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Introduction

In 1914, Hausdorff [17] used the concept of open sets in a topological space to
study the properties of continuous functions between two topological spaces. Thus
from 1914 onwards, a topological space was considered as a non-empty set X together
with a lattice Q(X) of open subsets of X. The American Mathematician Marshall
Stone was the first Mathematician who studied the interrelation between topology
and lattice theory in his work on topological representation of Boolean algebras [47]
[48] and distributive lattices [49], where two important results have been developed.
The first one reveals the importance of ideals in lattice theory by viewing Boolean
algebra as a type of Boolean ring. The other result was Stone representation theorem

which was a milestone in the development of theory of locales.

Stone’s Representation Theorem
Every Boolean algebra is isomorphic to the Boolean algebra of open-closed sets of a

totally disconnected compact Hausdorff space.

After Stone, Henry Wallman [51], was the first person who used the lattice
theoretic notions to study topological properties. In order to introduce the concept of
Wallman compactification of 77 topological spaces, he used the lattice theoretic ideas.
After a few years, American logician McKinsey and a Polish Mathematician Tarski

28] [29], carried out a study on “Algebra of Topology”. The book “Grundlagen der
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Analytischen Topologie” [33] by Nobeling was the first text book which explain general
topology in the view point of lattice theory. Charles Ehresmann and his student Jean
Benabou [13] studied topological and differentiable categories and they developed an
idea that the lattices with right distributive property should be studied as
“generalized topological spaces”. They named these “generalized topological spaces”as
local lattices. At the same period, Dona and Seymour Papert [35] [36] used similar
concepts to study topological spaces.

Isbell [20] [22], in his paper pointed out that generalized spaces have some sort
of differences with topological spaces. The main difference is that the product of
generalized spaces behaved better than Tychonoff product of topological spaces.

C.H.Dowker [8] suggested the term Frame for generalized spaces. Frame theory
is point-free topology which views topology Q(X) of a topological space (X, (X))
as a lattice of open subsets of X satisfying infinite distributive property. The functor
Q) : Top — Frm from the category Top of topological spaces to the category Frm of
frames, which sends a topological space (X, (X)) to the lattice Q(X) of its open sets,
is contravariant. Accordingly the category of “generalized topological spaces” must
be opposite to the category of frames. The term Locale was the contribution of Isbell
[20] to the objects in this opposite category. If we do not refer to the morphisms in
the category Loc of locales and the category Frm of frames, then the objects frames
and locales are same. Dowker, Papert [8] and Isbell [20] had taken up the study of
sublocales (quotient frames) and Isbell put forward the term sublocales.

As the properties such as compactness and connectedness are defined in terms
of open sets, it is easy to extend these concepts to localic background. But some

topological properties such as T} — axiom are defined in terms of points. So the



extension of such ideas to localic background is not so easy. In such cases, we
have to apply alternate definitions.

Localic version of Hausdorff axiom was put forward by Isbell [23], C.H.Dowker and
D.Strauss [10], H.Simmons [45], P.T Johnstone and S.H Sun [26] and J.Paseka [37].
Among these most acceptable form was the axiom introduced by Isbell [23]. Isbell
defined localic version of Hausdorff axiom in terms of diagonals. But this axiom has
a disadvantage. It should not be considered as equivalent to the Hausdorff axiom for
topological spaces. Though the definition of regularity in topological spaces involves
the points, it has alternate representation in terms of open sets. So extension of
regularity to localic background is straight forward. Thus, as locales are extension of
topological spaces, most of the topological properties are extended into localic back-
ground.

In addition to the above development, among many introductions to topology,
a particular view that has arisen in Theoretical Computer Science starts with the
theory of domains, as defined by Scott and Strachey [42], to provide a mathemat-
ical foundation for semantics of programming languages, establishing that domains
could be put into a topological setting. Mike Smyth [46] has developed the idea fur-
ther. The topology describes an essential computational notion that provide them
an independence from the points of topological spaces and this fall into the branch
of mathematics, the theory of locales.
Duality between Frames and topological spaces have been utilized to make a
connection between syntactical and semantical approach to logic. But the application
of Stone duality in modal logic require a duality for Boolean algebras or distributive

lattices endowed with additional operations.
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The background of theory of locales used as a theory of information is the motiva-
tion for the present study in this thesis titled “A study on properties of locales, action
of locales and their applications”. The above context has inspired the introduction
of the concept of “an action of a locale on a join semilattice”. Given a locale L and a
join semilattice J with bottom element 0;, we have introduced a new concept called
L-slice, denoted by (o, J), to be an action o of the locale L on the join semilattice
J together with a set of conditions. The L-slice, though algebraic in nature adopts
topological properties such as compactness through the action o. Several different
aspects of L-slice for a locale L have been obtained in the present study.

The study in this thesis is begun with an investigation into construction of
sublocales from ideals of a locale L. An embedding theorem for a locale L has been
derived.

The content in the thesis is described in the following way.

Chapter 1 contains a quick review of the preliminary materials required to read
and understand this thesis.

In chapter 2, the following are studied. Sublocales of a locale L are traditionally
presented in terms of sublocale homomorphism, frame congruence and nucleus. In
[39] Pultr and Picado have shown that there exist a one-one correspondence between
sublocales of a locale L and nuclei in L. The work in this chapter discusses a method
of construction of sublocales using ideals of a locale L. Given an ideal I of a locale
L, a collection {I,;a € L} of ideals of L with the property I < I, for all a € L has

been constructed. The following results are obtained.
e If the ideal [ is prime, then the ideals I, are prime for all a € L.

e If the ideal I is closed under arbitrary join, then there exists a complete join

x1i



semilattice homomorphism from the locale L to the complete lattice
M = ({{,;a € L},2) and M induces a frame congruence R; on L. This

congruence determines a sublocale of L.

e The topological properties such as subfit, fit, S5, regularity, normality and com-
pactness of the sublocale S of L thus constructed are obtained using the class

of core elements of L with respect to I.

Chapter 3 deals with the following ideas. If X is a topological space and C(X),
the ring of continuous real-valued functions on X, then the sets of the form
{f e C(X) : f(z) € V,V open in R}, which depends on both points of X and
topology of R, forms a subbase for a point-open topology on C(X). Also if L is a
locale and ¥, denotes the set of completely prime filters in L containing x € L, then
Sp(L) = ({all completely prime filters of L}, {¥4;a € L}) is a topological space.
In this chapter, as a generalization of above context to localic background, we have

proved the following

e For a,b € L, the collection [a,%] = {f € O(L) : Xfn) S X} are ideals in
O(L), where O(L) is the locale of order preserving maps on L. Some algebraic

properties of these ideals [a, 3] have been established.

e For each a € L, ideals of the form [a, ;] generates a spatial locale
Jo = {la,Xp],b € L}. Separation properties such as subfit, S}, regularity and

normality pertaining to the locale J, have been established.

e Using the ideals [a, Y], a congruence ~, is defined in L and it is proved that

L/ ~, is isomorphic to J,.

e For ecach a € L, congruence R, is defined in O(L) and it is proved that the
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quotient frame O(L)/R, of O(L) is isomorphic to the quotient frame L/ ~, of
L.

e Using the congruences on L and O(L), an embedding theorem for locale L is

established.

e Setting the coproduct J = []J,, the productive properties of J have been

proved.

e For a,b e L, the collection {(a, %) = {f € O(L) : X,y 2 Xp} is a filter in O(L).

Sufficient conditions for the filter {a, %) to be completely prime is derived.

e For a compact open set Y, in spectrum Sp(L) of L, the collection

{{a,%y) : a € L}, a,b € L determines a compact, connected, Ty subspace of the

spectrum Sp(O(L)) of O(L).

In chapter 4, a new concept (o, J), called L-slice, is introduced as, an action o of
a given locale L, on a join semilattice J with bottom element 0;. Using the algebraic
properties of the L-slice (o, J), a congruence R on (o, J) is obtained. We have proved
that the pair (v, J/R), of all equivalence classes with respect to the congruence R on
(0,J), is an L-slice, where the action « is defined in terms of o. The Factor of L-slice
(0, J) with respect to the subslice (o, J') of (o, J), is defined.

Chapter 5 discusses various properties of L-slice homomorphism. We have proved

the following

e The collection L — Hom(J, K) of all L-slice homomorphisms from L-slice (o, J)
to the L-slice (u, K) is an L-slice with respect to the action
d: LxL—Hom(J,K) > L— Hom(J,K) and that every L-slice (o, J) is

isomorphic to a subslice of (0, L — Hom(L, J)).
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An isomorphism theorem for L-slice is derived. As an application, the notion
of finitely generated L-slice of a locale L is introduced and we have shown
that every finitely generated L-slice (o, .J) of a locale L with n generators is

isomorphic to the quotient slice of the L-slice (m, L").

For each a € L,0, : (0,J) — (0,J) defined by o,(z) = o(a,z) is an interior

operator on (o, J).

The collection M = {0,;a € L} is a Priestley space and a subslice of
(0, L—Hom(J,J)). If the locale L is spatial an isomorphism between the L-slices
(m, L) and (6, M) has been established.

Fixed set of 0,,a € L is a subslice of (o, J).

For each z € (0, J),0, : (M, L) — (0, J) defined by 0,(a) = o(a,z) is an
L-slice homomorphism and the collection P = {o,;x € (0, J)} is an L-subslice

of (0,L — Hom(L, J)).
The map x — o, is an L-slice isomorphism between the L-slices (o, J) and (¢, P)

The compactness in L-slice (o, J) is defined and it is proved that L-slice com-

pactness is stronger than topological compactness and localic compactness.

A subspace Y of spectrum Sp(L) of L has been constructed using filters
F,={a€ L :o,(a) =z} for compact elements = € (o0, .J) and the compactness
of the subspace Y is characterized using the existence of maximal compact

element in the L-slice (o, J).

It is known that there is a contravariant functor from the category JSLat of

join semilattice with bottom element, and semilattice homomorphism to the

XV



category iTopMon of idempotent topological monoids, and continuous monoid
homomorphisms. In this context, we have proved that there is a contravarint
functor from the category L-slice of L-slices of a locale L to the category

TopWMod of topological weak L-modules.

In chapter 6, as an application of the above study of L-slices, a key exchange
protocol has been developed that utilizes the concept of L-slices for the generation
of secret and public keys. The L-slice and its properties are utilized to extend the
existing Diffie Hellman key exchange protocol that uses groups in algebra, to the
background of L-slices of a locale L. A modification is given to the extended Diffie
Hellman key exchange protocol using L-slices of a locale L in order to give optimum
security to the system.

The thesis is concluded with further scope of study.
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Chapter 1

Preliminaries

This chapter includes some preliminary concepts on Order theory, Category theory,

Frames and Locales and Cryptography required for the next chapters.

1.1. Order theoretical concepts

Definition 1.1.1. [24] Let L be a set. A partial order on L is a binary relation =
which is

i. reflexive : for alla € L, a C a,

ii. antisymmetric: if a E b and b E a, then a = b, and

iii. transitive: if a £ b and b = ¢, then a E c.

A partially ordered set (also called poset) is a set equipped with a partial order.

Definition 1.1.2. [5] An element z € A € L is called minimal if a € A, a £ x implies
a = z. If L has a unique minimal element, then it is called the least element (bottom)

of L denoted by 0.



Definition 1.1.3. [5] An element x € A C L is called maximal if a € A, £ a implies
a = x. If L has a unique maximal element, then it is called the greatest element (top)

of L denoted by 1.

Definition 1.1.4. [5] An element = € L is called an upperbound of A < L, if for all
a € A, we have a & . The least element of the set of all upperbounds of A in L, if

it exists, is called the least upperbound (supremum)of A. It is denoted by | | A.

Definition 1.1.5. [5] An element x € L is called a lowerbound of A < L, if for all
a € A, we have x © a. The greatest element of the set of all lowerbounds of A in L,

if it exists, is called the greatest lowerbound (infimum) of A. It is denoted by [ | A

Definition 1.1.6. [39] A poset L is called a join-semilattice (resp.meet-semilattice)

if there is a supremum a L b (resp.infimum a m b) for any two a,b € L.

Definition 1.1.7. [24] A partially ordered set L in which for every pair of elements
a, b, there exists the supremum a U b and the infimum a m b is called a lattice. A
partially ordered set L for which every set A € L has the supremum | | A and the

infimum [ ] A exist in L is called a complete lattice.

Definition 1.1.8. [24] A lattice L is distributive if a m (b ¢) = (amb) u (a M ¢)

which is equivalent to a L (bri¢) = (a wb) M (a uc).

Definition 1.1.9. [5] A map f : L — M, where L, M are partially ordered sets, is
called monotone(order preserving) if a =, b = f(a) Sy f(b) for all a,be L. If f is

bijective and its inverse f~! is also monotone, then it is called an order isomorphism.

Definition 1.1.10. [39] Monotone maps f : L — M,g: M — L are Galois adjoint

(or are in a Galois connection)-f is a left adjoint to g, and g is a right adjoint of f- if

Vee LVye M, f(zr)Ey < x = g(y).
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Theorem 1.1.11. /39] Monotone maps f: L — M and g : M — L are adjoint (f on

the left, g on the right) if and only if there holds f(g(y)) E y and x = g(f(x)).
Corollary 1.1.12. [39] If monotone maps f, g are adjoint, then fof=f and gfg=g.

Theorem 1.1.13. [39] The left Galois adjoint preserves suprema, and the right one

preserves infima.

Theorem 1.1.14. [39] If L, M are complete lattices, then a monotone map
f:L— M is aleft (resp. right) adjoint if and only if it preserves all suprema (resp.
infima).

Remark. The left adjoint of f: L — M is denoted by f* and right adjoint by f,.
Definition 1.1.15. [24] Let L be a distributive lattice with greatest element 1, and

least element Oy. The complement a¢ of an element a € L is the one satisfying

ama®=0; and awua®=1j.

Definition 1.1.16. [24] A Boolean algebra is a distributive lattice with 0, and 1, in

which every element has a complement.

Definition 1.1.17. [39] An element p # 1 in a lattice L is said to be meet-irreducible

if for any a,b € L, a m b E p implies that either a = p or b E p.

Definition 1.1.18. [39] An element p # 0 in a lattice L is join-irreducible if for any

a,be L,p E au bimplies that either p E a or p E b.

Definition 1.1.19. [15] Let L be a poset. We say that z is way below y, (z « y) if
and only if for all directed subset D < L for which supD exists, the relation y & supD

always implies the existence of a d € D with x E d.



Definition 1.1.20. [15] An element satisfying « « z is said to be compact or isolated

from below.

Definition 1.1.21. [39] A lattice A is said to be a Heyting algebra if for each pair of
elements (a,b) in A, there exist an element a — b such that ¢ & (a — b) if and only

ifecmacb.

Definition 1.1.22. [6] Let (X,Z) be a poset. A map f: X — X is called interior
operator if

i. f is order preserving

ii. fl(z)SaforallzeX

iii. fof=f.

Definition 1.1.23. Let L be bounded distributive lattice, and let X denote the set
of prime filters of L. For each a € L, let ¢y(a) = {r € X : a € z}. Then (X, 7,) is
a spectral space, where the topology 7, on X is generated by {¢,(a);a € L}. The
spectral space (X, 7, ) is called the prime spectrum of L.

The map ¢, is a lattice isomorphism from L onto the lattice of all compact open
subsets of (X, 7). Similarly, if ¢_(a) = {x € X : a ¢ 2} and 7_ denotes the topology
generated by {¢_(a); a € L}, then (X, 7_) is also spectral space. Let € be set-theoretic
inclusion on the set of prime filters of L and let 7 = 7, U 7. Then (X,7,<) is a

Priestley space.

1.2. Categorical Concepts

Definition 1.2.1. [18] A category C consist of:

i. A class ObC of objects (notation: A, B,C....)



ii. A class MorC of morphisms (notation: f,g, h...). Each morphism f has a domain
or source A (notation: dom(f)) and a codomain or target B (notation: codom(f))
which are objects of C'; this is indicated by writing f : A — B.

iii. A composition law that assign to each pair (f, g) of morphisms satisfying
dom(g) = codom(f) a morphism g o f : dom(f) — codom(g), satisfying

(a) ho(go f) = (hog)o f whenever the compositions are defined.

(b) For each object A of C there is an identiy ids : A — A such that foidsy = f

and idy o g = g whenever the composition is defined.

