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Introduction

Graph Theory is a comparitively young but rapidly developing branch

of Mathematics. Within a few decades, graph theory had an explosive growth

together with the fast developments in allied subjects like Computer Science and

Bioinformatics. Graph theory can be used as a mathematical tool for designing

and analysing communication networks, social network systems etc. It has wide

range of applications in almost all branches of science, engineering, social sciences

and even in linguistics.

Domination is a flourishing area of graph theory. O. Ore and C. Berge intro-

duced the concept of domination. In his book called Theory of graphs [38] O.

Ore used the terms dominating sets and domination number for the first time. A

detailed survey on domination can be found in [28] and [29]. Another important

concern of research in graph theory is graph polynomials. These are polynomials

assigned to graphs. In 1878, J.J Silvester introduced the first graph polynomial

called edge difference polynomial [52]. Since then many graph polynomials were

introduced and studied extensively. Also distance is an important concept of

graph theory which is the basis of many symmetry concepts in graphs. In ad-

dition to the usual distance concept between vertices of a graph, several other

2



0.1. An overview of the thesis

distance concepts are also defined and studied in graph theory. Detour distance

[20], superior distance [34], signal distance [35] and steiner distance [9] are a

few to mention.

In the present work, a new cycle based univariate graph polynomial called

cycle neighbor polynomial and an improvised version called modified cycle neigh-

bor polynomial of the same are introduced and studied. Also some cycle related

dominations viz, Hausdorff domination and T1 domination and a generalisation

of T1 domination called T0 domination are introduced and some of their prop-

erties are studied. Finally a new distance concept related to cycles called cyclic

distance in graphs is also introduced and discussed.

0.1 An overview of the thesis

As the title “A STUDY ON CYCLES IN GRAPHS” suggests, this thesis is

a study of results involving cycles of the given graph. In this thesis a univariate

graph polynomial, some particular dominations and a distance concept related

to cycles are introduced and studied. All the graphs considered in this thesis are

finite, simple and undirected.

Apart from the introductory chapter, the thesis comprises of six chapters in

which the work is presented. The first chapter consists of a brief introduction,

a summary of the thesis and the preliminaries. In the section preliminaries, the

notations and terminologies used in the upcoming chapters are detailed. Basic

ideas and definitions needed for the development of the thesis are provided.

Some basic concepts of graph theory, domination in graphs, distance in graphs

3



0.1. An overview of the thesis

and graph polynomials are also discussed briefly.

In the second chapter, a new univariate graph polynomial called Cycle

Neighbor Polynomial of a graph is introduced. The cycle neighbor polynomial

of a graph G of order n is denoted by CN [G, x] and is defined as,

CN [G, x] = Σ
c(G)
k=0 ck(G)xk

where c(G) is the circumference of G, c0(G) is the number of cycle neighbor free

vertices (vertices which do not belong to any cycle of G) and ck(G) is the number

of cycles of length k, 3 ≤ g(G) ≤ k ≤ c(G) ≤ n in G, where g(G) is the girth

of G. Many graph properties like girth, circumference, number of cycles of dif-

ferent lengths, whether the graph is Hamiltonian, pancyclic or weakly pancyclic,

unicyclic, acyclic or not, a bipartite graph etc, can be directly obtained from the

polynomial expression. Some general properties of this polynomial are obtained.

The cycle neighbor polynomial of some graphs are computed. Connected graphs

which contain maximum and minimum number of terms in its cycle neighbor

polynomial and cycles and trees whose complements also have the same cycle

neighbor polynomial as the original graph are characterized. Some graph modi-

fications which do not change this polynomial of a graph are also discussed. An

attempt is made to establish a kind of equivalence relation between any connected

graph G and planar graphs in terms of number of cycles of different lengths in the

graph G. In addition to this a unique planar graph viz, unique almost path like

structure is assigned to every connected graph using cycle neighbor equivalence.

Also the cycle neighbor roots of a graph is introduced and graphs having zero as

the only cycle neighbor root is characterized. Location of roots of (r)-pancyclic

graphs, weakly (r)-pancyclic graphs and unicyclic graphs are obtained.

4



0.1. An overview of the thesis

The study of cycle neighbor polynomials is continued in the third chapter.

Motivated from the definition of generalised cycles in graphs, a modified version

of cycle neighbor polynomial of a graph is introduced. A brief comparitive study

of cycle neighbor polynomials and modified cycle neighbor polynomials of graphs

is carried out. The first section is concluded with the result that in terms of

completeness property of graph polynomials, modified cycle neighbor polynomial

of a graph is stronger than cycle neighbor polynomial of the graph. Modified

cycle neighbor polynomial of some graph operations are obtained in the next

section. Cycle neighbor polynomial of graph operations establishes that many

properties of the resulting graph like, bipartite propetrty of subdivision graph

of a simple graph, pancyclicity of square of path graphs, bipartite propetrty of

splitting graphs of paths and stars, near bipartite property of semi total line

graph and semi total point graph of paths, pancyclicity of total graph of paths,

hamiltonicity and in particular pancyclicity of kth power Gk of graphs of diameter

k for k = 2, 3, 4, ..., the property that middle graph of a star is a split graph etc.,

can be directly obtained using the tool of cycle neighbor polynomial.

The fact that every non isolated vertex of a Hausdorff graph [48] belongs

to a cycle of the graph, motivated us to introduce a new domination concept.

In the fourth chapter, Hausdorff domination is introduced by imposing the

condition on the dominating set that the graph induced by the dominating set is

a Hausdorff graph. A necessary and sufficient condition for a dominating set to

be Hausdorff dominating is obtained. A relation between Hausdorff domination

number and independent domination number is established. Also it is proved

that the span of every non independent Hausdorff dominating set contains a cy-

cle of length greater than or equal to four. Connected Hausdorff domination is

5



0.1. An overview of the thesis

also defined and some of its properties are studied. Finally, some relation between

Hausdorff domination number (or connected Hausdorff domination number) and

other domination parameters like connected domination number, total domina-

tion number, global domination number etc are obtained.

In chapter five, two generalisations of of Hausdorff domination viz T1 dom-

ination and T0 domination are introduced and discussed. Graphs having T1

domination number equal to 1, 2, 3 and n are characterized. As in the case of

Hausdorff domination it is obsevred that every non independent T1 dominating

set contains a cycle. It is proved that a dominating set is T0 dominating if and

only if the graph induced by the set is K2 free. Some properties of T0 dominating

set and connected T0 dominating set are also obtained.

In the sixth chapter, a new distance concept called cyclic distance in graphs

is introduced. Maximal cycle neighbor sets and maximal cyclic components

of a graph are defined and then cyclic distance between vertices of a graph is

introduced using these concepts. A vertex similarity measure called cyclic similar

vertices is defined using the notion of cyclic distance. Some properties of this

new distance are obtained and it is proved that cyclic distance induces a pseudo

metric on the set of vertices of a graph. Cyclic radius, cyclic diameter, cyclic

center, cyclic periphery etc., of a connected graph with respect to cyclic distance

are defined and discussed analogue to radius, diameter, center and periphery of a

graph with respect to the classical distance between vertices. Also it is observed

that for an acyclic graph, the notions of cyclic distance and the classical distance

between vertices coincide.

The study of cyclic distance in graphs is extended in chapter seven. Corre-

6



0.1. An overview of the thesis

sponding to every simple graph which is not a tree, a new graph called reduced

graph of the graph is obtained by contracting each of the maximal cyclic com-

ponents to a single vertex in the original graph. A characterization property

for the reduced graph to be a tree is obtained. Some interesting properties of

reduced graph of a graph are also dealt with. In the reduced graph of a graph

the order and size of the graph is diminished in some manner. As a graph with

minimum order and size can be studied easily, the introduction of the concept

of reduced graph of a graph enables us to study large complicated graphs in a

simplified way. Also a new graph matrix viz, cyclic distance matrix of a graph

is introduced and discussed. It is proved that the determinant of cyclic distance

matrix of a graph whose reduced graph is free of cyclic flowers with more than

two maximal cyclic components is independent of the structure of the graph but

it depends only on the number of maximal cyclic components in the graph.

In the epilogue, some directions for future work are mentioned. A list of

presented and published papers and a bibliography are also provided at the end

of the thesis.

7



Chapter 1

Preliminaries

It is believed that Swiss mathematician Leonard Euler introduced the

basic idea of graphs in eighteenth century. His attempts and solution to the

popular Konigsberg bridge problem is considered to be the origin of graph the-

ory. Graph theory, a branch of mathematics is the study of connection between

things. These things are formally referred to as nodes or vertices and the con-

nections are referred as links or edges. The reason for the growth of graph

theory is its applicability in almost every discipline like Sociology, Psychology,

Anthropology, Architecture, Biology, Chemistry, Computer Science, Theoretical

Physics, Communication networks etc,. The fundamental reason for such a fast

growth of graph theory is, any problem arising from real-world situation where

relationships between pairs of elements in the system exist, can be modelled into

a graph. Then using some existing results of graph theory or by finding some

new ones we can find solution to the problem.

8



1.1. Basic terminology

1.1 Basic terminology

This section explores the basics of graph theory that is needed for the develop-

ment of subsequent chapters. It includes the basic definitions and notations that

may appear in the forthcoming chapters, the concept of domination in graph

theory, major distance concepts in graphs and a brief literature review of graph

polynomials. We adopt the basic definitions and notations as in [7], [3] and

[28].

Basic terminology

“A graph G [7] is an ordered pair (V,E) consisting of the disjoint sets V of

vertices and E of edges, together with an incidence function ψ(G) : E → V × V

which associates each edge of G with an unordered pair of vertices of G”. “A

graph having finite number of vertices and edges is called a finite graph [7]”.

“The number of vertices and number of edges of a finite graph G are called the

order [3] and size [3] of G respectively”. “Two or more edges having same end

vertices are called multiple edges [3] and an edge with identical end vertices is

called a loop [7]”. “A graph is a simple graph [7] if it has no multiple edges

or loops”.

“The end vertices of an edge are said to the incident [7] with the edge”.

“Two vertices are adjacent [7] if they are incident with a common edge and

they are called neighboring vertices. Similarly two edges are adjacent [7] if

they are incident to a common end vertex”.

“The adjacency matrix [7] of a graph G of order n is an n×n matrix A(G)

= [aij] where aij, the ijth entry of the matrix is 1 or 0 according as the pair of

9



1.1. Basic terminology

vertices vi and vj are adjacent or not adjacent in G”.

“A complete graph [7] on n vertices is a simple graph in which every pair

of vertices are adjacent”. It is denoted by Kn. “A graph is bipartite [7] if its

vertex set can be partitioned into two subsets A and B so that any edge of G

has one end vertex in A and the other end in B”. “Whenever each vertex of

A is joined to every vertex of B in a bipartite graph, it is called a complete

bipartite graph [7]”. If |A| = m and |B| = n or viceversa it is denoted by

Km,n.

“The complement [7] of a simple graph G, denoted by G is the simple graph

with vertex set V (G) itself and two vertices in G are adjacent if and only if they

are not adjacent in G. A selfcomplementary graph is one which is isomorphic to

its complement”.

“Two graphs G and H are isomorphic [7], if there are bijections

θ : V (G) → V (H) and φ : E(G) → E(H) such that ψG(e) = uv if and only if

ψH(φ(e)) = θ(u)θ(v); such a pair (θ, φ) of mappings is called an isomorphism

between G and H and is denoted as G ∼= H”.

“For a graph G, the graph H is said to be a subgraph [7] of G if V (H) ⊆

V (G), E(H) ⊆ E(G) and ψH is restriction of ψG to E(H). Let G(V,E) be any

graph and V
′

be a nonempty subset of V ”. Then “the subgraph of G whose

vertex set is V
′

and edge set is the set of all edges in G whose both ends are in

V
′

is called a subgraph of G induced by V
′

[7]”. It is denoted by 〈V ′〉.

“For a vertex v in G, the degree [7] of v is the number of edges incident

with v”. It is denoted as dG(v) or d(v). If G is a simple graph, d(v) is the

number of neighbors of v [28] in G. “The set of vertices adjacent to v is called

10



1.1. Basic terminology

the open neighborhood of v denoted by N(v)”. “The set N(v) ∪ {v} is called

the closed neighborhood of v denoted by N [v]”. The maximum and minimum

degrees of vertices in G are denoted respectively by ∆(G) and δ(G) [3]. “A

vertex of degree zero is called an isolated vertex [39]”. “A vertex of degree

one is called a pendant vertex or an end vertex [3]” . “A vertex adjacent to

a pendant vertex is called a support vertex [39]”.

“A walk [7] is an alternating sequence v0e1v1e2...vi−1eivi...vn of vertices and

edges in which the vertices vi−1 and vi are the end points of the edge ei”. “The

length of a walk is the number of edges in the walk”. “A path [7] is a walk

having all the vertices distinct”. “A path on n vertices is denoted by Pn. A path

with u and v as end vertices is called a u-v path. A trail [7] is a walk where

all the edges are distinct. A closed trail in which all the vertices are distinct is

called a cycle [7]”. A cycle of length n is denoted by Cn.

“In a graph G which has at least one cycle, the length of a longest cycle is

called its circumference [7] and the length of a shortest cycle is its girth [7]”.

“A chord of a cycle C is an edge not in C whose end points lie in C. A graph

G is chordal if every cycle of length at least four in G has a chord”.

“A graph G is connected [7] if for each pair of vertices u and v in V (G),

there is a u-v path in G”. “A disconnected graph [7] is a graph which is not

connected”. “A graph is acyclic if it contains no cycles”. “A connected acyclic

graph is called a tree [7]”. Components [3] of a graph G are the maximal

connected subgraphs of G”. “A cut edge or bridge (or a cut vertex) [55] of a

graph is an edge (or vertex) whose deletion increases the number of components”.

“A nonseparable graph [7] is connected, nontrivial and has no cut vertices”.

11



1.1. Basic terminology

“A block [7] of a graph is maximal nonseparable subgraph”. If G is nonseparable

then G itself is called a block.

“The distance [7] between two vertices u and v of a connected graph G,

denoted by d(u, v), is the length of the shortest u-v path in G”. “The eccentricity

e(v) of a vertex v is max{d(u, v) : v ∈ V (G)}”. “Maximum of the eccentricities

of the vertices of G is called the diameter [55] of G and the minimum of the

eccentricities of its vertices is called the radius [55] of G”. The abbreviations

diam(G) and rad(G) are used to denote the diameter and radius respectively of

a graph G. “The center [55] of a graph G, C(G) is the subgraph induced by the

vertices of minimum eccentricity”.

“For a graph G of order n, the distance matrix [4] of G is a matrix of order

n, denoted by D(G) and is defined as D(G) = [di,j] where di,j = d(vi, vj) is the

distance between vi and vj”.

“Assigning colors to the vertices of a graph is called a vertex coloring” [55].

If no two adjacent vertices receive the same color, then such a coloring is called

a proper vertex coloring [55]. “The minimum number of colors required for a

proper vertex coloring of a graph G is called its chromatic tumber [55] , and

it is denoted by χ(G)”.

Operations on graphs

Some graph operations used in this thesis are the following. “The union [55]

of two graphs G1 and G2, denoted by G1 ∪ G2, is the graph with vertex set

V (G1) ∪ V (G2) and edge set E(G1) ∪ E(G2)”.

“The corona of two graphs [26] K and H is formed from one copy of K and

12



1.2. Domination in Graph Theory

|V (K)| copies of H where the ith vertex of K is adjacent to every vertex in the

ith copy of H”. It is denoted by KoH

“The line graph [28] L(G) of a graph G is the graph with vertex set E(G)

in which two vertices are adjacent if they are adjacent edges in G”.

“Edge contraction [55] is an operation which removes an edge e from G and

simultaneously merging the two vertices that it previously joined”. The resulting

graph is denoted by G/e.

“For a graph G, adding an edge e which is in G but not in G is called edge

addition [28] and is denoted by G + e. Similarly removing an edge e from G is

called edge deletion [28] it is denoted by G− e”.

“Vertex identification of two graphs G and H with disjoint vertex sets is

denoted by G.H and it is obtained by identifying a vertex of G with a vertex of

H”.

1.2 Domination in Graph Theory

Domination in graph theory is one of the major research area of graph theory.

The concept of dominating set, domination number and different types of domi-

nations are briefly discussed here.

“Let G = (V,E) be a graph. A set D ⊆ V is called a dominating set [28] if

every vertex in G is either in D or is adjacent to an element of D”. “The mini-

mum cardinality of all dominating sets in G is called the domination number [28]

and is denoted by γ(G)”. Different types of dominating sets have been studied

13



1.3. Graph Polynomials

by imposing conditions on the dominating sets. A detailed survey can be found

in [28] and [29]. “A dominating set D is called an independent dominating set

[11] if 〈D〉 is the empty graph”. “A dominating set D is called a connected dom-

inating set [44] if 〈D〉 is connected”. “D is called total dominating [10] if 〈D〉

has no isolated vertices”. “D is global dominating [44] if it is a dominating set of

G, the complement of G”. “D is cycle dominating [36] if 〈D〉 is a cycle and D is

a dominating clique [37], if 〈D〉 is a complete graph”. The corresponding mini-

mum cardinality of independent dominating set, connected dominating set, total

dominating set, global dominating set, cycle dominating set and clique dom-

inating set are respectively called independent domination number, connected

domination number, total domination number, global domination number, cycle

domination number and clique domination number and are denoted respectively

by i(G), γc(G), γt(G), γg(G), γcy(G) and γcl(G) [28]. The maximum size of an

independent set of vertices in a graph G is called independence number and is

denoted by β0(G) [28].

1.3 Graph Polynomials

The polynomials associated with graphs which encode the number of subgraphs

of the graph with given properties are called graph polynomials. First polynomial

in graph theory was introduced by J.J. Sylvester in 1878 [52] and further studied

by J. Petersen in [40]. It is a multivariate polynomial depending on the ordering

of the vertices of the graph. Since then, several graph polynomials such as

chromatic polynomial [43], Tutte polynomial [14], characteristic polynomial [1],

matching polynomial [17], independence polynomial [24], interlace polynomial

14



1.4. Distance in graphs

[41], clique polynomial [25] etc. have been introduced and studied extensively.

Applications of graph polynomials arise in many areas outside graph theory

as well. For example, matching polynomial [17] and Hossoya polynomial [30]

have many applications in Statistical Physics and Theoretical Chemistry. In

the past few decades, many graph polynomials have been studied and plenty of

theoretical and practical approaches have been developed.

1.4 Distance in graphs

Distance is one of the most basic concepts of graph-theoretic subjects. For a

connected graph G(V,E) and for u, v ∈ V (G), the classical distance between u

and v is the length of a shortest path connecting u and v. Many generalizations of

distance parameter can be seen in Graph Theory. The following are some among

them. In 1989, Chartrand et al introduced a natural and nice generalization

called Steiner distance [9] of the concept of classical graph distance. Let G be a

connected graph of order at least 2 and let S be a nonempty set of vertices of G.

Then the Steiner distance dG(S) among the vertices of S is the minimum size

among all connected subgraphs whose vertex sets contain S. In 1993, Chartrand

et al introduced detour distance [20] in graphs. For a connected graph G(V,E),

the detour distance D(u, v) between u and v is the length of a longest path P

between u and v in G. For a simple connected graph G and for two vertices u

and v of G, let Du,v = N [u]∪N [v]. K M Kathiresan and G Marimuthu defined a

Du,v - walk as a u− v walk in G that contains every vertex of Du,v. The superior

distance [34] dD(u, v) from u to v is the length of a shortest Du,v-walk.
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Chapter 2

Cycle Neighbor Polynomial of

Graphs

2.1 Introduction

1 2 There are plenty of graph polynomials in the literature of graph theory.

These are studied because some of them are generating functions of some graph

properties, some count the number of occurrences of certain graph features and

some others make an attempt to find complete graph invariants. In this chapter

a new univariate graph polynomial called cycle neighbor polynomial of a graph

is introduced. This polynomial is defined based on number of cycles of differ-

ent lengths in the given graph G. Cycle neighbor polynomial is essentially a

generating function for the number of cycles of various lengths in the graph G.

1Part of this chapter has been published in Malaya Journal of Mathematik, Vol. S, No. 1,
27-31, 2020

2Part of this chapter has been published in Communications in Mathematics and Applica-
tions, Vol.11, No. 4, 549-558, 2020
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The motivation behind the definition of this polynomial is that many graph

properties like girth, circumference, number of cycles of different lengths, whether

the graph is Hamiltonian [7], whether it is pancyclic [6] or weakly pancyclic [8],

whether it is unicyclic [26], whether it is acyclic or not, whether it is a bipartite

graph etc, can be directly obtained from the polynomial expression. A kind of

equivalence relation viz, cycle neighbor equivalence of graphs which is indepen-

dent of the order and structure of the graph but depending on the number of

cycles of different lengths is also introduced. This relation partitions the class of

all finite, simple graphs with no specific direction to the edges into sets having

the same cycle neighbor polynomial. So that corresponding to every graph, we

can find a planar graph which is cycle neighbor equivalent to the given graph.

Also this chapter covers a brief study on the roots of cycle neighbor polynomial

of graphs.

2.2 Cycle neighbor polynomial of graphs

In this section a new univariate graph polynomial called cycle neighbor polyno-

mial of a graph is introduced and some properties of this polynomial are observed.

Definition 2.2.1. Let G(V,E) be any graph. A vertex of the graph G is said to

be a cycle neighbor free vertex if it does not belong to any cycle of length greater

than or equal to three in the graph G.

Definition 2.2.2. Let G be a simple graph of order n. The Cycle Neighbor

Polynomial of G denoted by CN [G, x] is defined as,

CN [G, x] = Σ
c(G)
k=0 ck(G)xk



Chapter 2: Cycle Neighbor Polynomial of Graphs 18

where c0(G) is the number of cycle neighbor free vertices in G, c(G) is the cir-

cumference of G and ck(G) is the number of cycles of length k in the graph G,

for 3 ≤ g(G) ≤ k ≤ c(G) ≤ n and g(G) is the girth of G.

If we label the vertices of the graph, the distinct cycles of different lengths

can be distinguished easily. For example, consider the graph G in Figure 2.1. G

contains only one cycle neighbor free vertex, which is labelled as i. There are

six 3-cycles, which are abca, cdec, chfc, cgfc, fghf and chgc. There are four

4-cycles, which are cfghc, cfhgc, chfgc and jklmj and there is only one 6-cycle,

which is nopqrsn. Therefore c0(G) = 1, c3(G) = 6, c4(G) = 4 and c6(G) = 1.

Hence CN [G, x] = x6 + 4x4 + 6x3 + 1.
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Observation 2.2.3. 1. For any simple graph G, c1(G) = c2(G) = 0 in CN [G, x].

2. If G1 and G2 are isomorphic graphs, then CN [G1, x] = CN [G2, x] .

3. If H is an induced subgraph of G, then deg(CN [G, x]) ≥ deg(CN [H, x])

4. c0(G), the constant term in the cycle neighbor polynomial of G is the num-

ber of cycle neighbor free vertices in G.
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5. If a graph G contains no cycle neighbor free vertices, then zero is a root of

its cycle neighbor polynomial.

Proposition 2.2.4, gives some intersting properties of cycle neighbor polyno-

mial of a graph which follows directly from the definition.

Proposition 2.2.4. Let G(V,E) be any graph of order n. If CN [G, x] is a

nonconstant polynomial then,

1. The lowest exponent of x of the nonconstant term in the cycle neighbor

polynomial is the girth of G and the highest exponent is the circumference

of G.

2. If ck(G) 6= 0 for all k where 3 ≤ k ≤ n then G is pancyclic.

3. The degree of the cycle neighbor polynomial of G is n if and only if G is

Hamiltonian.

4. The set of all exponents of x of the nonconstant terms in the cycle neighbor

polynomial is the cycle spectrum CS(G) [42] of G.

Theorem 2.2.5. Let G be a nontrivial graph of order n. Then CN [G, x] is a

constant polynomial if and only if G is a forest.

Proof. Suppose if possible, CN [G, x] be a nonconstant polynomial of degree m

for some m ≥ 3 and cm(G) 6= 0. That is, G has at least one cycle of length m.

Hence it is not a forest.

Conversely, if G is a forest, then CN [G, x] = c0(G), the number of cycle

neighbor free vertices, a constant polynomial.
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Corollary 2.2.6 follows from the fact that the maximum number of edges in

any acyclic graph of order n is n− 1.

Corollary 2.2.6. Let G(V,E) be a graph of order n and size m. If m ≥ n, then

CN [G, x] is a nonconstant polynomial.

