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Thesis title: An Automated Algorithm to Extract
Features from Retinal Fundus Images to
Detect Diabetic Retinopathy and Assess
its Severity Using Deep Learning

Thesis supervisor: Dr.K.Meenakshy

Month and year of thesis submission: December, 2020

Diabetes may lead to retinal pathologies such as microaneurysms, hard exu-
dates and haemorrhages, which are the early symptoms of Diabetic Retinopathy
(DR). If these symptoms are not diagnosed at the early stage and left untreated,
blindness may result. The diagnosis demands service of experienced ophthalmol-
ogists, but the number of patients to number of ophthalmologists is dispropor-
tionate. With this motivation an algorithm is developed to detect the presence
of diabetic retinopathy and its severity level automatically from fundus images.
This effort will assist in the early diagnosis and treatment of diabetic retinopathy.
The work also describes methods for segmenting the main components of retinal
fundus images (RFIs) such as blood vessels, optic-disc and fovea. Retinal image
contrast is enhanced utilizing Non Subsampled Contourlet Transform (NSCT) and
the Normal Inverse Gaussian (NIG) Probability Density Function (PDF). The sug-
gested procedure employs the NIG distribution to attain the Bayesian maximum a
posteriori probability of the membership values of NSCT coefficients. Mathemati-
cal morphology utilizing the multistructure elements is employed to identify ridges
of the retinal blood vessels. Erroneous edges are removed by connected compo-
nent analysis and length filtering. Area with the highest variation in intensity of
adjacent pixels is recognized as optic disc and the darkest area adjacent to the



optic disc is identified as fovea. 8-connectivity region growing algorithm is used
to localize optic disc and fovea. Normal retinal components extracted images are
fed as input to Bag-of Visual Words (BoVW) model to differentiate normal and
abnormal RFIs. The BoVW model along with speeded up robust features (SURF)
descriptor provide 100% accuracy while classifying normal and abnormal RFIs.
Finally deep learning algorithm utilizing the pretrained EfficientNetB4 network is
used to assess the severity of DR in the abnormal RFIs. The algorithms devel-
oped is tested on images collected from DRIVE, HRF, e-Ophtha databases along
with images obtained from a local hospital. Deep learning algorithm is tested on
3662 images obtained from Kaggle dataset. The performance of the classifier is
evaluated using precision, recall, f1-score, accuracy and kappa score. The values
obtained for these parameters reveals that the proposed classifier can be utilised
for detecting and classifying the severity level of DR.
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Chapter 1

Introduction

Eye is one of the sophisticated sensory organs in the human body. It works like a
camera by focusing the visible light reflected from objects to the retina situated at
the back of the eye. From there the images are transmitted to the brain. Changes
happening in the anatomy of eye due to pathological or diseased condition will
affect the vision and subsequently the quality of life. Hence it is highly impor-
tant to identify even the minute abnormalities associated with the eye structure.
The escalation in Digital Image Processing (DIP), Artificial Intelligence (AI), and
modelling methods along with high performance computing has had a significant
impact on the diagnosis and ministration of eye diseases. Digital fundus, Optical,
Infrared, Optical Coherence Tomography (OCT), as well as Heidelberg Retina To-
mography are a few imaging techniques to identify abnormalities of eye [1].

The retina doles out with an optimal expedient to investigate the part of
microvascular pathology in the pathophysiology of cardiovascular diseases. Over
the last tenner, progress in retinal vascular imaging empowered the development of
explicit and dependable quantitative parameters such as retinal vascular calibers
which are coupled to cardiovascular diseases. Variations in the vascular struc-
ture of the retina can point the existence of different types of pathology, such
as arteriosclerosis, hypertension, myopia, proliferative diabetic retnopathy, and
retnopathy of prematurity. But, there is little data on the interrelationship be-
tween retinal vascular calibers and the risk of diabetic retinopathy (DR) [2].

1.1 Introduction to Diabetic Retinopathy

As per International Diabetes Federation, in 2019 around 463 million adults (Age
group:20-80 years) were living with diabetes. This number may increase to 700
million by 2045. 80% of adults with diabetes were living in low- and middle- in-

1
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come countries [3].

Diabetic retinopathy is one of the complications of diabetes that affects the
eyes. This complication occurs in 80% of diabetes. At its early stage, the disease
sits silently in the background giving no symptoms. As a consequence the patient
is ignorant of its presence. At this juncture, there is no immediate warning of sight
impairment, but it is the onset of serious retina damage and it is considered to
be the first phase of blood vessel declination. Roughly one-fifth of patients with
these cases advance to the stage where vision is acutely damaged.

The distinguishing features of diabetic retinopathy are Microaneurysms (MAs),
Haemorrhages (HMs), and Exudates (EXs). A retinal microaneurysm is a small
region of blood sticking out from an artery or vein in the back of the eye. These
bulging may open and leak blood into the retinal tissue surrounding it. Microa-
neurysms by itself are not likely to cause any symptoms that could be noticed.
Almost all microaneurysms are reversible with treatment of diabetes, high blood
pressure or other disorder causing them. Haemorrhages are impairments of the
blood-retina barrier which come off either as a red ’dot’ or flame-shaped. In the
latter case, they have an idiosyncratically " feather-shaped" edge [4]. Hard exu-
dates are tiny white or yellowish white deposits. They have sharp margins and
look shiny, waxy or glistering. They are found in the outer layers of the retina,
deep to the retinal vessels. Microaneurysms that come across as white dots with-
out visible blood in the lumen are inferred as hard exudates.

One of the leading cause of vision impairments in the adults aged between
20 years and 70 years is diabetic retinopathy. This disease can be prevented and
treated if the condition is given effective screening and management. Most people
are oblivious to the fact that they have eye damage.

The most risky constraint to vision in diabetes give little or no warning.
These initial changes can be seen only through direct examination with an oph-
thalmoscope and hence ministrations could be started before sight becomes seri-
ously affected. Therefore to protect vision periodic thorough eye examinations are
essential.

Diabetic retinopathy can be treated by laser surgery. Here a strong light
beam is focused on to the retina. As a result the abnormal vessels shrink. Laser
surgery has reduced the risk of severe sight loss from diabetic retinopathy by 90%.
But usually laser surgery cannot restore the lost vision. Thus, early screening of
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diabetic retinopathy is the best method to prevent vision loss.

1.2 Diagnosis of Diabetic Retinopathy

Routine check-up by an experienced ophthalmologist is important for early detec-
tion and treatment of diabetic retinopathy. DR administration requires screening
huge numbers of people (About 30,000 individuals per million of the total popu-
lation) [5, 6]. Proper screening can reduce the risk of DR by 70%. Also proper
screening makes public health systems cost effective [7, 8]. Even though screening
has been proved to be cost effective [9] the required number of ophthalmologists
to perform the screening of all diabetics is very high [10]. Majority of methods to
detect DR require intervention from an experienced personnel [11].

Conventional screening steps for diabetic retinopathy can be summarised as
follows

1. Patient directed to the screener for examining his/her medical details.

2. Using a Snellen acuity chart best corrected visual acuity is tested.

3. Pupils dilated with Trepicamide 1% eye drops.

4. Obtain 4 images from the dilated pupils. Two from each eye.

5. Fundal examination is performed by medical staff to detect and classify the
severity of diabetic retinopathy.

Current screening procedure demands the involvement of trained and expe-
rienced medical staff. Also the accuracy of screening is a big concern. There is a
pressing demand for an inexpensive screening method free from intervention from
trained ophthalmologist.

A fully automated method to analyse fundus image could classify retinopa-
thy without the involvement of specialist. Digital fundus images provides us digi-
tised data that could be used for computerised detection of several other diseases.
Nowadays many investigators perform image analysis using computers, but they
still require direction of a human observer. A fully automated method would
greatly improve the management of diseases. Automated screening system is very
much beneficial to those residing in rural areas who are unable/unwilling to travel
to hospitals. It is possible to operate the camera by a minimally trained person,
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since the examination is fully automated, and does not require human intervention.

A non-mydriatic fundus camera has been recommended as an appropriate
means of diabetic retinopathy screening [12]. Its foremost advantages are that
pupillary dilation is not required, it can be operated with an unskilled person and
that it can be rather easily transported. Hence it sounds to be of value for use in
the society. Assessment in the setting of hospital clinic has proven that, besides
its limitations, in general the method gives better results when compared with
ophthalmoscopic examination through a dilated pupil.

1.3 Fundus Camera

A variety of special equipments have been developed to image the eye. This section
describes one of the common clinical instruments-the fundus camera-for capturing
fundus images.

In this camera, the light beams emerging from two sources, an incandescent
lamp meant for viewing the fundus and a flash lamp for photography, are optically
combined using a beam splitter as demonstrated in Figure 1.1.

Figure 1.1: Illumination system of fundus camera. [13]

The combined light sources are confined to an annulus using an iris di-
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aphragm that controls the outer diameter. To capture and position the annular
aperture in the plane of the patients’s pupil an auxiliary condensing lens is fitted
in the equipment.

The diagram in Figure 1.2 demonstrates how the fundus image is observed
with a normal camera. The condensing lens is used to form the image. The cam-
era lens focuses on this image. The movable mirror, also known as beam splitter,
cater a separate path for observation. This system is akin to an ophthalmoscope.
There exists two major differences between these two. One is that the viewing
beam is confined with an aperture which is mirrored in the pupil plane and the
other is that image magnification is achieved using a microscope. The illumina-
tion and viewing beams in the pupil plane are separated. This ensures that no
light reflected by the corner or condensing lens enters the viewing system. Thus
the viewing system accomplishes a reflex-free image. By correcting the astigmatic
errors of the candidate’s eye the image quality is improved.

Figure 1.2: Observation system of fundus camera. [13]

Many different methods exists to combine viewing and illumination systems.
One of the methods reflects the illumination beam by ensuring both apertures are
imaged in the same plane but are physically separated. Here the aperture stop
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in the observation system is the central hole in the tilted annular mirror. Thus a
simple iris diaphragm can be used in the illumination beam. Various techniques
also prevail for combining observation beam and camera and observation systems
and the illumination.

Fibre optics are used to furnish annular illuminations in some illumination
systems. In some other systems, infra-red illumination is employed. Here a visible
display unit screen converted from an infra-red sensitive video camera is used as a
visible display of the image. This unique method reduces pupil construction from
the illuminating beam [13].

A fundus camera brings an upright and magnified image of the fundus. A
typical fundus camera have a field of view of 300 to 500 of the retinal area. It also
provides a magnification of 2.5 times which can be extended upto 5 times with
the use of some auxiliary lenses. The field of view can be increased upto 1500 by
giving penalty to the peripheral image quality. Figure 1.3 shows a fundus camera.
Figure 1.4 depicts a normal fundus image where the structures on the fundus in-
cludes the blood vessels, optic disc, fovea and macula.

Figure 1.3: Fundus camera.
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Figure 1.4: The normal fundus image.

1.4 Motivation

At present around 463 million adults are living with diabetes. This number can
grow up to 700 million by 2045. Among this diabetic affected people 80% are
from low- and middle- income countries. Also 80% of diabetes are prone to dia-
betic retinopathy. In the developing stage DR does not give any symptoms and
so patients are unaware of its presence. But, if untreated, this will lead to vision
impairment. As per International Diabetes Federation, roughly 1

8

th of the people
affected by DR advance to the stage where their vision is permanently damaged.
Proper screening among diabetes can reduce the chance of diabetic retinopathy.
The fact that the ratio of number of diabetic patients to number of experienced
ophthalmologists is very large prevents people from under going routine eye exam-
ination. If the presence of DR can be detected by an automated system developed
through technical means we can prevent the advancement of the disease to vision
loss. Since the developed system does not require the expertise of an ophthalmol-
ogist, the identification of the disease can be performed in equipped medical labs
similar to routine check ups. This is the motivation behind this work.
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1.5 Objectives

The main objectives of the current work are

1. Development of a novel fundus image contrast enhancement technique with-
out affecting the diabetic retinopathy features present in it.

2. Detect the presence of diabetic retinopathy from fundus images.

3. Classify the severity of diabetic retinopathy in detected cases.

1.6 Structure of the Thesis

This thesis elucidates research steered towards developing a technique for an au-
tomatic diagnosis of DR and assess its severity. The thesis layout is as follows.

Chapter 1 introduced diabetic retinopathy and its diagnosis procedure. An
over view of fundus camera is also presented in this chapter. The chapter concludes
with the motivation and objectives of this work. The contents of the subsequent
chapters are also briefed here.

Literature review is carried out in Chapter 2. An extensive survey is con-
ducted by reviewing papers published in this field especially for the last six years.
The review is presented under different aspects like blood vessel extraction, Optic
disc and cup segmentation, EXs, MAs, and HMs detection and CAD based DR
detection. The chapter ends by pointing out the scope of further research in the
field of automatic DR detection.

Chapter 3 describes the pre-processing algorithm developed to enhance the
image contrast. Image pre-processing is carried out by using non-subsampled con-
tourlet transform. In this proposed enhancement method the term contrast is
considered as a qualitative rather than a quantitative measure.

Extraction of anatomical features of retina, an important step in DR iden-
tification, is explained in Chapter 4. The blood vessels are extracted using mul-
tistructure elements morphology by reconstruction. Chapter 4 also describes how
region growing algorithm can be effectively used to localize optic disc and fovea.
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Chapter 5 deals with the detection of Diabetic Retinopathy. Bag-of-Visual-
Words model (BoVW) is used to correctly identify the DR affected images. The
results obtained confirms that BoVW model can be used as a binary classifier
which classify normal and abnormal images.

Chapter 6 introduces deep learning approach to classify retinal images as per
the severity level of DR. The newly introduced EfficientNetB4 is used for perform-
ing transfer learning. The kappa score obtained for the classifier confirms that the
classifier obtained is a perfect classifier.

Chapter 7 gives conclusion of the work proposed and it also points out some
further research scope in this area.

The frame work of this thesis is represented in Figure 1.5.

Figure 1.5: Framework of the thesis





Chapter 2

Literature Review

Diabetic Retinopathy is a complication widely prevalent among diabetic patients.
The increased glucose level in blood causes changes in the microvasculature of
retina. The threat of DR lies in the fact that it does not show any pre-emptive
symptoms. Hence it ends with sheer vision loss. But despite that, screening at
the beginning and appropriate treatment can control the ascendancy of DR. But
non-automatic examination of morphological variations in the retinal components
are tiresome and incapable of being surmounted. Therefore, Computer-Assisted
Diagnosis (CAD) methods were accomplished to aid ophthalmologists for check-
ing intra- and inter- diversities. In this chapter, a latest survey of modern CAD
systems for detecting and classifying DR is presented. This chapter come up with
most of these CAD methods that have been accomplished by different compu-
tational intelligence and image processing approaches. The bounds and hopes
of contemporary CAD systems are as well depicted comprehensively to aid re-
searchers. Furthermore, existing CAD techniques are quantitatively evaluated
concerning their statistical parameters. The comparison results signify the need
for more accurate CAD systems to aid in the quantifiable diagnosis of DR.

2.1 Introduction

Diabetes Mellitus (DM) is described by a pool of unbalancing changes carried
out by insulin resistance [14]. Insulin secretion elicits an increase in blood glu-
cose ratio known as hyperglycaemia. This may slowly but surely start to de-
velop macro (stroke, and heart attack) and micro (neuropathy, retinopathy and
nephropathy) vascular pathologies [15]. As per the statistics mentioned in [16],
there exists around 382 million humans figured out as diabetic patients and this
value is supposed to touch 592 million by 2030. Type-1 Diabetes (T1D) and
Type-2 Diabetes (T2D) are the two main categories of DM. Around 90% of di-

11
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abetic patients in the world have T2D, which is due to insulin resistance. One
of the significant impact of DM is diabetic retinopathy. It develops a progressive
vision loss, especially in the elder population, due to the downfall of tiny retinal
vessels [17, 18, 19]. Even so, testing and treatment at the initial stage via CAD
techniques can help candidates to prevent complete vision impairment.

The pathognomonic signs of DR are the appearance of microaneurysms (MAs),
soft/hard exudates (EXs), and hemorrhages (HMs) in the fundus image. Bulges
of this vessels which come off as petite and sharp boundaries of red papules retinal
surface are MAs. EXs are formed because of the leakage of proteins from ves-
sels. They look like small white/yellowish-white spots. Leaky capillaries cause
HMs and they appear as red deposits with jagged margins. On the basis of vessel
deterioration and ischemic change, DR is broadly grouped into non-proliferative di-
abetic retinopathy (NPDR) and proliferative diabetic retinopathy (PDR). NPDR
is again divided into mild (existance of MAs), moderate (exalt than mid-level),
and severe (venous edging in at least two quadrants, MAs, HMs in four retina
quadrants) stages. Top-level stage of DR is PDR. Clinically NPDR is suggested
for the determination of the severity level of DR [20, 21, 22, 23].

CAD programs are employed to gracefully analyse and extract basic retinal
components (Blood vessels, Optic disc, fovea, cup, and macula) as well as abnor-
mal lesions ( EXs, MAs, and HMs) contained by the retinal image for the early
detection of DR. A clinically followed protocol for DR screening is given in Ta-
ble 2.1. This table [24] exhibits the DR classes along with their clinical definitions.

Table 2.1: A typical scale for DR screening [24]

DR Types Clinical Features
Normal No abnormal lineaments

Mild NPDR Found MAs
Moderate NPDR Maximum number of MAs, EXs, and HMs
Severe NPDR All abnormal features in four quadrants

PDR All abnormal features with new blood vessel formation

Progress in the area of science and engineering has built human life more
harmonious by making it secure and healthier. Say, modernistic medical image
analysis is a unique field of research that calls attention to life threatening diseases
by means of imaging technology. Such modernistic diagnosis systems also known
as CADs extend services for making our life easier. The capacity of CADs has
been established in different fields of medical diagnoses, like glaucoma detection,
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DR detection, tumor detection, alzheimer’s as well as parkinson’s identification,
gastrointestinal assessment, cardiac grading, macular edema and a lot more [24].
The results rendered by these CAD systems are very similar to that obtained from
human inspection. The success of CAD devices banks on the features separated
out from images with the help of computational methods [25]. Manual observation
of retinal anatomical structures (such as vessels, optic disc, fovea, cup, and macula)
and lesions of DR is a tiresome and repetitive one for clinical staff. In addition,
manual analysis is highly subjective and demands very good technical domain
expertise to inspect intra- or inter- variations in retinal elements. Hence, CAD
methods are necessary to carry out early DR screening utilizing fundus images.
These CAD techniques may save cost, time, and effort of medical practitioners
during the manual observations of retinal images [26, 27].

In bygone days a number of authors have surveyed and studied various retinal
image analysis techniques along with their applications [28, 29, 30]. An exhaus-
tive scrutiny of the image segmentation approaches for cup, optic disc, and DR
identification was demoed in [28]. A different work [29] emphasized image pro-
cessing, extraction of normal and odd retinal traits, and DR diagnosis approaches.
In [30] Patton et al. came up with a review on the image preprocessing, cellular
feature extraction, image registration and various imaging modalities for DR de-
tection. But, none of them reviewed and correlated advanced machine learning
methods. Ergo, in this chapter an exhaustive assessment of the state-of-the art
CAD methods for the pinpointing of normal and anomalous retinal traits are di-
vulged. Particularly, image processing, machine learning, advanced deep learning,
and computer-vision based approaches are pinned down for the timely detection
of DR from color fundus photography.

2.1.1 Digital Fundus Imaging

Fundus imaging has empowered automated screening methods to handle and block
out various retinal disorders devoid of the involvement of clinical specialists. Gen-
erally, the acquisition of a fundus image is accomplished by the fundus camera.
It inhold a microscope (low power) which is able to capture the inner part of the
retinal structure, namely the posterior pole, macula, optic disc, and cup. Fig-
ure 2.1 is a portrayal of a common fundus image, which exhibits the basic fundus
quiddity and NPDR levels with lesions. Fundus imaging had proved to be an
easy and lucrative technique aiding ophthalmologists to rapidly analyse and sort
images collected from various locations, e.g., urban or rural areas, and then come
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up with expedient clinical recommendations. At this juncture it is significant to
note that fundus arteriography accomplishes DR diagnosis utilizing three kinds of
imaging modalities: (i) An RGB (ii) A red exempted channel and (iii) fluorescent
images [31]. Specimens of these channels can be found in the DRIVE, DIARETDB,
MESSIDOR, STARE, and HRF databases [32, 33]. These clinical resources have
usually been selected by R & D people to design DR-based CAD systems.

Figure 2.1: Example of a fundus images.(a) Retinal anatomic features (b) Mild
NPDR (c) Moderate NPDR (d) Severe NPDR [34]

2.1.2 Performance Measure

The most desirable feature of DR-based CAD systems is that they can engender
a real-time DR filtering mechanism which produces accurate and reliable results
in nominal time. To test and assess the effectiveness of those CAD techniques
against the ground truth (i.e. manual abstraction of features provided by ophthal-
mologists) labels, different statistical parameters/measures, like sensitivity (SE),
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accuracy (ACC), specificity (SP), precision (PR), area-under the curve (AUC), and
F1-Score are used to give an objective assessment of these methods. The param-
eters are based on true positives (TP), true negatives (TN), false positives (FP),
and false negatives (FN).

• TP (True Positives), signals exact classification of a patient.

• TN (True Negatives), imply a normal person is correctly classified.

• FP (False Positives), shows an incorrect classification of a disease unaffected
person as a patient.

• FN (False Negatives), denotes incorrect classification of a patient as normal
person.

The formulas intended for SE, ACC, SP, PR and F1-Score are given in (2.1) to (2.5).

SE =
TP

(TP + FN)
(2.1)

ACC =
TP + TN

(TP + FP + TN + FN)
(2.2)

SP =
TN

(TN + FP )
(2.3)

PR =
TP

(TP + FP )
(2.4)

F1− Score =
2TP

(2TP + FP + FN)
(2.5)

An AUC value of 1 confirms good performance of the technique while an AUC
value of 0.5 establishes a moderate performance [35].

The goal of this chapter is to explore and illustrate the state-of-the-art self-
acting scientific systems, i.e., deep learning, and conventional methods for DR-
dependent CAD systems. An examination into the construction, datasets, and
experimental outcomes, along with pivotal gaps in these approaches are furnished
comprehensively. Lastly, the review is wrapped-up with some panaceas to the ex-
amined algorithm’s flaws and aspiring directions in the development and training
of more effective DR detection methods based on deep learning.

This chapter is organised as follows. Section 2.2 presents segmentation and
extraction techniques of retinal blood vessels, optic disc & optic cup, microa-
neurysms & hemorrhages, and Exudates. Section 2.3 concisely explain the recent
developments in popular CAD based methods for DR detection. Section 2.4 put
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forth a survey on the contemporary DR-based screening systems. Section 2.5 pro-
vides an insight into the challenges of the discussed methods along with some
solutions. This section also gives a comparison between traditional hand-crafted
and deep learning methods used to screen DR. Finally, the chapter is concluded
in Section 2.6.

2.2 Identification Methods of DR

The subsequent sections furnish a sweeping survey of topological segmentation and
grading systems brought forth for the identification of anatomic signs of retina with
DR lesions employing fundus photographs. Figure 2.2 shows a vivid illustration
of these identification techniques.

Figure 2.2: DR detection methods
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2.2.1 Blood Vessel Extraction

The task of confirmation of structural variations of the retinal vascularization
in color fundus photography is a judicious and ceaseless one for clinicians. The
reliability of the DR-CAD system highly depends on the accuracy of vessel seg-
mentation. Further, identification of vessel features that are based on geometry
and secular changes of vessels -depicted in Figure 2.3- helps inexperienced doctors
in the exact diagnosis of DR.

Figure 2.3: A fundus image displaying secular variations of vessels [34]

The available methods in the literature for segmentation of retinal vessels
can be categorized into supervised-, unsupervised-, and mathematical morphology-
based methods.