Definition 1.2.2. [18] A category B is said to be a subcategory of the category C
provided that the following conditions are satisfied.

i. Ob(B) < 0b(C).

ii. Mor(B) < Mor(C).

iii. The domain, codomain and composition functions of B are restriction of the
corresponding functions of C.

iv. Every B-identity is a C -identity.
Theorem 1.2.3. [18] Every product category of categories is a category.

Definition 1.2.4. [18] If C is a category we can take the same class of objects and
morphisms, and interchange the domains and codomains (which leads to inverted
composition). Thus f : A - Bisnow f : B — A and we have a composition
f#g=go f. Thus obtained category is called the dual or opposite of C' and denoted
by C.

Definition 1.2.5. [18] A morphism f: A — B in a category C is said to be section

in C provided that there exists some C-morphism g : B — A such that go f = id4.



Definition 1.2.6. [18] A morphism f : A — B in a category C is said to be a

retraction in C' provided that there exists some C-morphism g : B — A such that

fog=1idg.

Definition 1.2.7. [18] A C-morphism is said to be an isomorphism in C provided

that it is both C -section and C -retraction.

Definition 1.2.8. [18] Let C be a category and A, B € Obj(C). A morphism

f A — Bisepimorphism if fog = foh implies g = h for all morphisms g,h : B —» C'

Definition 1.2.9. [18] A C-morphism f: A — B is said to be a monomorphism in
C provided that for all C-morphisms h and k such that foh = f ok, it follows that
h = k.

Definition 1.2.10. [18] A C-morphism is said to be a bimorphism in C' provided

that it is both a monomorphism and an epimorphism.

Definition 1.2.11. [18] Let C,D be categories. A functor from C to D is a triple
(C,F,D) where F is a function from the class of morphisms of C to the class of
morphisms of D (i.e. F': MorC — MorD) satisfying the following conditions.

i. F' preserves identities: i.e., if e is a C-identity, then F'(e) is a D- identity.

ii. F preserves composition: F(fog) = F(f)o F(g);i.e., whenever

dom(f) = codom(g), then dom(F(f)) = codom(F(g)) and the above equality holds.

Definition 1.2.12. [18] A triple (C, F, D) is called a contravariant functor from C
to D if and only if (C?, F, D) is a functor (or, equivalently, if and only if (C, F, D)

is a functor).



1.3. Frames and Locales

Definition 1.3.1. [39] A frame is a complete lattice L satisfying the infinite distribu-
tivity law am | |B = | |[{amb;be B} for all a € L and B < L.

Definition 1.3.2. [39] A map f : L — M between frames L, M preserving all finite
meets (including the top 1) and all joins (including the bottom 0) is called a frame

homomorphism. A bijective frame homomorphism is called a frame isomorphism.

Remark. The category of frames is denoted by Frm. The opposite of category Frm
is the category Loc of locales. We can represent the morphism in Loc as the infima
-preserving f : L — M such that the corresponding left adjoint f* : M — L preserves
finite meet. If we do not refer to the morphisms in the category Loc of locales and

the category Frm of frames, then the objects frames and locales are same.

Remark. The category of topological spaces and continuous maps is denoted by Top

Definition 1.3.3. [39] The functor €2 : Top — Frm maps objects and morphisms as
follows

i. A topological spaces (X, (X)) is mapped into frame of open sets Q(X)

ii. 2 sends morphism f: X — Y in Top to the frame homomorphism

Q(f) : QY) - Q(X) defined by Q(f)(V) = f (V).
Theorem 1.3.4. [39] The functor Q2 : Top — Frm is a contravariant functor

Definition 1.3.5. [24] A subset I of a locale L is said to be an ideal if
i. I is a sub-join-semilattice of L; that is 0y, € I and a € I,b€ [ implies auib € I ;and

ii. I is a lower set; that isae I and b E a imply be I.



If a € L, the set | (a) = {xr € L;z € a} is an ideal of L. | (a) is the smallest
ideal containing a and is called the principal ideal generated by a. A proper ideal

is prime if z my € I implies that either z € [ or y € I [24].

Definition 1.3.6. [39] A subset F' of locale L is said to be a filter if
i. F'is a sub-meet-semilattice of L; that is 1, € FFand ae F, be F imply armbe F.

ii. F'is an upper set; that is a € F' and a E b imply b e F.

Definition 1.3.7. [39] A filter F is proper if F' # L, that is if 0, ¢ F.

A proper filter F' in a locale L is prime if a; L ay € F implies that a; € F or as € F' .

Definition 1.3.8. [39] A proper filter F' in a locale L is a completely prime filter
if for any indexing set J and a; € L, i € J, | |a; € F = 3i € J such that a; € F.

Completely prime filters are denoted by c.p filters.

Example 1.3.9. [39] U(z) = {V € Q(X);x € V'} is a completely prime filter in the
locale Q(X).

For an element a of alocale L, set ¥, = {F € L; F # ¢, F is c.p filters;a € F}.
We can easily check that X = ¢, 3| o, = X4, » Zare = Xq N 2y and
¥ ={all cp filters}.
The spectrum of a locale is defined as follows.
Sp(L)=({all c.p filters}, {¥X,:a€ L}). Then Sp(L) is a topological space with the
topology Q(Sp(L)) ={X,:a€ L}.

Definition 1.3.10. [39] If f : L — M is a morphism in the category Loc, then
Sp(f) : Sp(L) — Sp(M) defined by Sp(f)(F) = (f*)"'(F) is a morphism in the

category Top.



Definition 1.3.11. [39] A locale L is said to be spatial if it is isomorphic to Q(X)

of some topological space X.

We have a frame homomorphism &, : L — Le(Sp(L)) given by @p(a) = 3.

Their right Galois adjoint is the localic map o, = (®1)*: Le(Sp(L))— L.

Proposition 1.3.12. [39] The following statements on a locale are equivalent.
1. L s spatial.

it. op: Le(Sp(L))— L is a complete lattice isomorphism.

iii. 07 :L — Le(Sp(L)) is a complete lattice isomorphism.

w. oy, 1S onto.

v. OF 1S one-one.

Definition 1.3.13. [39] Let L be a frame. An equivalence relation 6 on L is said to
be a congruence on L if (a,b) € 0 = (ame,brmic)efand (auw| |S,bu|]S) e b for
allce LS L.

1.3.1 Products in frame

Definition 1.3.14. [39] If L;,i € J are frames, we endow the cartesian product n L;
€]
with the structure of frame coordinatewise (which is same as defining the order by

()ies E (Yi)ies iff ; E ;). The projections

pi = ((@ies > ap): [[Li—> L

€

are then frame homomorphisms and we see that for each system (h; : M — L;);es of

frame homomorphisms there is precisely one frame homomorphism h : M — n L;
i€J
such that p; o h = h; for all j € J, namely the one given by h(z) = (h;(2))jes-



Remark. [39] Those were the product of non-empty systems. The empty product is
the one element frame 1 = {0; = 17}. The constant mapping L — 1 are obviously

frame homomorphisms.
Since Frm has products, Loc has coproducts. Let us present the coproducts

injections explicitely.

Definition 1.3.15. [39] For a fixed j € J, define o : L; — H L; by setting

e

v if i=]
(aj(@))i =
1 otherwise
We immediately see that p;((2;)ies) E z iff (2:)ies E ().

Thus (o : L; — n L;)jes constitutes the coproduct in Loc.

ieJ
1.3.2 Subframes and Sublocales

Definition 1.3.16. [39] A subset of a frame L which is closed under the same finite
meets and arbitrary joins in the frame is called a subframe. That is a subframe is

itself a frame under the induced order of L.
The concept of sublocale is something different, corresponding to quotient frames.

Definition 1.3.17. [39] Let L be a locale. A subset S < L is a sublocale of L if
i. S is closed under meets, and

ii. For every se S and every ze L, z — se S.

A sublocale is always nonempty, since 1 =[]¢ € S. The least sublocale {1} will

be denoted by 0
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Definition 1.3.18. [39] Let L be a locale and a € L. The open sublocale associated
with a is defined by o(a) = {a — x,x € L}. The closed sublocale is the compliment

of open sublocale and it is defined by ¢(a) = {z € L,a & z} =1 a.

Proposition 1.3.19. [39] Let L be a locale. A subset S < L is a sublocale if and
only if it is a locale in the induced order and the embedding map j : S € L is a localic

map.

Definition 1.3.20. [39] A nucleus in a locale L is a mapping v : L — L such that

ii. a £ b= v(a) E v(b)
iii. v(v(a)) = v(a) and

iv. v(amb) = v(a) mv(b).

Sublocales of a locale L have alternate representations in[39)].
i. Sublocales of a locale L are represented as onto frame homomorphism g : L — M,
a sublocale homomorphism. The translation between sublocale homomorphism to
sublocales and vice versa is as follows.
h — h,[M] for an onto h : L — M and h, is its right adjoint, and
S j&: L — Sforjg:S< L.
ii. Sublocales of a locale can also be represented using frame congruence. A sublocale
homomorphism ¢ : L — M induces a frame congruence £, = {(z,y) : g(z) = g(y)}
and a frame congruence gives rise to a sublocale homomorphism z — Ex : L. - L/E,
where L/E denotes the quotient frame defined by the congruence E, and Ez denotes
the E-class.

iii. Sublocales of a locale can also be represented using nucleus. The translation

11



between nuclei and frame congruence resp. sublocale homomorphism is straight for-

ward:
v By ={(z,y) : v(z) = v(y)},
E—vg=(xw||Ex): L— L;
v — vy, = v restricted to L — v[L],
h— v, = (x — hyh(x)): L > L
We can relate sublocales and nuclei directly. For a sublocale S € L, set

vg(a) = jé(a) =[{s€ S : a & s} and for a nucleus v : L — L, set S, = v[L].

Proposition 1.3.21. [39] The formula S — vs and v — S, constitute a one-one

correspondence between subloales of L and nuclei.

Definition 1.3.22. [39] A sublocale S of a locale L is said to be dense if it contains

Or.

Definition 1.3.23. [39] The closure of a sublocale S of a locale L is the least closed

sublocale of L containing S, given by the formula S =1 ([1].5).

Definition 1.3.24. [39] A cover of a locale L is a subset A < L such that | |A = 1.
A subcover of a cover A is a subset B € A such that | | B = 1. A locale is said to be

compact if each cover has a finite subcover.

Definition 1.3.25. [39] A localic map f : L — M is said to be closed if the image

of each closed sublocale is closed.

Definition 1.3.26. [39] A localic map f : L — M is said to be open if the image

f[S] of each open sublocale S < L is open.

12



1.3.3 Separation Axioms

As in classical topology, the point free topology have separation axioms. Subfit and

fit correspond to T} axiom of classical topology.

Definition 1.3.27. [39] A locale L is said to be subfit if for a,b € L,a & b, then

dce L, such that a uc=1and buc # 1.

Definition 1.3.28. [39] A locale L is said to be fit if for a,b € L,a & b, then 3c € L,

such that auc=1and ¢ — b £ b.

Definition 1.3.29. [39] A frame L is called I-Hausdorff whenever the diagonal

A:L— L®Lis a closed localic map.

Definition 1.3.30. [10] A locale L is said to have S, property if for any a,b € L, if

aub=1with a # 1 and b # 1, then there exist u,v € L withurmv =0, v &£ a, u £ b.

Definition 1.3.31. [39] In a locale L, for a,b € L, we say that a is rather below b,

denoted by a < b, if there exist ¢ € L such that amc=0and cub=1.

Definition 1.3.32. [39] A locale L is said to be regular if a = | |{z : © < a} for every

ae L.

Definition 1.3.33. [39] Let a, b be elements of a locale L. We say that a is completely
below b and write a << b if there are a, € L (r rational, 0 < r < 1) such that

ag = a,a; = b and a, < a, for r < s.

Definition 1.3.34. [39] A locale L is said to be completely regular if

a=|[{zx: 2z << a} for every a € L.

Definition 1.3.35. [10] A locale L is called normal if it satisfies the condition: If

a b =1, then there exist u,v € L such that a v =1,uub=1,urmv=0.

13



1.4. Cryptography

Public key cryptography mainly depends on two types of computational problems.
One is the problem of factorization of integers and other is discrete logarithm problem
in groups. Diffie Hellman key exchange protocol [7] is based on discrete logarithm

problem.

Definition 1.4.1. [34] Public key cryptography, or, asymmetric cryptography, is any
cryptographic system that uses pairs of keys: public keys which may be disseminated

widely, and private keys which are known only to the owner.

In a public key encryption system any person can encrypt the message using the
receiver’s public key. That encrypted message can only be decrypted with the re-
ceiver’s private key [34].

We define two party key exchange protocol as a sequence of calculation and trans-

mission between two parties, most commonly referred to as Alice and Bob.

Definition 1.4.2. [34]Key Exchange Protocol(KEP)

i. Setup:

An initial handshake is performed, and protocol parameters specified.

ii. Generation of public/private keys

Both parties generate ephemeral key pairs (kZ, kﬁ) and (kP k') respectively.

iii. Exchange of public keys:

The parties exchnage their public keys k:;‘, kf.

iv. Calculating the shared keys:

Alice uses the recieved public key kf and her own key pair to calculate a shared key

(shared secret) K 4. Bob uses k7' and his own key pair to calculate Kp.

Correctness of a protocol is given if K4 = Kp for all possible key pairs.

14



The following definition discuss about two different attacker model for our frame-

work.

Definition 1.4.3. [34] i. Passive Attacker/Eavesdropper

A passive attacker gathers all the information that is sent between the parties involved
in the protocol and tries to infer information about the shared secret. This attacker
has no means of interfering with the transmission and can not alter or disrupt them.
ii Active Attacker/Main -in-the -Middle:

An active attacker not only sees all the transmission between the parties but also has
the ability to alter or disrupt the information in transit or inject his own information

into the channel.

Definition 1.4.4. [34] Diffie-Hellman key exchange protocol
i. Setup:
The protocol parameters are negotiated. These include the group G of order n with
generator g.
ii. Generation of public/private keys:
Both parties, Alice and Bob, choose secret elements a,b € Z, respectively as their
secret keys and calculate their public keys as
pa=g"°
p =g".
iii. Exchange of public keys:
Alice and Bob exchange their public keys pa, pg.
iv. Calculating the shared key:
Alice, upon recieving pg from Bob, calculates
Ky =py
Bob similarly computes

15



Kp = pY
Correctness follows from the commutativity in Z,,, since

Ka=(g""=g"=(¢")" = Kg.

Definition 1.4.5. [34] ElGamal Encryption based on Diffie-Hellman KEP
The public parameters include a cyclic group G of order n together with a generator
g.

i. Alice generate a static key pair by uniformly at random choosing the secret key
a € Z, and calculating the public key g* € G. She publishes her public key g*.

ii. For every message m;, Bob uniformly at random chooses an element b; € Z,, and
calculates the pair (g%, m;.g%) using Alice’s public key.

iii. Upon receiving a pair (g%, m;.g%), Alice uses her secret key to calculate (g%)®

and multiplies the second component by its inverse, hence attaining m;.

16



Chapter 2

Unique Sublocales from Ideals of a

Locale

In a locale L, if I is an ideal, which is closed under arbitrary join, then we can
construct a complete lattice M = {I,;a € L} of ideals of L with the property I < I,
for all a € L. M induces a frame congruence R; on L and R; determines a sublocale
S of L. The topological properties such as subfit, fit, S}, regularity, normality and
compactness of the sublocale S of L thus constructed can be obtained using the class
of core elements of L with respect to I. On the other hand, from a sublocale S of a
locale L, an ideal Is which is closed under arbitrary join can be obtained. It is proved
that the sublocale constructed using the congruence R;, as above is embeddable in

the given sublocale S.

17



2.1. Ideal I,,ae L

Definition 2.1.1. Given an ideal I of a locale L, for each a € L, define

I,={reLlL:amnzel}

Examples 2.1.2. 1. Let the locale L be given as follows.
/ 12\
4\ /6\
2\ /3
1

Let I = {1,2}. Then I is an ideal in L.
[3 = 16 = {1,2,4}7 [4 = {1,2,3,6}, [2 = Il =L and 112 = 1.

2. Let f: L — L be a morphism in Frm and be L. Then

(e ={x € L :Xys) S X} is an ideal in L. For each a € L, let

(ays ={rveL:amze (fly} ={rv€L:Eans) S Xo}. Then {ays is ideal in L for
alla e L.

This section discusses various properties of the collection I,,.

Proposition 2.1.3. Let L be a locale and let I be any ideal in L. For each a€ L, I,

1s an ideal in L.