Proposition 2.2.7. Let G be any graph. Then deg(CN [G, x]) ≤ n − 1 if and

only if G is non hamiltonian.

Proposition 2.2.8. The cycle neighbor polynomial of any graph G of order n

contains at most n− 2 terms

Proof. The general expression for cycle neighbor polynomial of G is CN [G, x] =

c0(G) + c3(G)x3 + c4(G)x4 + ... + cc(G)(G)xc(G). If G is non hamiltonian, then

c(G) < n and when G is Hamiltonian, c(G) = n and c0(G) = 0

According to Whiteny’s Theorem [7] a graph G of order n ≥ 3 is two con-

nected if and only if any two vertices of G are connected by at least two internally

disjoint paths. Therefore no cycle neighbor free vertices can be found in any two

connected graph. Hence we have Theorem 2.2.9;

Theorem 2.2.9. Let G be any graph of order n ≥ 3. If G is two connected, then

CN [G, x] is a polynomial of degree greater than or equal to 3

Remark 2.2.10. The converse of the conclusion of Theorem 2.2.9 need not be

true. That is there are graphs for which deg(CN [G, x]) ≥ 3 but G is not two

connected. The cycle neighbor polynomial of the graph in Figure 2.2 is x5 + x6,

whose degree is six, even though it is not two connected.
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A graph G is bipartite if and only if it has no odd cycles [7]. Hence the cycle

neighbor polynomial of bipartite graphs contains no odd powers of x. Hence we

have the result;

Theorem 2.2.11. A graph is bipartite if and only if CN [G, x] of G is an even

polynomial

A graph G is 2-colorable if and only if it is bipartite [7]. Hence it follows

that;

Corollary 2.2.12. Let G be any graph. Then CN [G, x] is an even polynomial

if and only if χ(G) = 2, where χ(G) is the chromatic number of G.

Let G and H be two disjoint graphs with circumferences c(G) and c(H)

respectively. Since there are no edges between G and H, a cycle of length k,

0 ≤ k ≤ p where p = max{c(G), c(H)} in G ∪ H is either a k-cycle in G or a

k-cycle in H. So that we have;

Proposition 2.2.13. Let G and H be any two graphs and let G ∪ H be the

disjoint union of G and H. Then CN [G ∪H, x] = CN [G, x] + CN [H, x]

Corollary 2.2.14. If a graph G has n components G1, G2, ..., Gn then CN [G, x] =

CN [G1, x] + CN [G2, x] + ...+ CN [Gn, x]

Next we find the cycle neighbor polynomial of some particular graphs and

some graph classes.



Chapter 2: Cycle Neighbor Polynomial of Graphs 22

Proposition 2.2.15. Let G be a unicyclic graph of order n. If the length of the

cycle is m, 3 ≤ m ≤ n then the cycle neighbor polynomial of G is CN [G, x] =

xm + (n−m)

Proof. Since G has only one cycle say Cm of length m and the remaining vertices

V (G)− V (Cm) are cycle neighbor free, the result follows.

Corollary 2.2.16. Let G ∼= Cn, a cycle on n vertices. Then CN [G, x] = xn.

Definition 2.2.17. [19] “A Tadpole graph (or dragon graph) Cn,m, n ≥ 3,

m ≥ 1 is obtained by joining a cycle Cn, n ≥ 3 to a path Pm on m vertices with

a bridge.”

Corollary 2.2.18. Let G ∼= Cn,m, then CN [G, x] = xn +m.

Proposition 2.2.19. For a wheel graph Wn
∼= Cn−1 +K1, n ≥ 4

CN [Wn, x] = (n− 1)
∑n

k=3 x
k + xn−1

Proof. In Wn = Cn−1 + K1, let v ∈ V (K1) be the central vertex of Wn. Then v

is adjacent to every vertex of Cn−1 and vertices of Cn−1 has only two neighbors

other than v. It can be easily verified that the number of cycles of length k, in

Wn is n − 1 for 3 ≤ k ≤ n, k 6= n − 1 and there are n cycles of length n − 1.

Therefore, CN [Wn, x] = (n− 1)
∑n

k=3 x
k + xn−1.

Definition 2.2.20. [19] “A Helm graph Hn, n > 3 is obtained from a wheel

graph Wn by attaching a pendant edge at each vertex on the rim of the wheel Wn”

Corollary 2.2.21. CN [Hn, x] = CN [Wn, x] + (n− 1), n ≥ 4

Proposition 2.2.22. For any complete graph Kn, n ≥ 3

CN [Kn, x] = n!
2

[ x3

3(n−3)! + x4

4(n−4)! + ...+ xn−2

(n−2)2! + xn−1

(n−1) + xn

n
]
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Proof. In Kn every vertex is adjacent to every other vertex. Hence to get the

number of k-cycles of length k, 3 ≤ k ≤ n in Kn, choose k vertices out of n in
(
n
k

)
ways and multiply it with the number of permutations (k!) of these k vertices

and divide it by 2k, in order to avoid the repetition of the cycle count with which

each cycle is represented by the permutation. That is in CN [Kn, x], ck(G) =(
n
k

)
k!
2k

= n!
2k(n−k)!

Therefore, CN [Kn, x] = n!
2

[ x3

3(n−3)! + x4

4(n−4)! + ...+ xn−2

(n−2)2! + xn−1

(n−1) + xn

n
]

Definition 2.2.23. [19] “A Lollipop graph Ln,m, n ≥ 3, m ≥ 1 is obtained by

joining a complete graph Kn, n ≥ 3 to a path Pm on m vertices with a bridge.”

Corollary 2.2.24. CN [Ln,m, x] = CN [Kn, x] +m

Definition 2.2.25. [19] “A Windmill graph W
(m)
n , is the graph obtained by

taking m copies of the complete graph Kn, n ≥ 3 with a common vertex.” W
(m)
3

is also called the friendship graph and it is denoted by Fm

Corollary 2.2.26. CN [W
(m))
n , x] = mCN [Kn, x]

Corollary 2.2.27. CN [Fm, x] = mx3

Proposition 2.2.28. For a complete bipartite graph Km,n, m ≥ 2, n ≥ 2

CN [Km,n, x] = Σ
min{m,n}
k=2

k!2

2k

(
m
k

)(
n
k

)
x2k. In particular, CN [Kn,n, x] = Σn

k=2
k!2

2k

(
n
k

)2
x2k

Proof. A complete bipartite graph Km,n contains no odd cycles. The number of

cycles of length 2k, k = 2, 3, ...,min{m,n} in Km,n is given by

2mn(m−1)(n−1)...(m−k+1)(n−k+1)
4k

= k!2

2k

(
m
k

)(
n
k

)
after deleting duplication of cycle count.

Whenm = n, number of cycles of length 2k inKn,n is k!2

2k

(
n
k

)2
. Hence, CN [Km,n, x]

= Σ
min{m,n}
k=2

k!2

2k

(
m
k

)(
n
k

)
x2k and, CN [Kn,n, x] = Σn

k=2
k!2

2k

(
n
k

)2
x2k.
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Definition 2.2.29. [7] “A Shell graph Sn
∼= Pn−1 + K1, n ≥ 3 which can also

be defined as the graph obtained from the cycle Cn, n ≥ 4 by adding the edges

corresponding to the n − 3 concurrent chords of the cycle. The vertex at which

all chords are concurrent is called the apex of the shell.”

Proposition 2.2.30. CN [Sn, x] = (n−2)x3+(n−3)x4+(n−4)x5+...+2xn−1+xn

Proof. Let v1, v2, ..., vn−1 be the vertices of Pn−1 and let v be the vertex of K1.

Every cycle of length k, 3 ≤ k ≤ n contains the consecutive vertices

vi, vi+1, ..., vi+(k−2), 1 ≤ i ≤ n − k of Pn−1. Hence the number of such cycles of

length k is n− (k − 1), 3 ≤ k ≤ n. Therefore it follows that,

CN [Sn, x] = (n− 2)x3 + (n− 3)x4 + (n− 4)x5 + ...+ 2xn−1 + xn.

Definition 2.2.31. [32] “A bow graph is a double shell with same apex in which

each shell has any order.”

Corollary 2.2.32. Let BN be a bow graph of order N ≥ 5, which includes shells

Sn and Sm such that N = m+ n− 1 then

CN [BN , x] = CN [Sn, x] + CN [Sm, x]

Proof. BN includes the shells Sn and Sm with the same apex v, so that v is a

cut vertex of BN . Hence there are no cycles in BN which have edges with one

end in Sn and other end in Sm. Hence the result.

Definition 2.2.33. [55] “A butterfly graph BF is a bow graph with exactly two

pendant edges at the apex.”

Corollary 2.2.34. If BF is a butterfly graph with N ≥ 7 vertices, then

CN [BF, x] = CN [BN−2, x] + 2
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2.3 Graphs with a given order and having max-

imum and minimum number of terms in its

cycle neighbor polynomial

The cycle neighbor polynomial of any graph of order n has at most n− 2 terms

and at least one term. In this section we characterize connected graphs having

maximum and minimum number of terms in its cycle neighbor polynomial.

Theorem 2.3.1. Let G be a connected graph of order n, n ≥ 4. Then CN [G, x]

has exactly n−2 terms if and only if G is pancyclic or G ∼= Hn−1,1, where Hn−1,1

is a graph consisting of a pancyclic graph H on n− 1 vertices and a copy of K1

connected to any one of the vertices of H by a bridge.

Proof. If G is pancyclic or G ∼= Hn−1,1, then it is clear that CN [G, x] has exactly

(n− 2) terms.

Now assume that for the graph G, CN [G, x] has exactly (n− 2) terms. Sup-

pose if possible, G is neither pancyclic nor G ∼= Hn−1,1 but CN [G, x] contains

(n − 2) terms. Since G is not pancyclic, G does not contain a cycle of length l

for some l for which 3 ≤ l ≤ n

Claim: l 6= n

Suppose if possible l = n. Then G must contain cycles of all lengths k,

3 ≤ k ≤ n − 1. Otherwise, the number of terms in CN [G, x] will be less than

(n− 2), contradicting our assumption. Therefore G must be a connected graph

of order n and contains cycles of all lengths k, 3 ≤ k ≤ n−1. Hence G ∼= Hn−1,1,

another contradiction to the assumption that G � Hn−1,1. Therefore l 6= n.
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So let l = k, 3 ≤ k ≤ n− 1. When G contain no cycles of length k, in order

for CN [G, x] to have (n − 2) terms, G must contain a Hamilton cycle and at

least one cycle neighbor free vertex, a contradiction.

Since a Lollipop graph Ln−1,1, n ≥ 4 is obtained by attaching complete graphs

K1 and Kn−1 by a bridge, we have the following Corollary.

Corollary 2.3.2. The Lollipop graph on n ≥ 4 vertices contains n− 2 terms in

its cycle neighbor polynomial.

Definition 2.3.3. [5] “A cactus graph is a connected graph in which no two

cycles have an edge in common.”

Definition 2.3.4. A cactus graph G in which the length of every cycle in G is

k and every vertex belongs to at least one cycle of G is called k-cycle neighbor

graph .

The graph in Figure 2.3 is a 3-cycle neighbor graph.
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Theorem 2.3.5. Let G be a connected graph of order n. Then the cycle neighbor

polynomial of G has exactly one term if and only if one of the following conditions

holds.
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1. G is a tree

2. G is k-cycle neighbor graph for some k, 3 ≤ k ≤ n.

Proof. If (1) holds, then trivially, CN [G, x] = n. And when (2) holds, every

vertex of G belongs to atleast one cycle of G, hence G contains no cycle neighbor

free vertices and the lengths of all cycles in G are k, therefore CN [G, x] =

ck(G)xk, where ck(G) is the number of k-cycles in G.

Conversely, suppose that CN [G, x] = ck(G)xk, k 6= 1 or 2. If k = 0, then

CN [G, x] = c0(G), and since G is connected, it is a tree. If k 6= 0, then 3 ≤ k ≤ n.

Hence G has ck(G) cycles of length k. Also since G is connected, each of these

ck(G) cycles are connected to m other k-cycles either by a common vertex or by

a bridge, where 1 ≤ m ≤ (ck(G) − 1). But no pair of these cycles have an edge

in common. Otherwise, these two cycles will then form a new cycle of length

greater than k, which contradicts CN [G, x] = ck(G)xk.

Corollary 2.3.6 is a direct consequence of Theorem 2.3.5.

Corollary 2.3.6. If G is not connected, the cycle neighbor polynomial of G

contains exactly one term if and only if

1. G is a forest

2. Each component of G is k-cycle neighbor graph for the same value of k,

k = 3, 4, 5, ....
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2.4 Cycles and trees having the same cycle neigh-

bor polynomial as their complements

In this section we prove that among all connected acyclic graphs, only paths on

n vertices, n = 2, 3 or 4 and among all cycles Cn, only C5 have the same cycle

neighbor polynomial as their complements.

Theorem 2.4.1. Let T be any tree on n ≥ 2 vertices and let T be the complement

of T . Then CN [T, x] and CN [T , x] are the same if and only if T ∼= Pn, path on

n vertices, where n = 2, 3 or 4

Proof. When T ∼= Pn, n = 2, 3 or 4, T is also acyclic with the same order. Hence

CN [T, x] = CN [T , x].

If T is a tree on n > 4 vertices, we have the following cases.

Case (i) T is a path.

Suppose that T ∼= Pn, n ≥ 5. Then T has exactly two pendant vertices. For

n ≥ 5, the support vertices of the pendant vertices are distinct and nonadjacent.

These support vertices together with the pendant vertices will form a cycle of

length 4 in T .

Case (ii) T is not a path.

In this case, T has three or more pendant vertices. These pendant vertices

will be adjacent in T and will form a cycle in T . Hence in both cases T is not

acyclic and CN [T, x] 6= CN [T , x].

Theorem 2.4.2. Let Cn be any cycle, n ≥ 3. Then CN [Cn, x] = CN [Cn, x] if
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and only if n = 5

Proof. For n = 5, Cn is self complementary. Since isomorphic graphs have the

same cycle neighbor polynomial, CN [C5, x] = CN [C5, x]. For n = 3 and 4,

Cn is acyclic, hence in this case, CN [Cn, x] 6= CN [Cn, x]. When n > 5, Cn

contains triangles whereas Cn does not. Therefore in this case also we have

CN [Cn, x] 6= CN [Cn, x].

2.5 Some graph modifications which do not af-

fect the cycle neighbor polynomial

In this section we consider some graph modifications like edge removal, edge

addition, edge contraction and a special kind of vertex identification under which

the cycle neighbor polynomial of a graph will be unaffected.

Theorem 2.5.1. Let G be any graph. Then CN [G, x] = CN [G \ e, x] if and

only if e is a cut edge of G.

Proof. Suppose that CN [G, x] = CN [G \ e, x]. If e = uv is not a cut edge,

then there are one or more internally disjoint paths joining u and v other than

e. Hence it is clear that e belongs to a cycle of G and the removal of e from G

will affect at least one of the coefficients ck(G) where 3 ≤ k ≤ c(G). Therefore

CN [G, x] 6= CN [G \ e, x].

Conversely if e is a cut edge of G, both G and G\e will have the same number

of cycles of different lengths and the same number of cycle neighbor free vertices.

Therefore CN [G, x] = CN [G \ e, x].
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Theorem 2.5.2. For any edge e in G, CN [G, x] = CN [G + e, x] if and only if

e is an edge joining different components of G.

Proof. If e is an edge joining different components of a graph G, then e is a cut

edge of G+ e and hence by Theorem 2.5.1, CN [G+ e, x] = CN [G, x]

Conversely let CN [G, x] = CN [G + e, x]. Suppose if possible, e is not an

edge joining different components of G. Then the ends of e lie in the component

say G1 of G. Since G1 is a connected subgraph of G, the edge e in the subgraph

G1 + e of G + e is either an edge of a cycle in G1 + e or a chord of a cycle in

G1 + e. In both cases, the number of cycles in G and G + e are different which

contradicts CN [G, x] = CN [G+ e, x].

Definition 2.5.3. [55] “Edge contraction is an operation which removes an edge

e from G and simultaneously merging the two vertices that it previously joined.

The resulting graph is denoted by G/e.”

Theorem 2.5.4. Let G be any triangle free graph, then CN [G, x] = CN [G/e, x]

if and only if e is a cut edge of G and both end points of e are not cycle neighbor

free vertices.

Proof. If e is a cut edge of G such that both end points of e are not cycle neighbor

free vertices of G then both G and G/e have the same number of cycle neighbor

free vetices and the same number of cycles of different lengths k for all possible

values of k.

Conversely let CN [G, x] = CN [G/e, x]. If e is not a cut edge, then e belongs

to at least one cycle of G. Also since G is triangle free, the length of one or more
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cycles in G will be diminished in G/e, a contradiction to the assumption that

CN [G, x] = CN [G/e, x].

Theorem 2.5.5. Suppose that G and H are graphs with disjoint vertex sets and

let G.H be a graph obtained by identifying a vertex of G with a vertex of H.

Then CN [G.H, x] = CN [G∪H, x] if and only if both the vertices v1 ∈ V (G) and

v2 ∈ V (H) which are being identified in G.H belong to some cycles of G and H

respectively.

Proof. Let G and H be any two vertex disjoint graphs and let v1 ∈ V (G) and

v2 ∈ V (H). Consider the following cases.

Case (i) Both v1 and v2 are cycle neighbor free vertices in G and H respec-

tively. Then clearly CN [G.H, x] = CN [G ∪H, x]− 1

Case (ii) One of v1 ∈ V (G) or v2 ∈ V (H) is a cycle neighbor free vertex.

Then also CN [G.H, x] = CN [G ∪H, x]− 1

Case (iii) Let v1 belong to a cycle of G and v2 belong to a cycle of H. Then

the identification of the vertices v1 in G and v2 in H will not affect the number

of cycles in G and H and therefore CN [G.H, x] = CN [G∪H, x]. This completes

the proof.

Recall that a Barbell graph [21] is a graph obtained by taking two copies of

Cn, n ≥ 3 and joining them with one edge. This idea can be generalized by

joining any two graphs G and H with one edge. This family of graphs (infinitely

many) is called the Type 1 barbell-like graphs . Joining any two graphs G and

H by merging a vertex ui ∈ V (G) with a vertex vj ∈ V (H) results in a Type 2

barbell-like graph. These ideas are very important in chemistry because many



Chapter 2: Cycle Neighbor Polynomial of Graphs 32

compounds are formed by making a single bond between atoms of molecules or

by fusing atoms of different molecules together. Theorem 2.5.2 implies that Type

1 barbell-like graphs obtained from G and H will have the same cycle neighbor

polynomial as G∪H and Theorem 2.5.5 gives a necessary and sufficient condition

for a Type 2 barbell-like graph obtained from two graphs G and H to have the

same cycle neighbor polynomial as that of G ∪H.

2.6 Cycle neighbor equivalence of graphs

In this section cycle neighbor eqivalence or in short, cyn-equivalence of graphs is

introduced, which establishes a kind of equivalence between graphs having the

same cycle neighbor polynomial. In wireless sensor networks, cactus network [5]

is very important. Using cyn-equivalence, we can find a cactus network, which

gives an extension to ring architecture corresponding to any graph. Also this

equivalence can be used to represent a cactus network in a condensed form with

a simple graph of very small diameter as compared to that of the given network

especially when the network is very lengthy.

Definition 2.6.1. Let G be the class of all finite undirected simple graphs. Two

graphs G and H in G are said to be cycle neighbor equivalent (or cyn-equivalent)

if CN [G, z] = CN [H, z]. That is both G and H have the same cycle neighbor

polynomial. It is denoted by G c̃yn H

Clearly c̃yn is an equivalence relation on G. The collection of all graphs in G,

which are cyn-equivalent to a graph G is denoted by [G]cyn. That is

[G]cyn = {H ∈ G : CN [H, z] = CN [G, z]}. Isomorphic graphs are cyn-equivalent.
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But there are non isomorphic graphs which are also cyn-equivalent. For example

G and H in Figure 2.4 are cyn-equivalent.

u u
u
u

u
u
u u u

u
u

u
u
u

G HFigure 2.4

Proposition 2.6.2. All acyclic graphs on the same number of vertices are cyn-

equivalent. In particular, all trees on the same number of vertices are cyn-

equivalent.

Proposition 2.6.3. Let G be any nontrivial acyclic graph on n ≥ 2 vertices and

let G be the complement of G. Then G ∈ [G]cyn if and only if one of the following

statements holds

1. n = 2

2. n = 3 but G is not isomorphic to K3

3. G ∼= P4 or 2K2

Proof. From Proposition 2.6.2, it follows that all acyclic graphs on the same

number of vertices are cyn-equivalent. Hence G ∈ [G]cyn if and only if G is

acyclic.

When n = 2, either G ∼= K2 or G ∼= K2. In both cases, G is acyclic.

When n = 3, G ∼= P3 or G ∼= K2 ∪K1 or G ∼= K3 and G is acyclic if G is not

isomorphic to K3.
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When n = 4, G ∼= P4 or G ∼= 2K2 or G ∼= P3∪K1 or G ∼= K2∪K2 or G ∼= K4.

Here G is acyclic only if G ∼= P4 or 2K2.

Now let n ≥ 5. If G contains only one component, then G is a tree. Hence it

follows from Theorem 2.4.1, that G contains a cycle. Otherwise, G contains at

least two components, hence G cannot be acyclic.

Let Cn be a cycle on n ≥ 3 vertices. When n ≤ 4, Cn is acyclic. When n = 5,

Cn
∼= Cn. And when n ≥ 6, Cn contains a triangle. Hence it follows that;

Proposition 2.6.4. Let Cn be any cycle, n ≥ 3. Then Cn ∈ [Cn]cyn if and only

if n = 5

If G ∼= Cn, a cycle on n ≥ 3 vertices, then L(G), the line graph of G is

isomorphic to G. Hence we have ;

Proposition 2.6.5. If G ∼= Cn, a cycle on n ≥ 3 vertices, then L(G) ∈ [G]cyn.

A cut edge contribute nothing to the length of any cycle in a graph whereas,

the addition or removal of any edge other than a cut edge will alter the cycle

neighbor polynomial of a graph.

Proposition 2.6.6. Let G be any graph. Then G \ e ∈ [G]cyn if and only if e is

a cut edge of G.

Proposition 2.6.7. Let G be any graph with at least two components, then

G+ e ∈ [G]cyn if and only if the end points of e lie in different components of G.

Proposition 2.6.8 follows from Theorem 2.5.4.
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Proposition 2.6.8. Let G be any triangle free graph. Then G and G/e are

cyn-equivalent if and only if e is a cut edge of G and both end points of e are not

cycle neighbor free vertices.

Even when two unicyclic graphs of the same order are not isomorphic, the

length of the unique cycles in those graphs can be the the same. Hence Propo-

sition 2.6.9 follows.

Proposition 2.6.9. Let G1 and G2 be two connected, disjoint unicyclic graphs

of the same order. Then G1 and G2 are cyn-equivalent if and only if G1 and G2

both contain the same number of cycle neighbor free vertices.

Definition 2.6.10. A graph G ∈ G is cycle neighbor unique (or cyn-unique) if

CN [G, z] = CN [H, z] implies that H is isomorphic to G.

Theorem 2.6.11. All cycles Cn are cyn-unique for n ≥ 3

Proof. Let G be any graph of order n such that G c̃yn Cn. Then CN [G, z] =

zn. Hence G has exactly one cycle of length n and every vertex of G belongs to

that cycle. Therefore, G ∼= Cn

Corollary 2.6.12. Complete graph Kn is cyn-unique if and only if n = 1 or 3

Proof. It is obvious that K1 is cyn-unique. When n = 3, Kn
∼= Cn. Hence

Theorem 2.6.11 applies. When n = 2, K2 and K2 have the same cycle neighbor

polynomial. When n > 3, consider any cycle neighbor graph H, which contain as

many cycles of length k for 3 ≤ k ≤ n, as in Kn. Then CN [Kn, z] = CN [H, z].

Hence the result.
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Remark 2.6.13. The only cyn-unique graphs are the complete graphs K1 and

K3 and all cycles Cn, n ≥ 3. Also it follows from Proposition 2.6.7 that there

are no cyn-unique graphs with more than one component.

Remark 2.6.14. Since in a cactus graph, no cycle has a chord, it follows that

every cactus graph is planar. Hence we have;

Theorem 2.6.15. Every non acyclic graph is cyn-equivalent to a cactus graph.