Kaur and Mittal in [36] proposed a vascular structure detection method from
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pathological retinal images. Initially preprocessing is carried out to nullify the ef-
fects of low-contrast and non-uniform illumination. A matched filter is used to
extract the intensity of pixels and geometric features. These features are then
passed to a neural network which separate vessel from non-vessel region. The au-
thors claimed an accuracy of 95.45%. The results obtained are given in Figure 2.4.
But, the method had less impact in the identification of lesions that bring about
a false vascular structure.

Figure 2.4: Results of blood vessel extraction [36]

(a) Original image (b) Ground truth (c) Extracted vessels

An unsupervised coarse extraction approach for vessel identification is pre-
sented in [37]. They combined multiple concepts like mathematical morphology,
spatial dependency, and curvature with coarse-to-fine technique to exactly de-
scribe thin and elongated vessels from vessel pixels. Meanwhile, the technique
failed in determining the vessel diameter and also rated as inefficient in extract-
ing vessel structures from low contrast images. Variations in the structural and
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micro-pattern of vessels were identified by extracting vascular features using tex-
tural descriptors. A random forest classifier then distinguish true vessel points
from non-vessel one [38]. The authors reported 96.1% and 92.2% sensitivity and
specificity values respectively. A compendious review of vessel segmentation algo-
rithms are provided in [39, 40, 41].

The work in [40] assorted common and uncommon retinal features with in-
habitant’s contextual information at varying coarseness levels via data mining
techniques to segment vessels from fundus images. This work utilized a larger
dataset and the obtained results were more significant than that obtained with
the then existing methods. But, the system execution time was exorbitant. A
different work [41] used the consecutive execution of image pre-\post- processing
and data mining techniques for vessel extraction. They obtained an accuracy of
95.36%. The downside of this method is its elongated processing time. The speci-
ficity score obtained was also unsatisfactory for vessel extraction. In [42] Zhang
et al. recommended an unsupervised approach for vessel extraction in which la-
belling conflicts from ground truth labels were rectified. A texton dictionary was
generated using key point descriptors to discriminate vessel pels from on-vessel
pixels. Even though this method yielded an accuracy of 95.05%, it struggled
with false positive results on the left part of the peripheral region and around the
disc. These drawbacks can be tackled with some pre-processing methods. Tan et
al. [43] achieved a classification accuracy of 94.54% for the segmentation of retinal
vessels by utilizing a seven layer convolutional neural network. Wang et al. [44]
segmented retinal vessel by using a CNN model with ensemble learning. After im-
age normalization they used CNN and random forest classifier to separate vessel
from non-vessel. They yielded an accuracy of 97.5% at the expense of considerable
training time. A few machine learning methods have proved to have an exceptional
potential in vessel extraction using retinal angiography, e.g., gumbel probability
distribution (GPD) [45], hybrid feature vector and random forest classifier [46],
and direction map [47]. The method in [46] combined robust features from differ-
ent methods into a 17-dimensional space for vessel pixel description. The random
forest classifier process these feature vectors to identify vessel and non-vessel pix-
els. This method yielded 96% accuracy with increased computational cost due to
the use of thirteen gabor filters to filter vessel features.

A unique matched filter termed GPD was brought into play after enhancing
image sharpness using Principal Component Analysis (PCA) gray-scale conversion
and dynamic local sharpness enhancement techniques [45]. A cycle of examines
were conducted to find out an appropriate parameter. A GPD filter was then de-
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signed using this selected parameter. Lastly, lucider vessel structures were filtered
after post-processing followed by thresholding and length filtering. The authors
reported an AUC of 0.91. The stringers in [47] endorsed a direction map blueprint
called SEVERE (segmenting vessels in retina images) for vessel extraction. The
method was void of preprocessing steps. Using the green component image from
the RGB color image and direction map the blood vessel patterns were segmented.
The accuracy obtained was 97%. Hassan et al. [48] utilized mathematical mor-
phology along with a smoothing operation to segment retinal vessels accurately.
K-means algorithm was used for the classification of vessels. The classification ac-
curacy obtained was 96.25%. An unsupervised method was put forth by Eysteinn
et al. [49] for retinal vessel assortment. The model obtained a assortment accuracy
of 94% by using morphological approach and fuzzy classification. The main lim-
itation of this method was that it depended on human labelled data. Moreover,
the method was computationally expensive.

Delineation between slender and chunky retinal vessels has turned into a gru-
eling task because of low contrast and non-uniform illumination of images as well
as the presence of bright lesion. So, hybrid techniques such as fuzzy conditional
entropy techniques, the phase-preserving denoising approches, and saliency with
active contour modes were presented in [50, 51, 52] to identify slender and chunky
vessels. The work in [53] was a multimodel mechanism for segmentation of thin
and thick vessels. A phase-conservating line detection technique after the removal
of image noise was used to identify thin vessels. A maximum entropy thresholding
method was employed for identifying thick vessels. This method recorded an AUC
value of 0.95 in the demarcation of slender and chunky vessels in retinal images.
In a previous work [51] an integrated system was developed for the automated
filtration of different structures of blood vessels from retinal fundus images. Nor-
malization of the original images were carried out employing curvelet transform
denoising. To filter the image noise and to enhance the image contrast a band pass
filter (BPF) was used. The fuzzy conditional entropy algorithm identified the best
threshold by using a matched filter response. Various vessel structures, like slender,
medium, and chunky were identified with an average accuracy of 96.22% using the
differential evolution technique on the best thresholds. The idea of retinex theory-
multiplication of reflection and illumination attributes-was employed to stabilize
thin vessel contrast as well as global image quality. After that, an image was split
into super-pels and fed to the saliency method to locate unique vessel regions. The
result obtained was refined using an infinite active contour model. The AUC value
reported for this method was a 0.8 [52].
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Line detection as well as pictel-based methods were employed in [54] for the
extraction of tiny vessels. Image pre-processing followed by line detection tech-
nique was employed for image segmentation. In order to localize long and medium
size vessels adaptive thresholding method was utilized. Finally, small vessels were
extracted with the pixel-based tensor voting procedure. Farokhian et al. in [55]
put forward a bunch of 180 Gabor filters followed by an imperialism competitive
algorithm-an optimization method- for vessel extraction and achieved a precision
score of 93%. A Gabor filter is defined on the turning degree of 1 scale to identify
image and vessel borders. An optimization technique was then applied for ex-
act vessel identification. Likewise, a template matching method utilizing a Gabor
function was put forward in [56] for the identification of center vessel lines ( after
specifying the region of interest ) as well as filtration of low contrast thin vessel
structure. The method presented a 96% accuracy value. A binary segmented im-
age was obtained utilizing the template matching technique. Then the contours
of the binary image were reproduced to match the attributes of the image with
that of the manually marked up contours in the training dataset. Finally, slender
vessels with low contrast were segmented using a large dataset. Each of these
mathematical morphology-based techniques were believed as being unsatisfactory
because of the following reasons: (i) methods were evaluated on a small dataset
and had restricted cover of the varied-sized locations of an image (ii) plenty of
pre-/post-processing steps were employed to segment the vessel tree (iii) reported
a longer running time during the extraction of vessel structure.

Kar and Maity in [57] presented a blood vessel segmentation algorithm de-
rived from the matched filter followed by curvelet transform and fuzzy c-mean
algorithm. To begin with, a curvelet transform was employed to identify edges
and lines. Then a vessel tree was extracted utilizing a fuzzy c-mean algorithm.
Even though their method reported an accuracy of 96.75% it failed to attain a bet-
ter true positive rate. Zhao et al. in [58] presented a level set and region growing
technique for the extraction of retinal vessels. They obtained 94.93% accuracy. A
compact and low power hardware architecture was proposed in [59] by Koukounis
et al. for the exact segmentation of retinal blood vessels. Their technique include
three steps. First, the green channel of an RGB color image was taken during
the preprocessing phase to enhance the quality of image. Second, a matched filter
was employed on the normalized image to feature the vessel points. Lastly, vari-
ous thresholds were utilized for exact vessel identification. However, the method
was costlier with respect to the acquiring and loading of images. A morpholog-
ical component analysis was put forward in [60] for the segmentation of retinal
vessels. Vessel contrast was improved before applying morphological component
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analysis. However, the method was restricted to the identification of complex im-
age attributes such as lesions and vessel tortuosity. A recap of important blood
vessel identification methods are displayed in Table 2.2, accentuating the employed
methods and datasets.

2.2.2 Optic Disc and Cup Segmentation

The optic disc (OD), or optic nerve head is the locus of departure for ganglion
cell axons exiting the eye. Due to the absence of rods or cones in the optic disc,
it corresponds to a tiny blind spot in each eye. It is treated as initial indicator of
optic cup (OC), retinal vessel, fovea, and macula identification in fundus images.
Locating and extracting the OD periphery indicates a disc contour and centre. Pre-
dominant OD segmentation methods in the study are established on geometrical-
and morphological- based approaches, as outlined in the coming paragraphs.

Taking into account the importance of OD segmentation for dependable glau-
coma and DR identification, Bharkad S. in [61] counted morphological features to
filter out the OD edge. The finite impulse response filter (FIR) was employed to
filter out retinal vessels as well as to bring out morphological attributes for disc
segmentation. The method recorded a mean accuracy of 98.95%. However, he
used a small dataset and the method was futile on low contrast color images. In
a similar way, Alshayeji et al. in [62] used a boundary detection procedure de-
rived from a gravitational law followed by pre- and post- processing processes for
OD extraction. The method achieved 95.912% accuracy with a price of increased
execution time. A contemporaneous technique was devised in [63] for OD extrac-
tion. In this approach the disc edge was segmented following the elimination of
vessel utilizing a region growing dynamic threshold and ellipse fitting approach.
The accuracy achieved for this method was 91%. Singh et al. in [64] utilized the
green component of a fundus image that provide much higher information for OD
detection. They claimed an accuracy of 94.7%. Abed et al. in [65] put forward a
nature-inspired hybrid model termed swarm intelligence with pre-processing step
for OD separation. The mean accuracy reported by the authors was 98.45% with
fewer execution time than other lithographed approaches. Contradictorily this
method is greatly based on pre-processing steps and inclined to algorithm param-
eters.

Various other CAD procedures have been accomplished utilizing the geomet-
rical attributes for OD extraction with greater accuracy. Examples of these
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Table 2.2: Blood vessel extraction methods - A recap

Classification
Technique Database Size Color Space Accuracy(%)

Morphological
component
analysis[60]

DRIVE, STARE 60 8 bits 95

Level set and re-
gion growing [58] DRIVE, STARE 60 8 bits 94.93

Matched fil-
ter and fuzzy
c-means [57]

DRIVE, STARE,
DIARETDB1 149 8 bits 96.75

Fuzzy classifica-
tion [56] DRIVE 40 24 bits 96

Mathematical
morphology,
k-means [55]

DRIVE 40 8 bits 93

Gumbel proba-
bility distribu-
tion [52]

DRIVE, STARE 60 8 bits AUC:0.9287

Hybrid fea-
ture and forest
classifier [51]

DRIVE, STARE 60 8 bits 96.22

Template match-
ing [53] DRIVE, STARE 60 8 bits 96

Gabor filter [49] DRIVE 40 24 bits 94
Saliency and con-
tour model [47] DRIVE, STARE 60 8 bits 97

Fuzzy conditional
entropy [45] DRIVE, STARE 60 8 bits -

Phase-preserving
method [46]

DRIVE,
STARE, HRF,
CHASE_DB1

133 8 bits 96

CNN and RF [44] DRIVE, STARE 60 8 bits 97.5
CNN [43] DRIVE 40 24 bits 94.54
Segmentation [42] DRIVE 40 24 bits 95.05

Classification [38]
MESSIDOR,
HRF, STARE,
Local dataset

779 24 bits AUC:0.922

Local coarse seg-
mentation [37] DRIVE, STARE 60 8 bits 87

Geometrical fea-
tures [36]

DRIVE, STARE,
ARIA, HRF 785 24 bits 95.45

methods include the sliding filter [66], the Hough circle cloud [67], active contour
model [68, 69], and ensemble of probability models [70]. In an earlier work [67], a
fully automated program named Hough circle cloud was built for OD localization.
The method offered an accuracy of 99.6%. But, the model requires a powerful
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graphical processing unit (GPU) and was tested on a relatively smaller dataset.
The system suggested in [70] dealt with the strength of various object identifica-
tion techniques for OD extraction. The authors claimed an accuracy of 98.91%.
Natheless, the procedure was analytically expensive. i.e., centered on pre-/post-
processing steps and vulnerability of every algorithm member existed. To pinpoint
the OD area a multi-resolution sliding band filter (SBF) was exploited in [66]. A
low resolution/precision SBF was utilized after the removal of the blood vessels
to achieve an early detection of the disc. High precision SBF was then used on
the obtained disc points to attain a final OD abstraction. The final disc area was
chosen by taking the maximum number of respopnses from a high precision SBF
and smoothing technique. The reported average overlapping area is 85.66%. But,
this procedure was seriously non-competitive on an intricate pattern of a couple of
retinal samples. The works presented in [68, 69] reported a performance appraisal
of ten region-dependent active contour models for OD extraction. Out of these
procedures, the gradient vector flow (GVF)-ACM was discovered to be the winner
with an accuracy of 97%. Despite this, both of these techniques were tested on
tiny datasets accompanied by pre-/post-processing steps.

In [71] the authors utilized the vessel direction, intensity and bright area
of the disc to detect the disc area. Geometric methods were combined with the
confidence score method to extract these features. Accurate segmentation of OD
is indicated by the highest confidence value. Even though the algorithm was reg-
istered as robust in the existence of other bright lesions with 98.2% accuracy, the
evaluation was carried out on a comparatively smaller number of images.

Optic cup periphery filtering is a monotonous task due to the amalgamation
of blood vessels nearby the cup region. Besides, OC-a brightest yellowish charac-
teristic region of the fundus image-remains inside the disc region and initial signs
of glaucoma retinopathy are visible in the OC [72, 73]. OC screening procedures
in the collected works can be divided into pixel-based classification methods and
machine learning based methods as outlined in the following paragraphs.

Tan et al. in [74] proposed a completely self-acting OC recognition pro-
cedure derived from a multi-scale super-pixel classification model. The authors
utilized various ranges of multi-scale pixel methods and means for retinal image
standardization and vessel extraction. At the end, the cup region was localized
by sparsity based multi-scale super-pixel models. Even though 7.12% better rate
than other OC localization procedures were obtained, the computational cost of
the scheme was more. The method proposed in [75] put forward entropy sampling
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and a convolutional neural network (CNN) for segmenting optic cup and disc. The
yielded classification accuracy was 94.1%. But the method used a small amount
of images and was futile in rendering the sampling data points to achieve more
dependable results.In [76] Chakravarty and Sivaswamy put forward a combined
segmentation scheme for disc and cup boundary. Using coupled and sparse dic-
tionary approaches textural characteristics of the disc and cup were extracted.
Finally these chosen features were applied for cup detection. The area under the
receiver operating curve value obtained for this method was 0.85. Neverthless,
their suggested method was less powerful in calculating the cup-to-disc ratio. Ant
Colony Optimization method was utilized in [77] for segmentation of OC. The re-
ported AUC was 0.79. This scheme was not successful on a few instances to point
out the cup edge. Compatible attributes of disc as well as cup from fundus and
spectral domain optical coherence tomography (SD-OCT) techniques have offered
great potential for OC segmentation [78]. In [79] Issac et al. applied an adaptive
threshold approach to segment disc and cup from fundus images. Features of fun-
dus images like mean and standard deviation (std) were utilized for the removal
of background parts of OD and OC. Lastly, the boundaries of OD and OC were
segmented from green and red channels, as demonstrated in Figure 2.5 and Fig-
ure 2.6. The authors yielded 92% accuracy. However, the method was evaluated on
a tiny dataset. Also it was ineffective on low contrast images. A recapitulation of
the aforesaid disc and cup extraction algorithms/methods are shown in Table 2.3,
illuminating the method, dataset used, and the number of images.

Figure 2.5: (a) Color fundus image (b) Gray scale ground truth (c) Extracted
ground truth (d) Red channel image (e) Pre-processed image (f) Extracted OD [79]



CHAPTER 2. LITERATURE REVIEW 26

Figure 2.6: (a) Color fundus image (b) Gray scale ground truth (c) Extracted
ground truth (d) Green channel image (e) Pre-processed image (f) Extracted
OD [79]

2.2.3 DR-Connected Lesion (MAs and HMs) Identification

Techniques.

MAs and HMs identification and extraction are tough tasks because of the varied
size, textural features, and color of the fundus images. Hence, the design of swift
and dependable automated DR lesion identification systems are still a promising
area for researchers. A couple of studies considering exact MAs and HMs iden-
tification were observed in the literature. Microaneurysm analysis methods were
categorized into supervised-, unsupervised-, and mathematical morphology- based
methods, while hemorrhage extraction methods were divided into image process-
ing, mathematical morphology, and machine learning-based approaches as outlined
in the coming subsections.

In [80] Habib et al. described a smart MAs identification scheme utilizing
color fundus photographs. Gaussion matched filter was employed to extract MAs
attributes. These attributes were then given as input to a classifier- the tree ensem-
ble classifier- to separate true and false MAs pixels. The receiver operating curve
score (ROC) obtained was 0.415. But this method did not bypass the overfitting
problem. Also it was unable to describe a standard feature selection principle.
Kumar et al. in [81] utilized greenchannel image of RGB retinal image to extract
MAs regions. Watershed transformation was used to remove blood vessels and
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Table 2.3: OD and OC extraction methods - A recap

Method Database Used Size
Color
Space

ACC(%)

Optic Disc Segmentation Methods
Active contour
model [71] Private dataset, RIM-

ONE, DIARETDB0 59 8 bits 98.2

Active contour
models [69] RIM-ONE 169 8 bits 97

Sliding band
filter [66] ONHSD, MESSIDOR,

INSPIRE-AVR 1339 8 bits -

Ensemble
models [70] DIARETDB0&1,

DRIVE, MESSIDOR 1459 24 bits 98.91

Hough
transform [67] DRIVE, DIARETDB1,

DIARETDB0, DRIVE 129 8 bits 99.6

Swarm
intelligence [65] DRIVE, DiaRet,

DMED, STARE 318 8 bits 98.45

Wavelet
features [64] Local dataset 63 24 bits 94.7

Region
growing [63] MESSIDOR, DRIVE,

Local dataset 1384 8 bits 91

Edge
detection [62] DRIVE, DiaRet,

DMED, STARE 303 8 bits 95.91

FIR [61]
DRIVE, DIRATEDB0,
DIRATEDB1, DRIONS 369

24 and
8 bits 98.95

Optic Cup Segmentation Methods
An adaptive
threshold [79] Private dataset 63 8 bits 92

Ant colony
optimization [77] RIM-ONE 159 8 bits -

Sparse
dictionary [76]

RIM-ONEv2, DRIONS-
DB, MESSIDOR,
DATASET-1

1577 8 bits -

CNN [75] DRISHTI-GS 50 24 bits 94.1
Super pixel
classification [74] ORIGA 65024 bits -
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optic disc. A Gaussian matched filter was used to extract MAs. The authors re-
ported 93.41% accuracy. Sreng et al. in [82] segmented MAs with the help of canny
edge and maximum entropy-based methods. The image was normalized to remove
vessel and disc area. Then MAs regions were extracted by employing canny edge
and entropy methods along with morphological operation. The method reported
90% accuracy. Both methods described in [81, 82] were not successful in beating
spurious signal during the detection of MAs. The authors in [83] employed three
filters namely Gaussian, median and krich filters to the green component of an
RGB retinal image to filter MAs characteristics. These characteristics were then
applied as input to a multi-agent model to classify MAs pictels from non-MAs pic-
tels. The method yielded an ROC of only 0.24. Also the authors did not evaluate
all possible image locations for optimizing the detection process.

In an earlier work [84] a sequence of image processing methods like contrast
improvement and feature extraction were employed to put forward some origi-
nal hypothesis for enhancement of MAs detection programmes. Wu et al. [85] has
taken some local and profile characteristics for MAs detection. After applying some
image denoising techniques a k-mean based neural network classifier was employed
on the image attributes to divide MAs pixel from non-MAs ones. The ROC value
obtained for this method was 0.202. This method failed to localize MAs pels in
very noisy images. In [86] Romero et al. presented a bottom-hat and hit-or-miss
transform techniques for MAs segmentation succeeding a normalization process
of image. Bottom-hat transformation was used to achieve a faithful reddish area
with a bright part. Hit-miss transformation was applied to remove blood vessels.
Finally, true MAs pixels were detected with an accuracy of 95.93% using principal
component analysis and radon transform. Likewise, a top hat trasformation and
an average-based filter was utilized in [87] for the detection and removal of retinal
anatomic features with a 100% specificity. Subsequently, Radon trasform (RT)
and multi-overlapping window were applied for the bifurcation of anoptic nerve
head and MAs. This method reported a SE of 94%. Both methods in [86, 87] were
analytically costiler and could not track down MAs points in the low sharpness
images. For the detection of poor and small MAs features, a naïve Bayes classifier
and position-based sharpness improvement approaches were applied in [88, 89],
with considerable MAs results.

In [88] initially a loutish segmentation technique was used to ascribe the
MAs candidate pixel. In addition, naïve Bayes classifier was employed to segment
MAs pictels and separate actual and fake MAs points, resulting a classification
accuracy of 99.99% with 82.64% sensitivity. But despite that, the naïve Bayes
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classifier was computationally costiler and was also unsuccessful on obscure and
blur MAs pictels. A contrast limited adaptive histogram equalization (CLAHE)
technique was employed in [89] to solve the above mentioned draw backs. Here
the input image was split into tiny and associated tiles in order to figure out tiny
and low sharpness MAs pixels. The authors reported a sensitivity of 85.68%. But
this approach was tested only on 47 images. This limits the method’s general-
izability. A sparse representation classifier followed by dictionary learning was
applied in [90] to identify MAs pixels. Localization of the MAs region was car-
ried out with a Gaussian correlation filter. Then, these MAs characteristics were
fed into the sparse representation classifier to separate true and false MAs pixels.
The reported sensitivity value was 0.8%. However, in this method the dictionaries
were created faithlessly, thus missing the discriminative power during the detection
process. Akram et al. in [91] furnished a model with 99.4% accuracy to classify
MAs. Even though, the method was computationally overpriced, it provided bet-
ter attributes for enhancing the differential power of the classifier. In order to
reduce false positives during the MAs detection and overcome the class unbalance
problem in color photographs, sparse principal component analysis (SPCA) and
ensemble-based dynamic over-sampling methods were used in [92, 93]. The meth-
ods reported an average AUC score of 0.9. Javidi et al. in [94] segmented MAs
from fundus images using morphological analysis and discriminative dictionary
learning along with sparse representation. Localization of MAs candidate pixels
were carried out with the help of morelet-based wavelet transform. Then binary
dictionaries were used to identify MAs and non-MAs points. The authors acquired
0.267 ROC score. The results obtained with this method were depicted in Fig-
ure 2.7. However, the method takes a long execution time. Also it was incapable
of detecting MAs pixels on unclear and poor contrast images.

Figure 2.7: MAs detection result [94]

In [95] Shan et al. suggested a deep learning approach namely stacked sparse
auto encoder (SSAE) for the detection of MAs. At first, images were split into
image tiles. These tiles were then fed to SSAE model which outputs high-level
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features. Lastly, a soft max classifier was employed in the output layer to distin-
guish true and false MAs. The authors yielded an AUC of 96.2%. A different
work [96] achieved MAs and HMs extraction using multiple kernel filtering. It was
a two-layer approach. Here in order to handle the varied size lesions the image
is split into small patches. Finally, a support vector machine (SVM) was used to
separate true MAs and HMs points. They obtained an AUC of 0.97. Another
machine learning algorithm to detect MAs was presented by Adal et al. in [97].
Here various scale-based descriptors were employed on normalized image for fea-
ture extraction. A semi-supervised learning procedure was trained with the filtered
candidate attributes to separate MAs and non-MAs pixels, achieving an AUC of
0.36. The works in [95, 96, 97] failed to manage the over-fitting problem associated
with much larger datasets. Also those methods yielded low distinctive capability.
A overview of the MAs detection techniques mentioned so far is presented in Ta-
ble 2.4.