Proof. Since 0 =0mae I, 0e l,. Hence I, is nonempty.

Let x,ye l,. Thenamz,armyel.
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Since I is closed under finite join, am (zx wy) = (amz)u (amy) e I.
Therefore x L1y € I,. Hence I, is a subjoin semilattice of L.

Let x € I, and y € L such that y E .

Since x € I,, amx e [.

y E z implies y ma E z ma. Since [ is a lower set, yma e I.

Hence y € I,. Thus [, is a lower set. O

Definition 2.1.4. Let I be an ideal in a locale L. An element a ¢ I in L is said to

be partially prime to the ideal L if for any x € L, a mx € I implies x € [.

Example 2.1.5. Let L be a chain and a = b. Then b is partially prime to the ideal
la.

The next proposition gives a sufficient condition for the ideal I, to be prime.

Proposition 2.1.6. If I is a prime ideal in a locale L, then I, is prime ideal for

a€ L. If a € L is partially prime to the ideal I and I, is prime, then I is prime.

Proof. Let I be a prime ideal and let x my € I,. Thenam (z my) € 1.
Since [ is prime, either amax e I, or y € I.

Ifarmxel, then x € I,.

Ifyel, then armye I and hence y € I,.

Conversely let a be partially prime to I and I, be prime ideal in L.
Let x my € I. Then we have am (x my) € I. Hence x my € I,.

Since I, is prime, either z € I, or y € I,.

That is eitheramz el oramye I

Since a is partially prime to I, either x € I or y € I. O

In 2.1.2 (2), if Xy is meet-irreducible element in the spectrum Sp(L) of L, then

(f)p is a prime ideal in L. Then for each a € L, {a)y is prime ideal.
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Proposition 2.1.7. Let L be a locale and I be any ideal in L.

i. Ifa,be L with a b, then I, < I,
1. I <1, for everyae L

1i. I, = L if and only if a € I

w. Iy =1.

Proof. Let L be a locale and [ be any ideal in L.
i. Let a & b. Then x € I, implies bz € 1.
SinceamxCTbmz,amxel.

Hence x € I, implies x € I,. Thus [, < I,.

ii. Let x € I. Since [ is a lower set, ammx € I for all a € L.

Thus z € I, for all a € L. Hence I < I, for all a € L.

iii. Let I, =L. Thenlel,=L. Thusa=anmnlel.
Hence I, = L implies a € I.

Conversely assume a € I. Then for any x € L, armx € I.

Hence x € I, for all z € L. Thus I, = L.

iv. [ ={xel:anlel}={rel:xel}=1.

]

The above proposition compares the ideals I, for a € L and gives a hint to con-

struct the concept of core element.

Proposition 2.1.8. Let L be a locale and let I be any ideal in L.

i. For anya,be L, I, n I, = I, .

1. Foranya,be L, I, 01, € I,y. If amb is partially prime to I, then I, 0 I, = I .
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Proof. Let L be a locale and let I be any ideal in L.

i.rxel,nlyifandonlyifamzel andbrixel
ifandonlyif x m(aub)=(zma)u(xmb)el

if and only if x € I,
Hence I, " I, = 1, .

ii. xel,ul,impliesamxelorbrmzel.

Then (amz)m(bmz)=(amb)mxel.

Thus x € I, u I, implies z € I,,. Hence I, U I, © I, .

Let a m b be partially prime to I. Then z € I, implies (a mb) mx € I.
Since a 1 b is partially prime to I, x € I .

Hence x € I, U I;. O

Proposition 2.1.9. Let the ideal I in a locale L be closed under arbitrary join, then

the set M = {I,;a € L} is a complete lattice under the partial order inclusion.

Proof. By 2.1.8, M is closed under finite intersection.
Suppose [ is closed under arbitrary join and let I, € M, o € J, for some index set

J.

Then x € ﬂ]aa if and only if z € [, for all o e J

aeJ

if and only if t ma, € [ for all o € J

if and only if |_|(x|—|aa) :xl—||_|aae[

aeJ

if and only if x € I} ,,.

Hence ﬂ[aa = I |q, € M. Also Iy = L is the top element.
acJ
Therefore M is a complete semilattice with top and bottom elements. Hence M is a

complete lattice. O
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Proposition 2.1.10. If the ideal I in a locale L is closed under arbitrary join, then
there is a complete join semilattice homomorphism from the locale L to the complete

lattice M = ({I,;a € L}, D).

Proof. Order M = {I,;a€ L} as I, € I, if and only if I, 2 I, .

With respect to the order =, we have I, u I, = I, N 1.

Thus M = ({I,;a € L}, 2) is a complete lattice with bottom element Iy = L and top
element I; = I.

Define f: L — M by f(a) = I,.

fUaa) = Ija. = N 1a, = L flaa) and f(0) = Io = L. O

2.2. Sublocales from ideals of a locale

The work in this section explains a method of construction of sublocales using ideals

of a locale L.

Lemma 2.2.1. If I is an ideal of a locale having the property that I is closed under
arbitrary join. Then for any a,b,c€ L and A < L, we have
1. I, = I, implies Iy = Tpne.

1. ]a = Ib implies Iau|_|A = ]bu|_|A-

Proof. Let the ideal I of locale L is closed under arbitrary join.
i. Let a,b,ce L and I, = 1.

€l ifandonlyifam(cmz)=(amc)maxel
if and only if cmx e [, = I,
ifandonlyifbrm(cma)=azn(brnc)el

if and only if x € I
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Therefore I, = I, implies I, = Ipe.
ii. Let I, = I, and A< L.

relyyaifandonlyif e m(au | JA) =2z lleuy)=lzrn(auy)el
ifandonlyif x m(auwy)=(rma)u(zmy)elforallye A
if and only if tmael and s myel forallye A
ifandonlyifzel, =L, andzmyel forallye A
ifand only if  mbeland e | Jy=](zny)el
if and only if (zmb)u (x| |JA)=an(bu||A)el

if and only if x € Iy | 4.

Hence I, = I, implies I, a4 = Iy | a- O

Definition 2.2.2. Let I be an ideal of a locale L having the property that I is closed

under arbitrary join. Define a relation R; on L by (a,b) € Ry if and only if I, = I,.
The following proposition is a direct consequence of above lemma.

Proposition 2.2.3. Let I be an ideal of a locale L having the property that I is closed

under arbitrary join. The binary relation Ry defined on L is a frame congruence on

L.

Proof. The binary relation R; defined by (a,b) € Ry if and only if I, = I, is an
equivalence relation on L. If (a,b) € Ry, by above lemma (a mc,bmc) € Ry and

(au| |A,bu| |A) € Rr. Hence Ry is a congruence relation on L. O

Since Ry is a congruence on L, by [8], L/R; is a frame with respect to the

partial order [z] E [y] if and only if = y in L.

In example 2.1.2 (1), the congruence Ry gives [1] = {1, 2}, [3] = {3, 6},
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[4] = {4} and [12] = {12} and the quotient frame L/R; is given below.

[12]

[4] [3]

[1]

Lemma 2.2.4. Let I be an ideal of a locale L having the property that I is closed
under arbitrary join. There exist a bijection between the locale L/ Ry and the complete

lattice M = ({1, : a € L}, D).
Proof. The function f : L/R; — M defined by f([a]) = I, is a bijection. O

Lemma 2.2.5. If [ is a prime ideal in a locale L, then I, = L for all a € I and

Iy=1 forallb¢ I.

Proof. Let I be a prime ideal. By Proposition 2.1.7, I, = L for all a € I.
Letb¢ I. Then I, ={zre L:brnxzel}.

Ifxel, thenbrmaxel.

Since [ is prime and b x € I, we have x € I. Therefore I, < I.

Hence I, = I for all b ¢ I. O

Proposition 2.2.6. If I is a prime ideal in a locale L, then the sublocale (quotient

frame) L/R; is isomorphic to the two element locale 2.
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Proof. By above lemma, if [ is prime I, = Iy for all a e [ and I, = [, for all a ¢ I.
Hence L/R; = {[0],[1]} which is isomorphic to the locale 2. O

Corollary 2.2.7. Let the locale L be a chain and I be any ideal of L. Then the

sublocale L/ Ry is isomorphic to the two element locale 2.
Proof. Let L be a chain. Then every ideal of I is principal and prime. O

Remark. Given an ideal I that is closed under arbitrary join, we get a frame congru-

ence on L and hence a sublocale of L.

In example 2.1.2(1), the sublocale corresponding to the ideal I = {1,2} is the
closed sublocale ¢(2) =1 2.

Lemma 2.2.8. Let ¢ be a meet-irreducible element of a locale L. Then the ideal

I =] (c) is prime.

Proof. Let xt myel. ThatisxmyE c.
Since c is meet irreducible, either x © ¢ or y E ¢. So either x € [ or y € [.

Hence I is prime. O

Proposition 2.2.9. Let ¢ be a meet-irreducible element of a locale L and let I = (c).
Let S be the sublocale corresponding to the ideal I. Then S is closed if and only if ¢

1s maximal element of the locale L.

Proof. Since c is meet-irreducible element of the locale L, by above lemma ideal [ is
prime.

By lemma 2.2.5, I, = L,Yae [ and I, = I,Va ¢ I.

Then by construction, the corresponding sublocale S = {c, 1}.

Assume S is closed. Then S = (1[]95)=1 (¢) = {¢, 1}.
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Thus there exist no element b such that c = b & 1.
Hence ¢ is maximal element of the locale L.

Conversely assume c is maximal element of the locale L.

Then 1 ¢ = {¢,1} = S. Hence the sublocale S is closed. O

2.3. Ideals from Sublocales of a locale

Given a sublocale S of a locale L, we construct the ideal Ig, which is closed under
arbitrary join. In this section we show that the sublocale constructed using the

congruence R, is embeddable in the sublocale S of L.

Proposition 2.3.1. Let S be a sublocale of L and j : S — L be the inclusion map.
Then kerjs = {x € L : j&(x) =[S} is an ideal of L and kerj% is closed under

arbitrary join.

Proof. jé(z)=[{se S:xE s}.

Then j%(0) =[1]S. So 0 € kerj¥ and hence kerj¥ is nonempty.
Let z € kerjé and y € L such that y E x.

Then j5(y) = j5(y mx) = js(y) mjs(z) =T15.

Thus y € kerj§. Hence kerj§ is a lower set.

Let z; € kerj% for i € I. Then we have j§(z;) =[] for all i € I.
Also j2(LJ) = L17(z) = LIMS = [1S. Thus ||z € kerjs.

Hence kerjé is an ideal which is closed under arbitrary join. O
Denote the ideal kerj§ by Is. Let L/R;, be the corresponding quotient frame.

Proposition 2.3.2. Let S be a sublocale of a locale L. If []S is a meet-irreducible

element of the locale L, then the ideal Is is prime.
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Proof. Let x my € Is. Then ji(x my) =[]S. That is j&(x) m ji(y) =[1]5S.
Since [ ]S is meet-irreducible element, either j§(x) =[S or j&(y) =[]S.

Hence either x € Is or y € Ig. Thus the ideal Ig is prime. ]

Proposition 2.3.3. A sublocale S of a locale L is dense in L if and only if the ideal

Is s trivial.

Proof. Let the sublocale S be dense in L. Then 0 € S and hence [ ]S = 0.

Then Is ={x e L: ji(x) =[]5 = 0}.

Since j§ is a nucleus on L, we have z T j§(z) for all z € L.

y € Ig if and only if y £ j&(y) = 0.

Hence Is = {0}, the trivial ideal.

Conversely let the ideal Ig is trivial.

By Proposition 2.1.7, I, = L if and only if a € I.

Since Ig is trivial ideal, I, = L if and only if a = 0.

So [0] = {0} and hence 0 € S.

Thus the sublocale S is dense in L. ]

From the above proposition it is clear that sublocales which are not dense in the

corresponding locale gives non trivial ideals.

Proposition 2.3.4. If S is a closed sublocale of the locale L, then the ideal Ig is

principal.

Proof. Let S = C(a) =1 (a) be a closed sublocale of L.
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Then the corresponding nucleus j§ is of the form j%(z) = a w x for all x € L.

Is = kerjf‘g:{xeL:jg(a:):l_lS:a}
= {reljaux=a}={rel:zCa}

= | (a)

Thus the ideal I is principal. O

Proposition 2.3.5. Let S be a sublocale of a locale L. Then the sublocale constructed

using the congruence R, is embeddable in S.

Proof. Let S be a sublocale of a locale L and let L/R;, be the quotient frame con-
structed using the congruence Ry, in L. Let ¢ : L — L/Ry, be the corresponding
extremal epimorphism in Frm. Then ¢.(L/Ry,) is the sublocale generated by the
congruence Ry,. We will show that the sublocale ¢.(L/R;,) is embeddable in the
sublocale S.

Let y € ¢.(L/Ry,), then y = ¢.([z]) for some x € L. Thus y can be written as
Y = ¢u(d(x)) for some x € L. Define h : ¢.(L/Ri5) — S by h(y) = j§(x). Then the

following triangle commutes.

¢
L L/Ry, b Pu(L/Ry,)
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The map h : ¢.(L/R;,) — S is a one-one map. Hence the sublocale ¢.(L/Ry,) is
embeddable in the sublocale S. [

2.4. Core element with respect to an ideal 1

Let L be a locale and I € L be an ideal, which is closed under arbitrary join. The

concept of core element with respect to the ideal I is introduced in this section.

Definition 2.4.1. An element a € L is called core element with respect to the ideal

1if I, = I. Let us denote the set of core elements of L by C.
By proposition 2.1.7 (iv), 1 €C. Hence ¢ is nonempty.

Proposition 2.4.2. For any ideal I of a locale L , we have the following
i. C'is a congruence class with respect to Ry.

1. (is closed under finite meet and arbitrary join.

1i. Cis a filter of L .

w. If I is prime, C' is a completely prime filter.

Proof. Let C be the set of core elements of a locale L.

i. By proposition 2.1.7 (iv), 1 €C.

We will show that the equivalence class of 1 with respect to Ry is C.
g, ={teL:(L,t)eR}={teL: L, =L}={teL:I,=1}=C.

ii. Let z,y € C. Then by above part, x,y € [1]g, so that (1,z) € R; and (1,y) € Ry.
Since Ry is a congruence, (1,x) € Ry implies (1my, xmy) € R;. That is (y,zmy) € Ry.
Since Rj is an equivalence relation, (1,y) € Ry, (y,z my) € Ry implies (1, my) € Ry.
Hence x my € [1]g, = . Thus C is closed under finite meet.

Now let S = {x;;i € J} €C. Then we have (1,z;) € Ry for every i € J.

29



Since Ry is a congruence, we have (1 u| |S,z; u| |S) = (1,1 ]S) € Rr.

Hence | |S € [1]g, = . Thus C is closed under arbitrary join.

iii. By proposition 2.1.7 (iv), 1 €C. By above part C is closed under finite meet.

Let x €C and y € L be such that x £ y. Since x € C, we have [, = I.

By proposition 2.1.7 (i), since x E y, [, < [, = I.

Also by proposition 2.1.7 (ii), I < I,. Hence I, = I. Thus y €C. Hence C is a filter
in L.

iv. Let I be prime ideal. Then by Lemma 2.2.5, C = {z € L:z ¢ I}.
Let | |z, € C. Then | |z, ¢ I. Since I is closed under arbitrary join, z, ¢ I for some

«. Hence x, €C and so C is completely prime filter of L. O

Theorem 2.4.3. Let I be an ideal of a locale L. Then the sublocale (quotient frame)
L/Ry is a Boolean algebra if and only if for each x € L, there exist y € L such that

xrmyel andxuye C.

Proof. Let x € L. Then [x] € L/R;.

The sublocale L/R; is a Boolean algebra if and only if there exist [y] € L/R; such

that [z] m [y] = [0] and [z] u [y] = [1].
That is if and only if [z my] = [0], [t uy] = [1] or I;ny = Ip = L and I, = [, = C.

Hence by proposition 2.1.7, x mye [ and z Ly e C. O

Theorem 2.4.4. Let I be an ideal of a locale L. If L/Ry is a Boolean algebra, then

R; is the largest congruence relation having congruence class (.

Proof. Clearly R; is a congruence with  as a congruence class.
Let 6 be any other congruence with C as a congruence class and let (z,y) € 0.