Proof. Let G be a non acyclic graph. If G itself is a cactus graph, then there is

nothing to prove. So let G has a cycle which contains a chord. Without loss of

generality, let H be a subgraph of G on n ≥ 4 vertices which is a chordal graph

with a unique chord. Then this subgraph H of G is cyn-equivalent to a cactus

graph containing three cycles whose lengths are the same as the lengths of the

three different cycles in H. Similarly to every block of G, which is not a cut edge,

we can find cactus graphs having the same number of cycles of different lengths

as in that block. Then by connecting all these cactus graphs corresponding to

different such blocks either by identifying any two vertices, one from each such

cactus graph or by connecting them by bridges we get a cactus graph having the

same number of cycles of different lengths as in the original graph. Hence the

proof.

An immediate consequence of Theorem 2.6.15 is ;

Corollary 2.6.16. Every non acyclic graph is cyn-equivalent to a planar graph.

Remark 2.6.17. It follows from Theorem 2.6.15 that a complete graph Kn,

n ≥ 3 is cyn-equivalent to a cactus graph. So that when n is large, it can be



Chapter 2: Cycle Neighbor Polynomial of Graphs 37

seen that Kn is cyn-equivalent to cactus graph of large order and arbitrarily large

diameter. Also this is true for all graphs Kn \ F , n ≥ 4 where Kn \ F is any

subgraph of Kn for which V (Kn \ F ) = V (Kn) and E(Kn \ F ) = E(Kn) \ F ,

where F is a nonempty subset of E(Kn) whose elements are chords of Kn. Hence

we have the following result :

Proposition 2.6.18. Cyn-equivalence of any two graphs G and H is independent

of the order, diameter and connectivity of the graphs G and H.

Remark 2.6.19. From Proposition 2.2.22, for any Complete graph Kn, n ≥ 3

CN [Kn, z] = n!
2

[ z3

3(n−3)! + z4

4(n−4)! + ... + zn−2

(n−2)2! + zn−1

(n−1) + zn

n
]. It follows from

Proposition 2.2.22 and Proposition 2.6.18 that when the circumference of a cactus

graph G is n, and the number of cycles of different lengths k, 3 ≤ k ≤ n in

G is equal to n!
2k(n−k)! , then G is cyn-equivalent to a simple graph containing

some pendant vertices attached to the vertices of Kn, with the number of pendant

vertices in that simple graph is equal to the number of cycle neighbor free vertices

in the cactus graph.

Definition 2.6.20. A graph G is called an almost path if V (G) can be partitioned

into U1, U2, ..., Um,W , where 〈Ui〉 is a cycle on |Ui| vertices for i = 1, 2, ...,m and

〈W 〉 is a path on |W | vertices with the connectiivity among U1, U2, ..., Um and W

is as follows;

(i) for each Ui at least one vertex of Ui is adjacent to exactly one vertex of any

one of the sets Uj or W , j = 1, 2, ...,m with j 6= i or at most two vertices of Ui,

each are adjacent to exactly one vertex belonging to two different sets among Uj

or W , j = 1, 2, ...,m, j 6= i and

(ii) at least one end vertex of W is adjacent to exactly one vertex of any one of
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the sets Uj, j = 1, 2, ...,m or both the end vertices of W each of them are adjacent

to exactly one vertex belonging to two different sets among Uj for j = 1, 2, ...,m.

Simply an almost path graph G can be considered as a path, in which the

nodes are either cycles or cycle neighbor free vertices and all the cycle neighbor

free vertices are clustered together to form an induced path in G. .

Definition 2.6.21. An almost path graph G is said to have a unique almost path

like structure (UAPLS) if V (G) = W ∪U1 ∪U2 ∪ ...∪Um as in Definition 2.6.20

and 〈W 〉 and 〈Ui〉 are arranged in a line such that 〈W 〉 is on the extreme left

and 〈Ui〉 are next to 〈W 〉 which are arranged in such a way that the lengths of

the cycles 〈Ui〉 are monotonic increasing from left to right.

Theorem 2.6.22. In terms of cyn-equivalence, there is a surjective mapping

from the set of all graphs to the set of all UAPLSs.

Remark 2.6.23. Consider the star graph Kn,1 on n ≥ 3 vertices. The corre-

sponding UAPLS is a path on n + 1 vertices. The diameter of Kn,1 is 2. It is

interesting to observe that when n is large, Kn,1 which has diameter two is cyn-

equivalent to a path having very large diameter. Another particular case is that

of a complete graph Kn on n ≥ 3 vertices. The diameter of Kn is one. But as

n increases, the diameter of its UAPLS increases tremendously. The following

table gives the relation between the order of Kn and the order of its UAPLS for

3 ≤ n ≤ 10.
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Order of Kn Order of the UAPLS of Kn

n = 3 3

n = 4 24

n = 5 150

n = 6 960

n = 7 6825

n = 8 54768

n = 9 493164

n = 10 5061600

2.7 Cycle neighbor roots of a graph

In this section cycle neighbor roots of a graph is introduced and cycle neighbor

roots and location of roots of some particular graphs are studied.

Definition 2.7.1. A zero of the cycle neighbor polynomial CN [G, z] of G is

called a cycle neighbor root of G.

Observation 2.7.2. Zero is a cycle neighbor root of a graph G, if and only if G

contains no cycle neighbor free vertices. For such graphs, the multiplicity of zero

as a root of CN [G, z] has an interesting interpretation. Multiplicity of 0 as a

cycle neighbor root of a graph is the girth g(G) of G. Hence g(G) is greater than

or equal to three. Also from the definition it is clear that cyn equivalent graphs

has the same set of cycle neighbor roots.

From Definition 2.3.4, we know that, a connected graph G is a k-cycle neigh-

bor graph, if every vertex of G belongs to at least one k-cycle in G and every
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edge is either a cut edge or an edge of a k-cycle in G. Theorem 2.7.3 gives a

characterization of k- cycle neighbor graphs in terms of cycle neighbor roots.

Theorem 2.7.3. Let G be a connected graph of order n. Then zero is the only

cycle neighbor root of G if and only if G is a k-cycle neighbor graph, where

3 ≤ k ≤ n.

Proof. Suppose that zero is the only cycle neighbor root of G. Then CN [G, z] =

ck(G)zk, 3 ≤ k ≤ n, where ck(G) is the number of cycles of length k in G. Since

G is connected, it is a collection of connected cycles of same length k with no

common edges. Hence G is a k-cycle neighbor graph.

Converse is obvious.

Corollary 2.7.4. Let G be any graph. Then zero is the only cycle neighbor root

of G if and only if every component of G is a k-cycle neighbor graph.

Since all the coefficients of cycle neighbor polynomial of any graph G is non-

negative, we have the result;

Theorem 2.7.5. The cycle neighbor polynomial of any graph has no zeros in

the interval (0,∞)

Theorem 2.7.6. Let G be a connected graph of order n ≥ 3, whose cycle neighbor

polynomial has degree n and zero is a cycle neighbor root with multiplicity 3. Then

G is (r)-pancyclic , r ≥ 1 [8], if and only if the remaining n − 3 cycle neighbor

roots of G are distinct and non real when n is odd, non real except the root −1

when n is even and these roots together with z = 1 forms the vertices of a regular

(n− 2)-gon inscribed in the unit circle in the complex plane.
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Proof. Suppose that G is (r)-pancyclic. Then,

CN [G, z] = rz3 + rz4 + rz5 + ...+ rzn

= rz3(1 + z + z2 + ...+ zn−3)

Since, Σn−3
i=0 z

i = zn−2−1
z−1 , the roots of Σn−3

i=0 z
i are the (n− 2)th roots of unity,

other than z = 1. Therefore, z = exp
2Πik
n−2 , k = 1, 2, ..., n− 3, which are distinct,

complex conjugate pairs when n is odd and a set of complex conjugate pairs

together with −1, when n is even and these roots lie on the unit circle.

Conversely, it is clear that if deg(CN [G; z]) = n with zero as a cycle neighbor

root with multiplicity 3 and the remaining n − 3 cycle neighbor roots of G are

distinct, non real when n is odd, non real except the root −1 when n is even

and these roots together with z = 1 forms the vertices of a regular polygon of

n − 2 sides inscribed in |z| = 1, the general expression for the cycle neighbor

polynomial of G is rz3(1 + z+ z2 + ...+ zn−3) = rz3 + rz4 + rz5 + ...+ rzn, which

is the cycle neighbor polynomial of a (r)-pancyclic graph.

Remark 2.7.7. It is still an open problem whether there exists (k)-pancyclic

graphs for k ≥ 3 [8]. Theorem 2.7.6 holds for all (r)-pancyclic graphs with

r = 1 and r = 2 and it holds for (r)-pancyclic graphs with r ≥ 3 if such graphs

exist.

Definition 2.7.8. A connected graph G of order n is said to be weakly (r)-

pancyclic [8], r = 1, 2, 3, ... if G contains exactly r k-cycles for all k, l ≤ k ≤ n,

where 4 ≤ l ≤ n− 1.

Corollary 2.7.9. Let G be a connected graph which is weakly (r)-pancyclic of
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order n. Then all the non zero cycle neighbor roots of G are distinct, non real

when n is odd, non real except the root −1 when n is even and all these non zero

roots lie on the unit circle.

Theorem 2.7.10. Let G be a connected graph of order n such that the cycle

neighbor polynomial of G has exactly two terms. Then CN [G, z] has a nonzero

real root if and only if one of the following conditions hold.

1. G contains at least one cycle neighbor free vertex and all cycles in G are

of the same length.

2. The length of any cycle in G is either m or k, where, 3 ≤ k < m ≤ n and

(m− k) is odd.

Proof. Let G be a connected graph of order n such that the cycle neighbor

polynomial of G contains exactly two terms. Then either

CN [G, z] = c0(G) + ck(G)zk, 3 ≤ k ≤ n− 1 or CN [G, z] = ck(G)zk + cm(G)zm,

3 ≤ k < m ≤ n When CN [G, z] = c0(G) + ck(G)zk, z = (−c0(G)
ck(G)

)
1
k and when

CN [G, z] = ck(G)zk + cm(G)zm

= zk(ck(G) + cm(G)zm−k),

the nonzero roots of CN [G, z] are given by z = (−ck(G)
cm(G)

)
1

m−k . Since a negative

number has a real nth root if and only if n is odd it follows that there is a real

root for CN [G, z] in the above cases if and only if k is odd in the first case and

m− k is odd in the second case.

Conversely assume that one of the conditions (1) or (2) in the statement
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of the theorem hold. Then either CN [G, z] = c0(G) + ck(G)zk, or CN [G, z] =

ck(G)zk + cm(G)zm. Without loss of generality, let us assume that k < m. Then

z = (−c0(G)
ck(G)

)
1
k with odd value of k or z = (−ck(G)

cm(G)
)

1
m−k with m− k as odd. Hence

CN [G, z] has a nonzero real root.

Since the cycle neighbor polynomial of a unicyclic graph G on n vertices is

CN [G, z] = zk + (n− k), k ≤ n [1], and since the kth roots of −(n− k) lie on a

circle of radius n− k in the complex plane, we have the following result;

Proposition 2.7.11. Let G be a unicyclic graph on n vertices. Then all the

cycle neighbor roots of G has absolute value |n − k|, which is the length of the

cycle in G and 3 ≤ k ≤ n. In particular, all these roots lie on a circle of radius

|n− k| in the complex plane.

Conclusion

A new univariate graph polynomial called cycle neighbor polynomial of a

graph is introduced in this chapter. Cycle neighbor polynomial of a graph directly

encodes the number of cycles of different lengths and the number of cycle neighbor

free vertices in the graph. Eventhough it is hard to find the number of cycles of

different lengths in a general graph, the concept of cycle neighbor polynomial of

a graph is interesting and important because it reveals many graph properties of

the underlying graph. The concept of cycle neighbor equivalence and the UAPLS

enables us to find a unique planar graph associated with every non acyclic graph.

It is observed that cycle neighbor polynomial of a graph cannot have any positive

real roots. Graphs having zero as the only cycle neighbor root is characterized.

Location of roots of some graphs are also obtained.



Chapter 3

Modified Cycle Neighbor

Polynomial of a Graph

3.1 Introduction

1 2 Motivated from the interpretation of simple cycles of lengths one and two [56],

an improvisation of cycle neighbor polynomial of a graph is introduced in this

chapter. The advantage of this definition is that this polynomial distinguishes

more graph classes than that of cycle neighbor polynomial. Also we study the

cycle neighbor polynomial of some graph operations, graph modifications and

that of graphs derived from the given graph with respect to this modified poly-

nomial. It helps us to view some interesting properties of the resulting graph

through cycle neighbor polynomial in a vivid manner.

1Part of this chapter has been published in Advances in Mathematics-Scientific Journal,
Vol. 9, No. 10, 8883–8889, 2020

2Part of this chapter has been published in Malaya Journal of Mathematik, Vol. 8, No. 4,
1703–1707, 2020

44



Chapter 3: Modified Cycle Neighbor Polynomial of a Graph 45

3.2 Modified cycle neighbor polynomial of graphs

We improve the definition of cycle neighbor polynomial of a graph by taking

into account the isolated vertices, non isolated cycle neighbor free vertices and

bridges which were not considered in the original cycle neighbor polynomial.

Definition 3.2.1. Modified cycle neighbor polynmial of a graph G of order n is

denoted by CN∗[G; z] and it is defined as

CN∗[G; z] = Σ
c(G)
k=0 ck(G)zk,

where c0(G) is the number of isolated vertices, c1(G) is the number of non isolated

cycle neighbor free vertices, c2(G) is the number of cut edges and ck(G) is the

number of cycles of length k in G with 3 ≤ g(G) ≤ k ≤ c(G) ≤ n.

The zeros of modified cycle neighbor polynomial ofG are the roots of CN∗[G; z].

Proposition 3.2.2 and Proposition 3.2.3 are direct implications of definition

of modified cycle neighbor polynomial.

Proposition 3.2.2. 1. Let G be any graph. Then the cycle neighbor polyno-

mial CN [G; z] and modified cycle neighbor polynomial CN∗[G; z] of G are

the same if and only if G contains no bridges and no non isolated cycle

neighbor free vertices. For such graphs, both the set of all cycle neighbor

roots and modified cycle neighbor roots are the same.

2. For a graph G, CN∗[G; z] is a constant polynomial if and only if G ∼= Kn,

the empty graph on n = 1, 2, 3, ... vertices.
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3. Let G be a connected graph of order n ≥ 3, then CN∗[G; z] contains exactly

one term if and only if G is a k-cycle neighbor graph containing no cut

edges.

4. Let G(V,E) be an acyclic graph with CN∗[G; z] = a0 + a1z + a2z
2. Then

a0 + a1 = |V (G)| and a2 = |E(G)|. Moreover, when G is a connected

acyclic graph, then a0 = 0, a1 = |V (G)| and a2 = |E(G)| = a1 − 1.

Proposition 3.2.3. 1. The degree of CN∗[G; z] of a graph G is two if and

only if G is a forest. In particular, degree of CN∗[G; z] of a connected

graph G is two if and only if G is a tree.

2. No polynomial of degree one can be the modified cycle neighbor polynomial

of a graph.

Proof. 1. Since trees and forests are acyclic (1) follows.

2. Suppose P (z) is a polynomial of degree one say P (z) = a0 + a1z, a1 6= 0,

which is the modified cycle neighbor polynomial of a graph G. Then G contains

a0 isolated vertices and a1 non isolated cycle neighbor free vertices. Since a1 6= 0,

the induced subgraph of these non isolated cycle neighbor free vertices is a non

trivial forest. Hence it contains at least one bridge and therefore deg(P (z)) ≥ 2,

a contradiction.

If G is a tree of order of n and size n−1, then by Proposition 3.2.2, CN∗[G; z]

= nz + (n− 1)z2. Therefore we have :

Corollary 3.2.4. Let G be a connected acyclic graph of order n. Then the zeros

of modified cycle neighbor polynomial of G are 0 and −n
n−1 .
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Corollary 3.2.5. Let G be a graph of order n, which is a forest not contain-

ing any isolated vertices. Let G1, G2, ..., Gk be the components of G of order

n1, n2, ..., nk respectively such that n1 + n2 + ... + nk = n. Then the set of zeros

of modified cycle neighbor polynomial of G is {0, −n
n−k}.

Theorem 3.2.6. Let G be a connected graph of order n, n ≥ 4. Then the

modified cycle neighbor polynomial of G contains maximum number of terms if

and only if G ∼= Hn−1,1, where Hn−1,1 is a graph consisting of a pancyclic graph

H on n− 1 vertices and a copy of K1 connected to any one of the vertices of H

by a bridge.

Proof. Let the modified cycle neighbor polynomial of G be CN∗[G; z] = a0 +

a1z + a2z
2 + ... + akz

k, where k is the circumference c(G) of G. Since G is

connected, a0 = 0. Also when a1 6= 0, then an = 0 since circumference of G

is less than or equal to n − 1 whenever G contains cycle neighbor free vertices.

Hence the number of terms in CN∗[G; z] is less than or equal to n − 1. Thus

for a graph with its modified cycle neighbor polynomial containing maximum

number of terms, we have a1 6= 0, a2 6= 0, ... , an−1 6= 0, and an = 0. But this

is possible only when a1 = 1 and a2 = 1. Otherwise a1 ≥ 2, a2 ≥ 2 and then

k = c(G) ≤ n− 2, so that an−1 = 0. Hence G contains a subgraph H containing

cycles of all lengths k, for 3 ≤ k ≤ n−1 and a cycle neighbor free vertex attached

to H by a bridge. That is G ∼= Hn−1,1.

Conversely, when G ∼= Hn−1,1, CN
∗[G; z] contains n − 1 terms, which is the

maximum possible number of terms in the modified cycle neighbor polynomial

of any graph G. This completes the proof.

Corollary 3.2.7. Let G be a connected graph of order n ≥ 3. Then the number



Chapter 3: Modified Cycle Neighbor Polynomial of a Graph 48

of terms in modified cycle neighbor polynomial of G is less than or equal to n−1.

Note that when G is a connected graph of order n < 3, that is when G is

isomorphic to K1 or K2, the modified cycle neighbor polynomial of G contains

exactly n terms. And the number of terms in the modified cycle neighbor poly-

nomial of a connected graph G is minimum, that is CN∗[G; z] contains exactly

one term if and only if G ∼= K1 or G is a k-cycle neighbor graph with each edge

of G belongs to a k-cycle in G. Empty graphs Kn and graphs G with all of

its components are k-cycle neighbor graphs without cut edges are examples of

disconnected graphs whose modified cycle neighbor polynomial contains exactly

one term.

Similar to the cycle neighbor equivalence and cycle neighbor uniqueness de-

fined in 2.6.1 and 2.6.10, cycle neighbor equivalence and cycle neighbor unique-

ness with respect to modified cycle neighbor polynomial of graphs can also be

defined.

Definition 3.2.8. Two graphs G and H are said to be cycle neighbor equivalent

with respect to modified cycle neighbor polynomial if CN∗[G; z] = CN∗[H; z] and

G and H are called cycle neighbor unique with respect to modified cycle neighbor

polynomial if CN∗[G; z] = CN∗[H; z] then G ∼= H.

We use the abbereviations cyn∗-equivalence and cyn∗-uniqueness respectively

to denote cycle neighbor equivalence and cycle neighbor uniqueness of graphs

with respect to modified cycle neighbor polynomial.

Theorem 3.2.9. Let T be a tree of order n and let T be the complement of T .

Then CN∗[T ; z] = CN∗[T ; z] if only if T ∼= Pn where n = 1 or 4.
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Proof. Consider a tree T . First let T be a path Pn. Then for n = 2 and 3, P n

contains isolated vertices while Pn does not and P4
∼= P 4. Therefore CN∗[P4; z]

= CN∗[P 4; z]. For n ≥ 5, Pn is acyclic and P n contains cycles. Now let T is not

a path. Then the order of T is greater than or equal to four. Since T is acyclic

and it is not a path, there are more than two pendant vertices in T . These

pendant vertices will form a cycle in T . Hence T is not acyclic. Therefore in

this case, CN∗[T ; z] 6= CN∗[T ; z]. Conversely when T ∼= Pn with n = 1 or 4,

CN∗[T ; z] = CN∗[T ; z]. Hence the proof.

Remark 3.2.10. The only acyclic graphs G such that CN∗[G, z] = CN∗[G, z]

are paths Pn, with n = 1 or 4.

Theorem 3.2.11. Let G be a graph of order n. If G is isomorphic to any of the

following graphs,

1. Cn, a cycle on n vertices.

2. Kn, empty graph on n vertices.

3. Pn, a path on n vertices, where n = 1, 2 or 3.

4. Kn, a complete graph on n vertices, where n = 1, 2 or 3.

5. H, where H is a graph containing exactly two cycles joined by a bridge

between them.

then G is cyn∗-unique.

Proof. Suppose that G be a graph which satisfies one of the conditions in the

statement of the theorem. Let us consider each case one by one.
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Case (1) When G ∼= Cn, G contains no bridges or cycle neighbor free vertices.

Hence by Proposition 3.2.2, CN∗[G; z] = CN [G; z] = zk, Where k is the length

of the cycle in G. Hence by the same reasoning as in the case of cyn-uniqueness

of cycles Cn, n ≥ 3 in Theorem 2.6.11, it follows that cycles Cn, n ≥ 3 are

cyn∗-unique.

Case (2) G ∼= Kn. Then CN∗[G; z] = n, a constant polynomial. If H is any

graph other than G with CN∗[H; z] = n, it means that H contains n isolated

vertices and no edges. That is H ∼= G. Therefore Kn is cyn∗-unique.

Case (3)G ∼= Pn, where n = 1, 2 or 3. Then by Proposition 3.2.2, CN∗[G; z] =

a1z + a2z
2, with a2 = a1 − 1. Since there is a unique non isomorphic tree on

n ≤ 3 vertices, CN∗[G; z] = CN∗[H; z] = a1z + a2z
2 implies that H ∼= G.

Case (4) G ∼= Kn, where n = 1, 2 or 3.

When n = 1, CN∗[G; z] = 1, hence it is clear from case (2) that K1 is

cyn∗-unique.

The only simple graphs of order two are K2 and K2. K2 contains isolated

vertices while K2 does not. Hence K2 is also cyn∗-unique.

When n = 3, K3
∼= C3 hence by case (1), K3 is cyn∗-unique.

Case (5) G ∼= H. Then CN∗[H; z] = z2 + zk + zm, where k and m are

the lengths of the cycles in G with k ≥ 3, m ≥ 3 and m + k = n. Suppose

if possible, H1 is a graph of order n such that CN∗[H1; z] = CN∗[H; z] but

H1 � H. Therefore H1 contains exactly two cycles of lengths k and m and these

cycles will be disjoint, otherwise they will have a vertex in common and therefore

H1 will contain a cycle neighbor free vertex contradicting our assumption that
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CN∗[H1; z] = z2 + zk + zm. By case (1), cycles Cn are cyn∗-unique and since

order of H1 is m + k = n, one end point of the bridge in H1 should be in the

k-cycle and the other end is in the m-cycle of H1. That is H1
∼= H. Therefore

H is cyn∗-unique.

Remark 3.2.12. Let G and H be two graphs. Whenever G is cyn∗-equivalent

to H, then G is cyn-equivalent to H. But two cyn-equivalent graphs need not

be cyn∗-equivalent. For example, the graphs G and H in figure 2.4 are cyn-

equivalent but they are not cyn∗-equivalent. On the other hand, every cyn-unique

graph is cyn∗-unique. But the converse need not be. For example, the graph G

in Figure 3.1 is cyn∗-unique but it is not cyn-unique.
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Figure 3.1 - G

The main difference between cycle neighbor polynomial of a graph and its

modified cycle neighbor polynomial is that the cut edges in G are also taken

into account in the modified cycle neighbor polynomial of a graph. As a result,

all the graph modifications considered in section 2.5 except the one in Theorem

2.5.5, which do not affect the cycle neighbor polynomial of a graph will certainly

alter the modified cycle neighbor polynomial of the graph. Hence these graph

modifications will not produce cyn∗-equivalent graphs. But under the graph

modification denoted by G.H of disjoint graphs G and H, and defined as in

Theorem 2.5.5, G.H and G ∪H are cyn∗-equivalent whenever the vertices in G

and H which are identified in G.H are not cycle neighbor free vertices of the
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graphs G and H.