Kaur et al. in [98] proposed a supervised algorithm for the identification of
hemorrhages. The method used a dataset of size 50 images. Initially, fovea and
vessels were removed using morphological closing operation. Then by adopting
Otsu’s thresholding HMs points were extracted. Finally a random forest classifier
was employed to discriminate HMs and non-HMs pixels. The method yielded
90.4% SE and 93.53% SP. the results obtained are furnished in Figure 2.8.

Figure 2.8: HMs detection result [98]

The method put forward in [99] also utilized Otsu’s method to remove the
vascular structure prior to HMs detection. The authors used 219 fundus images
and achieved 92.6% SE and 94% SP. Both methods [98, 99] failed to identify hemor-
rhages closer to the border of the image aperture. In order to deal with the main
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Table 2.4: MAs extraction methods - A recap

Classification
Technique Data-set used Size Color

Space Accuracy(%)

semi-supervised
learning [97] ROC, Private 400 8 bits -

Multiple kernel
learning [96]

DIARETDB1,
MESSIDOR 143 8 bits ROC:0.97

SSAE [95] DIARETDB 89
24 and
8 bits
RGB

AUC:96.2

Sparse and dictio-
nary learning [94] ROC 1008 bits-

Ensemble learn-
ing [93] e-optha 148 8 bits AUC:0.844

SPCA [92] ROC 100 8 bits -
Hybrid classi-
fiers [91] DIARETDB0&1 219 8 bits 99.40

SRC [90] ROC 100 8 bits -
Contrast enhance-
ment [89] Private 47 8 bits -

Naïve Bayes classi-
fier [88] Private 80 8 bits 99.99

RT [87] Mashhad, local,
ROC 192 8 bits -

PCA and RT [86] DIARETDB1,
ROC 189 16 bit 95.93

Local & profile fea-
tures [85] ROC & e-optha 198 8 bits -

Multi-agent
model [83] LaTIM 36 8 bits -

Canny edge,
threshold [82] DIARETDB1 89 24 bits 90

Gaussian filter-
ing [81] DIARETD1 89 8 bits 93.41

Tree ensemble [80] MESSIDOR,
DIARETDB1v2.1 256 8 bits ROC:0.415

difficulty during HMs detection-i.e. detecting HMs that are closer to the blood
vessels- rule based mask detection [100], splat feature extraction [101, 102, 103]
and fundamental information of inter-/intra-retinal structures [104] were employed
and produced notable quantitative results.

The work reported in [100] removed blood vessels, disc, and fovea after per-
forming image contrast enhancement and image normalization. Three Gaussian
templates were applied to detect HMs region. This method yielded 93.3% SE and
88% SP. As mentioned above the schemes presented in [101, 102, 103] applied
splat-based HMs extraction but with varied configurations. These methods pro-



CHAPTER 2. LITERATURE REVIEW 32

vided better visual results. But they did not provide better numerical results while
using so many number of tested images. Using mathematical morphology as well
as template matching techniques the authors in [104] detected HMs with an exact-
ness value of 97.7%. Machine learning and pixel-based methods for the extraction
of HMs were outlined in [84, 105, 106]. In an earlier work [84], a great deal of
unmanned DR screening and monitoring approaches for HMs identification were
considered regarding their basic configuration, issues, datasets, and solutions. This
work provided the importance of self-acting screening systems in DR classification.
The computerized HMs identification schemes in [105] applied an brightness equal-
ization approach on the green component of the RGB image to narrow down white
and HMs pels. Support vector machine was then utilized onto the narrow downed
region and HMs pictels were separated from normal pixels. Another technique for
HMs identification that used 89 retinal images was presented in [106]. Here adap-
tive thresholding and morphological operations were applied to locate the HMs
affected regions. The accuracy reported for this method was 90%. Nonetheless,
the schemes [105, 106] were analytically complex and were restricted to covering
whole likely areas of an image. Identically, in a previous work [107] a three steps
HMs identification scheme using 108 images was presented. Based on the different
intensities of fundus components bright features were localized. After extracting
four texture forms a classifier was trained with the help of textural attributes to
discriminate HMs and non-HMs pixels with 100% accuracy.

2.2.4 Exudate Extraction Schemes

Exudate- a key indication of DR- appear as vivid white/yellowish blot on the reti-
nal surface. In the published writings, EXs filtering methods were brought into
three groups: (i) pictel-based (ii) mathematical morphology based and (iii) ma-
chine learning based. The succeeding paragraphs discuss such EXs extraction
methods.

Anatomical retinal marks, like a drawn out nervous system and optic disc
bring about the generation of false positives in the computerized detection of EXs.
So morphological matched filter and saliency techniques were applied by Liu et al.
in [108] to remove vessels and the OD prior to EXs detection. To begin with, input
RGB retinal image was pre-processed to note anatomical features and to improve
the image sharpness. Then, employing a matched filter and saliency methods ves-
sel and disc components were pulled out to exactly find the EXs area. Lastly,
a random forest classifier was employed on the derived attributes-i.e. color, size,
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and sharpness of EXs. Accuracy of 79% and an SE of 83% were yielded using 136

fundus images. Imani et al. [109] separated blood vessels from the exudate region
by considering morphological component analysis (MCA) model. To distinguish
EXs from normal features, mathematical morphology and dynamic thresholding
techniques were employed. The method reported an AUC value of 0.961 using 340
images.

In an earlier study [110] EXs were detected using 83 retnal images by em-
ploying a multiprocessing scheme. First, gray morphology was applied to ex-
tract an exudate candidate area. Then Active Contour Model (ACM) model was
used to segment boundaries of these extracted EXs candidates. Finally, the ACM
component features were given to the naïve Bayes classifier to classify exudate
characteristics. The method reported 85% accuracy and 86% sensitivity. Zhang
et al. in [111] introduced an EXs extraction scheme derived from mathematical
morphology using 47 images. At first images were normalized. EXs traits were
extracted with an AUC score of 0.95 by employing classical and textural charac-
teristics along with mathematical morphology. The authors in [112] also extracted
exudates using mathematical morphology and the SVM classifier. They obtained
90.54% accuracy. An average-variance method for vessel and disc extraction was
proposed in [113]. EXs points were selected using filter bank. Classification of
EXs and non-EXs pictels were achieved by employing a Gaussian mixture with an
association of the m-mediods model. The reported AUC score for this method was
0.97 using 1410 images.

In [114] Omar et al. put forward a region based multi-scale local binary pat-
tern texture approach for the identification and classification of EXs. The method
was varified using 130 images and achieved 96.73% accuracy. Morphological oper-
ations such as normalized cut, meanshift, and cannys had produced better results
in EXs detection [115]. A variety of machine learning approaches had exhibited su-
perior sensitivity results for EXs extraction [116, 117, 118, 119, 120, 121, 122, 123].
In [116] Fraz et al. utilized morphological reconstruction along with a Gabor filter
to pull out EXs pixels. This procedure was checked using 498 images. At first,
contextual cues were used to cut down false positives in chosen candidates. Region
based attributes were derived from the candidate area. These features were then
given to an ensemble classifier that detect actual and false EXs with a ROC value
of 0.99. Prentasic et al. in [124] recommended an exudate extraction method
using a deep CNN. Probability maps of various methods and Frangi filter were
used to pull out the OD and blood vessels respectively. Finally, the output of deep
CNN was merged with the disc and vessel extraction end results to filter actual
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EXs pixels achieving a 0.78 F-score. Likewise SVM classifier with sparse coded
features, visual dictionaries, K-means and scale invariant feature transform were
utilized in [125, 118, 119] to discriminate true and false EXs points. Hard exudates
were successfully extracted from fundus images in [120] using logistic regression.
Then a multilayer perceptron and radial basis function classifier were employed to
classify hard exudates. This method was tested in a database that contains 130

images and the method yielded a 96% sensitivity. The final classification results
of any method largely depends on the accuracy of ground truth data. Usually
these ground truth data have an inaccuracy problem. This unfaithfulness was
eliminated in a previous study [121] by considering image features. ACO method
was applied in [122] to extract edges of EXs using 169 numbers of low sharpness
images. The green component was preferred due to its better intensity of EXs
pixels with respect to the background image part. A 50× 50 kernel sized median
filter was applied to standardize and restraint the intensity space. EXs points
were extracted using a double threshold. Lastly ACO was applied to identify the
edges of bruise, resulting a 97% accuracy. In [123], Figueiredo et al. carried out
wavelet band analysis on the green component of RGB image to identify the entire
image’s features. Hybrid methods, such as cartoon with texture decomposition,
variation, and Hessian multiscale analysis were employed on the identified traits
to distinguish EXs from other yellow bruise. Their method resulted an SP value
of 97% and an SE value of 90% utilizing 45, 770 fundus images.Figure 2.9 shows
the result of the method. A overview of the EXs detection techniques mentioned
so far is presented in Table 2.5.

2.3 DR Detection Systems

CAD systems had been employed to detect the five levels of DR. The basic ob-
jective of CAD systems in DR identification is to sort anatomic pictels from DR
affected lesions. To look after this, some recent DR-based CAD tools were featured
in the coming passages along with their results and draw backs.

Kaur et al. [126] suggested a DR diagnosis approach to pull out exudates
with the help of 1307 images. The method filtered out EXs with an average accu-
racy of 93.46%. Bander et al. in [127] brought about a CAD system to subdivide
OD and fovea. The authors used MESSIDOR and Kaggle datasets which to-
gether contains about 11, 200 retinal images. The OD and fovea were subdivided
by applying multiscale deep learning approach yielding an accuracy of 97% and
96.7% on the MESSIDOR dataset and 96.6% and 95.6% on the Kaggle database
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Figure 2.9: Exudates detection result [123] (a) Original image (b) Detected exu-
dates

respectively. Gargeya et al. [128] as well put forward a deep learning scheme for
the categorization of DR from no-DR cases. They used the MESSIDOR2 and
e-OPTHA datasets and judged the color features of 75137 images. They yielded
an AUC of 0.94 for MESSIDOR2 dataset and 0.95 AUC for e-OPTHA dataset.
In [129] Silva et al. assessed 126 fundus photographs obtained from 69 patients
for the early diagnosis of DR. Their algorithm resulted a kappa value of 0.1 ratio
while detecting MAs and HMs characteristics. Dash et al. in [130] put forward
a DR assessment tool based upon the extraction of blood vessels. Their method
utilized DRIVE and CHASE_DB1 datasets. They reported a 0.955 accuracy for
DRIVE dataset and 0.954 accuracy for CHASE_DB1 dataset.

Lenontidis in [131] revealed an automatic vessel classification system yielding
an accuracy of 0.968. This method was centered on geometric vessel features. Koh
et al. [132] considered energy and entropies to figure out normal and pathological
images. The specificity and sensitivity values obtained for their method were
95.58% and 89.37%, respectively. A compendious study about the causes and
computerized screening of various retinal abnormalities, such as DR, glaucoma,
and cataract, in adolescent and adult population were outlined in [133]. Their
summary may be helpful in turning up a novel idea for the retinopathy screening.
Barua et al. [134] established a DR detecting tool to segment retinal vessel from
HRF dataset which contains 45 images. A classification accuracy of 97% was
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Table 2.5: Exudates detection methods - A recap

SI
No

Author(s) Method Year Data ACC(%)

1
Liu
et al. [108]

Morphological Matched Filter
and Saliency technique with
Random Forest classifier

2017 136 79%

2
Imani
et al. [109]

Morphological component anal-
ysis. Mathematical morphology
and dynamic thresholding

2016 340 AUC:0.961

3
Harangi &

Hajdu [110]
Active contour model, naïve
Bayes classifier

2014 83 85%

4
Zhang
et al. [111]

Mathematical Morphology 2014 47 AUC:0.95

5
Tjandras
et
al. [112]

Mathematical
Morphology&SVM Classifier

2013 - 90.54%

6
Akram
et al. [113]

Gaussian mixture with m-
mediods model

2014 1410 AUC:0.97

7
Omar
et al. [114]

Region-based multi-scale local
binary pattern texture approach

2016 130 96.73%

8
Fraz
et al. [116]

Morphological reconstruction
and Gabor Filter

2017 498 ROC:0.99

9
Prentašic,
Pavle [117]

Deep CNN 2016 - F-
Score:0.78

10
García
et al. [120]

Logistic regression&Neural net-
work

2013 130 SE:96

11
Pereira
et al. [122]

Ant Colony Optimization 2015 169 97%

12
Figueiredo
et al. [123]

Wavelet Band Analysis 2015 45,770
SP:97%

SE:90%

reported while classifying the image features with an ANN. In [135] Santhakumar
et al. exhibited a machine learning approach for the screening of DR. They located
EXs and HMs with an accuracy of 96% and 85% respectively using 767 images. A
handful of machine learning, deep learning, and data mining schemes were briefed
in [136, 137] for the extraction and catagorization of anatomical and DR lesions,
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image registration, and image quality judgement. Devarakonda et al. [138] also
employed ANN and SVM classifiers to filter characteristics for the bifurcation of
normal and abnormal parts. Their method utilized 338 images acquired from a
local dataset to produce an accuracy of 99%.

Vo et al. in [139] adopted two deep neural nets for DR screening. They
utilized hybrid-color space features extracted from 91, 402 images from EyePACS
and MESSIDOR databases. Their learning model achieved 0.891 AUC value in
EyePACS dataset and 0.887 AUC value in MESSIDOR dataset. The deep net-
works presented in [140] by Lahiri et al. utilized the 40 images from DRIVE
database. Their model detected blood vessels with a mean accuracy of 95.33%.
Using the 90, 200 images obtained from EyePACS and MESSIDOR datasets Wang
et al. in [141] extracted lesions and classified the DR severity stages employing
a deep CNN. Their model recognized the severity stages of DR with AUC value
of 0.865 and 0.957, for EyePACS and MESSIDOR data sources respectively. An-
other study [142] applied the AlexNet deep CNN to catogorize the five classes of
DR. The authors of this work utilized the 35, 126 images from Kaggle datasets to
result a classification accuracy of 97.93%. To extract MAs and EXs regions from
color fundus photographs Lachure et al. in [143] applied SVM classifiers followed
by morphological operations. Their method efficaciously detected MAs and EXs
areas with a sensitivity of 90% and a specificity of 100%.

Nijalingappa et al. in [144] presented a machine learning scheme to identify
EXs features employing 85 images from the DIARETDB0 and MESSIDORdata
sources. At first, the green component of the RGB image was separated and sharp-
ness enhancement techniques were carried out on this green channel image. Then
image preprocessing steps were applied to this enhanced image. Finally, with the
help of K-NN classifier the EXs regions were classified with an accuracy of 87% on
DIARETDB0 and 95% on MESSIDOR. The CAD tool proposed by Kunwan et
al. in [145] applied textural attributes of MAs and EXs along with SVM classifier
to separate normal and DR lesions with 91% sensitivity. They utilized only 60 im-
ages acquired from the MESSIDOR dataset. A web-based method was presented
in [146] for the identification of DR stages. This real time platform achieved a
specificity of 91.9% and sensitivity of only 65.2% while detecting NPDR lesions.

On the other hand DR-based CAD systems in [126]-[146] primarily con-
centrated on the identification of DR coupled lesions and were restricted by the
acuteness level of DR. The DR acuteness degree, i.e., PDR, has been considered
seldom by the CAD methods. Most of them only presented an improvement in
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discriminating PDR and NPDR. Furthermore, these CAD systems failed to clas-
sify the five stages of DR effectively.

2.4 Current Trends

Deep learning is an interestingly new concept to machine learning. It is employed
in various range of biomedical imaging analysis and computer vision tasks, like
semantic segmentation and image classification, with impressive results. Deep
learning can be considered as a multi-layered top-down approach that tries to
grasp high level conceptions in the data. Accelerated advancement in the process-
ing capability of chips, e.g., graphical processing units (GPUs), reduced cost of
computer hardware along with rapid improvement in the machine learning meth-
ods are the prime reasons for the admiration of deep learning [147, 148].

As of now, standard organizations such as Microsoft and Google adopt deep
learning based systems to crack exciting tasks, like, object identification and clas-
sification, speech recognition, etc. The advantages of deep learning approaches
are that they can extract low level attributes from data with marginal processing,
they have the capability to exploit unlabeled data, they have the ability to specify
relationships among attributes and they can as well master feature extraction with
selective power. The learning strategy associated with deep learning systems is of-
ten adopted in a multi-layered style. It uses diverse ideas to prepare input data and
transform it into suitable representations. The first layer takes out pictels from the
input image. Then, these pictels are ordered into the second layer to detect edges
within an image. The third layer divide these edges into tiny segments. Lastly,
some further layers use these segments for recognition/classification of images. All
these layers grasp features/characteristics from the input data utilizing learning
algorithms devoid of human involvement [148, 149, 150, 151].

It is obvious that deep learning is a dynamic mechanism in contemporary
artificial intelligence-dependent approaches. One of the recent deep learning meth-
ods, CNN, has rendered promising results in bio-medical imaging and CAD sys-
tems, e.g., retinopathy detection, brain tumor, cancer [50, 152]. The fact that
DR is a high-risk disease demands early detection to manage its growth in affected
persons. Computerized methods have shown to be capable in early DR analysis.
However, there exist a gap considering speedy and concurrent solutions for DR
identification. To fill this hole, deep learning methods have been currently applied
in DR identification and have out performed clinical experts. The most pivotal
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deep learning methods in DR identification are outlined in Table 2.6.

Table 2.6: Deep learning algorithms for DR identification - A recap

Method Dataset Result Accuracy

[152] KAGGLE Detection of Diabetes ACC:97.93%
[127] - Detection of fovea and OD ACC:97%
[149] KAGGLE Detect Severity level of DR AUC:0.9687
[150] MESSIDOR Detect Normal and DR AUC:0.957
[153] EyePACS Detection of DR -
[50] - Detection of Diabetes -
[154] - Detection of EXs -
[155] - Classify retinal disease -
[156] - Detection of DR -

The CNN- a feed forward neural network - mainly comprises convolutional,
pooling, and fully connected layers. These layers are usually trained in a realistic
fashion and handle distinctive roles. CNN has been proven to be efficient in the
categorization of DR stages. Each layer of CNN has a group of neurons. These
neurons perform a series of actions on the input data to produce centripetal areas.
Output of each neuron is combined to retain overlapping among centripetal areas
to suitably model the original image details. This step is carried out over all layers
until required results are produced. A typical CNN pipeline is shown in Figure 2.10.

Figure 2.10: A typical CNN pipeline [147]

CNN is broadly favoured by researchers owing to its tremendous potential
to utilize a shared weight modus operandi in the convolution layer to pin point
each pictel utilizing a unique filter. Since CNN model can learn features by itself
it requires only a small number of pre-processing steps. Human interference and
preceding knowledge is not needed to develop the model during the training phase
of CNN. The CNN can set forth an image in 2-D form followed by shared weights
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and the correlation among neurons. The output of the convolution layer is noticed
as being invariant to the object locale. CNN is found to be more algorithmically
efficient than fully connected netwoks, since it employs lesser number of arguments
with the identical number of hidden layers to perform multiple experimentation.
Furthermore, it represent neurons in the 3-D form, viz weight, height, and depth.
Usually back propagation and gradient descent approaches are employed to train
CNNs and to achieve faster convergence [156]. The important shortcoming of
CNNs is that it requires a huge amount of memory to keep the output of convolu-
tional layer.

Prentasic in [117] presented a study on the uncomplicated image classify-
ing methods employed to automatically identify DR in retinal images. These ap-
proaches only depend on pre-processing, localization, and extraction of normal and
abnormal retinal feature steps to grade DR. In [157] DR screening systems were
reviewed. Further, in [158] a color equalization and image segmentation scheme
was employed to identify blood vessels, EXs, and MAs for DR detection.

2.5 Discussion

Digital fundus imaging is a diagnosis means for diseases like glaucoma and diabetic
retinopathy. All diabetic patients demand regular check up to identify DR in the
early stage itself. It is reported that yearly 50% of diabetic affected persons in
the U.S. and 30% in France are asked for DR checking. As a result of this fact,
the accurate check-up of candidates has become a hefty and polemical task for
clinical persons. However, automated screening procedures have the capacity to
accomplish quick grading of DR levels from retinal fundus images.

The survey performed in this chapter highlights the effectiveness of different
deep learning, machine learning, and image processing algorithms for CAD sys-
tems to detect DR levels from fundus images. Such CAD systems were established
upon the exact segmentation of DR-connected impairments like MAs, HMs, and
EXs inside the fundus images.

From the developing perspective of DR-based CAD systems, a few ins and
outs are emphasized here. The capability of DR-CAD methods banks on the ex-
traction of typical DR-allied marks inside color fundus photographs, something
which is liable to error and is analytically costlier. This step can force the entire
system unreliable. Some other techniques have utilized obsolescent image pro-
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cessing and machine learning methods devoid of quantitative data, employing an
acceptable number of images. Considering DR diagnosis, many DR checking sys-
tems were drew on the recognition of DR and Non-DR classes. This in fact are
unacceptable for concurrent classification of the five levels of the DR acuteness.
Some CAD systems are already developed to assess the five levels of DR serious-
ness. However, those CAD tools were based on the domain expert intelligence to
infer intra-/inter- variations of retinal characteristics. Majority of machine learn-
ing based DR-CAD systems do not consider all syndromes of DR.

The effectiveness of the existing DR-CAD systems can be reformed by tak-
ing into account of the following point. (i) cater a colossal high resolution image
dataset, acquired from a different range of ethnic groups. (ii) exploit an integration
of adaptive features such as hand-crafted and non-hand crafted, with dependable
classifiers to achieve a much superior classification accuracy. (iii) utilize some
advanced color space/appearance models to get superior description of complex
image patterns (iv) beat the four stages of the DR data source problem with five
DR levels and (v) detect the severity of DR in four quadrants utilizing a larger
data source. Since diabetic macular edema (DME) impairs the sight of diabetic
patients at a quick pace, it demands an urgent treatment and so its assessment
should be examined in the future. Nowadays, ophthalmologist have added two pa-
rameters for diagnosis, i.e., diabetic retinopathy risk index (DRRI) and standard
index (STARD), acquired from the pathological attributes. It is a real number
and it consists of various thresholds employed to figure out the level of the disease.
Hence, it can be a practical choice for physicians to apply them in the assessment
of DR categorization results [159, 160].

2.5.1 Deep Learning Vs Traditional Methods.

Deep learning (DL) had yielded faithful results in healthcare and computer vision
tasks. However, there exists certain significant challenges and underlying trends.
Even though deep learning had confirmed to be a comprehensive solution in man-
aging computer vision tasks, the theoretic background of DL stays unclear. For
instance, how many layers should be convolution and pooling/recurrent, how many
nodes per layer to achieve a particular job, and which structure is more suitable for
a certain task? Human vision system is recognized as a more powerful choice than
DL. So studies related with the working human brain should be integrated into
DL approaches to enhance their performance. Also, the number of layers should
be optimized for the extraction of high-level attributes to wangle the structure of
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human brain.

The capacity of DL models largely depends on the size of the datasets. It
was observed that the paucity of data source restricts and severely influence the
training as well as learning accuracy of DL models. Data augmentation method
and data collection employing weakly supervised learning schemes are the two
common solutions to maximize the training data.

Table 2.7 shows the futuristic contrast between retinal characteristics and le-
sion identification techniques on identical dataset drew on hand-crafted and deep
features. It is evident from Table 2.7 that the deep learning based methods are
superior than the conventional methods.