Then for any a € L, we have (z,y) € 6 implies (z U a,y L a) € 6.
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Hence x Lia €C if and only if y wa e C. That is I, = I if and only if I, ,, = I.
Then by proposition 2.1.8, we have I, n I, = I if and only if I, n [, = I.

Since L/R; is a Boolean algebra, by above theorem, there exist z’,a’ € L such that
zxmx,amad eland I, =1, 1,4 =1.

Since x ma’,ama’ € I, we have 2’ € I, and d’ € I,.

Thus 2’ mdel,nl,=1,,,=1.

' ma €I, implies a' € I,/.

Similarly, we get o’ € I, for suitable y' € L.

Thus we have o’ € I,y if and only if o’ € I,y. Thus I,y = I, or (2/,y') € Ry.

Hence 2’ €C if and only if ¢’ € . That is I, = I if and only if 1, = I.

Hence I, s = I, if and only if I,,,,, = I,. Thus I, = I if and only if I, = I.

Hence I, = I,. Thus (x,y) € R;. O

Proposition 2.4.5. The quotient frame (sublocale) L/R; is subfit if and only if for

every a,b e L with a & b, there exist c€ L such thatawuce C,bucé¢ (.

Proof. Assume the quotient frame L/R; satisfies subfit property.

Let a,be L with a & b. Then [a] & [b] in L/R;.

Since L/ Ry is a subfit, there exist [c¢| € L/R; such that [a]u[c] = [1] and [b]u[c] # [1].
Hence by proposition 2.4.2, a uice C, bucé¢ C.

For converse, let [a], [b] € L/R; such that [a] & [b]. Then a,be L with a & b.

By assumption there exist ¢ € L such that ace G, bucé¢ C.

But a uce Cif and only if [a 1 c] = [a] U [c] = [1].

Hence the quotient frame L/R; is a subfit frame. O

Proposition 2.4.6. The quotient frame (sublocale) L/R; is fit if and only if for every

a,be L with a & b, there exist ¢c,d € L such thata uce ¢, cmd= b,d &L b.
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Proof. Suppose the quotient frame L/R; is fit.

Let a,be L with a & b. Then |a],[b] € L/R; with [a] & [b].

Since L/Ry is fit, there exist [c] € L/R; such that [a] L [c] = [1] and [¢] — [b] & [b].
But [a] u [¢] = [1] if and only if a L ce C.

Also [¢] — [b] & [b] if and only if there exist [d] € L/R;such [d] m [¢] E [b] and
[d] & [b]-

That is if and only if there exist d € L such that cd & b,d &£ b.

For converse, let [a], [b] € L/R; with [a] & [0]. Then a,b € L with a & b.

By assumption there exist there exist ¢,d € L such that auice C, cmd = b,d &£ b.
Then [c],[d] € L/R; with [a] u [¢] = [1] and [¢] — [b] & [b].

Hence the quotient frame L/R; is fit. O

Proposition 2.4.7. The quotient frame (sublocale) L/R; is Sy if and only if for
every a,be L withaube C, a,b¢ C, there exist u,v € L such that a & u,b & v and

urvel.

Proof. Suppose the locale L/R; is S5.
Let a,be L withaube C, a,b¢ C. Then [a],[b] € L/R; with

[a] w[e] = [1], [a] # [1], [0] # [1].

Since the locale L/Ry is S}, there exist [u], [v] € L/R; such that

[a] & [u], [b] % [v], [u] P [v] = [O].
But [u] m [v] = [0] if and only if u mv e I.

In a similar manner we can prove the converse. [

Lemma 2.4.8. [a] < [b] € L/R; if and only if there exist c € L such that armce I
and buce C.

Proof. [a] < [b] € L/Ry if and only if there exist [¢] € L/R; such that [a] m [c] = [0]
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and [b] u [c] = [1]. But [a] M [¢] = [0] if and only if a m ¢ € I and [b] L [c] = [1] if

and only if b L ¢ € . Hence the result. ]

Proposition 2.4.9. The quotient frame (sublocale) L/ Ry is reqular if and only if for
every a € L there exist x;,b; € L for every i € J, where J is an indexing set, such that

Iy, =1g,xibje ] and a i b; €C.

Proof. The quotient frame (sublocale) L/R; is regular if and only if for every

la] € L/Ry, there exist |z;] € L/R; such that [a| = [wa;]| with [z;] < [a].

But [a] = [| | ;] if and only if I} |,, = I,.

Also by above lemma, [z;] < [a] if and only if there exist b; € L such that x; mb; € I

and a L b; €C. O

Proposition 2.4.10. The quotient frame (sublocale) L/R; is normal if and only if
for every a,be L with a ube C, there exist u,v € L such thata uve C, buue (),

urmvel.

Proof. The quotient frame L/R; is normal if and only if for every [a], [b] € L/R; with
[a] w [b] = [1], there exist [u], [v] € L/R; such that

[u] 1 [v] = [0] and [a] w [v] = [1] = [b] w [u].

But [u] m [v] = [0] if and only umv € I and [a] u [v] = [1] = [b] w [u] if and only if
auveC buueC. O

Definition 2.4.11. A filter F in a locale L is said to be weekly completely prime if

| |aq € F, there exist oy, ag, ag............ oy, such that an, L g, U ag, L ... U ag, € F.

Proposition 2.4.12. The quotient frame (sublocale) L/R; is compact if and only if

the filter C' is weekly completely prime.
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Proof. Assume the quotient frame L/R; is compact.

Let | |aa € C. Then [|_|as] = [[aa] = [1]-

Thus {[a.] : @ € J} is a cover for the locale L/R;.

Since the frame L/R; is compact, there exist ay, ag, ..., € J such that

[aa, | U [aa,] U oo U @0, ] = [Gay U o, U ..o Uag, | = [1].

Thus aq, Uae, Uaa, L ......... L ag, € . Hence the filter C is weekly completely prime.

In a similar manner we can prove the converse. [
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Chapter 3

An Embedding Theorem for

Locales

For a,b € L the collection [a, ] = {f € O(L) : £y < 3} are ideals in O(L). We
claim that for each a € L, the collection J, = {[a,%] : b € L} is a spatial locale
of pseudo subframes of O(L). Defining proper congruences on L and O(L), we have
derived an embedding theorem for locale L. Finally the collection B = {.J,,a € L}
forms a full subcategory of the category Loc. The coproduct J = || J, satisfies the
separation axioms subfit and normality if and only if each J, is subfit and normal

respectively.

3.1. Ideals [a,>}]| for a,b € L

Let L be a locale and O(L) denote the collection of all order preserving maps on L.
That is O(L)={f; f : L — L is order preserving}. Define a relation < on O(L) by

f < g if and only if f(a) = g(a) Ya € L. Then the relation < is a partial order on
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O(L). If L and m denote join and meet with respect to the partial order = on L, then
fvg,frg:L— Ldefined by (f v g)(a) = f(a) ug(a) and (f A g)(a) = f(a) ng(a)
represents join and meet in O(L) with respect to the partial order <. Also infinite
distributivity of A over \/ follows from the infinite distributivity of m over |_|. Hence
O(L) is a locale with bottom 0 and top 1, where 0,1 : L — L are defined by 0(a) = 0
and 1(a) = 1Va € L.

Definition 3.1.1. Let L be a locale. For a,b € L, define
[Cl, Eb]:{f S O(L) . Ef(a) - Eb}

Some simple properties of [a, ;] have been verified in the following lemmas.

Lemma 3.1.2. Let L be a locale and a,b e L
i. la,Xyp] is an ideal for all a,be L.

ii. If X is meet-irreducible element of Q(Sp(L)), then [a, Xp] is prime ideal.

Proof. Let L be a locale and a,be L
i.  Since Yoy=%o = ¢ S X, we get 0 € [a, %] for all a,b € L. Hence [a,3] is
nonempty.
Let f,g € [a, %]
frg€a, 5] = Ep@a) S Xy and Xg) S X
= Y)Y Lga) E Xy
= X(;y4@) = Zf(@ugla) S b
= fvgela L]
Hence [a, 3] is a sub-join semilattice.
Now let f € [a, %] and g < f in O(L).

g< f=gla) E fla) = Yy S L)
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g < fand fela,Xy] = Xya) S Epa) S X = g€ [a, 5]

Hence [a, 3] is an ideal.
ii. Assume Y, is a meet-irreducible element of Q(Sp(L)) and f A g € [a, ).
frgela, %] = Yiag@ S X
= Yia) N Vga) E Xy
Since ¥, is meet-irreducible element of Q(Sp(L)), either Xy, S 3y or Ly S 2.

That is either f € [a, 3] or g € [a, Xp]. Hence [a, ¥p] is a prime ideal. O

In [24] Johnstone has defined lattice without bottom element or Top element
as pseudo lattice. Using the same terminology we can define pseudo subframe as

follows.

Definition 3.1.3. Pseudo subframe M of a frame L is a subset M of L which is

closed under all joins and nonempty finite meets so that 1, ¢ M.

Proposition 3.1.4. Let L be a locale and a,b € L,then [a, Y] is a pseudo subframe
of O(L).
Proof. Let I be a nonempty indexed set and let f; € [a, %] Vie I,
fi € [(1, Zb] = Efi(a) - Eb, Viel
= Ui € X and D) 0 D) S B
= X fi(e) © Lo a0d Lpy(a)ngie) S
=\ fiela,Xp] and f; A f; € |a, Xp]
Hence [a, 3] is a complete lattice.
Also [a, ¥] satisfies infinite distributive law as O(L) satisfies the same.
But 1¢[a,>]ifb#1.
Hence [a, 3] is a pseudo subframe of O(L) and [a, 3] is the locale O(L). O
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Lemma 3.1.5. Let L be a locale and aq,as,by,by € L.

i. If a1 E ag, then [a1, Xp] 2 [ag, Xp) -

ii. If by E by, then [a, Xy, ] S [a, 3u,]
Proof. Let L be a locale and aq, as, by, by € L.
i. Suppose a; £ ag. Then f(a1) E f(az) Vfe O(L).

f € [CLQ, Eb] = Zf(a2) c X
= Uf(ar) S L) S 2
= [ € [a1, 2]

Hence [ay, 5] 2 [ag, Xp].
ii. Let b1 = bg. Then Zbl c Ebg'

f € [CL, Ebl] = Ef(a) < Ebl - 252
= [ € [a,X,]

Hence [a, ¥, ]| € [a, X4, ].

O

Remark. f, denotes the constant function on the locale L with the value b. That is

fo(z) =b Yz e L.

Lemma 3.1.6. Let L be a locale. For a,b,c € L, [a,%] =

dp = 2.

Proof. If ¥, = X, then clearly [a, ;] = [a, 2]

[a, 2] if and only if

Conversely let [a,X] = [a,3.]. Since Xp @) S Xp, fo € [a,X] = [a,2:]. Then

Yfa) © e That is 3 € Y. In a similar manner Y. € Y. Hence X = 3.
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Examples 3.1.7. 1. Let the locale L be given as follows.
/1\
a\\ /b
0
Then Yo = ¢, X, = {F1}, Xy = {Fy}, X1 = {F1, Fy}, where completely prime filters
Fy and Fy are given by Fy = {a, 1}, Fy = {b, 1}.

Then O(L) = {f1, fa, ... , f33}, where the order preserving maps f; : L — L is given

by the following formulas.

filz) = {0 if v=0,a,b,1

-

0 if x=0,a,b
Ja(w) = <
a if =1
\
0 if 2=0,a,b
f3(£13) = X
b if z=1
0 if 2=0,a,b
f4($) = X
1 ifz=1
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0 if z=0,a

a if x=b,1

0 if z=0,a
fo(z) =1 a if =0

1 aif x=1

0 o z=0,a

b if x=b,1

0 ifz=0,a
fs(@)=<b if z=b

1 if 2=1

0 if z=0,b

a if x=a,l

0 iof z=0
fio(z) =

a if r=a,b,1
fu(z) = {m if v=0,a,b,1

r

0 if x=0
fr2(x) = { ¢4 if T=a

1 if x=b,1

\
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0 if z=0,b
fia(@) =
b if r=a,l
0 if z=0,b
fu@)=<b ifz=a

1 ifz=1

0 ifz=0

b if x=a
fis(@) = <
a if x=b

0 o z=0
fie(x) =

b if x=a,b,1
0 o z=0
fir(z) =<0 iof T=a,b

1 if a=1

0 if 2=0
fis(x) =1 b if T=a

1 if z=b,1
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0 if z=0,b
fio(z) =1 aq if x=a

1 ifz=1

0 iof z=0

folz) =1a ifz=ab

1 if o=1
.
0 if z=0,b
fa(@) = <
1 if x=a,1
\
0 if z=0
for(z) =
1 if x=a,b,1

foa(z) = {a if ©=0,a,b,1

a if x=0,a,b
foa(z) =
1 if z=1
a if x=0,a
fos(x) =
1 if o=b,1
a if =0
fas(z) =
1 if z=a,b,1
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for(z) = {b if v=0,a,b,1

b if 1=0,a,b
fos(@) =
1 ifz=1
b if 1=0,a
foo(2) =
1 ifz=b,1
b if z=0
f30($) =
1 if x=a,b,1

fai(z) = {1 if 2=0,a,b,1

-

a if z=0,b

fa2(x) = 3
1 ifz=a,l

.
b if z=0,b

fa3(x) = <
1 if z=a,l

\

la,Xo0] = {f € O(L) : Zf) € Bo} ={f € O(L) : (o) = &}
={f1, f2, f3, fa, f5, fo. fr. fs}
[CL, Ea] = {fhf2;f37f47f57f67f77f87f97f107fllaf127f197f207f237f247f25}

la, 2o] = {f1, fo; f3, fas [5, foo f2, f3, fi3s fua, fis, fies fiz, fis, for, fos, fao}
[a, 1] = [a, ] = O(L)

2. For non spatial example, consider L = the Boolean algebra of all reqularly open

subsets of the real line R. Then for any reqularly open subsets U,V we have
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[U.Ev] ={feO(L);X¢w) € Xv} = O(L), since Sp(L) = ¢.

3.2. The locale J,,ae L

Let L be a locale. Fix some a € L, and let J,={[a,>] : b € L}. Define binary
relations A, v on J, by [a, 2] A [a, X.] = [a, Xpme] and [a, 3] v [a, Zc] = [a, Zpoc]-
Then (J,, A) and (J,, v) are commutative monoids in which every element is idem-
potent. Also

la, Ep] v ([a, 3] A [a,3c]) = [a, 3] v [a, Xere] = [a; Zpupne] = a, 2] and

[a, 3] A ([a, 3] v [a, Xc]) = [a, 5] A [a, Boie] = [a, Bpnpue] = [a, 2.

Thus absorption laws are satisfied and hence J, is a lattice. Since | |a;, for a; € L

exist, J, is a complete lattice.

[a7 Eb] A Y[av Zcz‘] = [aa Zb] A [CL, Z|_|cz‘] = [Cl, Ebl‘!l_lcz'] = [CL, Zub’_‘ci]

= Y[a,anCi] = Y([C% ZJb] A [aa ZCZ])

Hence J, satisfies infinite distributive law. Thus .J, is a locale of pseudo subframes
of O(L) with top element [a, ¥;] and bottom element [a, ¥o].

From example 3.1.7(2), we get the locale Jy = The one point locale O, for all
UelL.
From example 3.1.7(1), we get the locales Jy = {[0,%;] : be L},
Jo={la,Xp] :be L}, Jpy ={|b,3,] :a€ L} and J; = {[1,5] : be L}.

Proposition 3.2.1. The locale J, is compact if and only if Sp(L) is compact.

Proof. Assume J, is compact. We have to show that Sp(L) is compact.
Let $1 = | %, Then %y = 5,

el
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By Lemma 3.1.6, Yla, %, = [a, 3 s,] = [a,2:1]. Hence {[a,%y,];7 € I} is a cover for
Ja.

Since J, is compact, we have [a, ¥, ]| v [a, Xp, ] v ooee.e. v [a, %] = [a, X:] for some
by, by, ....b, € L. That is [a, Xy, Loyubsns....bn] = [a; 21]-

Then Yy, pyibse.. b, = 21, using lemma 3.1.6. Hence Sp(L) is compact.