A graph polynomial is complete [33] if it distinguishes all non isomorphic

graphs. Formulation of a complete graph polynomial which can be easily com-

puted is not yet succeeded mainly due to two reasons. The first one is there are

so many indistinguishable non isomorphic graphs. And the second reason is that

such a graph polynomial is too hard to compute. The two univariate polynomi-

als cycle neighbor polynomial and modified cycle neighbor polynomial of a graph

introduced in chapters two and three respectively can be compared in terms of

this ’completeness’ property of graph polynomials. Every cyn- unique graph is

cyn∗- unique. But as the converse of results need not hold always, the modified

cycle neighbor polynomial of a graph distinguishes more non isomorphic graphs

than that of cycle neighbor polynomial of the graph. As a consequence, modified

cycle neighbor polynomial of a graph can be considered to be better than the

cycle neighbor polynomial of the graph in terms of this completeness property

of graph polynomials. So here after we will be considering the modified cycle

neighbor polynomials of graphs, and call it cycle neighbor polynomial itself if

there is no confusion.

3.3 Cycle neighbor polynomial of some graph

operations

Many graph modification problems concern destroying or creating cycles. In this

section we study the cycle neighbor polynomial of some graph operations, graph

modifications and that of graphs derived from the given graph. It helps us to
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view some interesting properties of the resulting graph through cycle neighbor

polynomial in a vivid manner.

First we consider the corona GoH of two graphs G and H. Let G be a

connected graph of order n ≥ 2 with k, 1 ≤ k ≤ n cycle neighbor free vertices.

Note that no cycle will be added or deleted from the induced subgraph G of

GoH. We obtain CN∗[GoH; z] when H is a path, cycle or a star graph in terms

of cycle neighbor polynomial of G.

Theorem 3.3.1. Let Pm be a path on m ≥ 1 vertices. Then

CN∗[GoPm; z] =


CN∗[G; z] + nz2 + nz, if m = 1;

CN∗[G; z] + nz3 − kz, if m = 2;

CN∗[G; z] + n{Σm+1
k=3 {m− (k − 2)}zk} − kz, if m ≥ 3;

Proof. When m = 1, corresponding to the vertex in each of the n copies of P1,

n new edges and n new cycle neighbor free vertices will be introduced in GoP1.

When m = 2, corresponding to the edge in each of the n copies of P2, n triangles

will be introduced in GoP2 and there are no cycle neighbor free vertices in GoP2.

When m ≥ 3, together with all cycles of different lengths in G, (m−1) triangles,

(m − 2) 4-cycles,..., one m-cycle will be formed in GoPm with a vertex of G

common to all these cycles in GoPm. Hence every vertex of G belong to at least

one cycle of GoPm and we have CN∗[GoPm; z] = CN∗[G; z] +n{Σm+1
k=3 {m− (k−

2)}zk} − kz.

Theorem 3.3.2. Let Cm be a cycle on m ≥ 3 vertices. Then,

CN∗[GoCm; z] = CN∗[G; z] + n{Σm+1
l=3 z

l + zm} − kz
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Proof. In GoCm at each of the n vertices of G, there is a wheel graph on m +

1 vertices with the central vertex as the vertex of G. Hence it follows from

Proposition 2.2.19 that CN∗[GoCm; z] = CN∗[G; z] + n{Σm+1
l=3 z

l + zm}− kz.

Theorem 3.3.3. For Km,1, m ≥ 3,

CN∗[GoKm,1; z] = CN∗[G; z] + n{mz3 +
(
m
2

)
z4} − kz

Proof. Let H be a subgraph of GoKm,1 induced by a vertex of G and a copy

of Km,1, m ≥ 3. Then there are two vertices say u and v of degree m + 1

and m vertices of degree two in H. Let V (H) = A ∪ B, where A = {u, v} and

B = {v1, v2, ..., vm}, the set of all vertices of degree two in H. Since vi, 1 ≤ i ≤ m

is adjacent to u and v only, there are exactly m triangles in H. There are (m−1)

4-cycles through each vertex v in H. In fact there are m(m−1)
2

4-cycles in H.

Finally note that the maximum length of any cycle in H is four. Since

V (H) = A ∪ B and no two vertices in B are adjacent, the sequence of vertices

which form any cycle in H will be either an alternating sequence of vertices from

A and B respectively or a sequence of the form vi, u, v, 1 ≤ i ≤ 3. In the first

case, since there are only two vertices in A, any alternating vertex sequence from

A and B without repetition contain a maximum of four vertices. In the second

case, {vi, u, v} induces a triangle in H. Hence there are no cycles of length greater

than four in H.

Subdivision graph S(G) [55] of the graph G is obtained by subdividing each

edge of G exactly once by a new vertex. In the next result, we compare CN∗[G; z]

and CN∗[S(G); z] of a graph G.
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Theorem 3.3.4. Let G be a connected graph of order n ≥ 2 with

CN∗[G; z] = Σ
c(G)
k=1 ckz

k. Then,

CN∗[S(G); z] = (c1 + c2)z + 2c2z
2 + Σ

c(G)
k=3 ckz

2k.

Proof. The number of edges in G will be doubled in its subdivision graph S(G)

by the introduction of a new vertex on every edge of G. Hence corresponding to

every bridge in G, there is a cycle neighbor free vertex in S(G). Also the number

of bridges and lengths of every cycle in G will be doubled in S(G).

It follows from CN∗[S(G); z] that the subdivision graph of every simple graph

G is bipartite. The fact that g(S(G)) = 2g(G) and c(S(G)) = 2c(G) is immediate

from CN∗[G; z], where g(G) and c(G) are respectively the girth and circumfer-

ence of G.

Square of a graph G [27] is obtained by adding edges in G, which connect

pairs of vertices of G at a distance two apart. It is denoted by G2. Next we

obtain CN∗[G2; z], when G is a path or a star graph.

Theorem 3.3.5. Let Pn be a path on n ≥ 3 vertices. Then,

CN∗[P 2
n ; z] = Σn

k=3{n− (k − 1)}zk.

Proof. Let the vertices of Pn be labelled as v1, v2, ..., vn. Then for 1 ≤ i ≤ n− 2,

each vi is adjacent to vi+2 in P 2
n . Hence it follows that for 1 ≤ i ≤ n−2, the graph

induced by the set {vi, vi+1, vi+2} is a triangle in P 2
n and no triangles are induced

by {vi, vj, vk} if vi, vj, vk does not form a set of consecutive vertices of V (Pn).

Therefore, there are exactly n− 2 triangles. Also, since every vertex belongs to
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at least one triangle, there are no bridges or cycle neighbor free vertices in P 2
n . In

general, for 1 ≤ i ≤ k − 1, vivi+1vi+3vi+5...vi+(k−2)vi+(k−1)vi+(k−3)vi+(k−5)...vi+2vi,

is a k-cycle for odd k in P 2
n and

vivi+1vi+3vi+5...vi+(k−1)vi+(k−2)vi+(k−4)vi+(k−6)...vi+2vi is a k-cycle for even k where

3 ≤ k ≤ n. Hence in P 2
n , there are (n−3) 4-cycles, (n−4) 5-cycles,..., (n−(k−1))

k-cycles,..., one n-cycle without duplication.

The cycle neighbor polynomial CN∗[P 2
n ; z] of P 2

n reveals that it is hamiltonian

and pancyclic for n ≥ 3.

Theorem 3.3.6. Let G be a graph of diameter two. If order of G is n, Then,

CN∗[G2; z] = n!
2

[ z3

3(n−3)! + z4

4(n−4)! + ...+ zn−2

(n−2)2! + zn−1

(n−1) + zn

n
].

Proof. Since diam(G) = 2, d(vi, vj) ≤ 2, for every vi, vj ∈ V (G). Hence in G2, vi

is adjacent to vj, for every i, j, 1 ≤ i, j ≤ n, i 6= j. Therefore, G2 ∼= Kn. Hence

the result follows from the expression for cycle neighbor polynomial of complete

graphs (Proposition 2.2.22).

Since diam(Km,1) = 2 , Corollary 3.3.7 is a direct consequence of Theorem

3.3.6.

Corollary 3.3.7. CN∗[K2
m,1; z] = (m+1)!

2
[ z3

3(m−2)!+
z4

4(m−3)!+...+
zm−1

(m−1)2!+
zm

m
+ zm+1

m+1
]

In general, power of a graph Gk, k = 2, 3, 4, ... is obtained by adding edges in

G which connect pairs of vertices vi, vj if d(vi, vj) ≤ k. Hence for all graphs with

diam(G) = k, Gk ∼= Kn, therefore we have Theorem 3.3.8.

Theorem 3.3.8. Let G be a graph of order n with diam(G) = k, k = 2, 3, 4, ....

Then,
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CN∗[Gk; z] = CN∗[Kn, z].

The splitting graph S
′
(G) [47] of a graph G is obtained by adding new vertices

v
′

to G, corresponding to each vertex v of G and then joining the vertex v
′

to all

vertices of G adjacent to v in G. Now we find CN∗[S
′
(G); z] when G is a path

or a star graph.

Theorem 3.3.9. Let Pn be a path on n ≥ 2 vertices. Then

CN∗[S
′
(Pn); z] =

 3z2 + 4z, if n = 2;

Σn−1
k=3{n− (k − 1)}z2k, if n ≥ 3;

Proof. Let the vertices of Pn be labelled as v1, v2, ..., vn, with v1 and v2 as the

pendant vertices. Let v
′
i be the vertex in S

′
(Pn) corresponding to vi,

1 ≤ i ≤ n. Then v
′
1 and v

′
n are the pendant vertices of S

′
(Pn). For 1 ≤ i ≤ n−k,

viv
′
i+1vi+2v

′
i+3vi+4...v

′

i+(k−2)vi+(k−1)vi+kv
′

i+(k−1)...vi+2vi+1vi is a 2k-cycle in S
′
(Pn),

when k is odd and viv
′
i+1vi+2v

′
i+3vi+4...v

′

i+(k−1)vi+kvi+(k−1)v
′

i+(k−2)...v
′
i+2vi+1vi is a

2k-cycle in S
′
(Pn), when k is even. Hence there are (n − 2) 4-cycles, (n − 3)

6-cycles,...,two 2(n − 2)-cycles and one 2(n − 1) cycle in S
′
(Pn). Hence the

proof.

Theorem 3.3.10. Let K
′
m,1 be the splitting graph of Km,1, m ≥ 2. Then

CN∗[K
′
m,1; z] =

(
m
2

)
z4 +mz2 +mz.

Proof. Let V (K
′
m,1) = A ∪ B with A = {v, v′}, where v and v

′
are the central

vertex of Km,1 and its corresponding vertex in K
′
m,1 respectively and

B = {u1, u2, ..., um, u
′
1, u

′
2, ..., u

′
m} where ui and u

′
i, 1 ≤ i ≤ m are the pendant
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vertices of Km,1 and its corresponding vertex in K
′
m,1 respectively. Then A and

B are independent sets. Hence the vertices of any cycle in K
′
m,1 is an alternating

sequence of vertices from A and B. Since |A| = 2, the length of any cycle in K
′
m,1

is four and there are (m − 1) 4-cycles through u1, (m − 2) 4-cycles through u2

without repetition and so on. Hence there are
(
m
2

)
4-cycles in K

′
m,1. Also there

are m pendant vertices and m pendant edges corresponding to u
′
i, 1 ≤ i ≤ m.

Hence the proof.

Since there are no odd cycles in both P
′
n and K

′
m,1, it follow that the splitting

graphs of paths and that of star graphs are bipartite.

Duplication of a vertex v of a graph G is the graph G
′

obtained by adding a

vertex v
′

in G with N(v
′
) = N(v). Here we consider CN∗[G

′
; z] of G, when G is

a path, cycle or a star graph.

The duplication of a pendant vertex of a path Pn, n ≥ 2 adds a new pendant

vertex in P
′
n. Therefore;

Proposition 3.3.11. Let P
′
n be the graph obtained by the duplication of a pendant

vertex of Pn, n ≥ 2. Then CN∗[P
′
n; z] = CN∗[Pn; z] + z2 + z.

Theorem 3.3.12. Let P
′
n be the graph obtained by the duplication of a non

pendant vertex of Pn, n ≥ 2 then

CN∗[P
′
n; z] = CN∗[Pn; z] + z4 − 2z2 − 3z.

Proof. The subgraph of P
′
n induced by the duplication of a non pendant vertex

vertex of Pn, its corresponding vertex and their neighbors is a 4-cycle in P
′
n and
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consequently, the number of cycle neighbor free vertices of Pn will be reduced by

three and number of bridges of Pn will be reduced by two in P
′
n.

Theorem 3.3.13. Let C
′
n be the graph obtained by the duplication of a vertex of

the cycle Cn, n ≥ 3 then

CN∗[C
′
n; z] = CN∗[Cn; z] + zn + z4.

Proof. Let v be any vertex of Cn and v
′

be the duplication of v in C
′
n. Then

{v, v′}∪N(v) induces a 4-cycle and {v′}∪V (Cn) \ {v} induces an n-cycle in C
′
n.

Therefore there are two n-cycles and a 4-cycle in C
′
n.

Theorem 3.3.14. Let K
′
m,1 be the graph obtained by the duplication of the central

vertex of Km,1, m ≥ 2. Then

CN∗[K
′
m,1; z] =

(
m
2

)
z4 +mz2 +mz.

Proof. Let V (K
′
m,1) = A ∪ B with A = {v, v′}, where v and v

′
are the central

vertex of Km,1 and duplication of v in K
′
m,1 respectively and B = {u1, u2, ..., um},

where ui, 1 ≤ i ≤ m are the pendant vertices of Km,1. Since A and B form a

partition of V (K
′
m,1) and since A and B are independent sets, as in the case of

splitting graph of Km,1 there are m(m−1)
2

4-cycles in K
′
m,1. Also since both v and

v
′

are adjacent to all the vertices of B, There are no cycle neighbor free vertices

or bridges in K
′
m,1. Hence the result.

It follows that the graph obtained by the duplication of the central vertex

of Km,1, m ≥ 2 is bipartite. It is obvious that if G
′

is the graph obtained by

the duplication of any one of the pendant vertices of Km,1, then CN∗[G
′
; z] =

CN∗[Km,1; z] + z2 + z
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Duplication of of a vertex w ∈ V (G) of a graph G by an edge [54] produces

a new graph G
′

by adding an edge e
′
= u

′
v
′

to G such that N(v
′
) = {w, u′} and

N(u
′
) = {w, v′}. In the next result we obtain CN∗[G

′
; z] of a graph G.

Theorem 3.3.15. Let G be a connected graph of order n ≥ 2 which contains k,

0 ≤ k ≤ n cycle neighbor free vertices and let G
′

be the graph obtained by the

duplication of a vertex w ∈ V (G) by an edge. Then

CN∗[G
′
; z] =

 CN∗[G; z] + z3 − z, if w is a cycle neighbor free vertex

CN∗[G; z] + z3, otherwise

Proof. Duplication of of a vertex w ∈ V (G) of a graph G by an enge e = uv

produces a triangle wuvw in G
′
. Therefore, the number of cycle neighbor free

vertices will be reduced by one if w is a cycle neighbor free vertex.

Let G
′

be the graph obtained by duplication of each vertex of G by edges.

Then clearly G
′ ∼= GoP2 hence it follows from Theorem 3.3.1 that

CN∗[G
′
; z] = CN∗[G; z] +nz3−kz, where k is the number of cycle neighbor free

vertices in G.

The middle graph M(G) (also known as the semi total (line) graph T1(G)) [46]

of a graph G is the graph whose vertex set is V (G) ∪E(G) and two vertices are

adjacent if they are adjacent edges of G or one is a vertex and the other is an

edge incident with it. Next we obtain CN∗[M(G); z] when G ∼= Pn.

Theorem 3.3.16. Let M(Pn) be the middle graph of the path Pn, n ≥ 2. Then,

CN∗[M(Pn); z] =

 2z2 + 3z, if n = 2

(n− 2)z3 + 2z2 + 2z, if n > 2
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Proof. Let V (M(Pn)) = A ∪ B where A = {v1, v2, ..., vn}, is the set of vertices

of Pn and B = {u1, u2, ..., un−1} be the vertices of M(Pn) corresponding to the

edges of Pn. The subgraph of M(Pn) induced by B is Pn−1 and for 2 ≤ i ≤ n−1,

vi is adjacent to ui−1 and ui. Hence the graph induced by {ui−1, vi, ui} is a

triangle for 2 ≤ i ≤ n − 1. Also u1v1 and vnun−1 are bridges of M(Pn). Hence

the result.

If V (G) of a graph G can be partitioned into an independent set and an

acyclic set, then G is said to be a near-bipartite graph [2]. From the proof of

Theorem 3.3.16, it is clear that middle graph of path Pn, n ≥ 2 is near bipartite.

Theorem 3.3.17. Let M(Km,1) be the middle graph of Km,1, m ≥ 3. Then,

CN∗[M(Km,1); z] = (m+1)!
2

[ z3

3(m−2)! +
z4

4(m−3)! + ...+
zm−1

(m−1)2! +
zm

m
+ zm+1

m+1
]+mz2+mz.

Proof. Let V (M(Km,1)) = {v, v1, v2, ..., vm, u1, u2, ..., um}, where {v, v1, v2, ..., vm}

is V (Km,1) with v as the central vertex and {u1, u2, ..., um} corresponds to the

edges of Km,1. Since every edge in Km,1 are adjacent and are incident with v,

the subgraph of M(Km,1) induced by {v, u1, u2, ..., um} is Km and in M(Km,1),

|N(vi)| = 1 for 1 ≤ i ≤ m. Hence the result follows from Proposition 2.2.22.

A split graph [18] is a graph whose vertices can be partitioned into two sub-

sets, such that one subset induces a clique, and the other induces an independent

set. A graph is called a cograph or complement reducible graph [13] if it contains

no induced P4 and a graph is called trivially perfect [22] if it is a cograph and

contains no induced C4. Since CN∗[M(Km,1); z] = CN∗[Km; z] + mz2 + mz, it

is obvious that middle graph of every star graph is a split graph. Also since the
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graph induced by any four vertices of M(Km,1) contains a triangle, middle graph

of every star graph is a cograph and is trivially perfect too.

The semi total (point) graph T2(G) [46] of a graph G is the graph whose

vertex set is V (G) ∪ E(G) and two vertices are adjacent if they are adjacent

vertices of G or one is a vertex and the other is an edge incident with it.

Theorem 3.3.18. Let Pn be a path on n ≥ 2 vertices. Then

CN∗[T2(Pn); z] = (n− 2)z3.

Proof. Let V (T2(Pn)) = A ∪ B, where A = {v1, v2, ..., vn} = V (Pn) and B =

{u1, u2, ..., un−1} be the vertices of T2(Pn) corresponding to the edges of Pn.

Then for 1 ≤ i ≤ n− 1, 〈{v− i, ui, vi+1}〉 is a triangle in T2(Pn) and every vertex

of T2(Pn) is in at least one triangle. Also since ui, uj, 1 ≤ i, j ≤ n− 1, i 6= j are

non adjacent and N(ui) = {vi, vi + 1} for 1 ≤ i ≤ n − 1 there are no cycles of

length greater than three.

Theorem 3.3.19. CN∗[T2(Kn−1,1); z] = (n− 2)z3, where n ≥ 3.

Proof. Let V (T2(Kn−1,1)) = A ∪ B, where A = {v1, v2, ..., vn} = V (Kn−1,1) with

vn as the central vertex and B = {u1, u2, ..., un−1} be the vertices of T2(Pn)

corresponding to the edges of Kn−1,1 such that ui is incident with vi and vn of

Kn−1,1 for 1 ≤ i ≤ n − 1. Then for 1 ≤ i ≤ n − 1, 〈{vi, ui, vn}〉 is a triangle

in T2(Kn−1,1) and every vertex of T2(Kn−1,1) is in at least one triangle. Also

since ui, uj, 1 ≤ i, j ≤ n − 1, i 6= j are non adjacent and N(ui) = {vi, vn} for

1 ≤ i ≤ n − 1 there are no cycles of length greater than three as in the case of

T2(Pn).
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As in the case of middlle graph of Pn, the semi total (point) graph of Pn is

also near bipartite. And from the proof of expression for CN∗[T2(Kn−1,1); z], it

is clear that T2(Kn−1,1), is totally perfect. Also it is trivial from the expressions

of CN∗[T2(Pn); z] and CN∗[T2(Kn−1,1); z] that T2(Pn) and T2(Kn−1,1) are cyn∗-

equivalent.

The total graph T (G) [53] of a graph G is a graph whose vertex set is

V (T (G)) = V (G) ∪ E(G) and two distinct vertices x and y of T (G) are ad-

jacent if x and y are adjacent vertices of G or adjacent edges of G or x is a vertex

incident with edge y. Now we find CN∗[T (G); z] when G ∼= Pn.

Theorem 3.3.20. Let T (Pn) be the total graph of path Pn, n ≥ 2. Then,

CN∗[T (Pn); z] = Σ2n−1
k=3 (2n− k)zk.

Proof. Let V (T (Pn)) = {v, v1, v2, ..., vn, u1, u2, ..., un−1}, where {v, v1, v2, ..., vn}

= V (T (Pn)) and ui, 1 ≤ i ≤ n− 1 are the vertices of T (Pn) corresponding to the

edges of Pn. Then for 2 ≤ i ≤ n− 1 and 2 ≤ j ≤ n− 2, |N(vi)| = |N(uj)| = 4,

|N(u1)| = |N(un−1| = 3 and |N(v1)| = |N(vn)| = 2. Let 3 ≤ k ≤ n. When

k is odd, for, 1 ≤ i ≤ n − bk
2
c, vivi+1vi+2...vi+ k−1

2
ui+ k−3

2
ui+ k−5

2
...uivi is a k-cycle

and for for, 1 ≤ i ≤ n− dk
2
e, uiui+1ui+2...ui+ k+1

2
vi+ k+1

2
vi+ k−1

2
...vi+1ui is a k-cycle.

And when k is even, for, 1 ≤ i ≤ n − k
2
, vivi+1vi+2...vi+ k

2
ui+ k

2
ui+ k−2

2
...uivi and

uiui+1ui+2...ui+ k−2
2
vi+ k

2
vi+ k−2

2
...viui is a k-cycle in T (Pn). Hence in both cases,

there are n− k−1
2

+n− k+1
2

= n− k
2

+n− k
2

= 2n−k k-cycles in in T (Pn). Hence

the proof.

It is obvious from the expression for CN∗[T (Pn); z] that total graph of path

Pn, is pancyclic for n ≥ 2.
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Derived graph of a simple graph G denoted by G† was introduced by Jog et

al in their paper [51]. For a simple graph G(V,E), its derived graph G† is the

graph with vertex set V (G) in which two vertices are adjacent if and only if their

distance in G is two.

It is clear from the definition of derived graph G† of G that for a path Pn,

n ≥ 2, P †2
∼= K2, P

†
n
∼= Pbn

2
c ∪ Pdn

2
e, when n is odd and P †n

∼= Pn
2
∪ Pn

2
when n is

even. Hence we have;

Proposition 3.3.21. Let P †n be the derived graph of path Pn, n ≥ 2. Then,

CN∗[P †n; z] =


2, if n = 2;

z2 + 2z + 1, if n = 3;

(n− 2)z2 + nz, if n ≥ 3;

Similarly for a cycle Cn, n ≥ 3, C†3
∼= K3, C

†
4
∼= P2 ∪ P2, C

†
n
∼= Cn if n is odd

and n ≥ 5 and C†n
∼= Cn

2
∪ Cn

2
if n is even and n ≥ 6 we have the result;

Proposition 3.3.22. Let C†n be the derived graph of cycle Cn, n ≥ 3. Then,

CN∗[C†n; z] =



3, if n = 3;

2z2 + 4z + 1, if n = 4;

zn, if n ≥ 5 and n is odd;

2z
n
2 , if n ≥ 6 and n is even;

CN∗[C†n; z] = 2z
n
2 for n ≥ 6 and n is even, implies that C†n is disconnected,

otherwise the two cycles in C†n will have a vertex in common and hence n cannot

be even.
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Conclusion

In this chapter an improvised version of cycle neighbor polynomial of a graph

is introduced, motivated from the interpretation of simple cycles of lengths one

and two in a graph. A comparitive study of cycle neighbor polynomials and mod-

ified cycle neighbor polynomials of graphs based on the completeness property

of graph polynomials we arrive at the conclusion that, modified cycle neighbor

polynomial is stronger than cycle neighbor polynomial of the graph. Also cycle

neighbor polynomial of graph operations establishes that many properties of the

resulting graph like, bipartite propetrty of subdivision graph of a simple graph,

pancyclicity of square graph of Pn, bipartite propetrty of splitting graphs of

paths and stars, near bipartite property of semi total line graph of Pn and semi

total point graph of Pn, pancyclicity of total graph of Pn, hamiltonicity and in

particular pancyclicity of kth power Gk of graphs of diameter k for k = 2, 3, 4, ...,

middle graph of stars are split graph etc., can be directly observed using the tool

of cycle neighbor polynomial.