Table 2.7: Comparison among retinal feature identification methods

Extracted Fea-
ture

Method Dataset ACC(%)

Optic disc
Hough trans-
form [67] DRIVE, DIARETDB1

99.6

FIR filter [61] 98.95

Optic cup CNN [75]
DRISHTI-GS, Private

94.1
An adaptive thresh-
old [79] 92

Blood vessel
CNN& random for-
est [44] DRIVE, STARE

97.5

Saliency & contour
model [47] 97

Microaneurysms
Naïve Bayes classi-
fier [88] Private 99.99

Hybrid classi-
fiers [91] DIARETDB0 & 1 99.4

Hemorrhage
Variation mode de-
composition [107] Private 100

SVM [161] STARE 97

Exudate
Morphological op-
erations [115] DIARETDB0 & 1 98.65

ACO [122] HEI-MED 97

Table 2.8 describe a performance analysis between traditional methods and
deep learning methods. The Table 2.8 support the supremacy of deep learning
based techniques over traditional ones in retinal characteristics extraction. These
techniques are presented in [136] for MAs as well as OD extraction and localiza-
tion, derived from hand-crafted traits and CNN employed methods. The methods
were evaluated on identical data sources with the same statistical parameters.
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Table 2.8: Comparison between traditional and deep learning methods [136]

Retinal Fea-
ture Approach Research

Study Dataset ACC(%)

OD segmentation

Traditional Morphological
features MESSIDOR 86

Deep learning CNN 96.40
Traditional Active contour DRIVE 75.56

Deep learning Single state-
CNN 92.68

Optic disc
localiza-
tion

Traditional Morphological
features MESSIDOR 99

Deep learning R-CNN 99.99

Traditional Vessel distribu-
tion DRIVE 100

Deep learning CNN 100

Traditional ONE-ONE
minization DIARETDB1 100

Deep learning CNN 98.98

Micro-aneurysms Traditional Ensemble
method MESSIDOR 90

Deep learning DCNN 95.4

Former forms of CNNs were found to be inefficient in real-time because of
the demand of increased analytical resources. But now, the scenario has changed.
For e.g., He et al. in [162] described a real-time DL structure by lowering the size
of the filters and execution time. To boom the analytical capability of DL model
they also introduced an adjustable activation function. Likewise, Li et al. [163]
suggested a highly efficient CNN for pixel wise classification. The efficiency of DL
can be as well increased by fixing the time intricacy and realization through GPUs.

Even though deep learning algorithms had produced better results in image
and video processing fields, there exist some gaps that should be tackled for the
development of more efficient DL approaches. Actually, deep learning based sys-
tems were also employed for the betterment of a computerized screening system
for DR. Earlier studies mostly utilized CNN models for the screening of DR from
retinal fundus images. But, the examination of these images demands interven-
tion of ophthalmologists, which is a time consuming and is an overpriced task.
Hence, DL-dependent techniques that can grasp features from a smaller dataset is
necessary. Also it is crucial to address the class disparity issue for the design of
DL-dependent systems in the case of learning biases for a specific class.
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The design and development of DL-dependent systems in contrast to tradi-
tional methods demands the following crucial steps

1. Improving the generalisation capability of the DL networks by multiplying
their size, e.g., by increasing the number of layers and nodes in each layer.

2. Providing a layer-wise feature learning scheme in the network. Every layer
can learn its successive layer feature and vice versa.

3. Integrating non-hand- and hand- engineered characteristics to achieve better
generalization models.

4. The current DL systems depends on shared weights to pin down their options,
which is inadequate. There is a high demand for application-oriented deep
networks that are independent on the available models.

Furthermore, the performance of available DL models can be improved by
combining the dynamic size of deep learning structure with their outputs in the
cascaded mode. This can take out the increased computational costs, demanding
the training of each DL networks to independently perform their jobs. Ouyang
et al. in [164] presented a double-stage training scheme. Here the previous stage
classifiers were combined with the current stage classifier. Sun et al. [165] put for-
ward a three-class CNN model for recognizing facial points. The first class CNN
estimates the initial facial points. The remaining two CNN classes were utilized to
revamp the initial estimates. Wang et al. [141] came up with a cross-breed net for
object identification. The second network estimates the object coordinates from
the output opf the first network.

2.6 Conclusions

This chapter accomplished a succinct review into computerized diabetic retinopa-
thy testing methods from over 150 research publications, describing their results
and limitations in the estimation of structural variations of remarkable fundus
features utilizing digital fundus images. From the survey conducted it is found
that complete curing of DR is impossible. To some extent photocoagulation (laser
surgery) is an effective method to avoid loss of vision provided it is performed
prior to disease adversely affecting the retina. Vision can be improved by vitrec-
tomy (vitreous gel elimination through surgery) if the stern destruction of retina
has not been started. In proliferative diabetic retinopathy, at times, the new blood
vessel contraction process can be helped by some antivascular endothelial growth
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factor medication injection or inflammatory medicine. Since diabetic retinopathy
stay behind the screen giving no symptoms until it turns into the stern, early
identification through regular screening is essential. For detecting and analysing
diabetic retinopathy in its early stage non proliferative diabetic retinopathy is ex-
tremely critical because it embodies early signs of diabetic retinopathy. We can
prevent diabetic retinopathy to cause blindness if a diabetic person is offered with
consistent eye examination and treatment, if necessary.

From the literature survey conducted, it is evident that majority of work
focus towards detecting blood vessels, optic disc and cup, microaneurysms, hem-
orrhages and exudates. This may be because these are the main indications of the
early stage of diabetic retinopathy in fundus images. The current computerized
diabetic retinopathy detecting approaches were found as being encouraging. But,
still there exists some gaps in the identification of the acuteness level of diabetic
retinopathy. From the exhaustive survey conducted, it is observed that a work
which accurately detect DR and classify its severity level is lacking. Hence in this
work the following objectives are set.

1. Analyse retinal fundus images

2. Detect diabetic retinopathy with 100% accuracy and

3. Identify the severity level of diabetic retinopathy using digital fundus images.





Chapter 3

Image Contrast Enhancement

3.1 Introduction

The purpose of image preprocessing is to enhance the ability to interpret the
minute details available in images for human observers. An image enhancement
procedure is one that gives a top notch quality image for the benefit of certain
unique program that can be achieved by either removing the noisy pictels or aug-
menting the picture sharpness. Algorithms for enhancement of image sharpness
are used to accent, smooth out or sharpen image attributes for demo and ana-
lyticity. Most of the enhancement procedures are application dependent. Often
they are developed pragmatically. These procedures concentrates on specific image
attributes to enrich the visual quality of an image. Broadly image enhancement
methods can be categorised into 1. Spatial and 2. Transform domain procedures.

The spatial domain procedures work directly on pictels. The transform do-
main procedures run on the transformed image. After certain manipulations in
the transformed domain an inverse transformation is carried out to get back to
the spatial domain. Rudimentary enhancement methods are histogram-dependent
due to their simplicity and fastness. Also they produce dependable results. The
method of unsharp masking-acuminates the boundaries by deducting a part of the
separated out component from the actual image- has turned into a favoured en-
hancement technique for diagnosis. The spatial domain method can be generally
categorised into three.

1. Point operation-In this method each pixel value is altered by a function that
is independent of other pixel values.

2. Mask operation- In this method each pictel is modified in proportion to the
values in a tiny neighbourhood of the pixel considered.

47
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3. Global operation- In this method all pictel values in the picture are accom-
modated. e.g., frequency domain operations.

In image analysis, spatial frequency indicates the changes of image brightness
with respect to its position in space. If we transform an image into frequency do-
main and then immediately compute the corresponding inverse transform we will
end up with the original image provided the said transform is perfectly reversible.
Example of one of such transforms is Fourier Transform (FT). Now if we multi-
ply the transform coefficients with a duly selected weighting factor, then we can
augment certain frequencies and abate certain other frequencies. The associated
changes can be visible when we take the inverse transform. This process is known
as frequency domain filtering. Frequency domain filtering means multiplication
of the spectrum of the image with the frequency response of the filter. Thus in
summary frequency domain filtering is nothing but computing the FT of the im-
age and the kernal, multiplying the two FTs point by point and then finding the
inverse FT of the product. This demands dimensionality match between the FT of
kernal and the image. Since convolution kernals are normally much smaller than
the images, it is essential to zero pad the kernal to the dimension of the image to
realize this process.

After the advancements in the wavelet decomposition techniques [166] wavelet
transforms have been employed considerably in image enhancement applications.
The development of threshold method Donoho [167] brings a feasible handling
option for the nonlinear processing of wavelet coefficients. As a result the field
of image contrast enhancement had advanced significantly. Other viable wavelet-
dependent techniques include hard/soft thresholds and Bayesian threshold meth-
ods. Currently, different intrascale interdependence coefficient threshold schemes
and a different coefficient threshold scheme under large-dimensioned space [168]
have equally been evolved. As result of the continuous advancement in threshold
methods, wavelet based image enhancement methods have attained better results.
These techniques were backed by the fundamental wavelet theory. Also, due to
the ardent R & D being performed on the scaling relationship in the transformed
space the de-noising/enhancement capability of the wavelet keeps on improving.

Basically, there are two prime challenges in connection with image denois-
ing/contrast enhancement based on wavelets.

1. selection of the wavelet coefficient’s prior distribution model and

2. determination of the suitable de-noising/enhancing algorithm in relation to
the distribution model
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. The objective of the study being performed in wavelet de-noising is to create
an exact model of non-Gaussian wavelet coefficients that are dependent to one
another.

This chapter details a novel image contrast enhancement technique devel-
oped in this work. The technique enhances the image contrast using Normal
Inverse Gaussian (NIG) model and fuzzified Non-Subsampled Contourlet Trans-
form (NSCT). The NSCT is a multiscale, completely shift invariant transform that
efficiently capture the geometric information in an image. Since both noise and
weak edges engender lower valued coefficients in the transformed domain, normal
image boosting schemes amplify weak edges as well as noises. Also when image
enhancement technique is directly applied to the NSCT coefficients, it results over
enhancement of the retinal image. As a solution to this problem, image enhance-
ment method developed in this work interprets "contrast" as qualitative rather
than a quantitative measure of the image. The membership values of NSCT coef-
ficients are modified using NIG model to augment the image sharpness by retaining
the pathological signs.

The contrast enhancement technique described in this chapter combines
present day multiresolution, multiscale analysis to yield a novel fuzzified non-
subsampled contourlet transform image contrast enhancement scheme centred on
the NIG probability density function (PDF). The suggested procedure employs
the NIG distribution to attain the Bayesian maximum a posteriori probability of
the membership values of the NSCT coefficients. Since the fuzzification process
used here is a linear one the membership values are also fat-tailed in behaviour.
Initially, the NIG model features are dynamically calculated using a local win-
dow. The intrascale correspondance among the coefficients are modeled by this
local window. Next, optimal algorithm known as OLI-Shrink [169] is employed.
Since NSCT is shift invariant and redundant, the suggested technique can reli-
ably extract orientation information about the image and satisfy human visual
needs. Even though this method is a probability dependent one, it nevertheless
attains best de-noising results with respect to subjective visual eccentricity and
peak signal-to-noise ratio (PSNR).

The remaining part of this chapter is arranged as follows. Section 3.2 briefs
the fundamentals of NSCT. Section 3.3 briefly describes the fuzzy set theory. NIG
PDF is described in Section 3.4. Bayesian Estimation is briefly introduced in
Section 3.5. NSCT coefficient’s statistics forecasting is explained in Section 3.6.
The concepts of NIG prior, maximum a posteriori probability, parameter esti-
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mation and OLI-Shrink algorithm which are used in the suggested enhancement
algorithm are also included in this section. Section 3.7 summarises the algorithm
steps. Results of the algorithm is presented in Section 3.9. Conclusions are given
in Section 3.10.

3.2 Non-Subsampled Contourlet Transform (NSCT)

Da Cunha et al. [170] put forward the so called Non-Subsampled Contourlet Trans-
form (NSCT). Figure 3.1(a) gives an outline of the NSCT. The structure comprises
of filter banks that splits the 2-D frequency plane in the subbands illustrated in
Figure 3.1(b). NSCT is centred on Non-subsampled pyramid (NSP) framework
and Non-subsampled directional filter banks (NSDFB), that permits it to compre-
hend and build a shift-invariable, multi-scale, flexible and multi-directional image
decomposition that can be successfully developed by use of the à trous algorithm
given by the convolution formula (3.1) where S represents sampling matrix, H(z)

is a 2−D filter, y[n] is the output resulting from filtering x[n] with H(zS).

y[n] =
∑

kεsupp(h)

h[k]x[n− Sk] (3.1)

3.2.1 Non-Subsampled Pyramid (NSP)

NSP stipulates the multiscale trait of NSCT. NSP is a shift-invariant filtering
structure. Similar to the Laplacian pyramid it performs a subband decomposition
through two-channel non-subsampled 2-D filter banks. Figure 3.2(a) depicts the
NSP decomposition (Total stages of decomposition, J = 3) and Figure 3.2(b) il-
lustrates the corresponding subbands on the 2−D frequency plane.

The theoretical pass band of the J th stage low pass filter (LPF) is extending
from [− (π/2j) , (π/2j)]

2.Consequently, the theoretical support of the correspond-
ing high pass filter (HPF) is the antipodal of the LPF. i.e., [(−π/2j−1) , (π/2j−1)]2\
[(−π/2j) , (π/2j)]2. The subsequent stage filters are realized by upsampling the Ist

stage filters. Thus multi-scale trait is introduced without designing extra filters.
This architecture is thus distinct from the separable non-subsampled 2-D wavelet
transform (NSWT). Here one band pass output image is created at every stage,
producing J + 1 redundancy. Conversely, the NSWT yields 3 directional images
at every level, causing a redundancy of 3J + 1.
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Figure 3.1: Outline of NSCT [170]

Figure 3.2: Outline of NSP [170]

The suggested 2−D pyramid in [171] is constructed from LPF H0(Z). Con-
sequently H1(z) is set as 1−H0(z). Corresponding reciprocal synthesis filters are
set as G0(z) = G1(z) = 1. The benefit of the NSP construction described in the
previous paragraph is that it is general and consequently produce superior filters.
Specifically, in this construction G0(z) is LPF and G1(z) is HPF. So they extract
selected region of the noise spectrum in the refined pyramid coefficients.
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3.2.2 Non-Subsampled Directional Filter Banks (NSDFB)

Bamberger and Smith [172] developed a directional filter bank. This filter bank is
constructed by precisely-sampled filter banks namely, two channel fan filter banks,
and exploiting re-sampling process. This produces a tree-shaped filter bank. This
tree-shaped filter bank results directional wedges by separating the 2−D frequency
space. A delay independent directional expansion is achieved by employing a
non-subsampled directional filter bank (NSDFB). This NSDFB is concocted by
expelling the down and up samplers in the directional filter bank (DFB). This is
achieved by shutting down the down/up samplers in every tree-shaped two-channel
filter bank and upsampling the filters necessarily. This produces a tree comprising
two-channel non-subsampled filter banks (NSFB). Figure 3.3(a) demonstrates four
channel decomposition. The upsampled fan filters Ui(ZQ), i = 0, 1 in the second
level possess a draft board frequency support. This fan filters together with the
first level filters result the frequency decomposition in four direction as depicted
in Figure 3.3(b). Likewise, the synthesis filter bank is acquired. Similar to the
precisely-sampled DFB, every filter banks in the NSDFB are derived from a single
NSFB comprising fan filters. In addition to this, the analytical complexity of every
filter bank in the NSDFB tree and that of NSFB from which it is derived is the
same. The l stage NSDFB produces 2l directional subbands.

Figure 3.3: 4-Channel NSDFB (a) Filtering structure. (b) Equivalent frequency
partitioning [170]
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3.2.3 Combining NSP and NSDFB in the NSCT

The NSCT is developed by joining the NSP and the NSDFB as illustrated in Fig-
ure 3.4. While building the NSCT, utmost care should be exerted when employing
the direction filters to the lumpier scales of the pyramid. The lower and upper
frequency directional response of the NSDFB has come down with aliasing because
of its tree-structured quiddity. Judiciously upsampling the filters of NSDFB is a
solution to this problem. Note that while performing this upsampling the perfect
reconstruction quality should be preserved.

At most care must be taken when combining the NSDFB to NSPFB. The
lower and upper frequency directional response has gone down with aliasing. Due
to the consequent of the tree structure nature of NSDFB the high pass channel is
filtered with the bad portion of the directional filter passband. This is illustrated in
Figure 3.5. This aliasing produce a significant reduction in directional resolution.

Figure 3.4: NSCT construction [173]

Introducing cautious upsampling in the filters of NSDFB this aliasing effect
can be bypassed. If Uk(z) denote the kth directional filter then higher scale filters
are obtained by replacing Uk(z2

mI) for Uk(z). Here m is chosen in such a way that
the pyramid passband overlaps with the good part of the response. This is shown
in Figure 3.6. This change also guards perfect reconstruction. Typically for five
scale decomposition m is chosen as 1. So last stage NSDFB filters are upsampled
by 2I.
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Figure 3.5: Aliasing with no upsampling

Figure 3.6: No aliasing with upsampling

Use of upsampled filters does not add analytical complexity. Hence, every
filter in the NSDFB tree and the constituent fan NSFB has the same computa-
tional complexity. Similarly, complexity of each stage filtering of the NSP and that
of the first stage are the same. Hence, the computational complexity of NSCT is
determined by the elementary fan NSFB complexity. In summary, let us assume
that each NSFB in NSP and NSDFB needs L number of operations per output
sample, and NSCT requires B number of subbands then for an image containing
N pixels NSCT takes about B∗ N ∗ L operations.

The necessary and sufficient condition for the NSCT to be invertible is that
both the 2-channel building block NSFBs present in the NSP and NSDFB must be
invertible. Also the flexibility of NSCT permits enough number of 2l directions in
each scale. Conclusively, it can satiate the anisotropic scaling law. This character-
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istic is guaranteed by increasing the number of directions in the NSDFB expansion
by two fold at each alternate scale. The NSCT having Ij number of levels in the
jth scale of NSDFB possesses 1 +

∑J
j=1 2Ij .

3.3 Fuzzy Set Theory

Fuzzy set theory is put forward by L.A. Zadeh. A fuzzy set is an ordered pair
comprising of elements and their corresponding membership function that assigns
a membership value to each element [174]. A fuzzy set can be mathematically
represented by (3.2).

A = {(z,mA (z)) |zεZ} (3.2)

where Z is the universe of discourse and mA (z) is the membership value of
element z in the fuzzy set A and z can take a value in the interval [0, 1]. Let
I (p, q) |p, q ε N2 be an M × N digital image with 0 to L − 1 gray levels. Image
I can be considered as a bunch of fuzzy singletones. The members of this set is
the membership value mI (gpq) of the gray level gpq, belonging to the (p, q)th pixel,
relating to an image property such as homogeneity, edginess, brightness, etc. For
image enhancement usually the brightness property is considered. In terms of the
fuzzy set notation, an image I can be represented (3.3).

I =

{
mI (gpq)

gpq

∣∣p = 0, 1, ...M − 1, q = 0, 1, ...N

}
(3.3)

Fuzzy image enhancement consists of three sequential steps

1. Obtain the membership values using (3.15)

2. Modification of membership values using a threshold

(a) Enhance the membership values of dark and bright pixels.

(b) Retain the membership values of gray pixels as such.

3. Use this modified membership values to reconstruct the image.

3.4 Normal Inverse Gaussian Distribution

The key attributes of the image statistics in the NSCT domain can be enumerated
as follows.

(i) High kurtosis (ii) Heavy tails (iii) They are non-Gaussian and (iv) Sharp
central peak. These attributes are anticipated since most of the time images mainly
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encompass homogeneous areas with some key characteristics like edges. The co-
efficients corresponding to these homogeneous regions are close to zero while that
corresponding to edges are large valued. As quoted earlier, the key concern in the
contrast enhancement problem is the selection of a threshold value which classify
the image pixels into dark, gray, and bright pixels. The NIG model derived by
Barndroff-Nielsen [175] is utilized to describe the distribution of membership val-
ues of NSCT coefficients. In [175] the inverse Gaussian PDF is employed in the role
of mixing distribution. The limitations of the traditional models can be solved by
the hybrid model. Due to the flexibility offered during the parameter selection, the
hybrid model can represent curves of different shapes. Hence, NIG model is chosen.

The probability density function can be expressed as (3.4)

fx (x) =
αδ

πq (x)
.exp [p (x)] .K1 [αq (x)] (3.4)

where q (x) =
√
δ2 + (x2 − µ2), p (x) = δ

√
α2 − β2 + β (x− µ) and K1 (.) is

the modified Bessel function of the second kind with index one. The attributes
(α, β, µ, δ) determines the distribution of NIG. There exists a greater flexibility
in selecting the values of these four parameters. This makes the PDF of NIG an
appropriate model for different kurtotic, uni-modal, positive data. The feature
factor α decides the steepness of density, a lesser value of α shows a slower rate
of decay with heavier tails. β is the skewness factor; β < 0 indicates left skewed
density, β = 0 indicate symmetric density and β > 0 indicates right skewed density
around the translation parameter µ. The parameter δ is scale-like.

The associated decomposition coefficients of images are normally symmet-
rical distributions and hence the membership values also. So it is assumed that
β = µ = 0. Hence the corresponding PDF of NIG can be described as (3.5)

fx (x) =
αδ exp (αδ)

π

K1

(
α
√
x2 + δ2

)
√
x2 + δ2

(3.5)

3.5 Bayesian Estimation

Nowadays, the Bayes method has developed as a subject of debate in the area of
image enhancement. Using Bayesian theory it predicts the original image by set-
ting up a prior probability distribution modal for the boundary coefficients. The
key to success of the flexible Bayes algorithm is the fact that it can exactly model
the prior marginal distribution of coefficients quickly.
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Suppose an original image X has been modified by additive white Gaussian
noise N

B = X +N (3.6)

where B is the noisy image. De-noising strives to get back X as exactly as at-
tainable. Due to the NSCT transformation of the noisy image, the decomposition
coefficients are

b = x+ n (3.7)

where b, x, and n are the NSCT coefficients of the noisy image, original noise-free
image and noise respectively. The objective of Bayesian denoising is to find the
estimation of x, i.e.x̂ (b). (3.8) denotes Bayesian maximum a posteriori estimation

x̂ (b) = arg max
a

{
fx|b (x|b)

}
(3.8)

where fx|b (x|b) is the conditional density of the observation b given x. x̂ (b) can
be found utilizing Bayesian rule (3.9).

x̂ (b) = arg max
x

{
fx|b (x|b)

}
= arg max

x

{
fb|x (b|x) .fx (x)

}
= arg max

x
{fn (b− x) .fx (x)} (3.9)

(3.9) gives us the freedom to express this estimation in relation to the probability
distribution of noise coefficients fn (.) and the prior distribution of the noise-free
image coefficient fx (.).

As per the hypothesis on the noise, fn (.) is a zero-mean Gaussian function
with variance σ2

n. So

fn (n) =
1√

2πσn
.exp

(
−n2

2σ2
n

)
(3.10)

Using (3.10) to solve (3.9) and applying a logarithm on the independent vari-
able, (3.9) can be expressed as

x̂ (b) = arg max
x

[
− (b− x)2

2σ2
n

+ ζ (x)

]
(3.11)

where ζ (x) = ln (fx (x)) is a differentiable convex function. Assuming
− (b− x)2

2σ2
n

+
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ζ (x) = 0, then x̂ (b) can be calculated to attain the maximum a posteriori. So

b− x̂
σ2
n

+ ζ
′
(x) = 0 (3.12)

Since ζ ′
(x) is discontinuous as well as singular in region close to zero and the

symbol x̂ (b) is different from b, (3.12) cannot be solved in closed form. In [176]
Bhuiyan et al., put forward a solution as given in (3.13).

x̂ (b) = sign (b) .max
(
|b| − σ2

nB1, 0
)

(3.13)

where

B1 =

∣∣∣∣∣ 2b

δ2 + b2
+

αb√
δ2 + b2

.
K0

(
α
√
δ2 + b2

)
K1

(
α
√
δ2 + b2

)∣∣∣∣∣ (3.14)

(3.13) is adaptive to every subband. So it can adaptively filter noise from
all subbands. σ2

nB1 is the threshold value, λ. It can be altered with respect to
the values of the coefficients. The noise coefficients are larger and possess a larger
threshold value. The signal coefficient is also high valued but with lower threshold
value.

