of

operators, which are having nice properties like finiteness, spectral continuity, matrix

representation etc. Also we try to introduce a closed densely defined dominant

operator, which contains closed densely defined M - hyponormal operator and prove

asymmetric Fuglede-Putnam theorem for this operators.
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