Chapter 4

Hausdorff Domination

4.1 Introduction

1 Different types of dominating sets are studied in the literature of graph theory

by imposing different conditions on the dominating sets. One such domination

called Hausdorff domination is introduced in this chapter.

A simple graph G is said to be a Hausdorff Graph [48], if for any two distinct

vertices u and v of G, one of the following conditions holds

1. At least one of u and v is isolated.

2. There exists two nonadjacent edges e1 and e2 of G such that e1 is incident

with u and e2 is incident with v.

Hausdorff domination is defined by imposing the Hausdorff graph property on

1Part of this chapter has been published in Global Journal of Pure and Applied Mathemat-
ics, Vol. 15, No. 4, 349-364, 2019
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the subgraph induced by the dominating set. An interesting property of such a

dominating set is that every independent dominating set is Hausdorff dominating

and every non independent Hausdorff dominating set contains a cycle. When a

graph contains a Hausdorff dominating set which is not independent dominating

and the graph induced by that dominating set does not contain any isolated

vertices, then every vertex in that dominating set will be dominated by at least

two vertices other than itself. Hence such a Hausdorff dominating set can be

considered as strong total dominating set, since every vertex in a total dominating

set [10] is dominated by at least one vertex other than that vertex.

4.2 Hausdorff domination

In this section, Hausdorff domination is introduced and a characterization prop-

erty for a dominating set to be Hausdorff dominating is obtained.

Definition 4.2.1. A dominating set D ⊆ V is said to be Hausdorff dominating,

if 〈D〉 is Hausdorff.

Minimum cardinality of a Hausdorff dominating set is called the Hausdorff

domination number and is denoted by γH(G). Such a Hausdorff dominating set

with cardinality γH(G) is referred to as a γH -set.

For any graph G, γ(G) ≤ γH(G)

Theorem 4.2.2. Let G = (V,E) be any graph. A dominating set D ⊆ V is a

Hausdorff dominating set if and only if one of the following statements hold.

1. 〈D〉 is an empty graph
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2. If 〈D〉 is triangle free and if v ∈ D is not an isolated vertex in 〈D〉, then

the degree d〈D〉(v) is greater than or equal to 2.

3. If 〈D〉 contains K3 as a proper subgraph, then d〈D〉(v) ≥ 3 for at least two

vertices of K3 and for all other vertices which are non isolated in 〈D〉 have

degree ≥ 2.

Proof. Assume that D ⊆ V is a Hausdorff dominating set of G. If for any two

distinct vertices u and v of 〈D〉, both u and v are isolated, then 〈D〉 is an empty

graph hence there is nothing to prove.

Suppose that 〈D〉 contains at least one nontrivial connected component. Such

components cannot have a vertex of degree one, since then 〈D〉 cannot be Haus-

dorff. Hence for every vertex v in any nontrivial connected component of 〈D〉,

d〈D〉(v) ≥ 2.

If 〈D〉 contains K3 and d〈D〉(v) < 3 for at least two vertices of K3 then those

vertices in pairs will not have two non adjacent edges incident with them. Hence

〈D〉 cannot be Hausdorff. On the other hand if d〈D〉(v) = 2 only for one vertex

or d〈D〉(v) ≥ 3 for all vertex in K3 then there are nonadjacent edges incident

with every pair of vertices in K3. Hence in 〈D〉, for every non isolated vertex

v, d〈D〉(v) ≥ 2 and d〈D〉(v) ≥ 3 for at least two vertices in every K3 which is an

induced subgraph of 〈D〉.

Conversely, assume that D is a dominating set for which one of the three

stated conditions hold. Then it is proved that D is a Hausdorff dominating set.

If 〈D〉 is the empty graph, then clearly D is a Hausdorff dominating set.

Suppose that (2) holds. Let (u, v) be a pair of distinct vertices in 〈D〉. If one
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of them is an isolated vertex or if u and v belong to different components of 〈D〉,

then there is nothing to prove. If both of them are non isolated and belongs to

the same component of 〈D〉, then there arise the following cases.

(i) u and v are adjacent. Then since d〈D〉(u) and d〈D〉(v) are greater than or

equal 2, there exists u1, v1 in 〈D〉, such that u1 is adjacent to u, v1 is adjacent

to v and the edges uu1 and vv1 are non adjacent. Here u1 6= v1, otherwise

{u, u1(= v1), v} will form the vertices of K3 in the triangle free graph 〈D〉.

(ii) u and v are non adjacent. Then they are joined by at least one path

of length two or greater than two. If the u-v path is of length 2, there exists a

vertex w such that uwv is a u-v path and since, d〈D〉(u) ≥ 2, there exists a vertex

x 6= w adjacent to u. So that xu and wv are non adjacent edges incident with

u and v respectively. If the length of the u-v path is greater than 2, then there

exists at least two vertices u1 6= v1 such that, uu1...v1v is is a u-v path in 〈D〉

and u1u and v1v are non adjacent edges incident with u and v respectively.

Now let (3) hold. Consider two adjacent vertices u, v in 〈D〉. If {u, v} does

not belongs to the vertex set of any K3 in 〈D〉 then by the above reasoning,

non adjacent edges incident with u and v can be found. Otherwise, there exists

w ∈ D such that 〈{u, v, w}〉 is K3. Then either d〈D〉(u) ≥ 3 or d〈D〉(v) ≥ 3 or

both d〈D〉(u) and d〈D〉(v) ≥ 3. Without loss of generality assume that d〈D〉(u) =

2 or 3 and d〈D〉(v) ≥ 3 then ∃ a vertex x different from u and w in D adjacent to

v in 〈D〉. Thus in this case the edges e1 and e2 are non adjacent, where e1 = wu

is incident with u and e2 = xv is incident with v. Hence 〈D〉 is Hausdorff.

Corollary 4.2.3 follows directly from Theorem 4.2.2.
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Corollary 4.2.3. If D ⊆ V is a Hausdorff dominating set of a graph G(V,E)

then 〈D〉 has no vertices of degree one. In other words, 〈D〉 is free of pendant

vertices.

Theorem 4.2.4. For any graph G on n vertices γH(G) = 1 if and only if

4(G) = n− 1

Proof. If γH(G) = 1, then there exists a vertex v of G which is adjacent to all

other vertices of G. Therefore d(v) = n− 1 and hence 4(G) = n− 1

Conversely, if 4(G) = n − 1, then G has a vertex v which dominate every

vertex of G and 〈v〉 is Hausdorff. Hence γH(G) = 1

Since all graphs G mentioned in Corollary 4.2.5 have 4(G) = n−1, it follows

immediately from Theorem 4.2.4

Corollary 4.2.5. 1. For any complete graph Kn, γH(Kn) = 1, ∀n > 1

2. For any star graph K1,n, γH(K1,n) = 1, n > 1

3. For any wheel graph Wn+1 = Cn +K1, γH(Wn+1) = 1, n > 3

4.3 Hausdorff domination and independent dom-

ination

In this section we see an inclusion relation between independent dominating sets

and Hausdorff dominating sets.

Theorem 4.3.1. Every independent dominating set is Hausdorff dominating
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Proof. Let G = (V,E) be any graph, let D ⊆ V be an independent dominating

set of G. Then 〈D〉 is the empty graph. Hence it follows from Theorem 4.2.2

that 〈D〉 is Hausdorff.

Corollary 4.3.2. For any graph G, γH(G) ≤ i(G)

The inequality in Corollary 4.3.2 may be strict. It will be proved in Theorem

4.3.6 that γH(Km,n) = 4 if m ≥ 4 and n ≥ 4. Therefore, for all complete bipartite

graphs Km,n with m ≥ 5 and n ≥ 5 γH(Km,n) < i(Km,n), since i(Km,n) =

min{m,n}.

By considering the Hausdorff domination number γH(G), the domination

chain can be extended as follows;

Proposition 4.3.3. The domination chain γ(G) ≤ i(G) ≤ β0(G) ≤ Γ(G) [7]

can be extended as γ(G) ≤ γH(G) ≤ i(G) ≤ β0(G) ≤ Γ(G).

Remark 4.3.4. The converse of the conclusion of Theorem 4.3.1 need not be

true. For example in Figure 4.1, {a, b, c, d} is both independent and Hausdorff

dominating while {e, f, g, h} is Hausdorff dominating but not independent.

�
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Figure 4.1

Theorem 4.3.5. 1. γH(Pn) = dn
3
e, for any path Pn on n vertices.
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2. γH(Cn) = dn
3
e, for any cycle Cn on n vertices.

Proof. For any path Pn on n vertices, a dominating set D can be Hausdorff

dominating if and only if 〈D〉 is an empty graph. Otherwise, 〈D〉 will contain

two or more pendant vertices and hence by corollary 4.2.3, it cannot be Hausdorff.

Therefore dn
3
e = γ(Pn) ≤ γH(Pn) ≤ i(Pn) = dn

3
e

For any cycle Cn on n ≥ 4 vertices the set of all vertices constitute a Hausdorff

dominating set. By the same reasoning as in the case of paths Pn, any dominating

set D of Cn of cardinality < n, will be Hausdorff dominating if and only if 〈D〉

is an empty graph. Hence dn
3
e = γ(Cn) ≤ γH(Cn) ≤ i(Cn) = dn

3
e

Theorem 4.3.6. For any complete bipartite graph Km,n,

γH(Km,n) =



1, if either m or n = 1;

2, if m ≥ 2, n ≥ 2 and at least one of m or n is 2;

3, if m ≥ 3, n ≥ 3 and at least one of m or n is 3;

4, if m ≥ 4 and n ≥ 4.

Proof. γH(Km,n) = 1 if either m or n = 1 is a particular case of Theorem 4.2.4.

Since γ(Km,n) = 2 for m ≥ 2 n ≥ 2 and i(Km,n) = 2 if m ≥ 2, n ≥ 2 and at

least one of m or n is 2 then since γ(Km,n) ≤ γH(Km,n) ≤ i(Km,n) , γH(Km,n) =

2 if m ≥ 2, n ≥ 2 and at least one of m or n is 2

When m ≥ 3, n ≥ 3 and at least one of m or n is 3 then since Km,n does not

have a vertex of degree m+ n− 1, by Theorem 4.2.4, γH(Km,n) 6= 1. Suppose if

possible, D is a γH-set of Km,n of cardinality 2 then either 〈D〉 is K2 or an empty

graph on 2 vertices. In the first case 〈D〉 is not Hausdorff and in the second case,
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D is not dominating. Hence γH(Km,n) = 3 = min{m,n} if m ≥ 3, n ≥ 3 and at

least one of m or n is 3.

If m ≥ 4 and n ≥ 4, then four vertices, two each from the bipartite sets

will form a Hausdorff dominating set. So γH(Km,n) ≤ 4. Suppose, if possible,

γH(Km,n) < 4. Then by the above reasoning, γH(Km,n) cannot be 1 or 2. If D

is a γH-set of cardinality 3, then either 〈D〉 is P3 or K2 ∪K1 or an empty graph

on three vertices. If 〈D〉 is P3 or K2 ∪K1 then it is not Hausdorff and D is not

dominating if 〈D〉 an empty graph on three vertices. Hence γH(Km,n) cannot be

three.

Theorem 4.3.7. The graph induced by a Hausdorff dominating set which is not

independent, contains a cycle Cm, m ≥ 4.

Proof. Let D ⊆ V be any Hausdorff dominating set. Suppose that D is a non

independent dominating set, then 〈D〉 is not an empty graph. Let v ∈ D. If v is

a non isolated vertex in 〈D〉, it is a vertex of a connected component say H of

〈D〉. Since 〈D〉 is Hausdorff, the subgraph H also should be Hausdorff. Then by

Theorem 4.2.2, dH(v) ≥ 2 , ∀v ∈ V (H). So that H cannot be a tree. Hence H

is not acyclic and contains a cycle Cm for m ≥ 3. Now if dH(v) = 2 ∀v ∈ V (H),

then H is a cycle Cm with m vertices. and since H is Hausdorff, m ≥ 4. If H

contains K3, by Theorem 4.2.2, dH(v) ≥ 3 for at least two vertices of K3. Let

u1 and u2 be the vertices adjacent to the vertices of K3 of degree > 2 in H.

Consider the following cases.

Case 1: u1 = u2, then u1 together with the vertices of K3 will form a cycle of

length 4
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Case 2: u1 6= u2, and if u1 and u2 are adjacent. In this case, two internally

disjoint paths can be found from u1 to u2, one along the vertices of K3 and the

other along the edge u1u2. Adjoining these two paths from u1 to u2 a cycle of

length 5 will be obtained.

Case 3: u1 6= u2, and u1 and u2 are not adjacent in H. Since dH(u1) and

dH(u2) are greater than or equal to 2, if at least one of u1 or u2 is adjacent to the

third vertex of K3 under consideration, then there is a cycle of length 4 in H. If

u1 and u2 are joined by a path not along the vertices of K3 then also a cycle of

length greater 4 can be obtained by adjoining these two internally disjoint u1-u2

paths.

Case 4: u1 and u2 are not connected through any path other than that along

the vertices of K3. In this case, suppose if possible the other end blocks in the

direction opposite to that of K3 from u1 and u2 do not contain any cycle of length

greater than or equal to 4. Then these blocks are either a triangle or a pendant

edge. In both cases H cannot be Hausdorff. Hence both these blocks should

contain a cycle of length greater than or equal to 4.

Now let H be triangle free. Let u, v ∈ V (H). As H is a connected Hausdorff

graph of order > 2, every vertex in H has degree ≥ 2 and in fact the order of H

is ≥ 4. Let e be any edge in H with end points say v1 and v2, which is not a cut

edge of H. Since H is not a tree such an edge will exist. As H is Hausdorff and

d(v) ≥ 2 for all v ∈ H, a path from v1 to v2 not through e can be found. Then

since H is triangle free this path together with e will form a cycle of length ≥ 4.

Hence the proof.

Since trees are acyclic, Corollary 4.3.8 follows from Theorem 4.3.7
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Corollary 4.3.8. For any tree T , the Hausdorff dominating set and independent

dominating set are the same. Hence γH(T ) = i(T ), for any tree T.

Definition 4.3.9. Let G(V,E) be a graph. A set S ⊆ V (G) is called a cycle

neighbor set of G, if for any two vertices u and v in S, there is a cycle in G,

which contains both u and v.

There are at least two internally disjoint paths joining any two vertices of a

cycle neighbor set in G.

From the definition of cycle neighbor sets it is clear that for any cycle neighbor

set C of a graph G, cardinality of C is either zero or greater than or equal to

three.

Remark 4.3.10. In general the Hausdorff dominating set of a graph G, which

is not independent is either a cycle neighbor set or a union of cycle neighbor sets

in G.

Theorem 4.3.11. For any graph G of order n ≥ 2, 3 ≤ γH(G) + γH(G) ≤ n+ 1

Proof. Let G be any graph of order n ≥ 2. If γH(G) = 1, then by Theorem

4.2.4, there exists a vertex v of degree n− 1 in G. Hence v is an isolated vertex

in G. Hence γH(G) ≥ 2. Similarly if γH(G) = 1, then γH(G) ≥ 2. In this case,

γH(G) + γH(G) ≥ 3 Also the lower bound is obvious when γH(G) ≥ 2.

Now an upper bound is obtained by proceeding as follows. Since

i(G) ≤ n−∆(G), and since γH(G) ≤ i(G),

γH(G) + γH(G) ≤ i(G) + i(G)
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≤ n−∆(G) + n−∆(G)

= 2n− [∆(G) + ∆(G)]

≤ 2n− [∆(G) + δ(G)]

= 2n− (n− 1)

= n+ 1

Therefore, 3 ≤ γH(G) + γH(G) ≤ n+ 1.

Remark 4.3.12. The bounds are sharp. For the graph G = K1,n−1, n ≥ 5

γH(G) = 1, γH(G) = 2, and for G = Kn, γH(G) = 1, γH(G) = n we get γH(G) +

γH(G) = n+ 1

In Theorem 4.3.13, we will prove that, for all connected triangle free graphs

with at least two vertices, the Hausdorff domination number of its complement

will be two.

Theorem 4.3.13. If G is a connected triangle free graph of order greater than

or equal to two, then γH(G) = 2

Proof. Since G is a connected graph of order ≥ 2, it contains an edge say uv. If

order of G is two, then G is isomorphic to K2 and G is isomorphic to an empty

graph on two vertices. Therefore, γH(G) = 2. If order of G greater than two,

then no vertex of G is adjacent to both u and v, because G is triangle free.

Therefore every vertex in G which are adjacent to u are dominated by v in G

and those vertices adjacent to v in G are dominated by u in G and all vertices

which are non adjacent to both u and v are dominated by both u and v in G. So

{u, v} forms an independent dominating set of G. Therefore it is also a Hausdorff
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dominating set of G. Hence γH(G) ≤ 2. Now let if possible γH(G) = 1, then G

would have an isolated vertex, a contradiction. Which proves γH(G) = 2

Theorem 4.3.14. For any graph G on n vertices γH(G) = n if and only if

G = Kn

Proof. Let γH(G) = n. Then for any γH-set D, |D| = n. ie., every vertex of G

belongs to every γH-set. Hence 〈D〉 = G. By Corollary 4.3.2, γH(G) ≤ i(G).

Also since O(G) = n, i(G) = n. Hence G = Kn, an empty graph on n vertices.

The converse is obvious.

Theorem 4.3.15. If i(G) ≤ 4 for a graph G, then γH(G) = i(G). Moreover, if

i(G) ≤ 3, then every γH-set is an i-set and viceversa.

Proof. By Corollary 4.3.2, whatever be i(G), γH(G) ≤ i(G).

Consider the following cases.

Case (i) i(G) = 1, then clearly γH(G) = 1 and every i-set will form a γH-set

and viceversa.

Case (ii) i(G) = 2. Then γH(G) = 2. Otherwise γH(G) = 1. In this case,

a singleton subset of V dominates all the vertices of G. Therefore, i(G) = 1, a

contradiction. As every γH-set of cardinality 2 is independent, every γH-set is

also an i-set.

Case (iii) i(G) = 3. Then γH(G) can’t be 1 or 2, as in these cases, ev-

ery γH-set is also an independent dominating set of cardinality less than i(G).

Therefore, γH(G) = 3. Now let D be a γH-set of cardinality 3 such that 〈D〉 is

not independent. Then 〈D〉 is either K3 or K1 ∪K2. In both cases 〈D〉 cannot
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be Hausdorff. Hence 〈D〉 must be independent, implying that i-set and γH-set

are the same when i(G)=3.

Case (iv) i(G) = 4. Then γH(G) = 1 or γH(G) = 2 or γH(G) = 3 or

γH(G) = 4. By cases (i), (ii) and (iii), γH(G) = 1 or 2 or 3 will imply that every

γH-set is independent dominating contradicting i(G) = 4. Hence γH(G) cannot

be less than 4 when i(G)=4. Hence γH(G) = i(G) = 4.

Remark 4.3.16. It follows from Theorem 4.3.15, for a graph G, i(G) = 4

implies γH(G) = 4. But in this case, there may exist γH-set which is different

from an i-set.

For example, the graph in Figure 4.1 has A ⊂ V , B ⊂ V , where, A =

{a, b, c, d} forms an i-set which is also Hausdorff dominating. But B = {e, f, g, h}

is a γH-set but not independent even though |A| = |B|

Remark 4.3.17. The conclusion of Theorem 4.3.15 need not be true for i(G) ≥

5. The graph in Figure 4.2 has γH(G) = 4 < i(G) = 6

v vv v
v

v
v v v
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v

v
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4.4 Connected Hausdorff domination

In this section the additional property of connectedness is imposed on Hausdorff

dominating sets and some properties of the resulting dominating sets are studied.

Definition 4.4.1. A dominating set D ⊆ V is called a connected Hausdorff

dominating set, if 〈D〉 is both connected and Hausdorff. The minimum cardinality

of a connected Hausdorff dominating set is denoted by γcH(G), any connected

Hausdorff dominating set with cardinality γcH(G) is called a γcH-set and γcH(G)

is called the connected Hausdorff domination number of G.

Proposition 4.4.2. For any graph G, γH(G) ≤ γcH(G)

Proof. Since every connected Hausdorff dominating set is Hausdorff dominating,

it follows that γH(G) ≤ γcH(G).

Note that no subgraph of a tree contains a cycle. From Theorem 4.3.7, we

know that every non independent Hausdorff dominating set contains a cycle of

length greater than or equal to four. Therefore a tree T can have a connected

Hausdorff dominating set if and only if γcH(T ) = 1. Hence we have Proposition

4.4.3

Proposition 4.4.3. No tree other than the star graph has a connected Hausdorff

dominating set.

Observation 4.4.4. 1. For any cycle Cn, n ≥ 4 γcH(Cn) = n and γH(Cn) =

dn/3e. Hence γH(Cn) < γcH(Cn).

2. If a graph G has a spanning cycle Cn, n ≥ 4, it contains a connected Haus-

dorff dominating set. In particular, Every Hamiltonian graph with more
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than four vertices contains a connected Hausdorff dominating set since in

this case, V (G) itself is a connected Hausdorff dominating set. But the

condition is not sufficient, that is, the existence of a connected Hausdorff

dominating set in a graph G need not imply that G is Hamiltonian. For

example, the graph G in Figure 4.3 has a connected Hausdorff dominating

set. But G is not Hamiltonian.
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Theorem 4.4.5. For any nontrivial connected Hausdorff dominating set D of

any graph G there exists a subset V1 of D such that 〈V1〉 contains a cycle Cm, on

m vertices for m > 4

Proof. Proof follows directly from Theorem 4.3.7

Corollary 4.4.6. For any nontrivial connected Hausdorff dominating set D ⊆ V

of G, |D| ≥ 4. In particular γcH(G) ≥ 4

Corollary 4.4.7. If G is triangle free and has a nontrivial connected Hausdorff

dominating set then the girth g(G) ≥ 4.

Remark 4.4.8. For the wheel graph G = Wn+1 = K1 + Cn, n ≥ 4, the vertex v

of degree n is a Hausdorff dominating set. Also the graph induced by the vertices

of Cn is connected Hausdorff, for n ≥ 4. For this graph, both D = {v} and V −D

are connected Hausdorff dominating sets and γH(G) = γcH(G) = 1
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Theorem 4.4.9. Unicyclic graphs can have a connected Hausdorff dominating

set if and only if G ∼= Cm for m ≥ 4 or G contains a cycle Cm for m ≥ 4 with

one or more pendant vertices adjacent to all or some of the vertices of Cm

Proof. If G is any of the two types of graphs as mentioned in the statement, then

the vertices of Cm, m ≥ 4 forms a connected Hausdorff dominating set of G with

γcH(G) = m

Conversely, let G be any uni-cyclic graph with a connected Hausdorff domi-

nating set D. Then by Theorem 4.4.7, 〈D〉 contains at least one cycle Cm where

m ≥ 4. ie., the unique cycle of G is in fact contained in the graph induced by

every connected Hausdorff dominating set. If G = Cm, then there is nothing

to prove. On the other hand, let v ∈ V − V (Cm). Since G has a connected

Hausdorff dominating set, G itself is connected. Therefore there exists a path

from v to every vertex of Cm. It is claimed that there do not exist two internally

disjoint paths from v to the vertices of Cm. Otherwise G contains more than one

cycle. Hence there exists exactly one vertex u in Cm and exactly one path from

v to u such that d(u, v) is minimum, where u ∈ V (Cm)

In fact v is a pendant vertex of G, which is adjacent to a vertex of Cm. If

v is not a pendant vertex,then a pendant vertex say u in V (G) and a unique

path containing v, joining u to the nearest vertex say w in Cm can be found.

Since G has a connected Hausdorff dominating set D, in order to dominate all

the vertices in this u-w path they should belong to D. Hence either the pendant

vertex u or a support vertex of u belong to D ⇒ 〈D〉 is not Hausdorff. Now if

v is a pendant vertex, but it is not adjacent to any vertex of Cm, then either v

is dominated by a support vertex u, where u ∈ D or v ∈ D. In both cases 〈D〉
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contains a pendant vertex and hence is not Hausdorff. Hence if v ∈ V − V (Cm)

then it should be adjacent to a vertex of Cm

Theorem 4.4.10. If D is a γcH-set of a connected graph G, then both endpoints

of every cut edge of G belongs to D.

Proof. Suppose, if possible, any or both endpoints of a cut edge do not belong

to the γcH-set D. Then the graph induced by D is disconnected, a contradiction

to D is a γcH-set of G.