3.6 Marginal Statistical Modelling of the Member-

ship Values of the NSCT Subband Coefficients

The characteristics of NSCT such as anisotropy, high degree of directionality, and
shift invariance makes it perfect choice to successfully acquire geometrical and
directional details of the image. NSCT coefficients can be altered to enhance
the boundaries in an image, thereby improving the image sharpness. Since the
attribute contrast is interpreted as a qualitative measure as opposed to a quanti-
tative attribute of the image, fuzzy membership values of the NSCT coefficients
are found out by using (3.15) where CJ

j,l(p, q) is the NSCT coefficient correspond-
ing to the (p, q)th pixel in the jth scale and on the lth direction and CJ

(j,l)(min) and
CJ

(j,l)(max) are the minimum and maximum values of NSCT coefficients in the jth

scale and on the lth direction subband. Here onwards for convenience CJ
j,l(p, q) will

be represented as b, CJ
(j,l)(min) and C

J
(j,l)(max) as bmin and bmax respectively.

mJ
j,l(p, q) =

CJ
j,l(p, q)− CJ

(j,l)(min)

CJ
(j,l)(max) − CJ

(j,l)(min)

(3.15)
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The NSCT coefficients corresponding to smooth region of the image are
near to zero and those corresponding to boundaries/edges are bigger in magni-
tude. Thus as in the case of NSCT coefficients, these membership values of NSCT
coefficients show relatively high non-Gaussian features such as heavy tail, sharp
central peak and high kurtosis. Figure 3.7 shows the histogram distribution of
the third layer subband of NSCT coefficients in the first direction. As evident
from Figure 3.7 the NIG PDF can accurately model the coefficient distribution.
The distribution shows a sharp peak adjacent to zero and long tails to both ways
of the peak, which better tightly fit the histogram of the coefficient. Also it fits
the degree of coefficient distribution on other subbands as well. The membership
values of the NSCT coefficients are obtained by using (3.15) so that the statistical
properties of the NSCT coefficients are preserved in the fuzzified domain also.

Figure 3.7: Probability density of the NSCT coefficients and the NIG PDF and
Gaussian PDF fitted to this density [173]

For easy pick of parameters, the NIG distribution can exactly embodiment
the data with various tails [177]. In this work NIG distribution is employed to fit
NSCT coefficient’s marginal statistical distribution. As illustrated in Figure 3.7
the coefficient distribution particularly, the heavy tail, can be exactly modelled
through NIG PDF.
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3.6.1 Estimation of Parameters

The parameters utilized to enhance the contrast can be obtained by considering
the actual distribution of various subband coefficients. These parameters are ef-
fective in obtaining various degrees of threshold processing for various noise levels.

Let k̂1, k̂2, k̂3, and k̂4 describe the one to four order cumulants of the noise
affected image coefficients accordingly. Therefore, the skewness γ3 is given by
(3.16) and the kurtosis γ4 is given by (3.17)

γ3 = k̂3

/(
k̂2

)3/2
(3.16)

γ4 = k̂4

/(
k̂2

)2
(3.17)

Now the parameters δ and α can be calculated utilizing (3.18) and (3.19)
respectively

δ =

√
ξ.k̂2 (1− ρ2) (3.18)

α =
ξ

δ (1− ρ2)
(3.19)

where ξ = 3.
(
γ4 − 4γ23

3

)−1
and ρ = γ3

√
ξ/3

k̂1, k̂2, k̂3, and k̂4 vary from subband to subband [173]. Since the parameters
γ3, γ4, δ, α, ξ, and ρ are calculated from k̂1, k̂2, k̂3, and k̂4 their values also
vary from subband to subband. So, for different subbands our algorithm will
dynamically calculate the parameter values.

3.6.2 Thresholding Method

Using optimum linear interpolation between coefficients and their corresponding
subband mean Fathi and Naghsh-Nilchi [169] put forward OLI-shrink algorithm.
According to this algorithm modified membership value m̄J

j,l (p, q) can be obtained
by using (3.20).

m̄J
j,l(p,q) =

0 if |b| ≤ λ

min
(
(mJ

j,l(p, q)− ηm(mJ
j,l(p, q)− µm)), 1

)
if |b| > λ

(3.20)
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where µm is the mean of the membership values of the NSCT coefficients b
of the corresponding subband and ηm can be obtained using Equation ηm = σ2

nm
σ2
m

where σ2
m is the variance of membership values in the corresponding subband. The

algorithm to find parameter σ2
nm is given below.

1: Accomplish the orthogonal wavelet transform on the image and find out the
noise standard deviation, σ̂n, by employing the robust median estimator on
the HH1 subband’s coefficients (Y HH1

i,j ) as outlined by Donoho [167].

σ̂n =
median

(
|YHH1

i,j |
)

0.6745
(3.21)

2: Construct a white Gaussian noise image of size same as that of the original
image and with zero mean and variance σ̂2

n.
3: Accomplish NSCT transformation on the noisy image.
4: Find the membership values of these NSCT coefficients of noisy image using

(3.15).
5: Obtain the variance σ̂2

nm(k) of membership values corresponding to each high
frequency subband.

6: Go to step 2 and repeat the above steps 5 times. The final coefficient variance
σ2

nm is obtained by averaging the σ̂2
nm(k)s obtained.

The threshold value λ is obtained by (3.22)

λ = σ2
nB1 (3.22)

where σn is obtained in a similar way as explained above to find σ2
nm. But here

step 4 is not performed and so variance of the NSCT coefficients are calculated.

Different directional subbands in NSCT shows different noise variance be-
cause of the nonorthogonal nature of NSCT [170]. Also, λ depends on parameter
B1 whose value is different for different NSCT coefficients. Hence, the λ value is
dynamically calculated for different NSCT coefficiens in different directional sub-
bands. After modifying the membership values using (3.20), an inverse transform
is carried using (3.23) to obtain modified NSCT coefficients.

C̄J
j,l(p,q) = m̄J

j,l(p,q)
[
CJ

(j,l)max
− CJ

j,l(p,q)
]

+ CJ
(j,l)min

(3.23)

Using modified NSCT coefficients reconstruct the enhanced image.
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3.7 Image Contrast Enhancement Using NSCT

This Section summarises the proposed image contrast improvement method adopted
in this work and is pictorially represented in Figure 3.8.

Figure 3.8: Process flow of proposed enhancement method

The green channel image of the original RGB retinal image is chosen to ap-
ply the proposed algorithm. The reason for choosing the green channel is that it
gives maximum contrast with the image background. The blue channel tends to
be empty and the red channel tends to be saturated. If we employ the contrast
enhancement algorithm directly to the NSCT coefficients, it may destroy some of
the wanted information in the retinal image. As a solution to this issue, an image
enhancement algorithm employing fuzzy set theory is utilized here. In this proce-
dure, the membership values of NSCT coefficients are found using (3.15). Then
these membership values are modified using probability theory discussed above
using E(3.20). As per these modified membership values the NSCT coefficients
are modified using (3.23). Finally, inverse NSCT is calculated using these modi-
fied coefficients. Since the image brightness is considered as a qualitative rather
than quantitative attribute, this enhancement scheme improves the image contrast
without affecting the pathological features present in the image.

Another prime concern in threshold enhancing is choosing the value for the
threshold. A comparatively small value of threshold may preserve detailed infor-
mation about the image. But, this may retain noise also. On the other hand,
a larger threshold may spoil the high-frequency data of the image. This may
cause an erroneous Gibbs phenomenon in the enhanced image. The threshold se-
lection problem is solved by using a Normal Inverse Gaussian model dependent
scheme which utilizes the Bayesian probability to perform image enhancement in
the fuzzified NSCT domain. First, the NIG model is employed to demonstrate the
distributions of the fuzzy membership values of the NSCT coefficients. Then with
the help of the theory of Bayesian maximum a posteriori probability a threshold
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function is obtained. Lastly, to ensure a gentle thresholding OLI-Shrink algorithm
given by (3.20) is utilized.

To detect the fundus region the thresholding method proposed by Otsu [178]
is applied. Followed by this operation, a morphological closing operation is per-
formed to eliminate unwanted tiny objects left inside the fundus region. Appli-
cation of NIG model based contrast enhancement in the fuzzified NSCT domain
causes some widgets outside the fundus area. This widgets produces false edges
during the edge detection phase. The mask that indicate the fundus region aids
to remove these widgets and it can also reduce the running time of the algorithm,
as our region of interest is now the area inside the fundus region instead of the
whole image for applying subsequent algorithm steps.

3.7.1 Enhancement Algorithm

Consequently, the suggested algorithm to augment the retinal image comprises the
following steps:

1: Accomplish NSCT decomposition to yield NSCT coefficients.
2: Find out the membership values of each subband coefficients in the fuzzy set

contrast using the (3.15)
3: Assess the noise variance of each subband coefficient by employing Monte-Carlo

method.
4: For each subband in each level estimate the threshold value and statistical

parameters of the coefficients as follows:

(i) the terms δ and α using (3.18) and (3.19) respectively

(ii) the threshold value λ using (3.22)

(iii) the mean µ and variance σ2
b of each high frequency subbands.

(iv) the term η using (3.24).

η ∼=
σ2
n

σ2
b

. (3.24)

5: Modify the membership values of all subbands using (3.20)
6: Perform defuzzification using (3.23) to obtain modified NSCT coefficients
7: Perform the inverse NSCT to get back the enhanced image.
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3.8 Database

The algorithm summarized in Section 3.7.1 is applied to both DRIVE and HRF
image database.

3.8.1 DRIVE Database

The DRIVE database contains 40 colour images of retina with 768 × 584 pixels
and 8 bits per colour channel represented in LZW compressed TIFF format. These
images were oroginally captured using cannon CR5 nonmydriatic 3 charge coupled
device camera at 450 field of view (FOV) and were initially saved in JPEG format.
The database also includes masks with the delimitation of FOV of approximately
540 pixels in diameter for each image and binary images with the results of manual
segmentation. These binary images have already been used as ground truth for
performance evaluation of several vessel segmentation methods. The 40 images
were divided into a training set and a test set. For the images of the test set a
second independent manual segmentation exists as well.

3.8.2 HRF Image Database

The HRF database was established by a collaborative research group consisting
of two European institutions: Brno University of Technology, Faculty of Elec-
trical Engineering and Communication, Department of Biomedical Engineering,
Brno, Czech Republic and Pattern Recognition Lab at the University of Erlangen-
Nuremberg, Germany. The database can be downloaded from the public website:
http://www5.informatik.uni-erlangen.de/research/data/fundus-images’. This data-
base contains three sets of fundus images. The first one is composed of images of
15 healthy patients without any retinal pathology. the second set consists of 15
retinal images of patients with DR and the last one includes 15 images of patients
with glaucoma. Thus the second and third group allow evaluation of the algorithm
in the case of pathological retinas.

Mydriatic fundus camera CANNON CF-60 UV: equipped with CANNON
EOS-20D digital camera with a 60-degree FOV is used to acquire all fundus iamges.
The image size is 3504 × 2336 pixels. All images are stored in JPEG format
with low compression rates and 24 bits per pixels (True colour). Also a binary
mask determining the FOV is provided for each image. Manual segmentation of
the images were done by three experts independently and manual labeling of the
images were performed using ADOBE photoshop CS4 image editor.
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3.9 Results

MATLAB version R2013b is used to implement the proposed method. The method
described above enhances all weak edges in the image which includes edges of thin
vessels as well as the weak edges arising from uneven background illumination.
Figure 3.9 shows the images before applying the proposed enhancement algorithm
and image after applying the proposed enhancement algorithm. From the figure
it is clear that the NSCT is well adapted to represent the image containing edges.
Hence, it is a good candidate for edge enhancement. Since NSCT coefficients are
modified based on their membership values it improves the edges in the image
which inturn improves the image contrast. The non linear function used to modify
the membership values of the NSCT coefficients helps to retain the minute edge
details in the image. The selection of parameters based on the statistical fea-
tures of the NSCT coefficients and the noise standard deviation helps to calculate
appropriate threshold value λ for NSCT each coefficients at different directional
subbands dynamically. It is also clear from Figure 3.9 that even though the algo-
rithm improves the image contrast, due to the use of fundus mask the algorithm
is not boosting the artifacts/edges outside of the fundus region.

3.9.1 Evaluation

3.9.1.1 Enhancement Assessment

Several methods are available in the literature to assess the image contrast im-
provement. They fall into two classes. 1. Objective and 2. Subjective. One of
the objective measures is Peak Signal to Noise Ratio (PSNR). PSNR evaluates
the intensity changes between the original and the enhanced image. Mean Square
Error (MSE) and PSNR can be computed using (3.25) and (3.26) respectively.

MSE =
1
mn

m∑
i=1

n∑
j=1

‖I0(i,j)− Ie(i,j)‖2 (3.25)

where I0 and Ie are the green channel and enhanced images respectively.

PSNR = 10log10

(
2552

MSE

)
(3.26)

Another objective method to evaluate contrast enhancement is contrast im-
provement index (CII) [179] that can be defined by (3.27).

CII =
Cen

Cori
(3.27)
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where Cen and Cori are the contrast for the enhanced and original images, respectively.
The image contrast can be given by (3.28)

Figure 3.9: Result of proposed enhancement method. (a) Result of proposed
method to image 25 of DRIVE database. (b)-(d) Result of proposed method to
image 01_h, 01_dr, 01_g of HRF database, respectively. From top to bottom
they are the green channel and contrast enhanced image.

C =
r—b
r+b

(3.28)

where b and r are the average gray level value of the background and foreground,
respectively.

Image Enhancement Metric (IEM) described by (3.29) is also used to evalu-
ate the performance of the proposed contrast enhancement method

IEM =

k1∑
m=1

k2∑
l=1

8∑
n=1

|I l,me,c − I l,me,n |

k1∑
m=1

k2∑
l=1

8∑
n=1

|I l,mr,c − I l,mr,n |
(3.29)

Here images are divided into k1k2 blocks of size 3 × 3 and I l,me,c , I l,mr,c are
the central pixel intensity in the (l,m) block of the enhanced and reference im-
ages respectively. I l,mn , n = 1, 2, ...8 is the 8-neighbors of the center pixel [180].
When the image is enhanced IEM > 1. Whereas IEM < 1 there is deterioration.
IEM = 1 indicates neither improvement nor deterioration of image. Higher the
value of IEM, better the improvement in image contrast and sharpness.
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The result of assessment of proposed algorithm using the above mentioned
measures is shown in Tables 3.1 and 3.2. Small values of standard deviation of the
PSNR, CII, and IEM indicate good robustness of the method.

Table 3.1: Quantitative assessment of proposed contrast enhancement method on
DRIVE fatabase

DRIVE Database
Measure Average STD

PSNR (in dB) 34.68 1.13
CII 1.36 0.004
IEM 1.7186 0.109

Table 3.2: Quantitative assessment of proposed contrast enhancement method on
HRF database

HRF Database
Healthy DR affected Glaucoma affected

Measure Average STD Average STD Average STD
PSNR (in dB) 32.41 1.14 29.16 1.19 31.72 1.16

CII 1.28 0.012 1.27 0.037 1.27 0.016
IEM 1.67 0.112 1.61 0.136 1.66 0.118

In visual subjective measures, help from human observers (such as opthal-
mologist) are taken. They comment on edge details, presence of artifacts in the
enhanced image, similarity between the enhanced image and the original image.

The contrast enhancement technique discussed in this chapter is specifically
meant for improving the retinal image contrast while detecting DR. This method
enhances the retinal image contrast without removing the noise present in the
image. The method is devised so because if de-noising is done, it may also af-
fect/remove the pathological symptoms (especially MAs) present in the images.
This will affect the detection and classification stages. But other contrast en-
hancement methods available in the literature performs de-noising of the images
also.

3.10 Conclusion

In this chapter, a novel image contrast enhancement technique derived from Bayesian
frame work is discussed. It exactly assess the NSCT coefficient’s distribution model
by using the prime attributes of the Bayesian de-noising. The proposed technique
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utilized a de-noising algorithm depending on the NIG prior model of NSCT. The
parameters of the NIG prior model can be choosen flexibly and varied adaptively.
The NSCT coefficients have pointed peak at zero and symmetrically distributed
heavy-tailed characteristics on both sides. The NIG prior model can exactly de-
scribe these characteristics. Hence, Bayesian de-noising can be utilized to success-
fully enhance the image contrast by modifying the fuzzy membership values of the
NSCT coefficients and reconstructing the image based on this modified member-
ship values. The quantitative and visual assessments establishes the fact that it
can accomplish remarkably superior results than the modern image enhancement
methods.



Chapter 4

Extraction of Normal Retinal
Components

4.1 Introduction

The three fundamental structures of our retina are vessel, optic disc, and fovea.
These structures are widely employed for a number of applications including ab-
normality identification within the retina, registration of retinal images, as well
as brightness adjustment inside the retinal images. Manual extraction of these
crucial structures is time consuming. Also it fully depends on the competency of
the person.

This chapter proposes techniques for extracting and localizing normal retinal
features like blood vessels, optic disc and fovea. Before applying this technique,
the image enhancement technique described in Chapter 3 is applied to retinal im-
ages. For extraction of blood vessels green component of the RGB retinal image
is utilized whereas for localization of OD and fovea the luma component of retinal
image is used.

Contemporary researches in the area of medical imaging have proved that
quantitative assessment of microvasculature of retina can foresee various abnormal-
ities/diseases. Digital fundus imaging in optometry plays a key part in medical
diagnosis of elementary levels of blood pressure and diabetes as well as cardiovas-
cular disease. A few of the important clinical goals recorded in the literature for
retinal blood vessel extraction are the assessment of the retinopathy of prematurity,
identification of arteriolar narrowing, detection of hypertension by measuring the
diameter of vessels, measurement of cardiovascular abnormalities, identification of
macular avascular areas, realization of DR screening programs and computerized

69
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laser surgery.

Other ancillary applications include automatic development of retinal maps,
which can be utilized for the therapy of age-dependent macular deterioration,
synthesis of retinal image mosaic, filtering out retinal vasculature properties for
multimodal or temporal image registration, localization of the optic disc and fovea.
Moreover, the retinal vessel network is unique to every individual. So it can be
employed for biometric identification.

Extracting blood vessels from fundus images can be challenging due to nu-
merous reasons. A few of the causes that produce error are linked with the type
of imagery and its acquisition method as well as the intrinsic attributes of retinal
images. The two paramount factors that adversely affects the blood vessel extrac-
tion process are the inappropriate image contrast and the irregular illumination of
the background. The acquisition process results uneven illumination. The unac-
ceptable contrast is due to the acquisition process and on the grounds that various
vessels have different sharpness with respect to background. Specifically, veins
have lower sharpness than arteries. Thin vessels also show a lower sharpness with
respect to the background than do thick vessels. Furthermore, impact of patho-
logical variations and lesions, presence of optical disc, fovea, and noise as well as
vessels with different widths are the other facts to be taken care of. Therefore, an
automatic algorithm that segment retinal blood vessels quickly and with greater
accuracy is the desire of researchers.

Discernment of the optic disc (OD) and fovea locale in retinal fundus im-
ages (RFIs) is one of the key concerns of the computerized detection of retinal
abnormalities. The OD and fovea as well as the retinal vasculature are the most
pivotal anatomical areas on the rearward of the retina. The OD is the departure
place of the optic nerve system. The retinal vasculature ingresses and egresses the
eye through OD. The dynamics of the OD is dissimilar from that of the abutting
retinal areas, as shown in Figure 4.1. Areas of the OD can effectively be catego-
rized as abnormal and normal by abnormality identification procedures. Identify-
ing and masking the OD is the important inspiration behind this work. Instances
of aberrations that can be judged incorrectly with OD are drusens, exudates and
cotton-wool spots. Furthermore, the OD locale is beneficial in the computerized
screening of glaucoma. It also plays a major role in the identification of neovas-
cularizations on the OD, a very limited but acute disorder. The fovea is situated
in the middle of a darker area in RFIs. It is the source of sharp central vision.
Due to its crucial role in vision, the distance of the lesions from fovea affects their
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clinical significance. i.e lesions that are very close to fovea affects vision seriously
and that are away from it less affects the vision.

Figure 4.1: Color retinal fundus image with main features marked [181].

Analysis of the outcomes of previously reported evaluations pointed out that
localization of OD and in particular localization of the fovea may probably be ben-
eficial in augmenting the identification of feeble cases of DR. A respectable number
of literature have addressed the identification of the locale of the OD. The modern
OD detection schemes employ the relative position of the vasculature to identify
the OD position. Identification of the fovea has obtained a very little attention.
This may be due to the fact that fovea is more arduous to identify and does not
introduce a high contrast structure.

The rest of this chapter is organized as follows. Section 4.2 deals with mathe-
matical morphology. Region growing algorithm is presented in Section 4.3. Blood
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vessel extraction using multistructure elements morphology is described in Sec-
tion 4.4. Optic disc and fovea region identification steps are explained in Sec-
tion 4.5. Results of blood vessel extraction are given in Section 4.6. OD and
fovea identification results are presented in Section 4.7. Section 4.8 concludes the
chapter.

4.2 Morphological Operation

Mathematical morphology is a tool for digging out image attributes that are helpful
in the representation as well as description of edges, skeletons etc.

4.2.1 Erosion and Dilation

Erosion and dilation are the two primitive operations which act as the foundation
of morphological operations.

4.2.1.1 Erosion

Let f(x, y) is a contrast enhanced luma-image and b(x, y) is a structuring element.
(x, y) is the Cartesian co-ordinates. The erosion of f by b at any location (x, y)

is described as the minimum value of the image in the area coextensive with b

when the origin of b is placed at (x, y) and is described mathematically as shown
in (4.1).

[f 	 b] (x, y) = min
(s,t)εb
{f(x+ s, y + t)} (4.1)

where x and y are incremented such that the origin of b traverses every pictels in
f .

4.2.1.2 Dilation

In a similar manner, dilation of f by b at an arbitrary location (x, y) is described
as the maximum value of the image in the window outlined by b(−x,−y) and is
illustrated in (4.2).

[f ⊕ b] (x, y) = max
(s,t)εb
{f(x− s, y − t)} (4.2)

Here the structuring element is reflected about its origin. Dilation is identical
to erosion except, instead of minimum value the maximum value is taken.
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4.2.2 Opening and Closing

Opening operation, without any elaboration, is the erosion of f by b, followed by
a dilation of the result with b. this is indicated in (4.3).

f ◦ b = (f 	 b)⊕ b (4.3)

Likewise, the closing operation can be defined as the dilation of f by b, fol-
lowed by an erosion of the result with b. This is shown in (4.4).

f • b = (f ⊕ b)	 b (4.4)

4.2.3 Modified Top-Hat Transformation

Mathematical morphology, a useful technique for handling a variety of problems
in image processing, is a group of morphological algebraic operations. Results of
morphological operation largely based on the size as well as shape of structuring el-
ements and are, therefore, selected as per the requirement of the allied application.