Conversely assume Sp(L) is compact. Let {[a, Xy, ];i € I} be a cover of J,.
That is Y|a, X, ] = [a, X1] or [a, ) js,] = [a,31]. This gives ¥ j5, = X1.
Since Sp(L) is compact, we have X1 = Xy, pyii. b, -

Hence [a, 3, py0......06, ] = @, X1]. Thus J, is compact. O

Isomorphism of J, with a quotient locale of L
Define a relation ~, on L by b~.c if [a,%] = [a,X.]. Clearly the relation ~,
is an equivalence relation. Let (b,c)e~,. We claim that (b m d,c md) €~, and
bu|]S,cu]]S) e~
[a, Xpna] = [a, Zp] A [a, 2q] = [a, Zc] A [a, Zq] = [a, Zeral-
Hence (brmd,cmd) e~,.
[a, Zpoys] = [a, 5] v [a, Zys] = [a, Xe] v [a, By s] = [a, Bes]-
Hence (bu | |S,cu]| |S) e~,. Thus ~, is a frame congruence on L.
Then by [8], L/ ~, is a quotient frame (sublocale) of L with respect to the partial
order [a] E [b] iff a E .
Note that if L is spatial, then L/ ~,= L for all a € L.
Define ¢, : L/ ~,— J, by ¥, ([b]) = [a, Xs]. Then
ba([b] M [c]) = Ya([brcl) = [a, Bprme] = [a, ] A [a, Ee] = ¢a([b]) A Pa([c]) and
GallUIb]) = allLIBD) = 0, Su] = Ylar S] = Y ().
Hence 1, is a frame homomorphism.

Also 1, is one-one and onto. Thus 1), is an isomorphism in the category Frm. Since
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the isomorphism is a self dual property, v, is an isomorphism in the category Loc.
Thus the locale J, is isomorphic to a sublocale of the locale L.

Congruence on O(L)

Define a relation R, on O(L) by fR.g if Yf@u) = ¥g@). Then R, is an equivalence
relation. Suppose fR,g. Then

L(fah)@) = Bf(@)rhla) = Lf(a) N Ln(a) = Lgla) N Bh(a) = Vg(a)rh(a) = 2(gah)(a)-
Thus f Ah R, g A h.

Z(fV @ = 2f(@) Y B fil) = Bgla) Y B i) = Zg@uld fila) = Z(gvV £i)@)-

Hence fv \ fi Ra gv V fi. Thus R, is a congruence on O(L).

Then by [8], O(L)/R, is a quotient frame (sublocale) of O(L) with respect to the
partial order [f] < [¢] in O(L)/R, if and only if f < g in O(L).

Example 3.2.2. In ezample 3.1.7(1), we have O(L)/Ra = {[ /1], [fol fss], [for ]} where
Ll = {fv, fos fo, fas f5, fou oo 13}

[fo] = {fo. fr0, f11, fi2, fr9, fa0, fos, fou, fos}

[f13] = {f13, f14, [15, fr6, fi7, frs, for, fos}

[f21] = {f21, f22, fos, fo0, f30, f1, fa2, f33}

Lemma 3.2.3. If (f,g) € R,, then (f(a),g(a)) e~,.

Proof. Let (f,g) € Ro. Then Xy = X

g(a)-

By lemma 3.1.6, [a, Xf)] = [a, Xg@)]- Hence (f(a),g(a)) €~,. O

Proposition 3.2.4. The quotient frame(sublocale) L/ ~, of L is isomorphic to the
quotient frame(sublocale) O(L)/R, of O(L).

Proof. Define the map o : O(L)/R, — L/ ~, by o([f]) = [f(a)].
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o(Lf]) = o(lg]) = [f(a)] = [g(a)]
= [a, Zp)] = [a; Zg(a)]
= Yif(a) = Lg(a), Py lemma 3.1.6

Thus the map o is one one.

Also for each [b] € L/ ~q4, o([fo]) = [fo(a)] = [0]. Thus o is onto.
o(VIiD = oIV £iD = [V fi) ()] = [LU(fi(e)] = LIfi(@)] = Lo([fi]) and

o(LfI~lgl) = o(lf A gl) = [(f ~ g)(a)] = [f(a) M g(a)]
= [f(@)] mlg(a)] = o(f) molg)
Hence o is an isomorphism in Frm. Thus a sublocale of L is isomorphic to a sublocale

of O(L) O

Theorem 3.2.5. Embedding Theorem for locale L A sublocale of the locale L
can be embedded as a sublocale of O(L). If the locale L is spatial, then L can be

embedded as a sublocale of O(L).

Proof. Define G : O(L) — O(L)/R, by G(f) = [f]. Then G is an onto frame
homomorphism.

Consider 0 o G : O(L) — L/ ~, where o : O(L)/R, — L/ ~, is the isomorphism in
3.2.4. For each [b] € L we have f, € O(L) such that (o o G)(f,) = [b].

Thus the map o o GG is onto.

Also since G, o are frame homomorphisms, ¢ o GG is a frame homomorphism.

Since ¢ o GG is an onto frame homomorphism, its adjoint ¢ is a one one localic map
from the sublocale L/ ~, of L to O(L).

If L is spatial, L/ ~,= L and so L can be embedded as a sublocale of O(L) O
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Localic map from Sp(L) to O(L)/R,
Define ¢ : O(L)/Ry — Sp(L) by ¢a([f]) = Ss(a). Then
Pa([fT A 19D) = Bprgla) = L) O Xgta) = @allS1) 0 @a(lg]) and
¢a(V1f1:) = @[V fi]) = E¢v sy = U E s

Hence ¢, is a frame homomorphism and its adjoint ¢* is a localic map from Sp(L)

to O(L)/R,.
Lemma 3.2.6. If f € [a,X], then [fe [a, %]

Proof. Let f € [a,] and let g € [f]. Then we have X, = Xg(q)-
Since f € [a, 5], Xfa) S Ep, which implies X,y < ;. Hence [f] € [a, 5] O

Proposition 3.2.7. The locale J, is subfit if and only if for every |a,>] in J,
with [a, Y] € [a, %], there exists Xy € Sp(L) such that [1] < ¢, (3 U Xg) and
[1] & ¢, (B v Za).

Proof. Suppose locale J, is a subfit. Let [a, ], [a, X.] € J, with [a, %] € [a, X.].
Since J, is a subfit, there exist [a, ¥4] such that [a, ¥] v [a, 4] = [a, X:] and

la, 2] v [a, 4] # [a, 34].

Since [a, 3p.q] = [a, X1], we have 1 € [a, Xy 4]. Then by lemma 3.2.6, [1] € [a, Xy 4]
Thus ¢.([1]) = E1(a) S Bpua- Hence [1] < ¢ (35, U Ey).

Also, if [1] € ¢71(Z. U Xy), then 1 € [a, X.Lq], a contradiction.

Hence [1] & ¢, (X U Xg).

Conversely, suppose [a, 3] € [a, X.]. Then by hypothesis, [1] € ¢; (3, U Xg).
That is ¢4 ([1]) € Zpq- Thus 1 € [a, Xy q] and hence [a, Xy 4] = [a, X1].

If [a, Xea] = [a, 21], then [1] € ¢; ! (X.UX,), a contradiction. Hence J, is subfit. [

Proposition 3.2.8. The locale J, has Sy’ property if and only if for every
[a, 3] # [a, X1], [a, ] # [a,21] in J, with [a, Xe.c] = [a, £1], there exist
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Y, Xe € Q(Sp(L)) such that X & 3, Xg & X and ¢.([f]) € Xgq m Eeimplies that
felol.

Proof. Suppose J, has Sy’ property. Let [a,%] v [a,2.] = [a,21]. Then there
exist [a, X4], [a,Xc] € J, such that [a, 4] A [a,X] = [a, X0],][a, Xe] € [a,Xp] and
la,24] € [a,2:]. Then 34,3, € Q(Sp(L)). If X, € %, then [a,3] S [a,%], a
contradiction.

Hence ¥, & ¥J,. Similarly we can prove that 3, & ..

Let ¢q([f]) S g N Ee. Then Efq) S Egre.

Hence f € [a, Y] = [a,30]. Thus f € [0].

Hence ¢,([f]) € ¥4 n X, implies f € [0].

Conversely, let [a, 2] # [a, ¥1], [a, Xc] # [a, 1] with [a, Ep ] = [a, X1].

Then by assumption, there exist 34,3, € Q(Sp(L)) with ¥, & %, ¥; € ¥, and
oa([f]) € Xq n X, implies that f € [0].

Also f € [a,Ygnc], implies Xy S Bgne.

Hence 0u([f]) € Zan . = f € [0] = f € [a, )

Hence [a, 34] A [a, X.] = [a, 20].

Also since ¥, & ¥, Xg E X, [a, 2] € [a, 3] and [a, X4] £ [a, 2.]. Thus J, has Sy’

property. ]
Lemma 3.2.9. Ifb < cin L, then [a,%] < [a, 2] in J,.

Proof. Suppose b < ¢ in L. Then there exist d € L such that bmd =0 and cud = 1.
We have

la, Xp] A [a, X4] = [a, Xona] = [a, Xo] and [a, X ] v [a, 24] = [a, Xea] = [a, X1].
Hence [a, 3] < [a, 2] in J,. O

Proposition 3.2.10. If L is a reqular locale, then J, is a reqular locale.
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Proof. Proof follows directly from the above lemma. O

Proposition 3.2.11. Locale J, is normal if and only if for every |a, %], [a, 2] € Ja
with [a, 3] v [a, 2] = [a, X1], there exist 3, %, € Q(Sp(L)) such that [1] € ¢, (2, v
), [1] € 6752, U X)) and ¢u([f]) € Sume = f € [0].

Proof. Suppose J, is normal. Let [a, 3], [a, X.] € J, with [a, 3] v [a, X.] = [a, 24].
Since J, is normal, there exist [a, X, ], [a, X, ] € J, such that

[a,Xp] v [a, 2] = [a, X1], [a, Zc] v [a, 2,] = [a,21] and [a, E,] A [a, 2] = [a, 20].
Then ¥, %, € Q(Sp(L)).

Also ¢,([1]) = L1(e) € By U Ey,. Hence [1] € ¢, (X, U ).

Similarly [1] € ¢;1(2, U X¢). Now ¢o([f]) € Bune implies Eg) S Byne.

Hence f € [a,Xyn0] = [a, 3], which implies ) S Xo. Hence f € [0].

Conversely, let [a, 3], [a, 2] € J, with [a, 3] v [a, 2] = [a,¥1]. By assumption,
there exist ¥, %, € Q(Sp(L)) such that [1] € ¢ (X, U ), [1] € ¢71(2, U X.) and
¢a([f1) € Burw = [ € [0]. Ty, 5y € Q(Sp(L)).

Since X, %, € Q(Sp(L)), [a,3.],[a,2,] € Jo. Also [1] € ¢71(3, U X) implies
®a([1]) = X1¢a) € Bus. Thus 1 € [a, X,,]. Hence [a, Xy 0] = [a, 21].

Similarly we can prove that [a, X,..] = [a, X1].

Also f € [a, Xury] implies Xpy = da([f]) E Xumy. Then by assumption f € [a, Xo).

Hence [a, Xyry] = [a, Zo]. O

Proposition 3.2.12. The locale J, is Boolean if and only if for each b e L, ¥y is a
clopen subset of Q(Sp(L)).

Proof. Suppose the locale J, is Boolean and let 3, € Q(Sp(L)).
Then [a, Y] € J,. Since the locale J, is Boolean, there exist [a,X.] € J, such that

[a, 3] A [a, 2] = [a, Xo] and [a, 3] v [a, X.] = [a, X4].
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[a, Xpne] = [a, o] implies Y. = 3 by lemma 3.1.6. Hence ¥, n X, = ¢.

[a, ] = [a, 21] implies that ;. = ¥1. Hence ¥, u X, = 3.

Thus X, € Q(Sp(L)) is the compliment of 3. Hence 3}, is both closed and open.
Conversely assume that each ¥, is clopen and let [a, ¥y] € J,.

Then X, € Q(Sp(L)). Since 3, is clopen, we have ¥, = (%,)¢ € Q(Sp(L)).

Then [a,¥.] € J,.

[a, Xp] A [a,2e] = @, Zpne] = [a, X N ] = [a, @] = [a, Xo).

[a, 2] v [a, 2] = [a, Zpoe] = [a, 2 U X = [a, 4]

Hence the locale J, is Boolean. O

3.3. Coproduct of the locales J,,a e L

In [39], if L;,i € I are locales, then the cartesian product || L; together with
component wise ordering is a locale. Since each J,,a € L is a locale, J =[] J, is a
locale together with the map p, : J, — J, a € L, defined by p.([a, Xp]) = [ ][], Xz]
where [b,%,| = [b,%1] for all b # a and [a,X,]| = [a,%;]. Then (py : Jo — J)aer is

the coproduct of locales J,.

Notation Any element of the coproduct locale J is denoted by [][a, X,,], where
[a,2;,] € Ja

Proposition 3.3.1. The locale J is subfit if and only if each J, is a subfit.

Proof. Suppose each J, is subfit and let A = [ [[a, 2., ], B = | |[a, X,,] € J such that
A< B.

Then there exist d € L such that [d, X,,] € [d,%,,].

Since Jy is subfit, there exist [d, X.] such that [d, X,,] v [d, X.] = [d, %] and
[d,2,,] v [d,2.] # [a,34].
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Take C' € J as C = []|a, 2.,] where [a, 2., ] = [a,X1] for a # d and [d,3,,] = [d, X.].
Then we have A v C' =15 and B v C # 1;. Hence J is a subfit locale.

Conversely assume that J is a subfit locale and let [a, ¥], [a, 2] € J, with

la, 3] € [a, X

Then let A = [][b,2,,], B = [][b,2y,] where [b,2,,] = [b,341], [b,%,,] = [b,21] for
b+#aand [a,%,,] = [a, 5] and [a, X, ] = [a, X.].

Then A, B € J is such that A € B. Since J is a subfit locale there exist
C=1][b,%.,] € J such that Av C =1, and Bv C # 1,.

Then we must have [a, ¥p] v [a, 2., ] = [a, 21] and [a, 3] v [a, 2., ] # [a, X1].

Thus J, is a subfit locale. O

Proposition 3.3.2. If the locale J has Sy property, then each J,,a € L has S,

property.

Proof. Suppose that the locale .J has S, property and let [a, 23] # [a, 1],

[a, 2] # [a,¥1] € J, with [a, Xp] v [a, 3] = [a, X1].

Let A = [][b,%5,], B = [1[b, £,,] where [b,%,,] = [b,%,,] = [b,X1] for b # a and
la, 2., ] = [a, %] and [a, 2, ] = [a, X.].

Then we have A,B # 1;€ J with Av B =1.

Since J has S, property, there exist U = [[[b,2y,],V = [][b,Xs,] € J such that
UAV =0,,U£B VLA

Thus [a, 0] 4 [0 5], [0, S € [ 5] and [, %] A [0, S, = [a, o]

Hence J, has S/2 property. n
Proposition 3.3.3. The locale J, is normal if and only if J is normal.

Proof. Suppose that each J, is normal and let A = [[[b,X,,], B = [][b,2,,] € J
such that Av B =1.
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Then [a,X,, ], [a, Xy, ] € Jo with [a, 2, ] v [a, 2y, ] = [a, X;] for all a € L.

Since J, is normal, there exist [a, >, ], |a, v, ]| € J, such that

[a, X0, ]v[a, %0, ] = [0, X] and [a, By, ] v [a, 2, ] = [a, 24], [, B, ] v @, 5, ] = [a, Zol.
Let U =[][b, 2,1,V =T1[b, X0, ]-

Then U,V € J such that AvV =1;,,Bv U =1;,U AV =0;. Hence J is normal.
Conversely assume that J is normal and let [a, ], [a, X.] € J, with

[a, 3] v [a, 2] = [a, X1].

Consider A = [][b, X,,], B = [][b, £,,] where [b,3,,] = [b,2,,] = [b,2X:1] for b # a
and [a, X;,| = [a, 2], [a, 2y, ] = [a, 2]

Then A,Be J with Av B =1;.

Since J is normal, there exist U = [[[b,X,,], V = [][b, £v,] such that A v V = 1,,
ByU=1;UAV =0y.

Then [a, %] v [a,2,,] = [a, 21],  [a, 2] v [a, 24, ] = [a, 1], and

[0 50] A [0, %] = [0, 0]

Hence J, is normal [l

3.4. Filters (a,>;) for a,b € L

Definition 3.4.1. Let L be a locale. For each a,b € L, define

<a, Zb>:{f € O(L) : Zf(a) =2 Eb}
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Example 3.4.2. In example 5.1.7

(a,%0) = {feO(L): Efa) 2 Xo}

= {feO(L): Xy 20} = O(L)
(@, %e) = {fo, fro, f11; fr2; 10, fo0, for, foz, fo3, fous fos, fas, fs0, Fn, fo, fs)
(a, %) = {13, f14, S5, fre, f7: fis; o1, foz, fos, for, fos, foo, f30, f31, fa2, fss)
(a,51) = {far; a2, a6, F50, fr, f2, fs}

Some simple properties of {a, ¥,) have been verified in the following propositions.