4.5 Relation between Hausdorff dominating sets

and other domination parameters

From the very definition, Every nontrivial connected Hausdorff dominating set

is connected dominating and total dominating. Therefore, γc(G) ≤ γcH(G) and

γt(G) ≤ γcH(G)

Since every cycle of length greater than three is Hausdorff [48], all cycle

dominating sets [36] of cardinality greater than three is Hausdorff dominating.

Thus we have;

Proposition 4.5.1. Every cycle dominating set D with |D| ≥ 4 is Hausdorff

dominating and connected Hausdorff dominating. In particular γcy(G) = γcH(G).

But a Hausdorff dominating set containing a cycle need not be cyle dominat-

ing. Figure 4.4 illustrates this. In this figure, the set of all vertices on the 6-cycle

together with the pendant vertices which are at a distance 2 from the nearest
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vertex of the 6-cycle forms a Hausdorff dominating set but it is not cycle dom-

inating. The graph G in Figure 4.4 has γ(G) = 7, γH(G) = 9, and i(G) = 11.

But G does not have a cycle domiating set or a connected Hausdorff dominating

set. Hence it follows that if a graph G has a cycle dominating set of cardinaloty

greater than three, then the same will be a connected Hausdorff dominating set

of G.
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Theorem 4.5.2. If G is the corona CmoK1, m ≥ 4 then i(G) = γH(G) =

γt(G) = γc(G) = γcy(G) = γcH(G) = m

Proof. In CmoK1, m ≥ 4 the pendant vertices will form a γH-set. This set is

also independent dominating. Since, γH(G) ≤ i(G) by Corollary 2.3.2, i(G) =

γH(G) = m.

Clearly vertices of Cm, m ≥ 3 will form a total dominating, connected dom-

inating,cycle dominating and connected Hausdorff dominating set. So γt(G) =

γc(G) = γcy(G) = γcH(G) = m

Theorem 4.5.3. Every clique dominating set [37] of a graph G with clique dom-

ination number γcl(G) ≥ 4 is a connected Hausdorff dominating set.
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Proof. Since every complete graph Kn is Hausdorff for n ≥ 4, every dominating

clique is a connected Hausdorff dominating set.

Corollary 4.5.4. Let G be a graph having a dominating clique. If γcl(G) ≥ 4,

then γcH(G) ≤ γcl(G)

Remark 4.5.5. If G has a dominating clique and if γ(G) ≥ 2, then γ(G) ≤

γt(G) ≤ γc(G) ≤ γcl(G) [28]

Therefore if G has a dominating clique with γcl(G) ≥ 4 and if γ(G) ≥ 2,

then the above domination chain can be extended as γ(G) ≤ γt(G) ≤ γc(G) ≤

γcH(G) ≤ γcl(G). If γ(G) = 1, Then γ(G) = γt(G) = γc(G) = γH(G) =

γcH(G) = γcl(G)

The conclusion of Corollary 4.5.4 need not hold if γcl(G) < 4. Figures 4.5

and 4.6 are examples of graphs for which γcl(G) = 3 < γcH(G) = 4 and γcl(G) =

2 < γcH(G) = 4 respectively.
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The corona KpoK1 has γ = γt = γc = γcH = γcl = p if p ≥ 4

In 1989, Sampathkumar E. introduced the notion of global dominating set in

his paper [45]. Theorem 4.5.6 gives a relation between this type of dominating

set and γH-set.
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Theorem 4.5.6. If D is a γH-set of the graph G such that 〈D〉 contains an

isolated vertex, and if diam(G) ≥ 5, then D is a global dominating set.

Proof. Consider any graph G with diam(G) ≥ 5. Let D be a γH-set of G such

that 〈D〉 contains at least one isolated vertex. It is asserted that that D is a

global dominating set of G. As diam(G) ≥ 5, D must contain more than one

vertices otherwise diam(G) = 2. Since 〈D〉 contains an isolated vertex it will

dominate all the vertices of D in G. Now it is claimed that for every vertex

v ∈ V \ D, |N [v] ∩ D| < |D|. Otherwise, there exists a vertex v ∈ V \ D such

that |N [v] ∩ D| = |D|. Then for any two vertices u1, u2 of G, there arise the

following cases.

Case(i) If u1, u2 are in D, then u1vu2 is a path connecting u1 and u2. Hence

d(u1, u2) ≤ 2

Case(ii) Let u1, u2 are in V \ D, then there exists u
′
1, u

′
2 in D such that u1

is adjacent to u
′
1 and u2 is adjacent to u

′
2. So that u1u

′
1vu

′
2u2 is a path joining

u1 and u2, when v 6= u1 and v 6= u2. If v = u1 or v = u2 then u1 = vu
′
2u2,

u1u
′
1v = u2 respectively form u1 − u2 paths and hence d(u1, u2) ≤ 4

Case(iii) If u1 ∈ D and u2 ∈ V \D and if u
′
2 ∈ D dominates u2 then u1vu

′
2u2

is a path joining u1 and u2. Therefore d(u1, u2) ≤ 3

So that the distance between any pair of vertices is at most four, a contra-

diction to diam(G) ≥ 5. Hence if v ∈ V \ D, then |N [v] ∩ D| < |D|. So there

exists a vertex u in D which is not in N [v] ∩D and dominates v in G. Thus D

is a dominating set of G. Hence the theorem.

Corollary 4.5.7. If D is a γH-set of G containing an isolated vertex, and if
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diam(G) ≥ 5, then γg(G) ≤ γH(G)

Remark 4.5.8. Theorem 4.5.6 need not hold for graphs with diameter ≤ 4.

For example, complete graphs Kn, n ≥ 2 has diameter 1. γH(Kn) = 1 and

γg(Kn) = n. For K1,3, diameter = 2, γH(K1,3) = 1 and γg(K1,3) = 2 In Figure

4.7, diameter of the graph G is 3, γH(G) = 3 and γg(G) = 4 and in Figure 4.8,

diameter of H is 4, γH(H) = 4 and γg(H) = 5
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Conclusion

In this chapter, Hausdorff domination number and connected Hausdorff dom-

ination number are introduced. Necessary and sufficient condition for a dominat-

ing set to be Hausdorff dominating is obtained. The relation between Hausdorff

domination and independent domination are discussed. Also an attempt is made

to compare Hausdorff domination with other domination parameters. It is proved

that whenever a Hausdorff dominating set D ⊆ V of a graph G is not an indepen-

dent dominating set, then it contains a cycle neighbor set of G. Hence whenever

the graph induced by a Hausdorff dominating set does not contain any isolated

vertices, every vertex in the Hausdorff dominating set will be dominated by at

least two vertices other than itself.



Chapter 5

T1 Domination and T0

Domination

5.1 Introduction

1 In this Chapter a generalisation of Hausdorff domination called T1 domination

and a generalisation of T1 domination viz, T0 domination are introduced. So that

every Hausdorff dominating set is T1 dominating and every T1 dominating set is

T0 dominating.

A simple graph G is said to be T1 [50], if for any two distinct vertices u and

v of G, one of the following holds

1Part of this chapter has been published in International Journal of Research in Advent
Technology, Vol. 7, No. 2, 120-125, 2019

87
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1. At least one of u and v is isolated.

2. There exists edges e1 and e2 such that e1 is incident with u but not with v

and e2 is incident with v but not with u.

A simple graph G is said to be T0 [49], if for any two distinct vertices u and

v of G, one of the following holds

1. At least one of u and v is isolated.

2. There exists an edges e such that either e is incident with u but not with

v or e is incident with v but not with u.

5.2 T1 domination

T1 Domination is defined as follows.

Definition 5.2.1. Let G(V,E) be any graph. A dominating set D ⊆ V is said

to be T1 dominating, if 〈D〉 is a T1 graph. The minimum cardinality of all T1

dominating sets is called the T1 domination number and is denoted by γT1(G). A

T1 dominating set with cardinality γT1(G) is called a γT1 -set.

Theorem 5.2.2 characterizes a T1 dominating set.

Theorem 5.2.2. Let G = (V,E) be any simple graph. A dominating set D ⊆ V

is a T1 dominating set if and only if for every vertex u ∈ D, d〈D〉(u) 6= 1.

Proof. Let D ⊆ V be T1 dominating. Then for every pair u, v in D, either

(i) u or v or both are isolated in 〈D〉 or
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(ii) there are edges e1 6= e2 in 〈D〉 such that e1 is incident with u but not

with v and e2 is incident with v but not with u.

If (i) holds for u ∈ D, then d〈D〉(u) = 0.

If u is not isolated in 〈D〉, then d〈D〉(u) ≥ 1. Suppose if possible, d〈D〉(u) = 1.

Then there is a vertex v ∈ D which is adjacent to u in 〈D〉. Hence uv is the only

edge which is incident with u, which is incident with v also, a contradiction to

〈D〉 is T1.

Now let d〈D〉(u) ≥ 2, for every u ∈ D for which d〈D〉(u) 6= 0. Let u and v

be any two vertices in D with d〈D〉(u) ≥ 2 and d〈D〉(v) ≥ 2. If u and v are non

adjacent in 〈D〉, then clearly there are distinct, non adjacent edges incident with

them. If u and v are adjacent in 〈D〉, then since, both d〈D〉(u) and d〈D〉(v) are

greater than one, there are vertices w1 and w2 (or w1 = w2 = w ) adjacent to u

and v respectively. So that the edge uw1 (or uw) is incident with u but not with

v and the edge vw2 (or vw) is incident with v but not with u. Hence for every

vertex u ∈ D, d〈D〉(u) 6= 1.

Converse is obvious.

Remark 5.2.3. A dominating set D ⊆ V of a graph G(V,E) is T1 dominating

if and only if 〈D〉 has no pendant vertices.

Corollary 5.2.4. Every independent dominating set is T1 dominating

Proof. Let G = (V,E) be any graph, let D ⊆ V be an independent dominating

set of G. Then 〈D〉 is the empty graph. Therefore, for every vertex u ∈ D,

d〈D〉(u) 6= 1. Hence 〈D〉 is a T1 graph.

Corollary 5.2.5. For any graph G, γT1(G) ≤ i(G)
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Remark 5.2.6. The converse of the conclusion of Corollary 5.2.4 need not be

true. The T1 domination number of the graph G in F Figure 5.1 is 3 and the

independent domination number of G is 5.
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Theorem 5.2.7. For any graph G(V,E), the graph induced by every T1 domi-

nating set of G, which is not independent, contains a cycle of length greater than

or equal to three.

Proof. Let D ⊆ V be a T1 dominating set, which is not independent and let v

be a non isolated vertex in 〈D〉. Then v is a vertex of a connected component H

of 〈D〉. Since 〈D〉 is a T1 graph, the component H is also T1. So that H has no

pendant vertices and hence it is not a tree. That is H is not acyclic and contains

at least one cycle of length greater than or equal to three.

Corollary 5.2.8. Let G(V,E) be any graph of order n ≥ 3 and let D ⊆ V be a

T1 dominaating set of G, which is not independent then |D| ≥ 3.

Corollary 5.2.9. For any acyclic graph G(V,E), the T1 dominating set and

independent dominating set are the same. Hence γT1(G) = i(G).

Theorem 5.2.10. For any graph G if i(G) ≤ 3, then γT1(G) = i(G). Moreover

if i(G) < 3 then every γT1 -set is an i-set and viceversa.
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Proof. Since every independent dominating set is a T1 dominaating set and every

non independent T1 dominaating set contains at least three vertces, whenever

i(G) ≤ 3, we have γT1(G) = i(G) and for i(G) < 3, every γT1 -set is an i-set and

viceversa.

Remark 5.2.11. When i(G) = 3, every γT1 -set need not be an i-set. Figure 5.2

illustrates this.
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Since every T1 dominating set is Hausdorff dominating, we have the following

Proposition

Proposition 5.2.12. Let G = (V,E) be any graph on n vertices then,

1. γT1(G) = 1 if and only if 4(G) = n− 1

2. γT1(G) = 2 if and only if i(G) = 2

3. γT1(G) = 3 if and only if i(G) = 3

4. γT1(G) = n if and only if G = Kn

5.3 T0 domination

Using the definition of T0 graph, T0 domination is defined as follows.
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Definition 5.3.1. Let G be any graph with vertex set V. A dominating set S ⊆ V

is said to be T0 dominating, if 〈S〉 is a T0 graph. The minimum cardinality of

all such T0 dominating sets is called T0 domination number and is denoted by

γT0(G). Such a T0 dominating set with cardinality γT0(G) is called a γT0 -set.

Since every Hausdorff dominating set is T1 dominating and every T1 domi-

nating set is T0 dominating, for any graph G, γ(G) ≤ γT0(G) ≤ γT1(G) ≤ γH(G).

In [49] Seena V and Raji P proved that a graph G is T0 if and only if K2 is

not a component of G.

A characterization of a T0 dominating set follows directly from this result.

Proposition 5.3.2. Let G = (V,E) be any graph. A dominating set S ⊆ V is a

T0 dominating set if and only if no component of 〈S〉 is K2.

Proposition 5.3.3. For any graph G, every independent dominating set is T0

dominating.

Proof. Let I ⊆ V be an independent dominating set of a graph G = (V,E).

Since K2 is not a component of 〈I〉, 〈I〉 is a T0 graph.

Corollary 5.3.4. For any graph G, γT0(G) ≤ i(G).

Remark 5.3.5. The converse of the conclusion of Proposition 5.3.3 need not be

true. For example the set of all darkened vertices shown in in Figure 5.3 is T0

dominating but not independent. Here γT0(G)=3 and i(G)=5.
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Theorem 5.3.6. For any positive integer k, there exist a graph G such that

i(G)− γT0(G) = k

Proof. Consider the path P3. Let G be the graph obtained from P3 by attaching

exactly j pendant edges to each vertex of P3, where j > 2. Then γT0(G) = 3 and

i(G) = 3 + (j − 1) when j ≥ 2. Therefore, i(G) − γT0(G) = j − 1. Since,

j > 2, i(G)− γT0(G) = k, k = 1, 2, 3...

Theorem 5.3.7 characterizes graphs for which γT0(G) = 1, γT0(G) = 2,

γT0(G) = n− 1 and γT0(G) = n .

Theorem 5.3.7. Let G be any graph on ’n’ vertices. Then

1. γT0(G) = 1 if and only if 4(G) = n− 1

2. γT0(G) = 2 if and only if i(G) = 2

3. γT0(G) = n if and only if G = Kn

4. γT0(G) = n− 1 if and only if G ∼= K2 or G ∼= K2 ∪Kn−2.

Proof. (1) is obvious.
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(2) Suppose that γT0(G) = 2. Let D ⊆ V (G) be a γT0 -set. Then |D| = 2

and 〈D〉 is empty, otherwise 〈D〉 is K2 which is not T0. Hence D is independent

dominating. Also since γT0(G) ≤ i(G), it follows that i(G) = 2

Conversely, let i(G) = 2. If γT0(G) 6= 2, then by Corollary 5.3.4, γT0(G) = 1.

Then the γT0-set is also independent dominating, contradicting i(G) = 2. Hence

γT0(G) = 2.

(3) Let γT0(G) = n. Then every γT0-set D contains every vertices of G and

hence 〈D〉 = G. Also since γT0(G) ≤ i(G) and order of G is n, i(G) must be n.

Hence G = Kn. The converse is obvious.

(4) If G = K2 or K2 ∪Kn−2, then γT0(G) = n− 1.

Conversely suppose that γT0(G) = n− 1

Case (i) G is connected.

If ∆(G) = 0, then since G is connected, G ∼= K1 and therefore γT0(G) = 1 =

n.

If ∆(G) = 1, then since G is connected, G has exactly two vertices and

G ∼= K2. Therefore γT0(G) = 1 = n− 1.

If ∆(G) ≥ 2, then i(G) ≤ n−∆(G). Hence γT0(G) ≤ n−∆(G) ≤ n− 2 by

Corollary 5.3.4. Therefore the only connected graph with γT0(G) = n− 1 is K2.

Case (ii) G is disconnected.

When ∆(G) = 0 or ∆(G) ≥ 2, then γT0(G) = n and less than or equal to

n − ∆(G) respectively. Therefore, γT0(G) = n − 1 if and only if ∆(G) = 1. In

this case, the only nontrivial connected component of G are K2. Suppose that r
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components of G are K2. Then we have, 1 ≤ r ≤ dn
2
e and γT0(G) = n− r. Thus

γT0(G) = n− 1 if and only if n− r = n− 1. ie., if and only if r = 1.

Corollary 5.3.8. Let G be a graph of order n with ∆(G) > 0. If G is distinct

from any of the graphs K2∪nK1 where n = 0, 1, 2... then γT0(G) ≤ n−2. Further

equality holds for G = P4 and C4

Theorem 5.3.9. Let G be any nontrivial connected graph of order n, then

γT0(G) + γT0(G) ≤ 2n− 1 (5.1)

γT0(G)γT0(G) ≤ n(n− 1) (5.2)

Further equality holds if and only if G ∼= K2.

Proof. If G = K1 then γT0(G) = γT0(G) = n. There are no nontrivial graphs

for which γT0(G) = γT0(G) = n. Therefore, γT0(G) + γT0(G) ≤ 2n − 1 and

γT0(G)γT0(G) ≤ n(n− 1).

Furthermore, equality holds in (5.1) and (5.2) if and only if either γT0(G) = n

and γT0(G) = n− 1 or γT0(G) = n− 1 and γT0(G) = n. By Theorem 5.3.7, this

is true if and only if G ∼= K2 or G ∼= K2.

Proposition 5.3.10. For any graph G, if i(G) = 3 then γT0(G) = 3

Proof. Let i(G) = 3 and let S ⊆ V (G) be a T0 dominating set with |S| < 3. Since

a connected graph with two vertices is not T0, S is an independent dominating

set, a contradiction.

Remark 5.3.11. The converse of the conclusion of Proposition 5.3.10 need not

be true. For example in figure 5.1, γT0(G)=3 but i(G)=5.
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Theorem 5.3.12. For complete bipartite graphs Km,n

γT0(Km,n) =


1, if m = 1 or n = 1

2, if m = 2, n ≥ 2 or m ≥ 2, n = 2

3, if m > 2, n > 2

Proof. Case (i) If either m or n is one, then ∆(G) = m+n−1. Hence γT0(G) = 1

by Theorem 5.3.7.

Case (ii) If one of m or n is exactly 2, then i(G) = 2. Hence by Theorem

5.3.7, γT0(G) = 2

Case (iii) Since γ(Km,n) = 2, and since γ(G) ≤ γT0(G) for any graph G, we

have, γT0(Km,n) ≥ 2. Let U , V be the two partite sets of V (Km,n). If we take two

vertices from the same partite set say U of Km,n, then they will not dominate

other vertices of U and if we take one vertex from U and other vertex from V then

these two vertices dominate Km,n but the subgraph induced by these vertices is

isomorphic to K2, which is not a T0 graph. Therefore, γT0(Km,n) ≥ 3. the choice

of any two vertices from one partite set and a third vertex from the other set

will dominate the vertices of Km,n and the span of these vertices is P3, which is

T0. Hence the theorem.

Corollary 5.3.13. For Km,n, γT0(Km,n) ≤ 3 for all values of m and n

Remark 5.3.14. If G = Km,n; m ≥ 4, n ≥ 4 then, γ(G) < γT0(G) < i(G).

Theorem 5.3.15. If G is a connected graph of order ≥ 2, which contain no K3

as an induced subgraph, then γT0(G) = 2

Proof. Since G is a connected graph of order ≥ 2, it contains at least an edge
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say uv. If order of G is two, then G is isomorphic to K2 and G is isomorphic

to K2. Therefore, γT0(G) = 2. If order of G is greater than two, then no vertex

of G is adjacent to both u and v, because G is triangle free. Therefore every

vertex in G which are adjacent to u are dominated by v in G and those vertices

adjacent to v in G are dominated by u in G and all vertices which are non

adjacent to both u and v are dominated by both u and v in G. So {u, v} forms

an independent dominating set of G. Therefore it is also a T0 dominating set

of G. Hence γT0(G) ≤ 2. Now let if possible γT0(G) = 1, then G would have an

isolated vertex, a contradiction. Which proves γT0(G) = 2

Theorem 5.3.16. Let G(V,E) be any graph. Then for any T0-dominating set

D ⊆ V of G, 〈D〉 can never be a matching of G.

Proof. Suppose if possible, D ⊆ V be a T0-dominating set of G such that, 〈D〉

is a matching of G. Then 〈D〉 consists of disconnected edges. That is, 〈D〉 has

K2 as a component, a contradiction to D is a T0-dominating set of G.

5.4 Connected T0 domination

Definition 5.4.1. Let G = (V,E) be any graph. A dominating set S ⊆ V is

called a connected T0 dominating set, if 〈S〉 is both connected and T0. The mini-

mum cardinality of all connected T0 dominating sets is denoted by γcT 0(G) and is

called the connected T0 domination number of G. Any connected T0 dominating

set with cardinality γcT 0(G) is called a γcT 0-set of G.

Observation 5.4.2. For any connected graph G, γc(G) ≤ γcT0(G). This in-

equality is sharp for P4
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Theorem 5.4.3. Let G be any connected graph with γc(G) 6= 2. Then γcT0(G) =

γc(G)

Proof. Since γc(G) 6= 2, the graph induced by any γc-set is not K2 and hence the

γc-set is connected T0 dominating. Also since γc(G) ≤ γcT0(G), it follows that

γcT0(G) = γc(G).

Theorem 5.4.4. Let a and b be two positive integers with a > 2 and b ≥ 2a+ 2.

Then there is a graph G on b vertices with γ(G) = γT0(G) = γcT0(G) = a and

i(G) ≥ a+ 1.

Proof. Consider the path P = (u1, u2, ..., ua) on a vertices. Let b = 2a+r, r ≥ 2.

Let G be the graph obtained from P by attaching two or more pendant edges at

u1 and u2 and one pendant edge at each ui, i ≥ 3. Let vi, i ≥ 3 be the pendant

vertices attached to ui, i ≥ 3. Clearly D = {u1, u2, ..., ua} is a γ-set which is

also a connected T0 dominating set. Hence γ(G) = γT0(G) = γcT0(G) = a. Any

independent dominating set of G of minimum cardinality will be one among the

following. {ui, v3, v4, ..., va}
⋃
N(uj) where ui is the vertex of maximum degree

among u1 and u2 and N(uj) is the open neighborhood of u1 or u2 with minimum

cardinality such that i 6= j or {u1, u3, v4, u5, v6...}
⋃
N(u2) if d(u1) ≥ d(u2) and

|N(u2)| ≤ |N(u1| or {u2, v3, u4, v5, u6...}
⋃
N(u1) if d(u2) ≥ d(u1) and |N(u1)| ≤

|N(u2|. In all these cases the cardinality of the i-set is (a−1)+min{d(u1), d(u2)},

where min{d(u1), d(u2)} ≥ 2. Therefore i(G) ≥ a+ 1.

Theorem 5.4.5. Let T be any tree of order n, n ≥ 4. If T is not isomorphic to

K1,n−1 then γcT0(T ) = 3.
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Proof. Since T is not isomorphic toK1,n−1 (a star graph), ∆(T ) ≤ n−2. Consider

the following cases.

Case (i) T is not a path.

Since T is not a path, it has at least three pendant vertices say, v1, v2 and

v3. Therefore, dT (vi) = n − 2, i = 1, 2, 3. Also since T is not a star, the

support vertex of at least one of the vi will be different from support vertices

of the other two, for i = 1, 2, 3. Therefore, {v1, v2, v3} forms a dominating set

of T . In T , 〈{v1, v2, v3}〉, the graph induced by {v1, v2, v3} is either K3 or P3.

Hence {v1, v2, v3} is a connected T0 dominating set of T . So that γcT0(T ) ≤ 3.

Since T has no isolated vertices, γcT0(T ) cannot be one. Also since there are no

connected T0 dominating sets of cardinality two, γcT0(T ) ≥ 3. Hence it follows

that γcT0(T ) = 3.

Case (ii) T is a path Pn on n vertices, n ≥ 4.

Let v1 and v2 be the pendant vertices and v3 be any one of the support

vertices. Then dT (vi) = n− 2, i = 1, 2 and dT (v3) = n− 3. In T , the subgraph

induced by {v1, v2, v3} is P3 and it forms a connected T0 dominating set of T .

Hence by the same reasoning as in case (i), it follows that γcT0(T ) = 3.

Corollary 5.4.6. Let T be a tree of order > 1, then T has a connected T0

dominating set if and only if T is not a star.

Proof. If T is a star on n > 1 vertices, T is disconnected. Hence T cannot have

a connected T0 dominating set.