In 2-dimensional Euclidean space R2, let I(p, q) represents a gray scale im-
age. Let Se be a defined Structure Element (SEs) . The top-hat transformation
described in (4.5) can be used to find edges of an image.

top− hat(I) = I − (I ◦ Se) (4.5)

where ◦ denote the opening operator. The issue with the top-hat operator is
that it contains all the tiny ordinary intensity variations. Moreover, this problem
severely aggravates due to irregular background illumination of the fundus image.
The modified top-hat can be used to solve this problem [179]. In modified top-
hat, the initial image is first subjected to morphological closing operation, and
then a morphological opening operation is performed on the result. By using a
minimum operator, the effect of the morphological opening operation is compared
to the original image to obtain an image identical to the initial image excluding
the boundaries. The revised top-hat transformation [179] is defined by (4.6).

top− hat(I) = I −min((I • Sec) ◦ Se◦, ; I) (4.6)
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where Se◦ and Sec stands for the SEs for opening (◦) and closing (•) opera-
tors, respectively.

4.2.4 Multistructure Elements Morphology

In an effort to detect simple, ordinary, and straight boundaries of an image single
as well as symmetrical SEs are chosen. But as the complexity of the edges increases
they fail to detect complex edges. For detecting such complex edges, we require
more advanced SEs. In multistructure element morphology we gather many SEs in
a single square window. Therefore, such SEs are competent enough for detecting
various types of edges with different directions successfully.

Let I(p, q) | p, q ∈ R2 be a digital image. (4.7) define an SE in (2N + 1) ×
(2N + 1) square window.

Sei = {I(p+ p0, q + q0), φi = i× 1800

4N
| −N ≤ p0, q0 ≤ N} (4.7)

where i = 0, 1, ...4N − 1 and φi represents the direction angles of Sei. The
size of the SE window is selected based on the required directional resolution.
Figure 4.2 represents several Sei for directional resolution = 150 and the 7× 7 SE
constructed by the synthesis of all Sei of all directions.

4.2.5 Morphological Operations by Reconstruction

Even though morphological opening and closing operations allow the traits greater
than SE unaltered, the important limitation of these operations is that they do not
keep edge information safely and clearly. A new operator namely M- and N- sieves
introduced by Bangham et al. [182] address this defect by emphasizing only on the
size of the traits but without considering the shape. This problem is addressed
by Morphological operators by reconstruction by considering both size as well as
shape of the features [183].

If v and u symbolize marker and mask images, respectively, the geodesic
dilation of size 1 of v with respect to u is represented by δ(1)u (v) as shown in (4.8)
and is stated as the point-wise minimum amongst u and the element dilation δ(1)

of v.

δ(1)u (v) = δ(1)(v) ∧ u (4.8)
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Figure 4.2: ( a )-( d ) Some of Sei for directional resolution = 150 and N = 3. ( e )
7× 7 SE

Similarly, the geodesic erosion ε(1)u (v) as shown in (4.9) can be described as
the point wise maximum between u and the element erosion ε(1) of v.

ε(1)u (v) = ε(1)(v) ∨ u (4.9)

Hence, the geodesic dilation(erosion) of any size is got by employing continu-
ous geodesic dilation(erosion) of v in relation to u as illustrated in (4.10) and (4.11).
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δ(1)u (v) = δ(1)u [δ(i−1)u (v)] (4.10)

ε(1)u (v) = ε(1)u [ε(i−1)u (v)] (4.11)

for i = 1, 2, 3..., δ
(0)
u (v) = v and ε(0)u (v) = v. Both (4.10) and (4.11) converge

after so many iterations and remain unchanged after that. This constant result is
the reconstruction by dilation and is indicated by (4.12)

δrecu (v) = δnu(v) (4.12)

where n is such that δnu(v) = δ
(n+1)
u (v). Similarly for reconstruction by erosion

is denoted by εrecu (v) = εnu(v) where n is such that εnu(v) = εn+1
u (v). So closing

by reconstruction and opening by reconstruction represented by v •̄Se and v ◦̄Se
respectively, and described as shown in (4.13) and (4.14).

v •̄Se = ε(rec)u (v • Se) (4.13)

v ◦̄Se = δ(rec)u (v ◦ Se) (4.14)

In summery, in its first step morphological opening by reconstruction re-
moves bright attributes smaller in size than the SE. In the following move, it
revamp the contours of components that have not been fully eliminated by open-
ing operation by performing dilation operation iteratively. While performing this
operation the original image is treated as the reference. Closing by reconstruction
is accomplished in case of dark features. Therefore the limitations of conventional
morphological opening and closing operations such as deforming the contours,
producing edge drift as well as new edges are restricted by utilizing opening and
closing by reconstruction operations.

4.3 Region Growing

As implied by the name itself, region growing algorithm is a method that brings
together pictels or tiny regions into bigger regions established on pre-established
rules for growth. The fundamental strategy is to commence with a couple of
"seed" points. Then from these seed points mount up regions by adding to each
seed those near by pictels that have pre-established characteristics akin to the seed.

Criteria for choosing a group of one or more starting points usually can be
derived from the nature of the problem. When deducible information is missing,
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the method is to calculate at every pixel the corresponding set of characteristics
that positively will be utilized to assort pixels to regions over the course of the
growing process. If the outcome of these calculations displays clusters of values,
the pictel whose characteristics puts them close to the centroid of these clusters
can be utilized as seeds.

The choice of similarity rules relies not only on the issue under consideration,
but also on the nature and type of the image data in hand. Without the intrinsic
details available in images, descriptors are derived from the knowledge of spatial
properties. Intensity levels are employed to carry out region analysis.

Segmentation based only on descriptors alone may produce misleading re-
sults. So in order to tackle this problem connectivity properties are also taken
care of. Another important issue associated with region growing algorithm is the
setting up of a stopping criteria. Region growth should cease when no other pictels
fulfil the inclusion criteria. Local criteria like texture, intensity values and color
do not take into account the history of region growth. The knowledge of size, sim-
ilarity among selected pixels and the pixels grown up to now, and the geometry
of the area being grown are some of the extra criteria that boost the capability of
the region growing technique. The assumption made at this point is that a model
of anticipated output is at least partly available.

Let a seed array is denoted by S(x, y). This seed array contains 1s at the
places of the seed points and 0s else-where. If both input image array f(x, y) and
seed array S(x, y) are supposed to be of identical size and predicate to be employed
at each position (x, y) is denoted as Q, then the region growing algorithm centred
on 8 connectivity can be summarized in Algorithm 1.

4.4 Blood Vessel Detection Using Multistructure

Elements Morphology

The block diagram of the proposed blood vessel extraction method is illustrated
in Figure 4.3.

The multistructure elements procedure posses directionality property. Due
to this property multistructure elements procedure has become very effective for
edge detection applications. Therefore, mathematical morphology utilizing the
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Algorithm 1 8 connectivity region growing
1: Obtain the entire connected components in S(x, y).
2: Erode the connected component to one pixel and label every such pixels ob-

tained as 1. Label all other pixels in S with 0.
3: Create an image fQ using the following rule

fQ(x, y) =

{
1 if f(x,y) satisfies the given predicate Q at location(x,y)
0 Other wise

4: Every 1-valued points in fQ which are 8-connected to a particular seed point
in S are appended to that seed point. Let the image obtained in this step is
denoted by g.

5: Every connected components in g are labelled with another region label. This
represents the segmented image.

multistructure elements are employed to identify the ridges of the retinal images.

Figure 4.3: Block diagram of blood vessel extraction steps

The identified ridges not associated with the blood vessel tree are removed
by morphological opening by reconstruction operation. This operation preserves
the thin vessel edges. Employing the multistructure elements aids to enhance the
performance of morphological opening by reconstruction step. The size of the
structure elements (SEs) are chosen as 7× 7 which are restricted by the diameter
of the blood vessels [179]. Therefore, connected component analysis (CCA) to-
gether with length filtering is used to eliminate the remaining erroneous edges. So
as to perform locally, the image is split into small tiles and connected component
analysis, and length filtering is employed to each tile.

The steps involved to identify retinal blood vessels can be summarized in
Algorithm 2 [179].

The blood vessel edges obtained by this method include some false edges due
to uneven background. These false edges is eliminated in subsequent sections.
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Algorithm 2 Detecting Blood vessel Edges
1: For the required directional resolution produce the SEs Sei
2: Using the produced SEs in step 1 apply the selected edge detector function F

on the original image and obtain the subedge image F(I)i
3: Using the subedge image F(I)i procure the whole of the determined edges using

(4.15)

F(I) =
M-1∑
i=0

WiF(I)i (4.15)

where F(I) represents the total edge image, M = 180
θ

and Wi is the assigned

weight of each subedge image. Defining the assigned weights as Wi =
1
M

will
result the same effect to each F(I)i. We can also use (4.16) so that the larger
F(I)i has the greater effect.

Wi =
F(I)i∑M-1
i=0 F(I)i

(4.16)

4.4.1 False Edge Removal

The morphological opening by reconstruction can be utilized to clear the false
edges. Since multi structure elements are extremely sensitive to edges in every
orientations, opening using multistructure elements are used to augment the result
of the morphological opening by reconstruction. The SE employed in this step is
the same as in the edge identification step, but with different weight. Here, in
order to construct the F(I), the maximum F(I)i is chosen rather than assigning
weights to each F(I)i. By doing so weak erroneous edges are eliminated. This
restrict them from taking part in the construction of F(I). Then, utilizing a flat
structure element reconstruction by dilation is performed. Since average width
of blood vessel is 5 pictels, a larger SE for opening causes the removal of more
objects, and fully removes some small vessels because they cannot be restored
with reconstruction by dilation operation. So, to achieve a clear final result void
of false edges, length filtering is utilized.

4.4.2 Length Filtering (LF)

In adaptive connected component analysis (ACCA) images are considered in dis-
tinct tiles and perform CCA and LF to each tile. In CCA connected component
pixels which are identified above a certain threshold and labeled using eight con-
nected neighbourhood are regarded as a single object. After CCA, the components
with length less than a the threshold are removed. The specific threshold can be
obtained utilizing a thresholding method proposed in [184] and given by (4.17).
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T = µ− ασ (4.17)

where µ and σ are the mean and std. Also, α should be small enough (α < 1) for
poor sharpness images. Finally all the images are combined to a single image to
obtain the ultimate blood vessel extraction result.

Consequently, the proposed blood vessel identification procedure is sum-
marised in Algorithm 3.

Algorithm 3 Blood Vessel Extraction
1: Apply the contrast enhancement algorithm discussed in Chapter 3 to the green

channel of the original coloured image and get the enhanced image.
2: Remove the assessed background from the enhanced image
3: Employ the modified top-hat transform utilizing the multistructure elements

morphology and obtain the edge image
4: Using multistructure elements employ opening by reconstruction to remove

the false edges.
5: Apply length filtering along with adaptive CCA to eliminate the still remaining

false edges.

4.5 Optic Disc and Fovea Localization

Figure 4.4 represents the process of OD and fovea extraction.

Figure 4.4: Block diagram of OD and Fovea extraction steps

In order to remove variations due to image acquisition method, image pre-
processing is used. The image enhancement method discussed in Chapter 3 is
employed to nullify the effect of non-uniform illumination and enhance the image
contrast. Here the pre-processing algorithm is applied to the luma component
of the RFIs because of the following reason. In RFIs, the OD corresponds to the
brightest spot in the image. On the other hand fovea is associated with the darkest
spot of the image. YCbCr is a family of color models where Y represents the luma
component and Cb and Cr are blue-difference and red-difference chroma compo-
nents respectively. The Y component is defined to have range from 16-235 while
Cb and Cr are described to have a range of 16 to 240. Level 128 indicates zero
signal. This Y (luma) component gives the highest contrast between OD and the



CHAPTER 4. EXTRACTION OF NORMAL RETINAL COMPONENTS 81

background. Same is the case for fovea also. So luma component of YCbCr image
model is employed for the localization of OD and fovea. The following (4.18) to
(4.20) are used in order to convert the RGB image into YCbCr model.

Y = 16 +
65.738R

256
+

129.057G

256
+

25.064B

256
(4.18)

Cb = 128− 37.945R

256
− 74.494G

256
+

112.439B

256
(4.19)

Cr = 128 +
112.439R

256
− 94.154G

256
− 18.285B

256
(4.20)

After employing the contrast enhancement algorithm introduced in Chap-
ter 3 to the luma component of the RFIs, the OD and fovea in these images
become clearly visible. But the algorithm also enhances the blood vessels, which
is highly undesirable. Presence of blood vessels clutter the OD and fovea. So it is
essential to smooth out the blood vessels in the RFIs keeping the OD and fovea
regions unchanged. Several methods exists to smooth out the blood vessels. Out
of the different methods available, morphological operations gives better results.
So in this method morphological operations are used to smooth out the blood ves-
sel pixels in RFIs. Opening conceals bright details smaller than the specified SEs,
whereas closing suppresses dark details. So closing operation is used to eliminate
or smooth out the blood vessels in the enhanced image. As mentioned earlier,
closing operation conceals dark details smaller than the used SEs, selection of the
size of structuring element is very important. So we choose a structuring element
whose size is bigger than that of blood vessel (7 × 7) [179]and smaller than that
of fovea whose approximate size is 5.5mm i.e.,18 × 18 [185, 186]. Hence, a 9 × 9

size is chosen for structuring element which is greater than the blood vessel size
and less than that of the fovea so that the closing operation does not affect the
fovea region. Then the region growing algorithm described in Section 4.3 is used
to segment out the OD and fovea.

4.6 Results of Blood Vessel Extraction

The algorithm summarized in Section 4.4.2 is applied to both DRIVE and HRF
image database. MATLAB version R2013b is used to implement the proposed
method. The undesired artefacts exterior to the fundus disc, that are produced
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in the enhancement step, are eliminated by multiplying the enhanced image with
the disc fundus region. Then by modified top-hat operation utilizing the multi-
structure element morphology the edges of the image are detected. We used a
7 × 7 SE with directional resolution = 150. Then the false edges are removed
by morphological opening using multistructure elements by reconstruction. After
that the image is divided into several tiles and CCA and LF are locally employed
to completely remove the prevailed unwanted edges. The size of each block is
determined experimentally and is 61 × 61. The results of each step is shown in
Figure 4.5.

4.6.1 Evaluation

True Positive Rate (TPR) or Sensitivity or Recall, False Positive Rate (FPR) , Ac-
curacy (ACC), Precision, F1-Score and Matthews Correlation Coefficient (MCC) are
used to assess the algorithm performance. These measures can be defined as shown
in (4.21) to (4.26). It is very important to recognize that none of the performance
evaluation metrics can convey the full performance of the algorithm individually.
Conclusions derived from analysing a combination of metrics are more reliable than
that obtained by analysing only one metric. It is therefore we use a combination
of the above metrics when we are working on evaluating the algorithm performance.

TPR =
Number ofTP

Total number of TP and FN
(4.21)

FPR =
Number of FP

Total number of FP and TN
(4.22)

ACC =
Total number ofTP and TN
Total number of pixels

(4.23)

Precision =
Total number of TP

Number of TP and FP
(4.24)

F1-Score =
2 (Precision× Recall)
(Precision + Recall)

(4.25)

MCC =
TP× TN− FP× FN√

(TP+FP)(TP+FN)(TN+FP)(TN+FN)
(4.26)

where TP (True Positive) and TN (True Negative) are the blood vessel pic-
tels and background pictels which are correctly detected respectively. FN (False
Negative) is the pictels associated with vessel, but is recognized as background
pictels mistakenly and FP (False Positive) shows the pictels not associated to a
vessel, but is identified as blood vessel pixels.
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Figure 4.5: Result of blood vessel extraction. (a) Result of proposed method
to image 40 of DRIVE database. (b)-(d) Result of proposed method to image
01_h, 01_dr, 01_g of HRF database, respectively. From top to bottom they are
the green channel, contrast enhanced image, result before applying length filtering
and last row are result after applying length filtering

TPR or recall indicates the capability of the algorithm to accurately detect
blood vessel. FPR is the probability of falsely recognizing a pixel as blood vessel
pixel. ACC provides a general measure of the ratio of total well-detected pictels as
per the gold standard hand-labelled segmentation. When the cost of false positive
is high precision is a good measure. When a balance between precision and recall
is needed F1-Score is a good option. MCC is more enlightening when compared to
F1-Score and ACC in assessing the performance of binary classification problems.
F1-Score and ACC never completely consider the size of the four classes of the
confusion matrix in their final score computation and hence they can be mislead-
ing.
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Table 4.1 shows the results obtained when the algorithm is tested using
DRIVE database. A comparison of our method with other published results are
depicted in Table 4.5. It is evident from Table 4.5 that our method provides more
ACC and TPR and lowest FPR.

The proposed method is also assessed with the HRF database. All three
types of images, -images of healthy eyes, images with signs of DR and glaucoma-
are used. Tables 4.2 to 4.4 show results of the parameters TPR, FPR, ACC,
Precision, F1-Score and MCC evaluated on particular datasets. Average values
and standard deviations are computed for each parameter as well. The average
values indicated at the bottom row reveals the robustness of our algorithm. A
quantitative comparison of average values of ACC, show more than 96% of truly
classified pixels in the field of vision for all datasets. The average values of F1-Score
shows that this algorithm maintains a relatively high balance between precision
and recall. It can be observed from Table 4.2-4.4 that the MCC values are close
to 1 which reveals that the method discussed here fully considered the four classes
of the confusion matrix.

Table 4.5 shows the comparison of performance of the discussed method with
other approaches. It is illustrated in the Table 4.5 that our method provides more
ACC and TPR and lowest FPR.

Table 4.6 compares the attainment of the method with [187]. Only SE, FPR
and ACC are included for comparison in Table 4.6 because [187] has not used
F1-Score and MCC for evaluating the method. Table 4.6 clearly shows that the
method developed is superior to other methods.

4.7 Results of OD and Fovea Segmentation

The algorithm is applied to the contrast enhanced luma plane image of all images
obtained from DRIVE database and from a local eye hospital. Total of 25 images
were obtained from the hospital. An expert ophthalmologist helped to mark the
regions of OD and fovea in 10 of these 25 images collected. He also helped to mark
the severity of DR in these images. For DR screening application, knowledge of
only the rough midpoint of both OD and fovea structures are enough because of
the fact that, this application do not want to segment optic disc and fovea but
only want to mask them.
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Table 4.1: Results obtained with DRIVE images.

Image No TPR FPR ACC PRECESSION F1-SCORE MCC

21 0.9429 0.0036 0.9922 0.9576 0.9502 0.9460

22 0.8825 0.0043 0.9854 0.9539 0.9168 0.9097

23 0.9049 0.0532 0.9436 0.5882 0.7130 0.7028

24 0.8861 0.0075 0.9805 0.9368 0.9107 0.9003

25 0.8512 0.0068 0.9805 0.9254 0.8868 0.8771

26 0.9621 0.0039 0.9933 0.9568 0.9594 0.9557

27 0.8622 0.0069 0.9814 0.9237 0.8919 0.8824

28 0.8509 0.0040 0.9817 0.9588 0.9016 0.8935

29 0.9374 0.0076 0.9877 0.9202 0.9287 0.9221

30 0.9551 0.0104 0.9868 0.8875 0.9201 0.9136

31 0.9721 0.0113 0.9876 0.8600 0.9126 0.9080

32 0.9649 0.0073 0.9904 0.9227 0.9433 0.9383

33 0.9484 0.0048 0.9912 0.9486 0.9485 0.9437

34 0.8696 0.0274 0.9625 0.7755 0.8199 0.8006

35 0.9270 0.0076 0.9867 0.9214 0.9242 0.9169

36 0.8802 0.0108 0.9773 0.9087 0.8942 0.8816

37 0.9172 0.0067 0.9867 0.9297 0.9234 0.9161

38 0.9695 0.0182 0.9807 0.8352 0.8974 0.8898

39 0.9616 0.0168 0.9814 0.8450 0.8995 0.8916

40 0.9535 0.0101 0.9870 0.8922 0.9218 0.9154

Average 0.9200 0.0115 0.9822 0.8924 0.9032 0.8953

STD 0.0415 0.01112 0.0110 0.0839 0.0525 0.0547
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Table 4.2: Results obtained with HRF HEALTHY images.

Image No TPR FPR ACC PRECESSION F1-SCORE MCC

1 0.8732 0.0183 0.9706 0.8438 0.8582 0.8421

2 0.9409 0.0294 0.9677 0.7802 0.8530 0.8397

3 0.6234 0.0049 0.9556 0.9383 0.7491 0.7441

4 0.7647 0.0133 0.9656 0.8586 0.8089 0.7917

5 0.9430 0.0240 0.9729 0.7980 0.8645 0.8532

6 0.8928 0.0293 0.9627 0.7759 0.8303 0.8119

7 0.9057 0.0206 0.9728 0.8120 0.8563 0.8428

8 0.8446 0.0168 0.9692 0.8492 0.8469 0.8298

9 0.9571 0.0241 0.9744 0.7708 0.8539 0.8460

10 0.8431 0.0230 0.9654 0.7758 0.8081 0.7899

11 0.9480 0.0297 0.9682 0.7681 0.8486 0.8368

12 0.9127 0.0274 0.9663 0.7972 0.8510 0.8346

13 0.8288 0.0157 0.9706 0.8353 0.8320 0.8159

14 0.8180 0.0252 0.9610 0.7579 0.7868 0.7661

15 0.9748 0.0279 0.9723 0.7503 0.8479 0.8417

Average 0.8714 0.0220 0.9677 0.8074 0.8330 0.8191

STD 0.0880 0.0068 0.0049 0.0484 0.03100 0.0313
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Table 4.3: Results obtained with HRF DR images.

Image No TPR FPR ACC PRECESSION F1-SCORE MCC

1 0.9472 0.0286 0.9698 0.7031 0.8071 0.8014

2 0.8376 0.0168 0.9718 0.8094 0.8233 0.8081

3 0.8565 0.0473 0.9455 0.5975 0.7039 0.6882

4 0.8544 0.0360 0.9561 0.6485 0.7373 0.7220

5 0.8372 0.0130 0.9755 0.8423 0.8397 0.8265

6 0.6360 0.0012 0.9662 0.9810 0.7717 0.7750

7 0.7745 0.0165 0.9640 0.8280 0.8004 0.7812

8 0.8642 0.0479 0.9441 0.6434 0.7376 0.7168

9 0.7523 0.0071 0.9726 0.9068 0.8224 0.8118

10 0.7125 0.0145 0.9569 0.8518 0.7759 0.7560

11 0.7932 0.0201 0.9610 0.8158 0.8043 0.7828

12 0.8359 0.0218 0.9665 0.7748 0.8042 0.7866

13 0.8446 0.0170 0.9713 0.8208 0.8325 0.8170

14 0.8318 0.0303 0.9572 0.7322 0.7788 0.7571

15 0.8832 0.0287 0.9641 0.7312 0.8000 0.7847

Average 0.8174 0.0231 0.9628 0.7791 0.7893 0.7743

STD 0.0725 0.0130 0.0091 0.1005 0.0374 0.0386



CHAPTER 4. EXTRACTION OF NORMAL RETINAL COMPONENTS 88

Table 4.4: Results obtained with HRF GLUCOMA images.

Image No TPR FPR ACC PRECESSION F1-SCORE MCC

1 0.9501 0.0252 0.9729 0.7574 0.8429 0.8347

2 0.9097 0.0228 0.9716 0.7853 0.8429 0.8301

3 0.9252 0.0215 0.9748 0.7638 0.8368 0.8277

4 0.9216 0.0209 0.9747 0.7843 0.8474 0.8369

5 0.9368 0.0204 0.9763 0.7922 0.8585 0.8492

6 0.9321 0.0226 0.9738 0.7816 0.8502 0.8399

7 0.8873 0.0187 0.9741 0.7957 0.8390 0.8264

8 0.9095 0.0269 0.9681 0.7422 0.8174 0.8051

9 0.8959 0.0203 0.9733 0.7862 0.8375 0.8251

10 0.8751 0.0169 0.9748 0.8124 0.8426 0.8296

11 0.8384 0.0167 0.9705 0.8288 0.8336 0.8175

12 0.8485 0.0285 0.9600 0.7554 0.7992 0.7787

13 0.8207 0.0172 0.9698 0.8065 0.8135 0.7971

14 0.8448 0.0264 0.9628 0.7463 0.7925 0.7739

15 0.8263 0.0253 0.9621 0.7521 0.7875 0.7678

Average 0.8881 0.0220 0.9706 0.7793 0.8294 0.8160

STD 0.0417 0.0038 0.0050 0.0249 0.0213 0.0247
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Table 4.5: Comparison of performance between different methods.