Proposition 3.4.3. For each a,be L

i. {a,%y)y is closed under finite meet and join.

it. {a,Xpy is an upper set.

iii. {a,Xypy is a filter in L.

. If Xy is a join-irreducible element of Q(Sp(L)), then {a,>y) is a prime filter in
O(L).

Proof. i. Let f,g € {a, Xp).

f?g € <CL, 2b> = Ef(a) 2 X and Zg(a) DY
= Yf(a) Y Lga) = Lp and Jpq) N Lga) 2 X
= Yf(a)ugla) = 2pand Yfaymga) = 2b
= X, 0(a)) = 2 and X, @)) 2 2

:>ng>ng€<@’217>

ii. Let g € {a,%) and g < f in O(L).

gea, %), 9 < f=gla) C fla)
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= 2g(a) S i)
= Xy S Bg(a) © Lf(a)
= f € <CL, Zb>

Hence {a, ¥) is an upper set.

iii. Proof follows directly from part i, ii.

iv. Assume ¥, is a join-irreducible element of Q(Sp(L)). Let f v g € {a, ).
fvgela, ) = g 2 Dy
= Xf(a) Y Xgla) 2 2

Since ¥, is join-irreducible, either Yy, 2 ¥, or Eyq) 2 ;. Hence f € (a,%) or

g € {a,%y). Thus {a,¥,) is a prime filter. O

Proposition 3.4.4. Let L be a locale and ay,as,by,by,a,b€ L.
i. If a1 E ag, then {ay, Ypy S {ag, Tp) .
ii. If by € by, then {a, Yy, ) 2 {a,Xs,)

Proof. Let L be a locale and aq, as, by, bs,a,b€ L.
i. Suppose a; E ay. Then f(a1) E f(az) Vfe O(L).

fela, ) = Bp@) 25
= Lf(az) 2 Lf(ar) 2 2
= f € {ay, Xy
Therefore {ai, ¥y < {az, Xp) .
ii. Let by E by. Then Xy, < X,.
fela,Xy,) = i) 2 L, 2 X,

= fela, Sy
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Therefore {a, ¥, ) 2 {(a, X, ). O
Proposition 3.4.5. For any a,b,c€ L, {a,%y) = {a,X.) if and only if ¥ = 3.

Proof. 1f 3, = X, then clearly {(a, ¥}) = {a, X.).
Conversely let (a,%;) = {a,X.). Since X ) 2 Xy, fy € {a,X) = {a,3.). Then

Yfa) 2 e That is 3 € Y. In a similar manner X, € Y. Hence 3, = 3. O

Proposition 3.4.6. Let 3, be compact element in Sp(L). Then for each a € L,{a, )

is completely prime filter in O(L).

Proof. By proposition 5.5.5, {a, ¥, is a filter in O(L). Let \/ f, € {a, X;). Then we
have 3y ¢, (a) 2 Xy or | Xy, () 2 2. Since X is a compact element in Sp(L), there
is some 3 such that ¥y, (a) 2 ;. Hence f3 € {a,%;). Thus for each a € L,{a, %) is

completely prime filter. O

Proposition 3.4.7. Let 3, be a join-irreducible element in Q(Sp(L)). If f € O(L)
immediately preceeds g € O(L) with Xy # Yy and Xy = 3g@)\{F'} for some
F e Sp(L), then {a,Xy) is a slicing filter in O(L).

Proof. Let ¥p, be a join-irreducible element in Q(Sp(L)). Then by Proposition5.5.5,
{a, %) is a prime filter in O(L). Since 3y = 3g)\{F'}, Xg(a) 2 2. Hence

g € {a,%y). As f immediately preceeds g and Xy # Xga), L) S Lga)- Since
5 = Yg)\MF} Ep@) 2 2. Hence f ¢ (a,%). Hence {(a,%;) is a slicing filter in
O(L). O

Proposition 3.4.8. For a fized a € L, n{a, ¥, ) = {a, X |p.,)-

Proof. Fix some a € L.
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fenla,Xy,)= fela,%,) for all o
= Yf(a) 2 L, for all a
= Y@ 2 UZe. = .
= n{a, Ly, ) S {a, Y| [b,)-

Now let f € {a, ¥ s,)-

fea, B b0 = By 2 Eyee = U,
= Yif(a) 2 2y, for all
= fe{a,X,) for all o
= fenla,Xy,)

So {a, | jp,) 2 N{a, X, ).
Hence {a, ¥| s,) = n{a, Ly, O

Proposition 3.4.9. For each a € L, let S, = {{a, %) be L}. Then S, is a complete

lattice under the partial order <.

Proof. By above proposition S, is a complete meet semilattice with top element
{a,Yo). Since every complete semilattice with top and bottom is a complete lattice,

S, is a complete lattice under the partial order <. O

3.5. Construction of subspace of Sp(O(L)) using
{a,Xp),a,be L

Proposition 3.5.1. Let 3, be a compact open set in Sp(L) and let
Y, = {{a,%) :a€ L}. Then (Y, QSp(O(L)))/Ys) is a compact subspace of spectrum
Sp(O(L)).
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Proof. Since ¥, is a compact element of Sp(L), for all a € L, the filter {a, ¥;) is com-
pletely prime. Hence Y, < Sp(O(L)) and Q(Sp(O(L)))/Y}, is the subspace topology
on Y,. Hence (Y3, Q(Sp(O(L)))/Ys) is a subspace of spectrum Sp(O(L)).

Let {3y, : o € I} be an open cover of V3. Then we have Y, < [ JXf, = Xy/z,. Then the
element (0, ;) of Y}, isin X/ 4,. Hence \/ fo € €0, %) and so |J Xy, (0) = Xif.00) 2 Zb-
Since ¥ is compact there exist 3 € I such that X,y 2 ;. Then {0,%;) € ¥y,. Since

fa(a) = f5(0), Lyya) 2 X for all a € L and so Y}, € ¥j,. Hence Y}, is compact. O

Proposition 3.5.2. Let 3, be a compact open set in Sp(L) and let
Y, = {{a, %y :a € L}. Then (Y3, Q(Sp(O(L)))/Y,) satisfies Ty axiom.

Proof. Let {ay, Xy, {ag, Xp) € Y}, such that {aj, Xp) # {ag, Xp). So there is atleast one
f € O(L) such that f is in one of them and not in other.

Let f € {a1,%p) and f ¢ {ag,Xp). Then {a1,3) € f nY, and {(az, Xp) ¢ Xf N Y.
Hence (Y3, Q(Sp(O(L)))/Y,) satisfies Ty axiom. O

Proposition 3.5.3. Let 3, be a compact open set in Sp(L) and let
Y, = {{a, %) :a € L}. Then (Y, Q(Sp(O(L)))/Ys) is connected.

Proof. Let Y, = (X nY}) U (£, nY}), where (X nY}), (£, nY,) are nonempty open
subsets of (Y3, Q(Sp(O(L)))/Ys).

So there is {ay, ), {as, Xp) € Y} such that {a1,%,) € X N Yy, {as, Lp) € ¥y N Y,
Then X)) 2 Xp, Yg(ay) 2 Xp. Since f,g € O(L), f(ar) = f(1),g(az2) E g(1). Hence
Yra) 2 X, Lg1y 2 Xp. Hence (1,3) € (B nYy) n (X nYy). SoXpn Y, X nY,
cannot be disjoint. Hence (Y3, Q(Sp(O(L)))/Y,) is connected. O
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Chapter 4

The Concept of L-slice

for a locale L

Given a locale L and a join semilattice J with bottom element 0;, we have introduced
a new concept of an action o of locale L on join semilattice J together with a set
of conditions. The pair (o, .J) is called L-slice. L-slice, though algebraic in nature

adopts properties of L through the action o.

4.1. L-Slices

This section discusses the concept of L-slice and some of its properties.

Definition 4.1.1. Let L be a locale and J be join semilattice with bottom element
0;. By the “action of L on J”we mean a function o : L x J — J such that the
following conditions are satisfied.

i. o(a,xy v x9) = o(a,z1) v ola,zy) for all a € L, x1, 29 € J.

ii. o(a,0;) =0, for all a € L.
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iii. o(amb,x) =o0(a,0(b,x)) =0o(b,o(a,z)) for all a,be L,z € J.
iv. o(1p,2) =z and o(0g,x) = 0; for all x € J.
v. o(aub,x) =o(a,z) v olbx) fora,be Lz e J.
If o is an action of the locale L on a join semilattice J, then we call (o, J) as

L-slice.
Next propsoition gives sufficient conditon for a subset S < O(L), to be an L-slice.

Proposition 4.1.2. Let L be a locale, and let S be a set of order preserving maps
L — L such that :

i. The constant map 0 € S (0 takes everything to 0).

. If f,ge S, then fvgeS.

iti. For alla € L and for all f € S, the meet of the constant map a and f is in S (i.e.
fraes).

Then the map o : L x S — S defined by o(a, f)(x) = f(x)ma is an action of L on S.

Proof. By the hypothesis, S is a join semilattice with bottom element 0 and the map

o is well defined.

io(a, fvg)e) = (fvy)r)ma=(flz)wg(@))na=(f(z)na)u(g(r)ra)
= a(a, f)(x) wola,g)(x) = (o(a, f) v o(a, 9))(x)

ii. 0(a,0)(x) =0(x)ma=0ma=0=0(x)

iii. o(amb, f)(x) = f(z)m(amb) =anr (f(x) M b)
=ana(b, f)(x) =o(a,o(b, f))(z) =o(bola f))(x)

iv. o(1p, f)(x) = f(x) m 1, = f(x)
o0z, f)(x) = f(z) m 0L = O(x)
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v.olawd, f)(x) = f(z) m(awb) = (f(z) ma)u (f(z) mb)
= o(a, f)(x) o, f)(x) = (o(a, ) v o(b, f))(x)

Hence (o, S) is an L-slice. O

Examples 4.1.3. 1. Let L be a locale and I be any ideal of L. Consider each x € I as
constant map x: L — L. Then by proposition 4.1.2, (0,1) is an L-slice. In particular
(0, L) is an L-slice.

2. Let the locale L be a chain with Top and Bottom elements and J be any join
semilattice with bottom element. Define o : L x J — J by o(a,j) = j Ya # 0 and

0(0r,7) =0y. Then o is an action of L on J and (o,J) is an L-slice.
Proposition 4.1.4. The product of two L-slices of a locale L is an L-slice.

Proof. Let (01, J1), (02, J2) be two L-slices of a locale L. Since J;, Jo are join semilat-
tices with bottom elements, J; x Jy is join semilattice with bottom (04,,0,).

Define o : L x (J; x Jo) — J; x Jy by o(a, (x1,23)) = (01(a, z1), 02(a, x2)). Then

i o(a, (z1,91) v (22,92)) = o(a, (z1 v 22,91 Vv ¥2)) = (01(a, 21 v 12),02(a,y1 V 142))
= (o1(a,z1) v o1(a, x2),02(a, y1) v o2(a, y2))
= (o1(a, 21), 02(a,y1)) v (01(a, 22), 02(a, y2))

= o(a, (v1,11)) v o(a, (v2,2))
ii. o(a,(0y,,05)) = (61(a,04,),04(a,04)) = (05,,0,)

iii. o(amb, (x,y)) = (o1(amb,z),00(amb,y)) = (01(a,01(b, x)), 09(a, 02(b,y)))
= G(CL, (Ul(b7 JJ), 02(b7 y))) = O'(CL, U(b7 ('Ia y)))

iv. U(1L7 (x7y)) = (0'1(1L,$),0'2(1L,y)) = (l’,y)
o(0r, (z,y)) = (01(0r, ), 020z, y)) = (0,,0,,)
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v. o(ay U ag, (x,y)) = (01(a1 L ag, ), 02(a; U as,y))
= (o1(ay, z) v o1(as, v), 09(a1,y) v 02(az, y))
= (01(a1, ), 02(a1,y)) v (o1(az, ), 02(as, y))

= o(ay, (z, ) v o(ag, (x,y))

Thus o is an action on J; x Jy and (o, J; x Jo) is a L-slice of locale L. O

Definition 4.1.5. Let (o, J), (i, K) be L-slices of a locale L. A map
f:(o,J) = (u, K) is said to be L-slice homomorphism if

i f(z1 v o) = f(xr) v f(z2) for all zy, 25 € J.

ii. f(o(a,z)) = p(a, f(x)) for all a € L and all z € (o, J).

Remark. More about L-slice homomorphism are studied in chapter 5.

4.2. L-Subslice

Definition 4.2.1. Let (o, J) be an L-slice of a locale L. A subjoin semilattice J' of

J is said to be L-subslice of J if J’ is closed under action by elements of L.

Examples 4.2.2. 1. Let L be a locale and O(L) denotes the collection of all order
preserving maps on L. Then (0,0(L)) is an L-slice, where o : L x O(L) — O(L)
is defined by o(a, f) = fa, where f, : L — L is defined by f.(x) = f(x) ma. Let
K ={feO(): f(x) € x,Vx € L}. Then (0,K) is an L-subslice of the L-slice
(0, O(L)).

2. Let (0,J) be an L-slice and let x € (0,J). Define {x) = {o(a,z);a € L}. Then
(0,{x)) is an L-subslice of (o, J) and it is the smallest L-subslice of (o, J) containing

x.
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Proposition 4.2.3. The intersection of any family of L-subslices of an L-slice (o, J)

is again an L-subslice of (o,J).

Proof. Let (o,J) be an L-slice and let {(o,.J,)} be any collection of L-subslices of
(0,J). Then [ J, is a sub join semilattice of J.

Let ae L and x € [ Jy. = €()J, implies that x € J, for every a.

Since each (o, J,) is an L-subslice of (o, J), we have o(a,z) € J, for every a.

Hence o(a,x) € () Ja. This shows that (o, Ja) is an L-subslice of (o, J). O

Remark. Union of two L-subslices of an L-slice (o, J) need not be an L-subslice of
(o, J) as union of two subjoin semilattices of J need not be a subjoin semilattice. If
(0,J") and (o, J") be two L-subslices of the L-slice (o, J), define
JNJ"={xvy:xeJ yeJ'}. Then we can show that (o, J"\/ J”) is an L-subslice
of (o, J).

Proposition 4.2.4. Let (0,J’) and (o,J") be two L-subslices of the L-slice (o, J) of
a locale L, then (o, J'\/ J") is an L-subslice of the L-slice (o, J) and it is the smallest

L-subslice of (o,J) containing both (o, J") and (o, J").

Proof. Since (o,J') and (o, J”) are L-subslices of the L-slice (o,J), J" and J” are
subjoin semilattices of J and sois J'\/ J". Let z vye J'\/ J" and a € L.
ola,zvy)=o(a,z)volay) e VJ"

Hence (o, J'\/ J") is an L-subslice of the L-slice (o, J).

For each z € (0,J'), z =2 v 0€ (0,J'\/ J"). Hence (0,J') < (0,J \/ J").

Similarly (o, J") < (o, J \/ J").

Let (o, J1) be any other L-subslice of the L-slice (o, J) such that

(0,J") € (0, 1) and (0, J") < (0, J1).

For any z € (0, J"\/ J"), there exist z € (0, J') and y € (0, J") such that z = z v y.
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Since x,y € (0,J1), z=x v yeE (0,J1).

Hence (o, J"\/ J") is the smallest L-subslice of (¢,.J) containing both (o, J’) and
(o, J"). O
Proposition 4.2.5. Let (o,J") be an L-subslice of the L-slice (o,J) for a locale L.
For any a€ L, let o(a,J') = {o(a,x) : x € J'}. Then (0,0(a,J")) is an L-subslice of
(0,J).

Proof. Since (o, J’) is an L-subslice of (¢, J),o(a, J") < J'.

Let o(a,x),0(a,y) € o(a,J') and b€ L. Then x,y € (o, J'). Since (o, J') is an
L-subslice of (o, J),z v y,a(b,z) € (a,J").

Thus o(a,z) v o(a,y) = o(a,z v y) € o(a, ') and

o(b,o(a,z)) = o(a,o(b,x)) € o(a,J").