Conversely, let T be a tree, which is not a star. Then n ≥ 4. Therefore by

Theorem 5.4.5, T has a connected T0 dominating set.
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Proposition 5.4.7. Let G be a bi-star B(m,n) on p vertices, then

γcT0(G) = p−max{m,n}

Theorem 5.4.8. [44] For any tree T of order p, the connected domination

number of T = p− e, where e is the number of pendant vertices in T

Theorem 5.4.9. Let T be any tree. Then the γc-set and γT0-set are the same if

and only if T is not a bi-star.

Proof. Let T be a tree on p vertices. Assume that the γc-set and γT0-set are

the same. Suppose if possible, T is a bi-star. Then by Theorem 5.4.7, γc(T ) =

p− e = 2, where, e is the number of pendant vertices. So that the graph induced

by the γc-set is K2, which is not T0. Hence by Proposition 5.4.7 and Theorem

5.4.8, if T is a bi-star, then γc(T ) 6= γcT0(T )

Conversely, if T is a bi-star, then there are only two support vertices for all

the pendant vertices in T and the graph induced by them is K2, which forms a

connected dominating set of T but not connected Hausdorff dominating.

Conclusion

In this chapter two generalisations of Hausdorff domination viz, T1 domina-

tion and T0 domination are discussed. Every T0 dominating set is T1 dominating

and every T1 dominating set is Hausdorff dominating. Also it is observed that

every non independent T1 dominating set contains at least one cycle neighbor

set with three or more vertices. If the graph induced by a T0 dominating set or a

T1 dominating set does not contain any isolated vertices, then these dominating

sets will be total dominating too.
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Cyclic Distance in Graphs

6.1 Introduction

1 Generally, graphs representing many real life situations are very complicated,

large and contains plenty of cycles, circuits etc,. Some popular examples are

social networking systems and electric circuits. The advantage of defining cyclic

distance is that such graphs can be studied in a smaller frame using this notion.

Cyclic distance reduces the distance between two vertices in a graph. This con-

cept enables us to treat two distinct vertices as a single unit when they belong

to a subgraph which is at least two connected. It is like viewing an object from

a very far away place as in the case of satellite view of a very large area, study

of astronomical bodies and objects from far away places, the technique used in

cartography etc,.

1Part of this chapter is accepted to be published in South East Asian Journal of Mathematics
and Mathematical Sciences
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6.2 Cyclic distance in graphs

In this section using the notion of cycle neighbor sets introduced in Definition

4.3.9, maximal cyclic components of a graph are defined and in terms of which

cyclic distance between two vertices of a graph is introduced.

Definition 6.2.1. A cycle neighbor set C of a graph G(V,E) is said to be a

maximal cycle neighbor set, if it is not contained in any larger cycle neighbor set

of G. That is for any vertex u ∈ V \ C, C ∪ {u} is not a cycle neighbor set.

Definition 6.2.2. The subgraph induced by a maximal cycle neighbor set of a

graph G is called a maximal cyclic component of G.

It is clear from the definition that a block of a graph G is a maximal cyclic

component of G if and only if the block is not a bridge.

Definition 6.2.3. If a vertex of a graph G does not belong to any non trivial

cycle in G, then it is called a trivial maximal cyclic component of G.

For an acyclic graph, every vertex is a trivial maximal cyclic component.

Definition 6.2.4. The number of maximal cyclic components in a graph G is

called the m-cyclic component number and is denoted by mcc(G).

For example, consider the graph G in Figure 6.1. For this graph G, m-cyclic

component number mcc(G) = 11. For an acyclic graph G, mcc(G) is equal to

order of G.
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Definition 6.2.5. Two maximal cyclic components are said to be neighbors or

neighboring maximal cyclic components, if they have either a vertex in common

or they are connected by a bridge between them. Two maximal cyclic components

are said to be disjoint if they have no vertices in common and two maximal cyclic

components are said to be distinct if they have at most one vertex in common.

Remark 6.2.6. It is clear that when all the maximal cyclic components in a

graph G are complete graphs, such that no two trivial maximal cyclic components

are adjacent, then mcc(G) = θv(G), the (vertex) clique cover number [15] of G.

Hence for all graphs G, for which no pair of trivial maximal cyclic components

are neighbors, mcc(G) ≤ θv(G).

Proposition 6.2.7. Let G be any graph. Then any two maximal cyclic compo-

nents of G can have at most one vertex in common.

Proof. Suppose that G1 and G2 are two maximal cyclic components of G. Sup-

pose if possible, G1 and G2 have more than one common vertices. Let u and v be

two common vertices of G1 and G2. Then there are two internally disjoint paths

joining in G. Concatenating these two paths we get a cycle in G. Therefore,
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G1 ∪G2 is a maximal cyclic component of G contradicting the maximality of G1

and G2.

Definition 6.2.8. Let G(V,E) be any connected graph. For any two vertices

u, v ∈ V (G), the cyclic distance between u and v is defined as the minimum

number of maximal cyclic components to be traversed from the maximal cyclic

component containing u to the maximal cyclic component containing v other than

the one containing u. It is denoted by cdG(u, v) or simply cd(u, v).

It is clear from the definition that when the vertices u and v belong to the

same maximal cyclic component of G, then cd(u, v) = 0. As an illustration

consider the graph in Figure 6.2. Here the cyclic distance between u and v,

cd(u, v) = 3 but d(u, v) = 6. It is obvious that, cd(u, v) = cd(v, u). In general

for any graph G(V,E), cd(u, v) ≤ d(u, v) where u, v ∈ V (G).

t t
t
t

t
t

t t
t
t

t
t

u

v

Figure 6.2

Definition 6.2.9. A connected graph G is called a cyclic path graph if G contains

no maximal cyclic components with three or more neighbors.

That is every maximal cyclic components in a cyclic path graph has at most

two neighboring maximal cyclic components.

Definition 6.2.10. The length of a cyclic path graph is the maximum of the

cyclic distances cd(u, v) for all pairs u, v of vertices in that graph.
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It is clear from the definition that length of a cyclic path graph will be one

less than the number of maximal cyclic components in G.

Definition 6.2.11. Let G(V,E) be any graph and and let M the set of all max-

imal cyclic components in G. Let N ⊆ M . Then the subgraph induced by N

denoted by G[N ] is the graph which consists of all maximal cyclic components in

N and all cut edges in G which have both end points in N .

Definition 6.2.12. Let G(V,E) be a connected graph and u, v ∈ V (G) and let

cd(u, v) be the cyclic distance between u and v. The cyclic path between u and v

in G is a subgraph of G, which is a cyclic path graph of minimum length induced

by the maximal cyclic components which contribute towards the cyclic distance

cd(u, v) between the vertices u and v.

Hence if either u or v or both u and v belong to more than one maximal cyclic

components, then a subgraph of G, which is a cyclic path graph with minimum

length containing u and v is considered as the cyclic path between u and v if

such a path exist otherwise the cyclic distance between any pair u, v of vertices

belonging to two different components of G is taken to be infinity. It is illustrated

in Figure 6.3. A,B,C,D and E are the maximal cyclic components in G. The

cyclic path between the vertices u and v is the cyclic path graph induced by C

and D.
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Using the terminology of cyclic path between u and v, the cyclic distance

cd(u, v) between u, v ∈ V (G) of a graph G can be defined as the length of the

cyclic path joining u and v.

Let G(V,E) be any acyclic graph. Then every vertex in G is a trivial maximal

cyclic components so that for every u, v ∈ V (G), cd(u, v) = d(u, v). That is for

an acyclic graph, the notions of cyclic distance and the classical distance between

two vertices coincide.

Proposition 6.2.13. Let G(V,E) be any connected graph. Then for any two

vertices u, v ∈ V (G), the cyclic path between u and v is unique. In particular,

the cyclic path between any two maximal cyclic components of G is unique.

Proof. Assume that u, v ∈ V (G) such that cd(u, v) ≥ 1. Suppose if possible, the

cyclic path between u and v is not unique. Then there are more than one cyclic

paths between u and v in G. Without loss of generality, let there be two internally

disjoint cyclic paths between u and v. Combining these two cyclic paths, we get

a subgraph containing both u and v so that cd(u, v) = 0, a contradiction to

cd(u, v) ≥ 1.

Definition 6.2.14. Two vertices u and v of a graph G are said to be cyclic

similar vertices if the cyclic distance cd(u, v) between u and v is zero and a graph

G is called a cycle neighbor graph, if for every two vertices u and v in V (G),

cd(u, v) = 0.

Remark 6.2.15. In [31], Jalsia M. P. and Raji Pilakkat defined a graph to be

track connected, if for every pair of vertices u, v in G there exists two internally

disjoint paths connecting u and v. The same concept is considered in the defini-
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tion of cycle neighbor graphs with another terminology, since it seems to be more

appropriate here.

All hamiltonian graphs, in particular, cycles Cn, n ≥ 3, complete graphs

Kn, n 6= 2, pancyclic graphs [6], connected T1 graphs [50], connected Hausdorff

graphs [48] etc., are examples of cycle neighbor graphs. All subgraphs induced

by a maximal cycle neighbor sets of a graph G are cycle neighbor graphs. For a

cycle neighbor graph G, mcc(G) = 1

Theorem 6.2.16. Let G be any connected graph. Then the following statements

are equivalent.

1. G is a cycle neighbor graph.

2. The vertex connectivity κ(G) is greater than or equal to two.

3. V (G) is a cycle neighbor set.

Proof. Suppose that G is a cycle neighbor graph. Then cd(u, v) = 0 for all

vertices u, v ∈ V (G). That is for every pair u, v of vertices in G, there is a cycle

containing these vertices. Hence there are at least two internally disjoint paths

joining every pair of vertices in G. Therefore, G is at least two-connected and

hence κ(G) ≥ 2.

Now let us prove that if (2) does not hold then (3) cannot hold. Suppose

that, κ(G) ≤ 1. Then since G is connected, there is at least one cut vertex say

w in G and there are vertices u and v in G such that u...w...v is the only path

connecting u and v. Therefore u and v together does not belong to any cycle of

G. Hence V (G) is not a cycle neighbor set.
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If V (G) is a cycle neighbor set, then by definition, every vertex of G belongs

to a cycle of G and therefore G is a cycle neighbor graph. Hence (1).

If the graph G is k-connected, where k ≥ 2, then G has no pendant vertices.

Hence we have:

Corollary 6.2.17. Let G be a connected graph. If G is a cycle neighbor graph,

then G has no pendant vertices.

The concept of cyclic distance helps to develop a topological structure on

connected graphs.

Theorem 6.2.18. Let G(V,E) be any connected graph. Then the cyclic distance

induces a pseudo metric on V (G).

Proof. Let u, v ∈ V (G). From the definition of cyclic distance, it is clear that

cd(u, v) ≥ 0 for all u, v ∈ V (G) and cd(u, v) = cd(v, u). Now let u, v, w be any

three vertices in G.

Claim: cd(u,w) ≤ cd(u, v) + cd(v, w)

If G is acyclic or if all of u, v and w belong to the same cycle of G, then the

inequality holds trivially. Now consider the following cases.

Case (i) Only two among u, v and w are in the same maximal cyclic compo-

nent. Then the cyclic distance between two pairs will be the same and the cyclic

distance between the other pair is zero.

Case (ii) All the vertices u, v and w are in distinct maximal cyclic components

of G. By Proposition 6.2.13, the cyclic path between u and w is unique. There-
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fore, cd(u,w) = cd(u, v) + cd(v, w) or cd(u,w) < cd(u, v) + cd(v, w) according as

v is in between the cyclic path connecting u and w or not. Hence the proof.

6.3 Cyclic edge partition

In this section a partition of the edges of a connected graph based on maximal

cyclic components is introduced.

Definition 6.3.1. Let G(V,E) be any graph. Then two edges e1, e2 in E(G) are

said to be cyclic edge related if either e1 and e2 belong to the same maximal cyclic

components of G or both e1 and e2 are cut edges of G. It is denoted by

e1 c̃ e2

Recall that an edge decomposition of a graph G is a collection of subgraphs

of G with each edge of G belongs to exactly one subgraph, cyclic edgde partition

of a graph G gives a decomposition of the graph G.

Definition 6.3.2. Let G be a connected graph. Then G is called a cyclic tree if

every pair of neighboring maximal cyclic components are connected by a bridge

between them.

That is a connected graph G is a cyclic tree if every pair of neighboring

maximal cyclic components in G are connected through bridges. Hence a cyclic

tree can be considered as a generalised tree in which the nodes are maximal

cyclic components and neighboring maximal cyclic components are connected

by bridges.

We observe the following properties of cyclic edge relation ’ c̃ ’
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• Clearly the relation ’ c̃ ’ defines an equivalence relation on the set of edges

of the graph G.

• Partition corresponding to the equivalence relation ’ c̃ ’ constitute a collec-

tion of edge disjoint subgraphs of G. Moreover, edge induced subgraphs of

the partition are different blocks of G.

• Let G be any graph and let the relation ’ c̃ ’ partition the edge set E(G)

of G as E(G) = E1 ∪ E2∪, ...,∪En, then

n =

 mcc(G), if G has no cut edges;

mcc(G) + 1, if G has cut edges.

• Let G(V,E) any graph and let E(G) = E1∪E2∪, ...,∪En be the cyclic edge

partition with E1 as the set of all cut edges in G. Then the cyclic distance

between any two vertices u, v in G depends on the edges in E1 if the cyclic

path between u and v contains at least two adjacent edges in E1.

• Let G(V,E) be a graph with cyclic edge partition E(G) = E1∪E2∪, ...,∪En

with E1 as the set of all cut edges in G with respect to the cyclic edge

relation as in Definition 6.3.1. and let CN∗[G; z] = a0 + a1z + a2z
2 +

... + akz
k, be the modified cycle neighbor polynomial of G, where k is the

circumference of G. Then a2 = |E1|.

• LetG(V,E) a cyclic tree with cyclic edge partition E(G) =E1∪E2∪, ...,∪En

and E1 be the set of all cut edges in G, then |E1| = n− 2.

Theorem 6.3.3. For a graph G(V,E), let E(G) = E1 ∪ E2∪, ...,∪En be the

cyclic edge partition of G. Then for any i, 1 ≤ i ≤ n, |Ei| = 2 if and only if G
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contains exactly two cut edges. Moreover, there is at most one set Ei in {Ei},

1 ≤ i ≤ n, for which |Ei| = 2.

Proof. Suppose that |Ei| = 2, for some i, 1 ≤ i ≤ n. By the definition of cyclic

edge partition, 〈Ei〉, the subgraph induced by the edges in Ei is either a maximal

cyclic components or the collection of all cut edges in G. For the edge induced

subgraph 〈Ei〉 to be a maximal cyclic components, |Ei| ≥ 3. Hence |Ei| = 2 if

and only if Ei is the collection of all cut edges in G. That is if and only if the

number of cut edges in G is exactly two.

Conversely suppose that G contains exactly two cut edges. Then for one set

Ei, 1 ≤ i ≤ n, |Ei| = 2 and for any other set Ej, j 6= i, Ej ≥ 3, since 〈Ej〉 is a

maximal cyclic components of G.

To prove that there is at most one set Ei in {Ei}, 1 ≤ i ≤ n, for which

|Ei| = 2, let us assume the contrary. Suppose if possible, there are more than

one set Ei in the cyclic edge partition of G for which |Ei| = 2. Without loss of

generality, let Ei, Ej with i 6= j be in {Ei}, 1 ≤ i ≤ n with |Ei| = |Ej| = 2. Then

the subgraphs induced by Ei and Ej are distinct pairs of cut edges in G. Hence

Ei ∪Ej is the collection of all cut edges in G, a contradiction to the assumption

that {Ei}, 1 ≤ i ≤ n, is a cyclic edge partition of G.

Theorem 6.3.4. Let G(V,E) be any graph with cyclic edge partition E(G) =

E1 ∪ E2∪, ...,∪En. Then n = 1 if and only if one of the following statements

holds.

1. G is a cycle neighbor graph

2. G is a forest.
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Proof. Suppose that the cyclic edge partition of G contains exactly one element.

Then every edge of G belong to the same set with respect to the relation ’ c̃ ’.

Hence either every edge of G belong to the same maximal cyclic component or

every edge of G is a cut edge. In the first case, G is a cycle neighbor graph and

in the second case, G is a forest.

Converse is obvious that for every cycle neighbor graph and for every forest,

their cyclic edge partition contains exactly one element.

Corollary 6.3.5. Let G be a disconnected graph with cyclic edge partition E(G)

= E1 ∪ E2∪, ...,∪En. Then n = 1 if and only if G is a forest.

6.4 Cyclic radius and Cyclic diameter

In this section, cyclic radius, cyclic diameter, cyclic center, cyclic periphery etc.,

of a connected graph with respect to cyclic distance are defined analogue to

radius, diameter, center and periphery of a graph with respect to the usual

distance between vertices. Throughout this section only connected graphs are

considered.

Definition 6.4.1. Let G be any graph. The cyclic eccentricity of a vertex v is

denoted by ceG(v) or simply ce(v) and is defined as ce(v) = maxu∈V (G)cd(u, v).

Let u, v ∈ V (G) then v is called a cyclic eccentric vertex of u if ce(u) = cd(u, v).

Definition 6.4.2. For a graph G, cyclic diameter (denoted by cdiam(G)) and

cyclic radius (denoted by crad(G)) are respectively defined as the largest and

smallest cyclic eccentricities of the vertices in the graph G. That is, cdiam(G)

= maxv∈V (G)ce(v) and crad(G) = minv∈V (G)ce(v)
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It is clear from the definition that, for a connected graph G with radius

rad(G) and diameter diam(G),

1. ce(v) ≤ e(v) for any vertex v in G, where e(v) is the eccentricity of the

vertex v in G.

2. crad(G) ≤ rad(G).

3. cdiam(G) ≤ diam(G).

4. 0 ≤ crad(G) ≤ cdiam(G) ≤ 2crad(G).

Definition 6.4.3. Cyclic center (denoted by CC(G)) and cyclic periphery (de-

noted by CP (G)) of a graph G are defined as the set of all vertices for which cyclic

eccentricity is equal to the cyclic radius and the set of all vertices for which cyclic

eccentricity is equal to the cyclic diameter respectively.

Let us denote the number of vertices in the cyclic center and cyclic periphery

of a graph G by |CC(G)| and |CP (G)| respectively.

Definition 6.4.4. Let G be a connected graph. Then G is said to be cyclic self

centered if cdiam(G) = crad(G).

Proposition 6.4.5. For any graph G, cdiam(G) = 0 if and only if G is a cycle

neighbor graph.

Remark 6.4.6. • Let G be a connected graph of order n, which is not a tree.

Then 0 ≤ cdiam(G) ≤ n− 3, since G contains at least one maximal cyclic

components with three or more vertices. Also these bounds are sharp. For

any cycle neighbor graph G, cdiam(G) = 0 and if G is any unicyclic graph
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of order n ≥ 4 obtained by attaching two paths on (n − 3) − k and k,

0 ≤ k ≤ (n − 3) vertices respectively to any two distinct vertices of K3 by

bridges, then cdiam(G) = (n− 3).

• Clearly a tree T of order n has maximum diameter when it is a path and

in this case, diam(T ) = n − 1 . Similarly cyclic diameter of a graph G

with mcc(G) = n will be maximum, when the graph induced by all the

maximal cyclic components of G form a cyclic path graph and for this

graph cdiam(G) = n − 1. That is for a cyclic path graph G, cdiam(G) =

mcc(G)− 1. Hence for any graph G, cdiam(G) ≤ mcc(G)− 1.

Definition 6.4.7. A graph G is called a cyclic flower if there are at least two

blocks in G which are not cut edges such that each block is a cycle neighbor

graph of order greater than or equal to three and all these blocks has exactly one

common vertex.

That is a cyclic flower has at least two non trivial maximal cyclic components

and there is a unique common vertex for all these maximal cyclic components.

Definition 6.4.8. The common vertex of all the maximal cyclic component of a

cyclic flower graph is called flower centric vertex.

The simplest cyclic flower is the friendship graph F2 which is constructed

by joining two copies of the cycle C3 with a common vertex. We can construct

non isomorphic cyclic flowers with the same number of vertices and also with

the same number of maximal cyclic components. For a cyclic flower G with

mcc(G) = n, every maximal cycic component in G has mcc(G) − 1 neighbors
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and in this case, crad(G) = 0 and cdiam(G) = 1. The graph in Figure 6.4 is an

example of a cyclic flower with four maximal cyclic components.
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Definition 6.4.9. If a path on k vertices is attached to the flower centric vertex

of a cyclic flower (or to any one vertex of a cycle neighbor graph) by a bridge,

then it is called cyclic flower with k-stem (or a cycle neighbor graph with k-stem).

The graph in Figure 6.5 is a cyclic neighbor graph with 6-stem.
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Theorem 6.4.10. Let G be a connected graph. Then cdiam(G) = 1 if and only

if one of the following conditions hold

1. G has two maximal cyclic components connected by a bridge
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2. G is a cyclic flower

3. G is either a graph containing a cyclic flower and a cycle neighbor graph

connected by a bridge between the flower centric vertex of the cyclic flower

and any vertex of the cycle neighbor graph or G contains two cyclic flowers

connected by a bridge through their flower centric vertices.

Proof. If G is any one of the graphs as in the statement of the theorem, then

clearly cdiam(G) = 1.

Now let cdiam(G) = 1. If there is only one maximal cyclic subgraph, then G

is a cycle neighbor graph and hence cdiam(G) = 0. Therefore G has at least two

maximal cyclic components say M1 and M2. Since G is connected, these maximal

cyclic components M1 and M2 are connected either by a bridge between them or

they have a vertex in common.

Consider the first possibility that G contains two maximal cyclic components

M1 and M2 connected by a bridge. If there are exactly two maximal cyclic com-

ponents in G then (1) holds. When there are more maximal cyclic components

in G other than M1 and M2, then since G is connected, either these additional

maximal cyclic components will have a vertex in common with M1 ∪M2 or they

will be connected to M1 ∪M2 by bridges. But if the vertices in M1 ∪M2 which

is shared by these additional maximal cyclic components are different from the

connecting vertices of M1 and M2, then clearly cdiam(G) > 1. Therefore ev-

ery extra maximal cyclic components in G which has a vertex in common with

M1 ∪M2 will be sharing either the connecting vertex of M1 to M2 or that of M2

to M1. In this case, (3) holds. No additional maximal cyclic components can be
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connected to M1 ∪M2 by bridges, since then cdiam(G) will be increased at least

by one.

Now consider the second possibility that G contains a cyclic flower with two

maximal cyclic components say M1 and M2. Then there arises the following

cases.

Case (i) There are more maximal cyclic components in G which have a vertex

in common with M1 ∪M2.

Then all these maximal cyclic components willbe sharing a a common vertex.

Otherwise cyclic diameter will be more than one. Hence (2) holds.

Case (ii) If the maximal cyclic components in G other than M1 and M2 are

connected by bridges to M1 ∪M2.

In this case the connecting edge is unique and its one end is the flower centric

vertex of M1 ∪M2 and the other end is common for all the additional maximal

cyclic components. Otherwise cdiam(G) > 1. Therefore (3) holds.

Case (i) and case (ii) can also occur together and in this case, G is a graph

containing two cyclic flowers connected by a bridge through their flower centric

vertices. This completes the proof.

Let u, v ∈ A, where A ⊆ V (G) is a maximal cycle neighbor set of a connected

graph G. Then it is clear that |cd(u, x)−cd(v, x)| ≤ 1 for any vertex x ∈ V (G)\A.

Also when the subgraphs induced by A,B ⊆ V (G) are two neighboring maximal

cyclic components of G, then |cd(u, x) − cd(v, x)| ≤ 1 for all u ∈ A, v ∈ B and

x ∈ V (G) \ A ∪B. Hence it follows that;
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Lemma 6.4.11. Let the subgraphs induced by A,B ⊆ V (G), which are two

different maximal cycle neighbor sets of a connected graph G such that the cor-

responding maximal cyclic components are neighbors in G. Then,

1. |ce(u) − ce(v)| ≤ 1 for all u, v ∈ A, where A is any of the maximal cycle

neighbor sets in G.

2. |ce(u)− ce(v)| ≤ 1, for all u ∈ A and v ∈ B.

Theorem 6.4.12. Let G be a connected graph. If there is a positive integer k

such that crad(G) < k < cdiam(G) then there exists a vertex v ∈ V (G) with

ce(v) = k.

Proof. Let u, v ∈ V (G) such that ce(u) = crad(G) and ce(v) = cdiam(G).