Method TPR FPR ACC

Mendoça andCampilho [188]. 0.7344 0.0236 0.9452

Staal et al. [189]. 0.6780 0.0170 0.9441

Martinez-Perez et al. [190]. 0.7246 0.0345 0.9344

Niemeier et al. [191]. 0.6898 0.0304 0.9416

Miri and Mahlooifar [179] 0.7352 0.0205 0.9458

Our Method 0.9200 0.0115 0.9822

Table 4.6: Comparison of the proposed method with other blood vessel segmenta-
tion algorithm [187]-evaluation on HRF Database

TPR FPR ACC

proposed method (HRF-healthy images) 0.8714 0.0220 0.9677

Odstrcilik et al.(HRF-healthy images) [187] 0.7861 0.025 0.9539

proposed method (HRF-DR images) 0.8174 0.0231 0.9628

Odstrcilik et al.(HRF-DR images) [187] 0.7463 0.0381 0.9445

proposed method (HRF-Glaucoma images) 0.8881 0.0220 0.9706

Odstrcilik et al.(HRF-Glaucoma images) [187] 0.7900 0.0362 0.9497

Figure 4.6 shows the result obtained with this algorithm at different stages.
Figure (a) shows the input image. Figure (b) is the luma component of the input
image and Figure (c) is the image obtained after applying the contrast enhance-
ment algorithm. Figure (d) is the result obtained after smoothing out the blood
vessels using morphological operation. The last row Figure (e) is the OD and fovea
localized results. From this results it is clear that this algorithm estimates the mid
points of OD and fovea with 100% accuracy.



CHAPTER 4. EXTRACTION OF NORMAL RETINAL COMPONENTS 90

The first column of Figure 4.6 shows the results obtained with a normal eye.
In this case both OD and fovea are accurately localized. The second column of the
figure indicates the results obtained with an eye image in which fovea is not visible.
In this case the algorithm localizes only the OD. Since the fovea is not visible in
this case, the fovea part is not detected in this case. The advantage of the proposed
method is that it is not falsely detecting any other region as fovea if the fovea is
not visible. The third column is the result obtained with a DR affected eye. But
in this case the severity level is less. In this case also the algorithm detects locus
of OD and fovea correctly. The last column shows the result obtained when an
eye with severe DR is given as input. In this case also the method succeeded in
identifying the mid points of OD and fovea. It can be observed that the proposed
method localizes the OD and fovea in all the cases.

In order to assess the performance of the algorithm quantitatively, the ground
truth of the images are necessary. Since most of the images utilized in this work is
collected from a local eye hospital, the ground truth of these images are not readily
available. So with the help of an experienced ophthalmologist the ground truths
are marked on only ten original images. Utilizing these ground truth marked
images and the obtained results a parameter namely overlapping score (OS) as
defined by (4.27) is calculated.

OS =
(R1 ∩R2)

R1 ∪R2
(4.27)

where R1 indicates the area under annotated ground truth; R2 represents
the area under segmented region. These areas are also directly proportional to
the number of pixels. ∩ and ∪ indicates intersection and union respectively. Ideal
value expected for OS is 1.

Figure 4.7 shows the input image, ground truth marked images and final re-
sults obtained. Since these images are obtained from a local hospital their aspect
ratio is different from that of the previous images.

Table 4.7 shows the overlapping score obtained for ten samples. It is noted
that the average overlapping score obtained is 0.9726, which indicates that 97.26%

of the segmented area matches with the ground truth. Thus, this method can
precisely distinguish the area that have identical traits as that of the defined pred-
icate. This method utilizes a simple concept namely region growing. It makes use
of minimum number of seeds.
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Figure 4.6: Results obtained with the proposed method on DRIVE database. From
top to bottom row they are the (a) Input image (b) Luma plane image (c) Contrast
enhanced image (d) Blood vessel smoothened image (e) Localized OD and fovea.
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Figure 4.7: Result obtained with proposed method on images collected from local
hospital. From top to bottom they are the (a)Input image (RGB) (b) Ground
truth given by expert (Binary) and (c) Result obtained with proposed method
(Binary)

4.8 Conclusion

Methods to extract retinal blood vessels, Optic Disc and Fovea are described in
this chapter. Multistructure elements morphology is used to identify the blood



CHAPTER 4. EXTRACTION OF NORMAL RETINAL COMPONENTS 93

vessels. Morphological opening by reconstruction using multistructure elements is
employed to eliminate unwanted edges. The remained false edges are removed by
utilizing CCA and LF locally. The quantitative performance results of segmenta-
tion shows that this method successfully identifies the blood vessels with accuracy
greater than 96%, F1-Score greater than 0.8 and MCC value greater than 0.77.

Table 4.7: Overlapping Score table

SI.No OS value

1 0.9777

2 0.9981

3 0.9931

4 0.9971

5 0.9953

6 0.9950

7 0.9143

8 0.9020

9 0.9721

10 0.9813

Average 0.9726

Morphological closing operation and region growing are used to identify and
find exactly the OD and fovea in RFIs without making any strong assumptions
regarding the positions of OD and fovea. This will aid in detection and labelling
of eccentricities in human eye. Moreover, size as well as geometrical shape of these
detected traits can be used for computerized classification of different impairments
in the human eye. As per the expert opinion, the system found the mid point of
the OD and fovea with 100% accuracy. Since the method was evaluated on real
data obtained from a nearby hospital, the average value 0.9726 obtained for the
quantitative parameter, OS substantiate the robustness of the method.
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To summarize, robust algorithms to extract retinal blood vessels and to
identify the locus of the OD and fovea in RFIs is presented in this chapter. These
algorithms show results as good as the existing methods. This brings the system
the capability for employment in a computerized DR screening system.



Chapter 5

Diabetic Retinopathy Detection

5.1 Introduction

As mentioned in Chapter 1 Diabetic retinopathy is characterized by the presence
of red lesions (microaneurysms) and bright lesions (exudates) which appear as
small white or yellowish white deposits with sharp margins and variable shapes
located in the outer layer of the retina. The detection of these lesions are crucial
for DR screening systems. The aim of the work described in this chapter is to de-
sign and develop a system that will be able to differentiate normal and abnormal
RFIs using Bag of Visual Words (BoVW) approach.

The chapter is arranged as follows. Section 5.2 briefly describes the steps
involved in image classification tasks using BoVW. The next section 5.3 gives
the details about the methodology used. This section contains sub-sections that
deals with preprocessing of RFIs, elimination of anatomical structures like blood
vessels and optic disc from RFIs, and classification of RFIs. Section 5.4 describes
the results obtained while executing the algorithm. Finally Section 5.5 gives the
summary of this chapter.

5.2 Bag-of-Visual Words

BoVW model has become one of the popular methods for image classification.
Sivic and Zisserman in [192] described the BoVW method as an analogy with
text retrieval and analysis where a document is characterized by word counts ir-
respective of their order in which they appear in the text. Since its introduction
in 2003, BoVW received state-of-the art performance in computer vision applica-
tions. The common steps involved in image classification tasks using BoVW can
be represented as shown in Figure 5.1.

95
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Figure 5.1: Steps in BoVW technique.

It consists of the following steps

1. Key-points localization from the image

2. Key-points description using local descriptors.

3. Vector quantization for the descriptors by clustering them into K-clusters
using K-means clustering. This step results a visual words vocabulary which
forms the codebook.

4. Accumulate the visual words into a histogram to establish the signature of
each image.

5. Normalize the histogram by dividing the count of each visual word over the
total number of visual words, and

6. Train a classifier (usually SVM) using the obtained image signature for
classification task.

5.2.1 Speeded Up Robust Feature (SURF)

As the name implies SURF is a fast and robust method for local, similarity in-
variant representation and comparison of images. SURF is composed of feature
extraction and feature description steps. The speed is achieved by the use of inte-
gral images and box filters.

SURF relies on the determinant of Hessian matrix for selecting the location
and the scale. Scale spaces are generally implemented as image pyramids. Due to
the use of box filters and integral images, SURF does not have to iteratively apply
the same filter to the output of a previously filtered layer, but instead, can apply
such filters of any size at exactly the same speed directly on the original image,
and even in parallel.
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The first step in creating SURF descriptor is fixing an orientation which is
reproducible. This step is achieved by collecting information from the circular
region around the key point. Then SURF descriptor is extracted by constructing
a square region aligned to the chosen orientation. For identifying reproducible
orientation Haar-wavelet response along X and Y directions in a circular neigh-
bourhood of radius 6s, where s is the scale, around the keypoint is calculated. The
sampling step is chosen as s and so it is scale dependent. So the size of the wavelet
is large at high scales. So integral images are used for fast filtering. Thus the sum
of horizontal and vertical wavelet responses in a sliding orientation window cover-
ing an angle of pi

2
are calculated. The largest of this sum value provides principal

orientation of feature descriptor.

In order to extract descriptor components, a 20s size square region with
center as the key-point is constructed. This square region is oriented along the
orientation of feature descriptor obtained earlier. Then the region is split into
smaller regions of 4 × 4. For each sub-region, compute a few simple features.
The horizontal and vertical wavelet responses, denoted as dx and dy respectively,
are summed up over each sub-region. Sum of absolute value of responses is also
calculated to account for the polarity of intensity changes. Hence each sub-region
has a 4-dimensional descriptor vector V = (

∑
dx,
∑
dy,
∑
|dx|,

∑
|dy|) . This

results in a descriptor for all 4× 4 sub-regions of length 64.

5.2.2 K-means clustering

K-means clustering tries to minimize the distance between intra cluster data-points
while keeping the distance between clusters as far as possible. It calculates the
sum of squared distance between the data points and the cluster’s centroid- which
is the arithmetic mean of all the data points that belong to that cluster. The data
point will be assigned to that cluster which gives least distance with that data
point. Less intra cluster variation shows homogeneity of data points with in the
cluster. K-means algorithm is given below 4.

5.2.3 Support Vector Machine

SVM try out to classify data in a dataset into two groups by the use of a linearly
separable hyperplane of any dimension. The optimum hyperplane is the one that
maximizes the distance between the hyperplane and a few close points. This
distance is known as the margin. Since the close points control the hyperplane
they are known as support vectors. Unlike the maximum margin classifier which
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Algorithm 4 K-means Clustering
1: Specify number of cluster K
2: Shuffle the dataset.
3: Initialize centroids of clusters randomly.
4: repeat
5: Find out the sum of squared distance between data points and all centroids.
6: Assign each data point to the closest centroid cluster.
7: Recalculate the cluster centroids.
8: until No change in centroids

demands the classes to be perfectly linearly separable support vector classifier
allows misclassification through the use of a soft margin. Tuning parameter will
control the amount of misclassification. When the tuning parameter(C) is small,
the amount of misclassification is also small. Even though low value of C will
give low bias and high variance, it will not generalize the classifier well. Also too
low value of C leads to over-fitting. If the tuning parameter is large, the classifier
would generalize better but with high amount of bias and misclassification. In
order to handle non-linearly separable classes, support vector classifier uses the
kernel trick. IT employs a kernel function to map the non-linear data to higher
dimensions. The kernel function adds dimensions to the problem for classification
so that the data becomes linear and finds the decision boundary in the higher
dimensional space.

5.3 DR Identification

The algorithm for automatic discovery of normal and abnormal RFIs is described
in this section. Blood vessels are the cause of false positives in detection of microa-
neurysms and hemorrhages. OD contains the maximum pixel values in the luma
plane of RFIs. It is also a source of false positives in bright lesion detection. So the
elimination of OD and blood vessels are the necessary steps to extract features of
RFIs and classify it into normal and abnormal groups. Also, distance of the lesions
from fovea is important in determining the severity of DR. Since the main aim of
the work described in this chapter is to only detect DR, and not its severity, fovea
does not play an important role here. The pictorial representation of the proposed
DR detection method is shown in Figure 5.2.

5.3.1 Preprocessing

Fundus images in the RGB model contains red, green, and blue planes. The image
enhancement algorithm discussed in Chapter 3 is used to enhance the image
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Figure 5.2: Block diagram of proposed DR detection method

contrast. After enhancing the contrast using the method described in Chapter 3,
noise reduction technique is applied to all the three components of contrast en-
hanced RGB image to remove unwanted components present in the image. Differ-
ent noise removal techniques such as Laplacian filtering, Average filtering, Motion
filter and Gaussian filter are tried and their results are given in Figure 5.3. From
these results it is found that Gaussian filter gives better results.

The Gaussian filter is lucidly symmetric. So it will not bias edge identifi-
cation. We know that fourier trasform of a Gaussian function is Gaussian. That
means, the fourier transform of a Gaussian function has a single lobe. So the image
smoothened by Gaussian filter will not be corrupted by contributions from unde-
sired high frequency signals. On the other-hand it retains most of the desirable
image properties. As shown in (5.1), based on Gaussian function, the Gaussian
smoothing administers average value of neighbouring pixels and the operator clears
the effect of noises. It act by removing components with high frequencies from the
image.

Imgs(x, y) = Img(x, y) ∗Gau(x, y) (5.1)

where ∗ stands for convolution, Imgs(x, y) is Gaussian filtered output, Gau(x, y)

is Gaussian filter and Img(x, y) is the input image. So in this work Gaussian
filter (1.5) is employed to perform smoothing (5.3) operation. Sobel edge detec-
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tor is applied to the Gaussian filtered image. This edge detector will detect the
boundary of optic disc.

Figure 5.3: Output obtained with different filters.(a) Laplacian (b) Average (c)
Motion (d) Gaussian

5.3.2 Elimination of Anatomical Structures

OD and blood vessels are known as anatomical structures of RFIs. The extrac-
tion of these two anatomical structures are done differently as described in Chap-
ters 4. The OD detected image obtained by the method described in Chapter 4
is combined with the edge image obtained by employing Sobel edge detector after
Gaussian filtering.

In order to completely eliminate OD, a Circular Hough Transform (CHT) is
utilized. The CHT estimates the center and radii of the circular objects in the im-
age. For better results before employing CHT, image is dilated with a disc shaped
structuring element of size 35. This operation will fill up the gaps or holes of OD
portion.

The result obtained in this stage is combined with the blood vessel extracted
image obtained by the method described in Chapter 4 to produce a mask. This
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mask is then subtracted from all the three planes (R,G,B) of the original image to
produce image without blood vessels and optic disc. This image act as the input
to the classifier for classifying normal and abnormal RFIs.

The results obtained with a normal RFI is shown in Figure 5.4. Figure 5.4(a)
shows the input image. Figure 5.4(b) shows the preprocessed image. Figure 5.4(c)
gives the image after removing the blood vessels. Figure 5.4(d), (e) and (f) shows
the preprocessed luma plane image, OD edge image and OD image after CHT is
applied respectively. By adding the extracted blood vessels and the OD detected
image pixel by pixel a mask is generated which is shown in Figure 5.4(g). The
image void of blood vessels and OD is shown in Figure 5.4(h).

The corresponding results obtained with an image containing pathological
lesions is shown in Figure 5.5. Along with the blood vessels and the OD, the
proposed system also detects the edges of the pathological lesions, which is actually
an undesirable one. But it is observed that the detection of the edges of the
pathological lesions is not affecting the end results. So no further effort is made
to suppress the detection of the edges of pathological lesions.

5.3.3 Classification

Bag of Visual Words model is used to classify the RFIs into normal and abnormal
ones. An image in this model is represented as a group of self governing local
descriptors. Then these descriptors are quantized by histogram vector. The color
features have revealed enormous impact in grouping the RFIs. Therefore it is
added as a feature for the formation of the BoVW. Usually there are two steps in
BoVW. Finding a collection of descriptors from a group of training images is the
first step. To obtain the feature set, a retinal image is separated into smaller tiles
with dense sampling technique. Every local patch has a descriptor. This descrip-
tor will map a point into a large dimensional feature space. The SURF features
interest areas are discovered in this work. The SURF features are acquired from
the blood vessel as well as OD removed RFIs.

The second step is construction of a visual vocabulary. It is done by grouping
the separated characteristics from the training set. K-means clustering algorithm
is used for this purpose. The feature descriptors are obtained and then allocated
to the nearest visual vocabulary when an image is given. Hence, each image is
represented using a histogram of the occurrences of each possible word from a
given vocabulary. This is then employed as the descriptor vector for training the
classifier.
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Figure 5.4: Results obtained with a normal RFI as input.

5.4 Results

The performance of the model is established using e-Ophtha database and images
collected from a local hospital.
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Figure 5.5: Results obtained when a RFI with pathological lesions is used as input.

5.4.1 e-Ophtha

This data base is color fundus images. This database can be utilized for scientific
research especially in DR. This database contains 2 folders. One for images with
exudates namely e−ophtha−EX and the other namely e−ophtha−MA contains
images with microaneurysms. The e−ophtha−EXdatabase consists of 82 RFIs
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with 35 healthy and 47 pathological retinal images. The e−ophtha−MA data base
consists of 381 images. Out of this 381 images, 148 images contains MAs or small
hemorrhages and the rest 233 contains no pathological lesions. Images of this
database are acquired with different resolutions [193].

5.4.2 Data from Local Hospital

Twenty five images from a local hospital are collected. This images consists of
pathological and healthy images. These images are acquired at different illumi-
nation conditions and by different persons. An expert ophthalmologist helped
to classify the images into 4 categories. First group that contains only healthy
images. Second group contains images with micoaneurysms. Third and fourth
contains images with exudates and hemorrhages (HMs) respectively.

The distribution of e-Ophtha and local datasets are given in Table 5.1

Table 5.1: Distribution of data

Dataset Normal MAs EXs HMs
e-Ophtha 268 148 47 -
Local 11 6 4 4

In this work, the database is alienated into two groups for 10 fold cross
validation. 1. a training group comprising 90% of images from the database and
2. a validation group having 10% of images from the dataset. The confusion matrix
obtained for the proposed approach for different datasets are tabulated in Table 5.2
and 5.3.

Table 5.2: Confusion matrix with e-Ophtha database

e-Ophtha
Actual

Predicted

- EXs MAs Normal
EXs 0.92 0.13 0
MAs 0.08 0.87 0

Normal 0 0 1
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Table 5.3: Confusion matrix with local data

Local Data
Actual

Predicted

- EXs MAs HMs Normal
EXs 0.89 0.12 0.05 0
MAs 0.07 0.86 0 0
HMs 0.04 0.02 0.95 0

Normal 0 0 0 1

From the confusion matrix we can calculate Sensitivity (SE)/Recall/True
Positive Rate (TPR), Accuracy (ACC), Specificity (SP), Precision (PR) and F1-
Score using the formulas (2.1) to (2.5) given in Chapter 2. The values obtained for
these parameters using e-Ophtha dataset and images collected from local hospital
are given in Table 5.4 and Table 5.5.

Table 5.4: PR, SE, ACC, F1-Score, and SP Values obtained with e-Ophtha dataset
while classifying EXs, MAs, and Normal eye.

EXs MAs Normal
PR 0.8762 0.9158 1
SE 0.92 0.87 1
ACC 0.93 0.93 1

F1-Score 0.8976 0.8923 1
SP 0.935 0.96 1

Table 5.5: PR, SE, ACC, F1-Score, and SP Values obtained with local dataset
while classifying EXs, MAs, and Normal eye.

EXs MAs HMs Normal
PR 0.8396 0.9247 0.9406 1
SE 0.89 0.86 0.95 1
ACC 0.93 0.9475 0.9725 1

F1-Score 0.8641 0.8912 0.9453 1
SP 0.9433 0.9767 0.98 1

The average values obtained for these evaluation parameters are given in
Table 5.6.
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Table 5.6: Average Values of PR, SE, ACC, F1-Score and SP

EXs MAs HMs Normal

Av
er
ag

e
V
al
ue
s
of

PR 0.8579 0.9203 0.9406 1
SE 0.905 0.865 0.95 1
ACC 0.93 0.9388 0.9725 1
F1 0.8809 0.8918 0.9453 1
SP 0.9392 0.9684 0.98 1

From the parameter values obtained, it is evident that the method produces
very promising results. Particularly, precision, recall, accuracy, F1-Score, and
specificity values associated with normal case is unity. This means that this clas-
sifier correctly detects the normal images.

As far as the average accuracy values are concerned, they are greater than or
equal to 0.93, 0.938, 0.972, and 1 for EXs, MAs, HMs, and normal eye respectively.
This high values of accuracy indicates that the number of correctly classified cases
is pretty good. But, the costs of having a mis-classified actual positive (or false
negative) is not considered while calculating the accuracy value. Recall shall be the
model metric used to select best model when there is a high cost associated with
false negative. The average recall values obtained for our classifier are greater than
0.90, 0.86, 0.95, and 1 for EXs, MAs, HMs, and normal eye respectively. These
high values of recall indicates that the cost of false negative is very low. As far as
the cost of false positive is concerned, precision is the good measure. The average
precision values obtained for our classifier are greater than .85 for EXs, .92 for
MAs and 0.94 for HMs. Its value is 1 for normal eye. From these high values of
precision we can conclude that the costs of false positive is also low. Accuracy
works best if false positives and false negatives have similar cost. But in our case,
the cost of false positives and false negatives are different. So it is better to look
at both Precision and Recall. F1-score is the measure that takes both false pos-
itives and false negatives into account. F1-score values obtained for our classifier
are greater than 0.88 for EXs, 0.89 for MAs, 0.94 for HMs and 1 for normal eye.
Specificity is a measure of true negative rate. This metric is often used in cases
where classification of true negatives is a priority. The average values obtained
from our classifier for this metric are greater than 0.93, 0.96, and 0.98 for EXs,
MA, and HMs respectively where as it is 1 for normal eye. These values are very
close to the best specificity value which is equal to 1.

From the confusion matrix we can observe that mis-classification is only
within the abnormal cases. For example, in some cases exudates are misclassified
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either as MAs or HMs. Similar is the case for MAs and HMs also. But none of the
abnormal cases are classified as normal and vice-versa. Hence this classifier can be
used as a binary classifier which classifies normal and abnormal images perfectly.
So in that case we are getting 100% classification accuracy.

5.5 Conclusion

Most of the existing algorithms demands surplus pre- and/or post- processing
phases for recognizing various features in retinal fundus images. Also, some of
the previous algorithms requires manual feature extirpation stages to sort the
features in RFIs. In this effort, BoVW model is exploited to develop an easily
manageable and automated diagnosis system. This approach can be used to dif-
ferentiate normal and abnormal RFIs. No manual feature extraction stages are
needed. The proposed approach can provide ophthalmologists a feasible, efficient,
and time-saving way of DR detection. The BoVW model along with SURF feature
descriptor demonstrates excellent discriminating capabilities with an accuracy of
100%. This accuracy is achieved when the method is used to differentiate normal
and DR affected RFIs. But when used to classify the abnormalities into MAs,
EXs, and HMs cases the F1-Score obtained are 0.88, .89%, and 0.94 respectively.
So, in summary, we can conclude that this method can be used to detect DR in
RFIs, but cannot be used for detecting the severity level of DR.





Chapter 6

Assessment of Diabetic Retinopathy
Severity

6.1 Introduction

Till now the algorithm succeeded in detecting the DR with 100% accuracy. But
when the classifier introduced in chapter 5 is applied to classify the DR features,
it achieved only 86%, 89%, and 95% accuracies for MAs, EXs, and HMs classifica-
tion. Furthermore, the demarcation of MAs, EXs, and HMs highly depends on the
experience of the ophthalmologist. Also the severity of DR depends on a number
of other features such as position of abnormal features, color of the abnormal fea-
tures etc. So it becomes a very difficulty task to predict the severity of DR with
an acceptable level of accuracy using the conventional classification methods.