Hence for any a € L, (0,0(a, J')) is an L-subslice of (g, J). O
Lemma 4.2.6. Let (o,.J1), (0, J5) be two L-subslices of the L-slice (o, J) for a locale
L. Then for any a€ L, o(a, 1 \/ J2) = o(a, 1)\ o(a, J2).

Proof. Let x € o(a, J1 \/ J2). Then x = o(a, j1 v j2).

That is © = o(a,j1) v o(a, j2) € o(a, J1) \/ o(a, J2).

Hence o(a, 1 \ J2) € o(a, 1) \V o(a, J2).

yeo(a, 1)\ o(a,Js) implies y = o(a, j1) v o(a, j2).

Thus y = o(a,j1 v j2) € o(a, J1 \/ J2).

Hence o(a, J1) \/ o(a, J2) < o(a, J; \/ J2). This completes the proof. O

4.3. Factor Slice

Let (o,J’) be an L-subslice of the L-slice (o, J) for a locale L and let x € (o, J').

Define x v J' = {z v y;y € (0,J")}. We will study various propertis of z v J" and will
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make use of them to define the factor slice.

Lemma 4.3.1. Let (0,J") be an L-subslice of the L-slice (o,J) and let x € (o,J).
Then x v J' < J' if and only if v € (0, J").

Proof. First let x v J' < J'. Since (o, J') is an L-subslice of (o, J),0 € (o, J').
Hence x =xv0ex v J < J. Thus x € (0,J).
Conversely let x € (0, J'). Then for any y € (o, J'), since z € J', x vy € (0, J"). Hence

zvJ < J. O]

Proposition 4.3.2. Let (o, .J1), (0, J2) be two L-subslices of the L-slice (o,J) such

that J, € Jy and let x € (0,J). Thenx v J; Sz v Js.

Proof. Let z € (0,J) and J; € Jy. Let y € x v Jy, then y = x v j for some j € J;.

Since J; € Jo, jeJsandsoy=xvjex v Jo. Hence x v J; S x v Js. O

Let (o, J’) be an L-subslice of the L-slice (o, J) for a locale L. Consider the set
J/J ={xv J :xe€ (0,])}. We will prove that (d,.J/J") is an L-slice, where the
action 0 : L x J/J"— J/J'"is defined by §(a,z v J') = o(a,z) v J'.

Proposition 4.3.3. Let (o, J’) be an L-subslice of the L-slice (o,J). Then (3, J/J")

1s an L-slice.

Proof. Let (x v J')x (yv J') = (xvy)vJ. Then (J/J', v, J') is a join semilattice

with bottom element J'. We will show that ¢ is an action on J/.J'.

i d(a,(xvI)w(yv ) =da(xvy vJ)=claxvy) vJ
= (o(a,z) v o(a,y)) v J = (o(a,z) v J') x (o(a,y) v J')
=0(a,z v J) v dla,yv J)

ii. 6(a,J") =3d(a,0v J) =0(a,0;)vJ =0;,vJ =J
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iii. 6(amb,z v J)

olambz)vJ =o(a,o(bx))v.J

d(a,o(b,x) v J) =6d(a,db,xv J))

iv. (1, zvJ) =c(lp,x)vJ =xvJ

50, zv J)=00p,z)v ] =0;vJ =J

v. (aubxv J)=0c(aubz)vJ =(c(a,x)vaolbzx))v.J]
= (o(a,z) v J')x (o(b,x) v J) =da,x v J) v olbyz v J)

Hence (4, J/J') is an L-slice. O

Definition 4.3.4. The L-slice (9, J/J') described in proposition 4.3.3 is called factor

of L-slice (o, J) with respect to the subslice (o, J').

Proposition 4.3.5. Let (0, J) be an L-slice of a locale L and (o, J') be L-subslice of
(0,J). Then the map ¢ : (0,J) — (3, J/J") defined by ¢(x) = x v J' is an L-slice

homomorphism.

Proof. p(xvy)=(xvy v =@xvJ)v(yvJ)=0e¢(x) v o(y) and
o(o(a,x)) =o(a,x) v J =0(a,x v J)=0d(a,d(x)).

Hence ¢ is an L-slice homomorphism. O

The L-slice homomorphism ¢ : J — J/J' of proposition 4.3.5 is called canonical

L-slice homomorphism from an L-slice to its factor slice.

4.4. L-slice congruence

In this section we define congruence R on L-slice for a locale L and discuss its various

properties. For each congruence R on an L-slice (o, J) of a locale, we prove that
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(v, J/R) is an L-slice, where J/R denotes the collection of all equivalence classes with

respect to the relation R and vy : L x J/R — J/R is defined by ~(a, [z]) = [o(a, x)].

Definition 4.4.1. Let (0, .J) be an L-slice of a locale L. An equivalence relation R
on (o, J) is called an L-slice congruence if
i. xRy implies x v zRy v z for any x,y, z € (0, J)

ii. 2Ry implies o(a,z)Ro(a,y) for all a € L, z,y € (o, J).

Proposition 4.4.2. Let (0, J), (u, K) be two L-slices of a locale L and let
f:(o,J) = (u, K) be an L-slice homomorphism. Then the relation R on (o, J)

defined by xRy if and only if f(x) = f(y) is a congruence on (o, J).

Proof. Cleatly, the relation R is an equivalence relation on (o, J). Let xRy and
2 € (0,J). Then we have f(z) = f(y).

flovz)=f@) v f(z) = fly) v f(z) = fly v 2). Hence x v 2Ry v 2.

For any a € L, f(o(a,2)) = pla, f(x)) = pla, f(y)) = F(o(a,). So o(a,x)Ro(a,y).

Hence R is a congruence on (o, J). O

Definition 4.4.3. The L-slice congruence R discussed in proposition 4.4.2 is called

natural congruence associated with the L-slice homomorphism f : (o, J) — (p, K).

Definition 4.4.4. Let R, R’ be two L-slice congruences on an L-slice (o, J) of a locale
L. We say that the congruence R is weaker than the congruence R’, or R’ is stronger
than R, if for any x,y € (0, J), R’y whenever xRy and we write R < R'.

Two L-slice congruences R, R’ on an L-slice (o, J) are equivalent if R € R’ and

R < R.

Proposition 4.4.5. Let (0, J), (p, K) be two L-slices of a locale L and let

f:(o,J) > (u,K) be an L-slice homomorphism. Then the relation R on (o, J)
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defined by xRy if and only if p(a, f(z)) = p(a, f(y)) for some a € L is a congruence

on (o,J) and is stronger than the natural congruence R on (o, J).

Proof. The relation R’ is clearly reflexive and symmetric.

For transitivity, let x R'y, yR'z. Then there exist a,b € L such that
pla, f(x)) = pla, f(y)) and p(b, f(y)) = p(b, f(2)).

plambd, f(x)) = pb,pla, f(x))) = b, pla, f(y)))
= ,u(a, ,Lt(b, f(y))) = :u(a’a :U’(b7 f(Z)))
= pland, f(z))

Hence zR'z. So the relation R’ is an equivalence relation.
Let xR'y, then there exist a € L such that u(a, f(x)) = u(a, f(y)) and let
z€ (o,J),be L.

wa, flx v 2)) = pla, f(z) v f(2) = pla, f(2)) v ula, f(2))
= wla, f(y)) v u(a, f(2)) = pla, f(y) v f(2))
= pla, fly v 2))

Hence z v zR'y v z.

,u(a> f(CT(b, {L’))) = N(CL?ﬂ(b? f(.f))) = :u(bnu(a? f($)))
= ,u(bmu(a? f(y))) = M(CL?ﬂ(b? f(y)))
= pla, fo(b,y)))

So o(b,z)R'o(b,y). Hence R is a congruence on (o, J).
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Suppose z,y € (o,J) such that xRy where R is the natural congruence induced by
the L-slice homomorphism f : (o, J) — (i, K).

Then f(z) = f(y) or u(1, f(z)) = u(1, f(y)). Hence zR'y.
So R’ is stronger than R. H

Proposition 4.4.6. Let (o, J) be an L-slice of a locale L and let {R,} be an arbitrary

collection of congruences on (o, J). Then NnR, is a congruence on (o, J).

Proof. x n R,y if and only if xR,y for all a. Clearly nR,, is an equivalence relation.
Let tnRyy and let z € (0, J), a € L. xn R,y implies xR,y for all . Since each R, is
a congruence on (o, J), zv zR,y v z and o(a, z) Ryo(a,y) forall . SoxvznRayv z

and o(a,z) N Ryo(a,y). Hence NR, is a congruence on (o, J). O

Proposition 4.4.7. Let R be a congruence on the L-slice (o, J) of a locale L. For each
a € L, the relation R, defined by xRyy if and only if o(a,x)Ro(a,y) is a congruence

on the L-slice (o,J) and it is stronger than the congruence R.

Proof. For each a € L, the relation R, is an equivalence relation. Let xR,y and let
z € (o,J),be L. Since zR,y, we have o(a,z)Ro(a,y).

Since R is a congruence on (o, J),o(a,z) v o(a, z)Ro(a,y) v o(a,z) and
o(b,o(a,z))Ro(b,o(a,y)).

That is we have o(a,z v z)Ro(a,y v z) and o(a,o(b,z))Ro(a,o(b,y)).

Sox v zR.y v z and o(b, z)R,0(b,y). Hence R, is a congruence on (o, J).

Let xRy, then by definition of congruence, o(a,z)Ro(a,y) and so zR,y. Hence the

congruence R, is stronger than the congruence R. [

Remark. The relation ® on the L-slice (o, J) defined by x®y for all z,y € (0, J) is a

congruence on the L-slice (o, J).
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Proposition 4.4.8. Let R, R, ® be congruences on an L-slice (o, J) of a locale L and
let a,be L.

i. (RnR)y =R, R,.

1. ®, =P forallae L.

iti. Rorp = (Ra)y = (Bp)a-

w. Ry = R and Ry = ®.

Proof. Let R, R', ® be congruences on an L-slice (¢, J) and let a,b € L.
i. (R n R,y if and only if o(a,z)R n R'o(a,y)
if and only if o(a, z)Ro(a,y) and o(a,z)R'o(a,y)
if and only if xR,y and xRy
if and only if xR, n R.y.
Hence (RN R'), = R, 0 R),.
ii. 2@,y if and only if o(a, z)Po(a,y)
if and only if x®y.
Hence &, = ® for all a € L.
iii. xR,py if and only if o(a m b, z)Ro(a m b, y)
if and only if o(a, (b, x))Ro(a,o(b,y))
if and only if (b, z) R,o(b, y)
if and only if x(R.)py

Hence Ryp = (Ra)p = (Rp)a-

iv. zRyy if and only if o(1,2)Ro(1,y)

if and only if xRy.
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Hence R; = R.
All elements of (o, J) are related with the congruence Ry since o(0,x)Ro(0,y) for all
z,y € (0,J). Hence Ry = ®. O

Definition 4.4.9. A congruence R on an L-slice (o, J) of a locale L with the property
that o(a b, x)Ro(awb,y) if and only if o(a, z) Ro(a,y) and o(b, z)Ro (b, y) is called

relative congruence.

Let Con(J) denotes the collection of all relative congruences on the L-slice
(0,J) of a locale L. We will show that Con(.J) is an L-slice under the action

¥ L x Con(J) — Con(J) defined by ¢(a, R) = R,.

Proposition 4.4.10. Let Con(J) denotes the collection of all relative congruences

on the L-slice (o, J). Then (¢, Con(J)) is an L-slice.

Proof. Order Con(J) by R < R"if R" < R. Then Rv R' = Rn R'. Hence Con(J) is
a join semilattice with bottom element ®.

Define ¢ : L x Con(J) — Con(J) by ¢¥(a, R) = R,.

Then by proposition 4.4.8

i. ¥(a,Rv R')=Y(a,R) v ¢(a, R)

ii. Y(a,®) =

iii. ¢(amb, R) = ¢(a, ¢ (b, R)) = (b, ¥(a, R))

iv. (1,R) = R,¢Y(0,R) =

Also since Con(J) is a collection of relative congruences, we have

R, =R, Ry,= R, v R,. Hence

v. P(awb, R) = ¢(a, R) v (b, R). Hence (¢, Con(J)) is an L-slice. O

Let R be a congruence on (o, J) and let J/R denotes the collection

of all equivalence classes with respect to the relation R. Then J/R is a join semilattice
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with bottom element [0,], where the partial order < on J/R is defined by [z] < [y]
if and only if z < y in (o, J). In the next proposition, we will show that (v, J/R) is
an L-slice where the action v : L x J/R — J/R is defined by v(a, [z]) = [0(a, z)].

Proposition 4.4.11. If R is a congruence relation on (o,J), then (v, J/R) is an

L-slice.

Proof. Clearly the mapping v : L x J/R — J/R defined by ~(a, [z]) = [o(a,x)] is
well defined.

ioy(a, 2] v [y]) = (e [z v y]) = [o(a,z v y)] = [o(a,2) v o(a, y)]

= lo(a,2)] v [o(a,y)] = 7(a, [z]) v v(a; [y]).
i. 7(a,[0/]) = [o(a, 0,)] = [0/]

iii. y(anb,[z]) = [o(amb z)] = [o(a,0(b,7))]
= 7(a, [o(b,2)]) = v(a, (b, [2])).

iv. y(g, [2]) = [o(1, 2)] = [2]
70z, [2]) = [o(0z, 2)] = [0]

v. Y(awb,|z]) = [o(aw b z)] = |o(a,z) v o(b,z)]
= [o(a,2)] v [o(b, )] = v(a, [z]) v 7(b, [z]).

Hence v is an action of L on J/R and (v, J/R) is an L-slice. O

Definition 4.4.12. Let (o, .J) be an L-slice of a locale L and R be a congruence on
(0,J). Then the L-slice (v, J/R) described in proposition 4.4.11 is called quotient

slice of L-slice (o, J) with respect to the congruence R.
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Proposition 4.4.13. Let R be an L-slice congruence on an L-slice (o, J) of a locale
L and let (v, J/R) be the corresponding quotient slice. Then the map

7 (0,J) = (v, J/R) defined by w(x) = [x] is an onto L-slice homomorphism.

Proof. For x,y € (0,J),ae L, n(z vy) =[x vy]=][z]Vv|y] =n(z)Vvr(y)
m(o(a,x)) = [o(a, 2)] = ~(a, [z]) = v(a, 7(x)).
Also for each [z] € (v, J/R), there is an z € (o, J) such that 7(z) = [z].

Thus 7 : (¢,J) — (v, J/R) is an onto L-slice homomorphism. O

Definition 4.4.14. Let (0, J) be an L-slice of a locale L. For each a € L, the map

o, (0,J) — (0,J) defined by o,(x) = o(a,z) is an L-slice homomorphism.
Remark. More about L-slice homomorphism o, are studied in chapter 5.

Proposition 4.4.15. Let R be a congruence on the L-slice (o, J) of a locale L such
that R and R, are equivalent and let (v, J/R) be the quotient slice of (o, J) with
respect to R. Then the L-slice homomorphism 7y, : (v, J/R) — (v, J/R) defined by

Yo([x]) = v(a, [z]) is one-one.

Proof. Let [z],[y] € J/R such that v,([x]) = v.([¥])-
Then [o(a,z)| = [o(a,y)]|. Hence o(a,z)Ro(a,y).
But since congruences R and R, are equivalent, xRy and hence [z] = [y].

Thus 7, is one-one. [

Proposition 4.4.16. Let R be a congruence on L-slice (o, J) for a locale L such that
R and R, are equivalent and let (v, J/R) be the quotient slice of (o, J) with respect to
R. Then the natural congruence R induced by L-slice homomorphism o, is weaker

than the congruence R.
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Proof. Let R’ be the natural congruence induced by the L-slice homomorphism o,
and let xR'y. Then we have o,(z) = 0,(y).

Then [o(a,x)] = [o(a,y)], where [ ]is the equivalence class determined by the con-
gruence R. Thus v,[z] = v.[y]. But since 7, is one-one |z] = [y]. Hence xRy and so
R' c R. O

Proposition 4.4.17. Let R be a congruence on L-slice (o,J) for a locale L and
(v, J/R) be the corresponding quotient slice and let a € L. If o, : (0,J) — (0,J) is
onto, then v, : (v, J/R) — (v, J/R) is onto.

Proof. Suppose o, : (0,J) — (0, J) is onto and let [y] € J/R.
Then y € J, and since o, is onto, there exist x € (o, J) such that o,(x) = y.