Consider the cyclic path between u and v. Let S and W be the set of all vertices

in that cyclic path, with ce(s) < k for every s ∈ S and ce(w) ≥ k for every

w ∈ W . From the definition of cyclic path it is clear that the vertices of S and

W are connected through a vertex y in W , which is common to two neighboring

maximal cyclic components or they are connected by a bridge with one end in

S and the other end say y in W . In both cases ce(y) ≥ k. Then by the Lemma

6.4.10, |ce(w)− ce(y)| ≤ 1. Therefore we have, ce(y) = k. Hence the proof.

Theorem 6.4.13. Let G be a connected graph. Then G is cyclic self centered if

and only if one of the following statements hold;

1. G is a cycle neighbor graph.

2. G is a graph with cdiam(G) = 1 which is not a cyclic flower.
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Proof. G is a cyce neighbor graph if and only if cdiam(G) = 0. Therefore, cycle

neighbor graphs are cyclic self centered.

Now Suppose that cdiam(G) = 1. Then by Theorem 6.4.9, G has two max-

imal cyclic components connected by a bridge or G is a cyclic flower or G is

a graph containing a cyclic flower and a cycle neighbor graph connected by a

bridge between the flower centric vertex of the cyclic flower and any vertex of

the cycle neighbor graph or G contains two cyclic flowers connected by a bridge

through their flower centric vertices. Among them when G is a cyclic flower,

crad(G) = 0 and cdiam(G) = 1 and in all other cases, G is cyclic self centered.

Now let crad(G) = cdiam(G) = k where k ≥ 2. Then ce(v) = k for all

v ∈ V (G). Let w be a cyclic eccentric vertex of v. Then cd(v, w) = k. By

Proposition 4.2.13, there is a unique cyclic path connecting v and w. In that

cyclic path there are k+1 maximal cyclic components say G0, G1, G2, ..., Gk such

that v ∈ V (G0) and w ∈ V (Gk). Let u ∈ V (Gl) where 1 ≤ l ≤ k − 1. From

the definition of cyclic paths, it is clear that there is at least one vertex say u in

V (Gl) such that u does not belong to V (Gl−1) and u does not belong to V (Gl+1)

and ce(u) = k. Correspondingly there is a cyclic eccentric vertex y ∈ V (G) with

cd(u, y) = k. Consider the cyclic path connecting v and y. Since the cyclic path

between any two vertices of a connected graph is unique, either u lies interior to

the cyclic path between v and y or v lies interior to the cyclic path between u and

y. In the first case, it is clear that cd(v, y) = cd(v, u) + cd(u, y) > k and in the

second case, cd(y, w) = cd(y, v)+cd(v, w) > k, a contradiction to cdiam(G) = k.

Hence k < 2 whenever crad(G) = cdiam(G) = k. Hence the proof.

Corollary 6.4.14. If G is a cyclic self centered graph then cdiam(G) ≤ 1.
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Definition 6.4.15. A collection of m cyclic flowers and a collection of n cyclic

similar graphs (where m ≥ 0, n ≥ 0 and both m and n are finite) are attached to

the vertices of a cycle neighbor graph H through bridges then the resulting graph

G is called a cyclic bouquet if m+ n ≥ 2.

Definition 6.4.16. The cycle neighbor graph H to which all the cyclic flowers

and cycle neighbor graphs are attached in a cyclic bouquet is called the central

cyclic component of the cyclic bouquet.

Graph in Figure 6.6 is an example of a cyclic bouquet.
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From the definition of a cyclic bouquet, it is clear that the cyclic diameter of

any cyclic bouquet G is two. The number of vertices in the cyclic center |CC(G)|

is equal to the number of vertices in the central cyclic component H and cyclic

periphery CP (G) consists of all vertices in G other than those in the central
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cyclic component H. Hence we can costruct a cyclic bouquet G with the desired

number of verices k ≥ 1 but k 6= 2 in the cyclic center CC(G) and l ≥ 2 vertices

in the cyclic periphery CP (G).

Theorem 6.4.17. Let G be a connected graph which is not a tree of order n ≥ 4.

Then |CC(G)| = 1 and |CP (G)| = n − 1 if and only if one of the following

statements hold;

1. G is cyclic flower.

2. G is cyclic flower with 1-stem or G is cycle neighbor graph with 1-stem.

3. G is a cyclic bouquet whose central cyclic component is K1.

Proof. If G is any one of the graphs as in the statement of the theorem, then it

is clear that |CC(G)| = 1 and |CP (G)| = n− 1.

To prove the converse, let G be a graph with |CC(G)| = 1 and |CP (G)| =

n − 1. Let CC(G) = {u} ⊆ V (G). Then ce(u) < ce(v) for all v ∈ V (G) \ {u}.

Also since every vertex in V (G) \ {u} is a cyclic peripheral vertex, cd(u, v) ≤ 1

for all v ∈ V (G) \ {u}. Otherwise, there exists some vertex v ∈ V (G) \ {u} such

that cd(u, v) ≥ 2. Then we can find a vertex x in the cyclic path between u and

v such that cd(u, x) = 1, which contradicts the fact that x is a cyclic peripheral

vertex. Therefore, cd(u, v) ≤ 1. Consider the following cases.

Case (i) cd(u, v) = 1, for all v ∈ V (G) \ {u}. Since G is not a tree, it is clear

that G is a cyclic bouquet with K1 as central cyclic component, which is not a

star graph.

Case (ii) cd(u, v) < 1. In this case, cd(u, v) = 0, for all v ∈ V (G) \ {u}.
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Hence either G is a cycle neighbor graph or u is a cut vertex which belongs to

every maximal cyclic components of G. But when G is a cycle neighbor graph

then, |CC(G)| = |CP (G)| = n. Therefore u is a cut vertex satisfying the above

condition and in this case G is a cyclic flower.

Case (iii) cd(u, v) ≤ 1. Let cd(u, v) = 0 for every v ∈ A for a nonempty

subset A ⊆ V (G) \ {u} and cd(u, v) = 1 for all v ∈ B for a nonempty subset

B ⊆ V (G) \ {u} with A ∪ B = V (G) \ {u}. Then either 〈A ∪ {u}〉, the graph

induced by A∪{u} is a cycle neighbor graph or 〈A∪{u}〉 is a cyclic flower with

u as the flower centric vertex. In both cases, |B| = 1, otherwise |CC(G)| 6= 1.

Therefore G is a cyclic flower with 1-stem or a cyclic similar graph with 1-

stem

Corollary 6.4.18. If |CC(G)| = 1 and |CP (G)| = n− 1 for a connected graph

G of order n ≥ 4, then 1 ≤ cdiam(G) ≤ 2.

Conclusion

In this chapter a new distance concept called cyclic distance in graphs is in-

troduced. For an acyclic graph, the notions of cyclic distance and the classical

distance between vertices coincide. Cyclic distance induces a pseudo metric on

the set of vertices of a graph hence this distance concept can be used to develop a

topological structure on connected graphs. With respect to this new distance con-

cept, cyclic radius, cyclic diameter, cyclic center, cyclic periphery, etc., of a graph

are introduced. Also cyclic self centered graphs, graphs G with cdiam(G) = 1

and graphs G of order n ≥ 4 with |CC(G)| = 1 and |CP (G)| = n − 1 are

characterized.
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Cyclic Distance Matrix of a

Graph

7.1 Introduction

In this chapter, we deal with a method of condensing a graph by shrinking the

maximal cyclic components. The graph obtained by this shrinking process is

called reduced graph of the original graph. Here some properties of reduced

graph of a graph are obtained. Also a new graph matrix called cyclic distance

matrix of a graph is defined using the concept of cyclic distance and some of its

properties are discussed. An interesting property of the determinant of cyclic

distance matrix of a graph, whose reduced graph is free of cyclic flowers with

three or more maximal cyclic components is also obtained .

123
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7.2 Reduced graph of a graph

This section is devoted to the study of reduced graph of a graph, which is obtained

by contracting all the maximal cyclic components and identifying each of them

with single vertices. In this new graph, the vertices representing neighboring

maximal cyclic components of the original graph are connected through bridges.

So that corresponding to every simple graph G, which is not a tree, we can find a

maximal cyclic components contracted graph, the reduced graph of G, which is

different from the original graph. A simple real life situation where this concept

matches can be considered as follows. The different organ systems of human

body can be represented by a large complicated graph. Whenever a peripheral

study of this graph is needed, we can use the reduced graph and when a detailed

study of a particular organ is needed it is done by zooming in that particular

node.

Definition 7.2.1. Let G be any connected graph. The reduced graph of G, de-

noted by R(G) is the graph obtained from G by contracting (or shrinking) each

maximal cyclic component of G to a single vertex and joining two vertices of

R(G) by an edge if they correspond to neighboring maximal cyclic components of

G.

We can observe the following simple properties of the reduced graph R(G) of

a graph G.

Proposition 7.2.2. • The reduced graph of a tree T is the tree itself. That

is, R(T ) ∼= T .

• The reduced graph of a cycle neighbor graph is K1.
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• The number of vertices in R(G) of G is equal to the number of maximal

cyclic components mcc(G) of G.

• If the graph G is the disjoint union of the graphs G1, G2, ..., Gn then the

reduced graph R(G) of G is given by R(G) = R(G1)∪R(G2)∪ ...∪R(Gn),

where R(Gi) is the reduced graph of Gi, i = 1, 2, ..., n.

• When G is not a forest, |V (R(G))| ≤ |V (G)| − 2.

Let G be a graph which contains a cyclic flower with n maximal cyclic com-

ponents, where n ≥ 3. Then the reduced graph of G contains a clique on n

vertices. In this case, R(G) cannot be acyclic. Thus we have :

Theorem 7.2.3. The reduced graph of graph G is a tree if and only if G contains

no cyclic flowers with more than two maximal cyclic components.

The following corollaries follow immediately from Theorem 7.2.3

Corollary 7.2.4. For a graph G, R(G) is a path if and only if G is a cyclic path

graph.

Corollary 7.2.5. For a cyclic tree G, R(G) is a tree.

Corollary 7.2.6. The number of bridges in the reduced graph R(G) of a graph

G is equal to the number of bridges in G + the number of cut vertices which are

common to exactly two maximal cyclic components of G.

Corollary 7.2.7. The number of edges in the reduced graph R(G) of a graph G,

which are not bridges depends on the number of cyclic flowers in G with more

than two maximal cyclic components of G.
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Corollary 7.2.8. Every edge in the reduced graph R(G) of a graph G is a cut

edge if and only if G contains no cyclic flowers with more than two maximal

cyclic components.

Corollary 7.2.9. Let E(G) = E1 ∪ E2∪, ...,∪En, n ≥ 2 and E(R(G)) = F1 ∪

F2∪, ...,∪Fm, m ≥ 1 be the cyclic edge partitions of G and R(G) with E1 and F1

as the set of cut edges in G and R(G) respectively. Then |E1| = |F1| if and only

if G contains no cyclic flowers with exactly two maximal cyclic components. In

particular for a connected graph G, E(R(G)) = F1 and |E1| = |F1| if and only if

G is a cyclic tree.

Proof. Suppose that |E1| = |F1|. In addition to the cut edges in G, new cut

edges will be added in R(G), corresponding to the flower centric vertex of a

cyclic flower with two maximal cyclic components. Since |E1| = |F1|, no such

new cut edge is added in R(G). That means every neighboring maximal cyclic

components in G other than those cyclic flowers with more than two maximal

cyclic components are connected through bridges. Hence by Corollary 7.2.8, G

contains no cyclic flowers with more than two maximal cyclic components. So

that there are no cyclic flowers in G. Converse is obvious.

Remark 7.2.10. If the reduced graph R(G) of G is not a tree, then R(G) con-

tains at least one complete graph Kn, n ≥ 3, where n is determined by the number

of maximal cyclic components in the cyclic flower of G.

Since every complete graph Kn on n ≥ 5 vertices is non planar, Corollary 7.2.11

follows.

Corollary 7.2.11. If a graph G contains a cyclic flower with five or more max-

imal cyclic components, then R(G) is non planar.
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Theorem 7.2.12. The reduced graph R(G) of a graph G is a bipartite if and

only if R(G) is a tree.

Proof. Let R(G) be a bipartite graph. Then R(G) has no odd cycles. Suppose

if possible, R(G) is a not a tree. Then R(G) contains a complete graph Kn for

n ≥ 3. Hence R(G) contains odd cycles, a contradiction to R(G) is bipartite.

Conversely if R(G) is a tree, trivially it is bipartite.

7.3 Cyclic distance matrix of a graph

All graphs considered in this section are connected unless otherwise specified. Let

G is a graph containing k ≥ 2 maximal cyclic components viz, M1,M2, ...,Mk

and let M(G) denote the set of all maximal cyclic components. That is, M(G) =

{M1,M2, ...,Mk}.

Definition 7.3.1. Let G be a connected graph with M(G) = {M1,M2, ...,Mk}.

Consider any two maximal cyclic components Mi,Mj, where 1 ≤ i, j ≤ k with set

of vertices {v1, v2, ..., vn} and {u1, u2, ..., um} in Mi and Mj respectively. Then

the distance between the maximal cyclic components Mi and Mj is denoted by

dist(Mi,Mj) and is defined as

dist(Mi,Mj) = max 1≤i≤n
1≤j≤m

{cd(vi, uj)}

That is dist(Mi,Mj) is the maximum value among all cyclic distances cd(vi, uj)

for vertices vi in the maximal cyclic components Mi and for vertices uj in the

maximal cyclic components Mj.
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Theorem 7.3.2 follows directly from the definition of distance between maxi-

mal cyclic components.

Theorem 7.3.2. Let G be a connected graph with M(G) = {M1,M2, ...,Mk}.

Then max1≤i,j≤kdist(Mi,Mj) = cdiam(G), the cyclic diameter of G.

Definition 7.3.3. The cyclic distance matrix of a connected graph G with M(G) =

{M1,M2, ...,Mk} is a k × k matrix denoted by CD(G) and is defined as follows.

The rows and columns of CD(G) are indexed by the set M(G). The (i, j)-th entry

of CD(G) is dist(Mi,Mj), the distance between the maximal cyclic components

Mi and Mj.

In example 7.3.4 we consider the cyclic distance matrix of the graph G in

Figure 7.1 with the set of maximal cyclic components M(G) = {1, 2, ..., 11},

Example 7.3.4.

u
u
u

u

u
u
u

u
u

u@
@@

u
u

uZ
Z
ZZ

u
u

u
u```̀

S
S
SS

u

u u
u u�

��

u
u u

u

u u

u u
u u�

��

u
u

u

u@
@@

u u
1

2

3 4

5

6 7

8

9 10
11

G

Figure 7.1



Chapter 7: Cyclic Distance Matrix of a Graph 129



1 2 3 4 5 6 7 8 9 10 11

1 0 1 2 2 2 3 4 5 1 2 3

2 1 0 1 1 1 2 3 4 1 2 3

3 2 1 0 2 2 3 4 5 2 3 4

4 2 1 2 0 2 3 4 5 2 3 4

5 2 1 2 2 0 1 2 3 2 3 4

6 3 2 3 3 1 0 1 2 3 4 5

7 4 3 4 4 2 1 0 1 4 5 6

8 5 4 5 5 3 2 1 0 5 6 7

9 1 1 2 2 2 3 4 5 0 1 2

10 2 2 3 3 3 4 5 6 1 0 1

11 3 3 4 4 4 5 6 7 2 1 0



It is clear from CD(G) that cdiam(G) = 7, eventhough it is not trivial from

the graph.

Proposition 7.3.5 gives some trivial properties of cyclic distance matrix of a

graph G.

Proposition 7.3.5. 1. For any connected graph G, the cyclic distance matrix

CD(G) is a zero diagonal, symmetric matrix with nonnegative entries over

Z, the set of integers. Hence trace of CD(G) = 0. Moreover, since CD(G)

is a real symmetric matrix, all its eigen values are real.

2. The maximum value among all entries in the cyclic distance matrix of a

graph G is cdiam(G).

3. Let G be a graph with k maximal cyclic components. Then the entries
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CD(G)i,j of CD(G) ∈ {0, 1, 2, ..., k−1} for 1 ≤ i, j ≤ k, since cdiam(G) ≤

k − 1.

4. The cyclic distance matrix of a cycle neighbor graph is O, the zero matrix

of order one.

Since each maximal cyclic component of a tree is isomorphic to K1, we have

Proposition 7.3.6;

Proposition 7.3.6. The cyclic distance matrix of a tree and its distance ma-

trix [4] are the same.

Proposition 7.3.7 follows directly from the definition of distance between max-

imal cyclic components.

Proposition 7.3.7. The number of ones in the i-th row of the cyclic distance

matrix of a graph is the number of neighboring maximal cyclic components of the

i-th maximal cyclic components.

Theorem 7.3.8. The cyclic distance matrix of a graph G is a binary matrix if

and only if one of the following statements hold

1. G has two maximal cyclic components connected by a bridge

2. G is a cyclic flower

3. G is either a graph containing a cyclic flower and a cycle neighbor graph

connected by a bridge between the flower centric vertex of the cyclic flower

and any vertex of the cycle neighbor graph or G contains two cyclic flowers

connected by a bridge through their flower centric vertices.



Chapter 7: Cyclic Distance Matrix of a Graph 131

Proof. Suppose that cyclic distance matrix of a graph G is a binary matrix. Let

M(G) = {M1,M2, ...,Mk}. Then k 6= 1. Otherwise, G will be cyclic similar. In

that case, CD(G) cannot be a binary matrix. Hence k ≥ 2. Since G contains

at least two maximal cyclic components and CD(G) is a binary matrix, for all

i 6= j with 1 ≤ i, j ≤ k, dist(Mi,Mj) = 1. Therefore all the maximal cyclic

components in G are neighbors to each other. So that cdiam(G) = 1. Hence the

proof follows from Theorem 6.4.9.

Conversely, if G is any one of the graphs as in the statement of the theorem,

cdiam(G) = 1. Hence dist(Mi,Mj) is either zero or one for every pair Mi,Mj

where 1 ≤ i, j ≤ k. Therefore CD(G) is a binary matrix.

Definition 7.3.9. The set of eigen values, which are the roots of the charac-

terestic polynomial det (CD(G)− λI) of the cyclic distance matrix CD(G) of a

graph G is called the cyclic distance spectrum of G. It is denoted by cd-spectrum

of G.

The cyclic distance matrix CD(G) of a graph G is not unique. It depends

on the labelling of the maximal cyclic components of G. A relabelling of the

maximal cyclic components of G will result in permutation of the rows and

columns simultaneously. Hence for any labeling the eigen values of the graph will

be the same. Since CD(G) is a symmetric matrix, the eigen values of CD(G)

are real. Also the sum of the eigen values of CD(G) equal to trace of CD(G) =

zero, and determinant of CD(G) equal to the product of the eigen values.

The cd-spectrum of the graph G in figure 7.1, obtained using R prgramme

correct to seven decimal places, is given below.
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{30.2986329,−0.4177651,−0.5719994,−0.6061719,

− 0.8905015,−1.0595263,−2.0000000,−2.0000000,

− 2.4402655,−6.3511823,−13.9612209}

Clearly sum of eigen values is zero and product of eigen values equal to 3584.

Hence determinant of CD(G) = 3584 6= 0. So that CD(G) is nonsingular and

hence rank of CD(G) = 11 it is also equl to mcc(G).

Let G be a connected graph with mcc(G) = k ≥ 2 and cdiam(G) = 1. Then

CD(G) is of the form,



1 2 3 ... k

1 0 1 1 ... 1

2 1 0 1 ... 1

3 1 1 0 ... 1

. . . . ... .

k 1 1 1 ... 0


Which is the same as the adjacency matrix of a complete graph Kk on k ver-

tices. It is clear that rank of this matrix is k. For any positive integer n; the

adjacency spectrum of Kn consists of n− 1 and 1 with multiplicities 1 and n− 1

respectively [4]. Hence we have the following theorem;

Theorem 7.3.10. Let G be a connected graph with mcc(G) = k ≥ 2 and

cdiam(G) = 1, then

• Rank CD(G) = mcc(G), number of maximal cyclic components in G.

• The cd-spectrum of G consists of k− 1 with multiplicity 1 and 1 with mul-

tiplicity k − 1.
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• The determinant of CD(G) equals (−1)(k−1)(k − 1).

In 1971, R.L Graham and H.O Pollak [23] Proved that if T is a tree of order

n, then the determinant of the distance matrix D(T ) of T is (−1n)(n− 1)2(n−2).

We will use this result to show that the determinant of the cyclic distance matrix

of a graph, not containing any cyclic flower with more than two maximal cyclic

components depends only on the number of maximal cyclic components of G and

it is independent of the structure of G.

Lemma 7.3.11. For any graph G, the cyclic distance matrix CD(G) and dis-

tance matrix of its reduced graph D(R(G)) are the same.

Proof. Let G be any graph and let R(G) be the reduced graph of G. By Propo-

sition 7.2.2, the number of maximal cyclic components in G and the order of

R(G) are the same. That is, mcc(G) = |V (R(G))| = k. Also, from the defi-

nition of distance between maximal cyclic components in a graph G, it is clear

that for any two maximal cyclic components Mi,Mj with 1 ≤ i, j ≤ k in G,

dist(Mi,Mj) = dist(vi, vj) where vi and vj are the vertices in R(G) representing

to the maximal cyclic components Mi and Mj in G and dist(vi, vj) is the distance

between the vertices vi and vj in R(G). Hence the proof.

Theorem 7.3.12. Let G be a graph with mcc(G) = k which contains no cyclic

flowers with more than two maximal cyclic components. Then the determinant

of the cyclic distance matrix of G depends only on the number of maximal cyclic

components in G and it is given by det CD(G) = (−1k)(k − 1)2(k−2)

Proof. By Lemma 7.3.11, cyclic distance matrix of a graph G and distance matrix

of its reduced graph are the same. Also by Theorem 7.2.3, the reduced graph
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R(G) of a graph G is a tree if and only if G contains no cyclic flowers with more

than two maximal cyclic components. Hence for any such graph G, R(G) is a

tree. Hence by using the classical result of Graham and Pollak [23],

det CD(G) = det D(R(G)) = (−1k)(k−1)2(k−2), (where D(R(G)) is the distance

matrix of redced graph of G) which depends only on the the number of maximal

cyclic components in G.

Corollary 7.3.13. Let G be a graph with mcc(G) = k, k ≥ 2 which does not

contain any cyclic flower with more than two maximal cyclic components. Then,

1. CD(G) is nonsingular

2. The rank of CD(G) = k

3. det CD(G) is independent of the structure of the graph G

4. CD(G) is diagonalizable.

Theorem 7.3.14. Let G and H be two nonisomorphic graphs. Then the cd-

spectrum of G and the cd-spectrum of H are the same if and only if R(G) ∼= R(H)

Proof. From the definition of cyclic distance matrix, it is clear that non isomor-

phic graphs may have the same cyclic distance matrix, since the entries in the

matrix depend on the distance between maximal cyclic components. By Lemma

7.3.11, cyclic distance matrix of a graph G and distance matrix of its reduced

graph are the same. Hence it follows that for any pair G and H of nonisomprphic

graphs, the cd-spectrum of G and the cd-spectrum of H are the same if and only

if R(G) ∼= R(H).
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Conclusion

The new vertex similarity measure called cyclic similar vertices which was

introduced in chapter six is used here to combine cyclic similar vertices into

a single vertex. By identifying cyclic similar vertices into a single vertex, a

miniature graph called reduced graph of the original graph is obtained. This is

a method of transforming the original graph into a smaller one or summarizing

large graphs into small ones. This is similar to the technique used in map making

and it is very useful in the study of large complicated graphs which usually

appear in telecommunication networks, social networking systems etc,. Also a

new graph matrix called cyclic distance matrix of a graph is introduced and some

of its properties are studied. It is proved that the determinant of cyclic distance

matrix of a graph whose reduced graph is free of cyclic flowers with more than

two maximal cyclic components is independent of the structure of the graph but

it depends only on the number of maximal cyclic components in the graph.



Epilogue

Some scope for future studies are suggested here.

1. Identify cyn∗-unique graph classes.

2. Characterize the polynomials over the set of non negative integers which

may be the cycle neighbor polynomial of some simple finite graphs.

3. Characterize graphs G for which γ(G) = γH(G).

4. Characterize graphs G for which γ(G) = γT1(G).

5. Characterize graphs G for which γ(G) = γT0(G).

6. Characterize graphs G for which γ(G) = γT0(G) = γT1(G) = γH(G).

7. Characterize graphs G for which γ(G) < γT0(G) < γT1(G) < γH(G).

8. Conjecture: There are no graphs G for which γT0(G) > γ(G) + 1.

9. Conjecture: If G is not a cycle neighbor graph, then CD(G) is non sin-

gular.
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