The prevailing DR screening methods are paralyzed by the lack of trained
and experienced clinicians. Additionally, these methods are time-consuming. The
time lag in rendering results can bring about postponed or missed treatments,
lost follow-ups, and miscommunication- which may double the chance of sight im-
pairment. As per the finding by California Health Care Foundation, among the
subjects who were referred to an ophthalmologist by a physician, only 23% are
willing to visit an eye specialist. Out of the remaining 77%, 15% were ignorant of
the complaint, other 15% did not try for a screening session, another 22% failed
to appear for their screening test and 25% refused to take therapy [194]. These
statistical facts reveals the necessity for a system to identify and classify the stages
of DR quickly and accurately with confidence and direct the patients to ophthal-
mologist if needed. This will help medical practitioners concentrating on DR cases
to make use of their time productively and inevitably treat more number of DR
affected cases in a timely manner.
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With proceeding development in the field of computing facilities and acces-
sibility of best quality data sets, artificial intelligence (AI) systems based on deep
learning (DL) can employ algorithms to yield much reliable and expeditious di-
agnosis of DR.

The upcoming Sections in this Chapter are organized as follows. Section 6.2
describes the DR severity assessment through the use of the pre-trained Efficient-
NetB4 network. The results obtained are illustrated in Section 6.3. Conclusions
are given in Section 6.4.

6.2 DR Severity Assessment

The mechanism of establishing whether or not the candidate is affected by DR
from the given dataset of the candidate’s RFIs is known as DR prediction. We
achieved 100% prediction accuracy with the conventional BoVW classifier. Now
the remaining task is the assessment or grading of DR. i.e., the mechanism of
unearthing the severity level of DR from the RFIs. A clinically followed protocol
for DR grading is illustrated in Table 6.1. This Table shows the DR grades and
its clinical definitions.

Table 6.1: A typical scale for DR grading [21]

Class DR Types Clinical Features
0 Normal No abnormal lineaments
1 Mild NPDR Found MAs
2 Moderate NPDR Maximum number of MAs, Exs, and HMs
3 Severe NPDR All abnormal features in four quadrants
4 PDR All abnormal features with new blood vessel formation

A sample set of DR images is given in Figure 6.1 which shows all types of
DR presented in Table 6.1.

6.2.1 Stages of Diabetic Retinopathy

The different stages of DR as mentioned in Table 6.1 are as follows.

1. Mild nonproliferative retinopathy: This is the first stage of DR. At this
stage microaneurysms- dilated capillaries that have the appearance of a red
dot or balloon- are often detected. The most crucial fact at this stage is
that microaneurysms do not disturb vision and as a consequence often go
unattended.



CHAPTER 6. ASSESSMENT OF DIABETIC RETINOPATHY
SEVERITY 111

Figure 6.1: Examples of DR affected retinal images

2. Moderate nonproliferative retinopathy: When the patient reach this stage
maximum number of

(a) microaneurysms

(b) exudates - leaked out fluid (made of cells proteins, and solid materi-
als) from blood vessels into neighbouring tissue

(c) hemorrhages- leakage of blood from tiny blood vessels- appear in the
eye.
At this level the retinal blood veins may bulge and deplete their capa-
bility to transport blood.

3. Severe nonproliferative retinopathy: At this stage, a substantial number of
retinal blood vessels are blocked. Consequently, the necessary blood flow to
the retina severely decreases. Eventually, the retina will start to transmit
signals, asking the brain to develop new blood vessels.
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4. Proliferative retinopathy: This stage is the most complicated situation of DR.
At this stage new blood vessels start to grow. Unfortunately, these weak and
abnormal blood vessels can cause blood leaking into the eye. This may lead
to vision problems and potentially blindness.

The core of the DR assessment technique going to be discussed in this Chapter is
based on a deep learning approach particularly known as transfer learning. Trans-
fer learning is a widely used and devastating approach to DL on image dataset
that uses a pre-trained network. A pre-trained network is a retained network that
was already trained on a huge dataset, particularly on a large-scale image classifi-
cation assignment. Provided this pioneer dataset is huge and general enough, then
the spatial hierarchy of parameters acquired by the pre-trained network can pro-
ductively act as a comprehensive representation of the visual world. Accordingly
its parameters are believed to be useful for various computer vision tasks, even
though these new assignments may involve entirely different classes than those of
the original task. Such transferability of learned parameters across various tasks
is a principal advantage of DL as against many decrepit shallow-learning methods
and it makes DL very effectual for classification jobs.

6.2.2 Data

The data required for training the model has been taken from Kaggle-one of the
biggest and most diversified data analytic communities in the world. The dataset
consists of about 10GB of data. The distribution of data in the Kaggle dataset
is illustrated in the bar graph shown in Figure 6.2. It contains a total of 3662
retinal fundus images from all classes of DR. Out of this 3662 images 1805 images
belongs to class0 case, 370 images belongs to class1 case, 999 images belongs to
class2 case, 193 images belongs to class3, and remaining 295 images belongs to
class4 case.The images are of different size and collected from rural areas taken
under different illumination conditions. So the data requires pre processing before
feeding as input to the DL model.

6.2.3 Deep Learning

As mentioned earlier in this chapter transfer learning is used to classify the retinal
images as per their severity level.
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Figure 6.2: Distribution of data obtained from Kaggle dataset.

6.2.3.1 Selection of Network

Various pre-trained networks like Xception, Inception V3, ResNet50, VGG16,
VGG19, EfficientNetB0-B7 etc are available for transfer learning. Among the
available pre-trained models EfficieentNetB4 is selected in this work because of
the following reasons.

Convolutional neural networks are generally designed at a particular resource
cost. In order to gain more accuracy, they are scaled up when more resources are
made available. Increasing the CNN width, or depth, or employ high resolution
input image for training and evaluation are the conventional methods for scaling
the models. Even though these conventional practices improve the accuracy of
the classifier, they usually demands heavy manual tuning, and even with that fre-
quently return suboptimal performance.

EfficientNet utilize a model scaling technique that employs an uncomplicated
but very efficient compound coefficient to scale up CNNs. Different from conven-
tional methods that arbitrarily scale depth, width, and resolution, EfficientNets
uniformly scales all dimension with a fixed combination of scaling coefficients as
illustrated in Figure 6.3. This scaling method and current development on auto-
mated machine learning (AutoML) powered EfficientNets to surpass other net-
works with up to 10 times better efficiency.

The initial step in the compound model scaling approach is to accomplish a
grid search under a fixed resource constraint. Hence, a relation between various
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scaling dimensions of the baseline network is explored and the appropriate scaling
coefficient for width, depth, and resolution are determined. These coefficients are
then applied to scale up the baseline network to the desired computational bud-
get or target model size. A comparison of different scaling methods is shown in
Figure 6.3.

The success of model scaling also depends largely on the baseline network. So
a baseline network is developed by applying a neural architecture search employing
the AutoML mobile neural architecture search framework. This framework op-
timizes both accuracy and efficiency(FLOPS). The resulting baseline architecture
uses Mobile inverted Bottleneck Convolution (MBConv). This baseline network,
shown in Figure 6.4, is scaled up to achieve a family of models, known as Efficient-
Nets (B0 - B7).

So the first and foremost reason for the selection of EfficientNet is its much
smaller size compared with other models. At the same time EfficientNet pro-
vides a higher imagenet accuracy. For example, even if ResNet50 has 23,534,592
parameters in total, it still fails to achieve the accuracy offered by the smallest Ef-
ficientNet, i.e. EfficientNetB0, which has only 5,330,564 parameters in total. The
second advantage of EfficientNets is that it scales more effectively by meticulously
balancing the network width, depth, and resolution there by providing a better
performance. Figure 6.5 and 6.6 demonstrates the performance of EfficientNets
with various other pre-trained networks in terms of number of parameters ( in Mil-
lions and number of FLOPS in Billions). From Figure 6.5 and 6.6 we can conclude
that a mobile size EfficientNet model can be scaled up very efficiently surpassing
the state-of-the-art accuracy with an order of magnitude fewer parameters and
FLOPS on commonly used transfer learning datasets [195].

Among the different EfficientNet models available, EfficientNetB4 is found
to be a good choice due to its high accuracy and small size. Even though higher
models of EfficientNet gives better performance than the selected EfficientNetB4,
the number of parameters of these models also increases rapidly. Thus considering
the trade-off between complexity and accuracy EfficientNetB4 is selected.

6.2.3.2 Training the Network

Generally there exists two methods to use a pre-trained network. 1. Feature ex-
traction and 2. Fine-tuning

1. Feature extraction

Feature extraction is carried out using the representations acquired by a
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Figure 6.4: Architecture of EfficientNet baseline network
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Figure 6.5: Comparison of parameters Vs accuracy of different Network [195]

Figure 6.6: Comparison of FLOPS Vs accuracy of different network [195]

previous network to bring out interesting characteristics from current sam-
ples. These characteristics are then passed through a new classifier, which is



CHAPTER 6. ASSESSMENT OF DIABETIC RETINOPATHY
SEVERITY 118

taught from scratch.

CNNs employed for image categorization include two parts: they commence
with a succession of pooling and convolution layers, and they build up to a
densely connected classifier. The former part is known as the convolution
base (conv_base) of the model. In the case of CNNs, feature extraction con-
sists of getting the conv_base of an formerly trained network, passing the
new data through it, and preparing a new classifier atop the conv_base as
illustrated in Figure 6.7.

Figure 6.7: Swapping classifiers while keeping the same convolution base [196]

The reason for reusing only the convolution base is that the features acquired
by the conv_base are prone to be more common and hence more capable
of being used again: the attribute maps of CNNs are existence maps of
common notions over a picture, which is useful irrespective of the computer-
vision task in place. On the other hand, the features learned by the classifier
will definitely be particular to the group of classes on which the model was
trained - they will only hold facts about the presence likelihood of this or
that class in the whole picture. In addition, representations appearing in
densely connected layers bygone contain any information about where ob-
jects are positioned in the input image: these layers drop the notion of space,
however the object position is still embodied by convolutional feature maps.
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After taking the model, i.e. conv_base, add dense layers atop. Now run the
entire thing end to end on the input data.

2. Fine-tuning

An alternative popular technique for model re-utilization, contrasting to fea-
ture extraction, is fine-tuning. Fine-tuning is performed by relaxing a few of
the top layers of a fixed model base used for feature extraction, and collec-
tively training both the freshly introduced part of the model and some of the
top layers of the base model. This is termed fine-tuning because it faintly
modifies the more abstract features of the model being reused, so as to make
them more admissible for the current problem.

It’s only practicable to fine-tune the atop layers of the convolutional base once
the classifier on top has already been trained. If the classifier is untrained,
then the error signal radiating back through the network during training
will be too large, and the representations formerly acquired by the layers
being fine-tuned will be ruined. Accordingly the algorithm for fine-tuning a
network are as follows:

Algorithm 5 Fine-tuning a network

1: Introduce a bespoke network atop of a previously trained base network.
2: Hold the weights of the base network.
3: Coach the bespoke network added.
4: Release some of the top layers in the base network so that their weights can

be modified.
5: Collectively train these released layers and the bespoke network.

We could fine-tune the whole convolution base. However, we should take
care of the following facts

(a) Starting layers in the convolutional base identify more common and
reusable attributes, whereas top layers identify more specific features.
It’s more convenient to fine-tune the more specific attributes, since these
are the ones that ought to be re-purposed on our new task. There would
be rapid diminishing returns in fine-tuning bottom layers.

(b) The more parameter we are training, the higher the chance of over-
fitting.
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Since fine-tuning approach not only train the custom network added, but also some
of the top layers of the base network, the network will adapt more to the problem
at hand giving better results. So fine-tuning approach is adopted in this work to
train the pre-trained EfficientNetB4 network.

6.3 Results

The results obtained during training are illustrated in this section.

6.3.1 Results without Data Augmentation

First the training is carried out only with the data available, i.e. without incorpo-
rating the data augmentation technique. We plotted the the loss of the model over
the training and validation data during training and is shown in Figure 6.8. The
blue curve indicates training loss and the yellow curve indicates validation loss.

From the plot we can observe that even though the training loss is decreasing
with epochs, the validation loss gets almost saturated after 20 epochs. There is
a large difference between training loss curve and validation loss curve. For a
perfect classifier the validation loss curve should closely track the training curve.
Because we have relatively few training samples(≈ 2747 images), over-fitting will
be our number one concern. One of the methods to reduce over-fitting is data
augmentation.

6.3.2 Result with Data Augmentation

Over-fitting is the result of inadequate amount of samples to learn from. Data aug-
mentation is a technique to generate fresh samples from the samples in-hand, by
modifying the samples via various random transformations that produce plausible-
looking images. The objective is that during training, model will never come across
the exact same picture more than once. This aids to introduce the model to more
attributes of the data and conclude better.

If we train a fresh network employing this data augmentation technique, the
network will never view the identical input twice. However, the inputs it encounter
are still highly inter-correlated, since they originate from a small amount of initial
images. So data augmentation could not produce new information, but could only
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Figure 6.8: Loss without data augmentation.

rearrange existing information.

Data augmentation is achieved by performing rotation, shift, shear transfor-
mations, zooming, or flipping the images. A few samples of the augmented images
is given in Figure 6.9.

The model after adding two dense layers at the top looks like as shown in
Figure 6.10.

As evident from the model the base network of EfficientNetB4 has 17,673,816
parameters. The classifier added at the top has 460,293 parameters. The first dense
layer added has 256 outputs where as the top most dense layer (second dense layer)
has only 5 outputs. This five outputs corresponds to the five severity levels of DR.
As we can see from the model, the total trainable parameters is 18,008,909 which
is very large. But since we are using transfer learning using fine-tuning approach,
we first freeze the efficientnet-b4 base network and train only the layers we added.
So in that case we need to train only the 460,293 parameters. Now we unfreeze the
last layer of efficientnet-b4 base network and jointly train this layer and the added
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Figure 6.9: Samples of augmented images.

dense layers together. This step requires training of 5,736,697 parameters which is
small compared with the 18,134,109 total parameters. The model after unfreezing
the top layer of efficientnet-b4 base network looks like as shown in Figure 6.11.

The loss and accuracy plot of the model are given in Figure 6.12 and 6.13
respectively. As evident from the plots we are no longer over-fitting. The training
loss curves are closely tracking the validation loss curves.

Similarly, we have plotted the accuracy curves also. It is also observed that
the training accuracy curves are closely tracking the validation accuracy curves.
Our model produces accuracy value greater than 0.9. It will be difficult to go
any higher accuracy just by training our model, because of the limitation in the
amount of data to work with.
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# EfiicientNetB4 Summary with output layers added

Model: "sequential_1"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
efficientnet-b4 (Model) (None, 1792) 17673816
_________________________________________________________________
dense_1 (Dense) (None, 256) 459008
_________________________________________________________________
dense_2 (Dense) (None, 5) 1285
=================================================================
Total params: 18,134,109
Trainable params: 18,008,909
Non-trainable params: 125,200
_________________________________________________________________

Figure 6.10: Model after adding two dense layers at the top of efficientnet-b4 base
network

### Fine Tuning. Making one layer of base trainable

Model: "sequential_6"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
efficientnet-b4 (Model) (None, 1792) 17673816
_________________________________________________________________
dense_17 (Dense) (None, 256) 459008
_________________________________________________________________
dense_18 (Dense) (None, 5) 1285
=================================================================
Total params: 18,134,109
Trainable params: 5,736,697
Non-trainable params: 12,397,412

Figure 6.11: Model after unfreezing the top layer of efficientnet-b4 base network
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Figure 6.12: Loss curves with data augmentation.

Figure 6.13: Accuracy curves with data augmentation.
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Confusion Matrix

[[410 2 12 0 0]
[ 8 79 7 2 0]
[ 18 5 235 9 3]
[ 0 1 6 42 0]
[ 4 3 2 2 65]]

Precision, Recall and F1-Score

precision recall f1-score support

Class0 0.932 0.967 0.949 424
Class1 0.878 0.823 0.849 96
Class2 0.897 0.870 0.883 270
Class3 0.764 0.857 0.808 49
Class4 0.956 0.855 0.903 76

macro avg 0.885 0.875 0.878 915
weighted avg 0.909 0.908 0.908 915

Figure 6.14: Final confusion matrix, precision, recall, and F1-score values obtained

We also obtained the confusion matrix and other parameters such as Preci-
sion, Recall and F1-Score. The result obtained for this parameters are given in
Figure 6.14.

Precision value gives answer to the question : What proportion of predicted
Positives is actually Positive? We can see that maximum precision value (0.956)
is achieved for class4 and minimum value (0.764) for class3. The precision values
obtained for class0, class1, and class2 are 0.932, 0.878, and 0.897 respectively. The
classifier’s overall precision ( macro average) is 0.885 and weighted average value
of precision is 0.909.

Recall, an another very useful parameter, answers the question: What vol-
ume of actual Positives is exactly classified? We can see that maximum recall
value (0.967) is achieved for class0 and minimum value (0.823) for class1. The
recall values obtained for class2, class3, and class4 are 0.870, 0.857 and 0.855 re-
spectively. The macro average and weighted average values of recall is 0.875 and
0.908 respectively.

It is evident that the algorithm gives high values for both precision and
recall. To estimate the performance of the classifier F1-Score is also calculated,
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which is a function of both precision and recall. Since F1-Score is the harmonic
mean of precision and recall it always lies somewhere in between the two, but
gives more weight to lower value. We can see that maximum F1-Score (0.949) is
achieved for class0, giving higher weight to lower valued precision in this case and
minimum value (0.808), giving more weight to lower valued precision for class3.
The F1-Score obtained for class1, class2, and class4 are 0.849, 0.883, and 0.903
respectively. The overall F1-Score is 0.878 and weighted average values of F1-Score
is 0.908. The overall accuracy obtained for the classifier is 91%, which is very much
promising. The accuracy obtained from the classifier for different classes are shown
in Table 6.2.

Table 6.2: Accuracy obtained for diffrent classes.

Class 0 Normal 0.952
Class 1 Mild NPDR 0.97
Class 2 Moderate NPDR 0.932
Class 3 Severe NPDR 0.978
Class 4 PDR 0.985

From the accuracy values we can see that the classifier classifies the normal
case with 95.2% accuracy. But, we have already achieved 100% accuracy using
BoVW classifier to classify normal and abnormal cases. So if that classifier clas-
sify an image as normal, there is no need to proceed to this severity assessment.
This severity classifier classifies the mild NPDR with 97% accuracy. This is very
important because if we are able to detect the DR at its early stage, the treat-
ment becomes more effective. The accuracy achieved for moderate NPDR is 93.2%
which is a relatively low value compared with accuracy values obtained for other
stages of the disease. For severe NPDR and PDR stages the classifier accuracy
obtained were 97.8% and 98.5% respectively. The novelty of the proposed work
lies in the fact that it can classify normal and abnormal images with 100% accu-
racy. Also, the severity level of the abnormal cases are classified with an average
substantial accuracy of 96.33%.

In order to confirm the performance of the classifier, the kappa score also
known as Cohen’s kappa, is also calculated from the confusion matrix using (6.1) [197].

κ =
A− CA
1− CA

(6.1)

where A is Agree, CA is Chance Agree.

Cohen’s kappa, denoted by κ is a resilient statistic and is appropriate for
intra-rater and inter-rater reliability assessment. Alike correlation coefficients, it
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can vary from -1 to +1. κ = 0 indicates the degree of agreement that can be
counted on random chance. κ = 1 reflects excellent agreement between the raters.
Negative kappa values are uncommon in real life . Like all correlation statistics, the
kappa is a balanced quantity and thus is regarded the same across multiple studies.

Cohen suggested the kappa result be interpreted as follows: values ≤ 0 as
indicating no agreement and 0.01 − 0.20 as none to slight, 0.21 − 0.40 as fair,
0.41 − 0.60 as moderate, 0.61 − 0.80 as substantial, and 0.81 − 1.00 as almost
perfect agreement [197].

The kappa score obtained for the classifier is 0.8636, which shows that the
classifier can be considered as a perfect classifier.

6.4 Conclusion

In this chapter a DR severity assessment algorithm is described. The algorithm is
based on deep learning and it utilizes the pre-trained EfficientNetB4 network for
transfer learning. Data augmentation and fine tuning approaches are employed
for performing the transfer learning. The loss curves of the classifier shows that
the training loss nicely tracks the validation loss. Same is the case for training
accuracy also. The performance of the classifier is also evaluated using different
parameters such as precision, recall, F1-Score, Accuracy and kappa score. From
the values obtained for these parameters it is evident that the proposed classifier
is a perfect classifier for classifying the severity levels of diabetic retinopathy.





Chapter 7

Conclusion and Future Scope

The Chapter presents the summary of the work carried out and the conclusions
drawn. Important contributions of the work and the scope for further research in
this area are presented in this Chapter.

7.1 Image Contrast Enhancement

Conventional image contrast enhancement techniques usually consider small patho-
logical features present in the image as noise and hence these conventional tech-
niques removes these tiny, but wanted, pathological features. The image contrast
enhancement algorithm developed in Chapter 3 overcomes this draw back. Fuzzy
based image contrast enhancement is employed where image contrast is treated as
a qualitative rather than quantitative measure. Rather than applying the thresh-
olding operation directly to the NSCT coefficients, the developed algorithm uses
the threshold value to modified membership values of the coefficients. The new
NSCT coefficients are obtained using these modified membership values. Hence
this algorithm preserves the tiny pathological features present in the image.

7.2 Extraction of Normal Retinal Features

Algorithm presented in Chapter 4 to extract blood vessels from RFIs is based on
the famous mathematical morphology. Modified top hat transformation is used
at the edge detection step. The problem of containing all tiny ordinary intensity
variations in the top hat transformation is eliminated by the use of modified top
hat transformation. Also rather than using simple and ordinary structuring ele-
ments multistructure element morphology is used. This multistructure elements
are produced by gathering several SEs in a single window and hence can detect
complex edges. Opening by reconstruction and Connected Component Analysis
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with Length Filtering are employed to remove the false edges produced and refine
the result. The well known 8-connectivity region growing algorithm is used to
localize the optic disk and Fovea regions.

7.3 DR Detection

DR detection algorithm described in Chapter 5 used Bag of Visual Words tech-
nique to classify RFIs into normal and abnormal images. Since blood vessels and
optic disk are the sources of false positives in the detection of MAs, HMs, and
bright lesions they are removed from the RFIs before it is given as input to the
BoVW classifier. This classifier classifies normal and abnormal RFIs with 100%

accuracy.

7.4 Severity Assessment

Deep learning is employed to detect the severity level of DR present in the RFIs.
Transfer learning approach is used by selecting the pre-trained EfficientNetB4. The
main aspects considered while selecting the network were number of parameters,
accuracy and complexity. The kappa value obtained indicates that the classifier
can be considered as a perfect classifier for classifying the severity levels of DR.

7.5 Research Contributions

1. Developed an appropriate contrast enhancement algorithm for retinal fundus
images.

2. Developed algorithms to extract blood vessels and localize optic disc & fovea
from retinal fundus images.

3. Accurately detected the presence of diabetic retinopathy in retinal fundus
images.

4. Assessed the severity of diabetic retinopathy in retinal fundus images.

7.6 Scope for Future Work

A few possible suggestions for future work are presented.

1. The blood vessel extraction method employed in this work is based on gray
scale image and it consists of 3 different stages. Colour image based methods
can be developed for further improving the accuracy.
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2. The deep learning technique used here is transfer learning approach. In-
stead of using transfer learning approach employing hyperparameter tuning
or similar modern techniques, a dedicated network to assess the severity of
DR can be developed.
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