Then [04(2)] = [o(a, 2)] = v(a, [2]) = 7a([z]) = [y]
Hence v, : (v, J/R) — (v, J/R) is onto. O

Proposition 4.4.18. Let R be a congruence on L-slice (o,J) for a locale L and
(v, J/R) be the corresponding quotient slice and let a € L. Then
Yo ¢ (v, J/R) — (v,J/R) is onto if and only if R has the property that for each

y € (0,J), there exist some x € (o, J) such that o(a,x)Ry.

Proof. First suppose v, : (v, J/R) — (v, J/R) is onto and let y € (o, J).

Then [y] € (v, J/R). Since v, : (v, J/R) — (v, J/R) is onto, there exist [z] € (v, J/R)
such that v,([z]) = [y]. That is [o(a, z)] = [y].

Hence o(a, z)Ry.

For converse, let [y] € (v,J/R). Then y € (0,J) and by hypothesis there exist
x € (o, J) such that o(a,x)Ry. Then [o(a,z)] = [y] or v.([z]) = [y].

Hence 7, : (v, J/R) — (v, J/R) is onto. O

74



4.5. Ideal

Definition 4.5.1. A subslice (o, ) of an L-slice (o, J) is said to be ideal of (o, J) if

x € (0,1) and y € (0, J) are such that y < x, then y € (0, I).

Proposition 4.5.2. Let (0,.J) be an L-slice of a locale L and {(o,1,) : c € A} be a
family of ideals of (o,J) and let [ = (1. Then (o,1) is an ideal of (o, J ).

Proof. By Proposition 4.2.3, (0,1) is a subslice of (o,J). Let = € (0,I) and let
y € (0,J) such that y < x. z € (0,1) implies that = € (o, 1,) for all a. Since each
(0,1,) is an ideal of (o,J), y € (0,1,) for all «. Hence y € (o,I). Thus (o,1) is an
ideal of the L-slice (o, J). O

Definition 4.5.3. An ideal (0,) of an L-slice (o, J) is a prime ideal if it has the
following properties:

i. If a and b are any two elements of L such that o(a m b,x) € (o,I), then either
o(a,z) € (o,1) or o(b,x) € (o,1).

ii. (0,1) is not equal to the whole slice (o, J).

Definition 4.5.4. Let L be a locale and (¢, J) be an L-slice. An ideal (o, ) of an
L-slice (o, J) is called minimal ideal if it properly contains no ideal other than the

zero ideal (o, {0}).

Proposition 4.5.5. Any two distinct minimal ideal of an L-slice (o, J) of a locale L

are disjoint.

Proof. Let (0,1), (0, K) be any two distinct minimal ideals of the L-slice (o, J). Since
intersection of two ideals in (o, J) is an ideal in (o, J), (0, n K) is an ideal in (o, J)
and (0,1 n K) € (0,I) and (0,1 n K) < (0,K). But since (0,I) and (0, K) are
minimal, (o, I n K) is the zero ideal (o, {0}). O
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4.6. Annihilator

Proposition 4.6.1. Let (o,J'), (0, J") be two L-subslices of the L-slice (o,J) for a
locale L. Then {J',J"y ={a€ L :o(a,J") < (0,J)} is an ideal in L.

Proof. Since o(0,J") ={0} < J',0e{J',J"). Let a,be{J',J").

Then o(a,J") € (0, J') and o (b, J") < (o, J").

Let o(a v b,z) € o(a v b, J"). Then o(a v b,z) = o(a,z) v o(b, z).

But o(a,x) € o(a, J") € (0,J') and o(b,x) € o(b, J") < (0, J").

Since (o, J’) is an L-subslice of (o, J),0(a v b,z) = o(a,x) v o(b,x) € (0, J’).

Thus o(a v b, J") < (0,J"). Hence a v be {J', J").

Let a € (J',J") and b € L such that b < a.

olb,x) =o(bra,x) =o(a,o(b,x)) € ola,J’) < (0,J"). Thus o(b,J") < (o,J’) and
so be (J',J"). Hence {(J', J") is an ideal in L. O

Definition 4.6.2. Let (o, J) be an L-slice. The ideal 0, J) of L is called the annihi-
lator of the L-slice (o, J) and is denoted by Ann(J).

Proposition 4.6.3. Let (0,J) be an L-slice of a locale L. Then
Ann(J) ={a€e L: o0, = 0}.
Proof. Let (0, J) be an L-slice of a locale L.

a € Ann(J) if and only if o(a, j) = 0 for all j € (o, J)
if and only if 0,(j) = 0 for all j € (o, J)

if and only if 0, = 0.

Hence Ann(J) ={a€ L : o, = 0}. O
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Proposition 4.6.4. Let (0, J) be an L-slice of a locale L. If the actiono : L x J — J
satisfies the property o(a,x) = 0 implies a = 0 or x = 0, then Ann(J) is a prime

1deal.

Proof. Let (o, J) be an L-slice of a locale L and the action ¢ : L x J — J satisfies
the property o(a,z) = 0 implies a = 0 or x = 0. By Proposition 4.6.1 Ann(J) is an
ideal in L.

Let ambe Ann(J). If a = 0, then a € Ann(J) and so Ann(J) is prime ideal.
Suppose a # 0. Then a m b e Ann(J) implies that o(a m b, J) = 0.

That is o(am b,j) = o(a,o(b,j)) =0 for all j e J.

Since a # 0, by the property of o, we have o(b, j) = 0 for all j € J. Hence b € Ann(J).
Thus Ann(.J) is a prime ideal in L. O

Definition 4.6.5. An L-slice (o, J) of alocale L is said to be faithful if Ann(J) = {0}.
Example 4.6.6. The L-slice (m, L) is faithful.

Proposition 4.6.7. If (0,J1), (0, J2) are two L-subslices of the L-slice (o,J), then
Ann(J1 \/ Jo) = Ann(Jy) n Ann(Js).

Proof. Let a € Ann(J; \/ J2). Then we have o(a, J; \/ J2) = {0} .

Then by lemma 4.2.6, o(a, J1) \/ o(a, J2) = {0}. Then we must have o(a, J;) = {0}
and o(a, J;) = {0}. Thus a € Ann(J; \/ J2) implies a € Ann(J;) n Ann(Js).

Hence Ann(J; \/ J2) € Ann(Jy) n Ann(Jy).

Let b e Ann(Jy) n Ann(J2) implies o (b, J;) = {0} and o(b, Jo) = {0}.

Thus o (b, J;1) \/ o(b, J2) = o(b, J1 \/ J2) = {0}. This implies b € Ann(J;) \/ Ann(Js).
Hence Ann(J; \/ J2) = Ann(Jy) n Ann(Jy). O
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4.7. Sublocale of a locale using its Slice

In this section we discuss a method of obtaining sublocale of a locale L from L-slice
of its ideals. In 2.1.9, M = {I,;a € L} is a complete lattice under the partial order
D. Define 0 : L x M — M by o(a, I,) = (I),. In the next proposition, we will show

that (o, M) is an L-slice.

Lemma 4.7.1. Let L be a locale and I be any ideal of L. For a,be L,
(Ib)a = (Ia)b = lomp.

Proof. Let a,be L

xe(l,)yebnxel,
san(brnz)el
< (amb)mxel

< x €l

Hence (I,)p = Larp- O

Proposition 4.7.2. Let L be a locale and I be any ideal, which is closed under

arbitrary join, of L. Then (o, M) is an L-slice of L.
Proof. o : L x M — M be defined by o(a, I) = (Iy),-

1. O'(CL L b, [c) = ([c)aub = Icr—w(aub) = [(Cﬂa)l_l(CV_\b)
= Iera O Lerp = (]c)a Vv (Ic)b
=o(a,l.) voa(bI.)
ii. O'(CL, Iy v Ic) = 0’((1, Iy n Ic) = U(CL7 Ibuc) = (Ibuc)a = Iar—\(buc)

= I(ar—\b)u(ar—\c) = lorp N Lame = ([b)a vV ([C)a
=o(a,Iy) v o(a,l.)
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iii. o(a,ly) = (lo)a = Lumo = Io

iv. U(a m b; [c) = ([c)ar—\b = Icr—w(ar—wb) = ([cl—!a)b = U(b7 [C'_'a)
=o(b,o(a, 1)) = o(a,0(b, 1))

V. O'(l,.[a) = (Ia)l = -[m—\l = -[(1
O'(O,Ia) = ([a)() = ]ar—\() = IO

Hence (o, M) is an L-slice. O

By 2.2.3, the sublocale L/R; is determined by the congruence aRb if and only
if I, = I,. But this is equivalent to the natural congruence associated with the L-
slice homomorphism o;, = o7 : (M, L) — (0, M). Hence the sublocale L/R; can be

represented as a quotient L-slice of (m, L)
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Chapter 5

L-slice Homomorphisms and their

properties

We have defined L-slice homomorphism between two L-slices of a locale L. It has
been proved that the collection (§, L— Hom(J, K)) of all L-slice homomorphisms from
(o,J) to (i, K) is an L-slice with respect to the action § and that every L-slice (o, J)

is isomorphic to a subslice of (0, L — Hom(L, J)).

5.1. Properties of L-slice Homomorphism

Definition 5.1.1. Let (o, J), (i, K) be L-slices of a locale L. A map
f:(o,J) = (u, K) is said to be L-slice homomorphism if

i f(xy v ag) = f(z1) v f(zg) for all xy, 25 € (0,J).

ii. f(o(a,z)) = pla, f(x)) for all a € L and all = € (o, J).

Examples 5.1.2. i. Let (0,J) be an L-slice and (o,J") be an L-subslice of (o, J).

Then the inclusion map i : (o,J') — (0, J) is an L-slice homomorphism.
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ii. Let I =] (a),J =] (b) be principal ideals of the locale L. Then (o,1), (o,J) are
L-slices. Then the map f : (0,1) — (0,J) defined by f(z) = x m b is an L-slice
homomorphism.

Proposition 5.1.3. If f: (0,J) — (u, K) is a L-slice homomorphism, then

f(05) = Ok

Proof. Let (o0,J), (i, K) be L-slices of a locale L and f : (0,J) — (i, K) be a L-slice

homomorphism.
£(05) = F(0(0,2)) = p(0, £(2)) = Ox. .
Proposition 5.1.4. The composition of two L-slice homomorphisms is an L-slice

homomorphism.

Proof. Let (o, Jy1), (11, J2), (9, J3) be L-slices of a locale L.
Let f: (o,J1) — (u, Jo) and g : (i, J2) — (0, J3) be L-slice homomorphisms and let

xT1,T9 € (O', Jl)

(go flzrva) = g(f(z1vxs)) =g(f(z1) v f(z2))
= g(f(z1)) v g(f(z2)) = (go f)(z1) v (g o f)(z2)

Let a € L and x € (o, J;).

(gof)lola,x)) = g(flo(a, ) = g(ula, f(x))) = d(a, g(f(x)))
= 0(a,(go f)(x))

Thus g o f is an L-slice homomorphism. [

Proposition 5.1.5. Let (0,J), (1, K) be L-slices of a locale L and let
f:(o,J) = (u, K) be L-slice homomorphism. Let (o,J') be an L-subslice of (o, J)
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and (i, K') be an L-subslice of (i, K).
i. Let f(J') = {f(z);z € (0, J")}. Then (u, f(J')) is an L-subslice of (1, K).

ii. Let f YK = {z e (0,J): f(z) € (u, K")}. Then (o, f (K")) is an L-subslice of
(0, 7).

iii. For any x € (0,J),f(z)) = (f(z)).

Proof. i. Let f(z), f(y) € (u, f(J)). Then z,y € (o, J'). Since (o,.J') is an L-subslice
of (0, J),x v y € (0, J'). Hence f(z) v f(y) = f(a v y) € (u, f(J)).

Let a € L and f(z) € (4, f(J)). Then u(a, f(x)) = f(o(a,z)) € (u, f(J)). Hence
(1, f(.J')) is an Lesubslice of (4, K).

ii. Let z,y € (o, f7YK")). Then f(x), f(y) € (u, K'). Since (u, K') is an L-subslice
of (1, K), flx v ) = (@) v fy) € (1K) and f(o(a,2)) = pla, (@) € (u )
for a € L. Hence z v y,0(a,x) € (o, f1(K")). Thus (o, f'(K")) is an L-subslice of
(o,J).
iii. y € f((x)) if and only if y = f(o(a,x)) = p(a, f(x))

if and only if y € (f(z))
Hence f((x)) = (f(x))- O
Proposition 5.1.6. Let (0,J), (1, K ) be L-slices of a locale L and f : (o, J) — (p, K)
be L-slice homomorphism.
i. Let kerf ={xe J: f(x) =0xk}. Then (o,kerf) is an ideal of (o,J ).
ii. Let imf ={ye K :y = f(x) for some = € (0,J)}. Then (u,imf) is an
L-subslice of (u, K ).

Proof. Let (0,J), (u, K) be L-slices of a locale L.
i. Let 1,29 € kerf. Then we have f(x;) = f(z2) = Ok.
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flar v xa) = f(21) v f(22) = Ok

Thus z1 v x5 € ker f. Hence ker f is subjoin semilattice of J with bottom element 0.
Let x € kerf and a € L. We have to show that o(a,x) € (o, kerf).

We have f(o(a,z)) = pla, f(z)) = pla,0k) = 0. Hence o(a,x) € (o, kerf).

Thus (o, ker f) is a L-subslice of (o, J).

Let z € (o,kerf) and y € (0, J) such that y < z. Since f preserves join, we have
f(y) < f(z). Thus f(y) < 0k. So y € (o, kerf). Hence (o, kerf) is an ideal of (o, J).
ii. Since Ox = f(0;),0x € imf.

Let y1,y2 € imf. Then f(z1) = y1, f(x2) = yo for some 1, x5 € (0, J).

y1 vV Yo = f(x1) v f(xa) = f(x1 v 22). Hence y; v ys € imf. Thus imf is a subjoin
semilattice of K with bottom element Og.

Let ae L and y = f(x) € imf.

wa,y) = pla, f(x)) = flo(a,z)) € (u,imf).

Thus (p,imf) is an L-subslice of (i, K). O

Proposition 5.1.7. Let (0,J)be an L-slice of a locale L, f : (0,J) — (0,J) be an
L-slice homomorphism and Fixy = {x € (0,J) : f(x) = x}. Then (o, Fixy) is an
L-subslice of (o,J)

Proof. Since f(0;) = 05,05 € Fizy. Thus Fizy is nonempty.

Let 1,29 € Fixy. Then f(z1) = 21, f(z2) = 2.

flzy v xg) = f(xy) v f(x2) = 21 v 2.

Hence x; v 29 € Fiizy and Fixy is a subjoin semilattice of J with bottom element 0.
Let a€ L,x € (0, Fizy). Now f(o(a,z)) = o(a, f(z)) = o(a,x).

Thus (o, Fizy) is an L-subslice of (o, J). O

Proposition 5.1.8. Let (0,J), (u, K) be L-slices of a locale L and let
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f:(o,J) = (u, K) be L-slice homomorphism. If (u,I) be an ideal of (u, K ), then
(o, f1(1)) is an ideal of (o,J). In particular if (u,I) is prime ideal, then (o, f~1(I))

is a prime ideal of (o, ).

Proof. Let z,y € (o, f1(I)). Then f(z), f(y) € (u, I).

Since (u, I) is an ideal, f(z v y) = f(z) v f(y) € (u, ). Thus z v y € f~1(I). Hence
f~Y(I) is a subjoin semilattice of .J.

Also for each z € (o, f1(I)) and a € L, f(o(a,z)) = pu(a, f(z)) € (1, I).

Thus o(a, z) € (o, f~1(I)). Hence (o, f~1(I)) is a L-subslice of (o, .J).

Let z € (o, f~1(I)) and y € (o, J) such that y < .

Since f preserves join, f preserves order. Hence f(y) < f(z). Since f(z) € (i, 1) and
(1, 1) is an ideal of (11, K), f(y) € (1, I). Hence y € (o, f1(I)). Thus (o, f (1)) is
an ideal of (o,.J).

Now let (11, 1) be prime ideal of (1, K).

Suppose o(a r b, z) € (o, f (1)), then f(o(arb,z)) = u(ar b, f(z)) € (u, ).

Since (y, ) is prime, cither f(o(a,z)) = pla, f(z)) € (u,I) or

flo(b,x)) = u(b, f(x)) € (u, I). So either o(a, ) € (o, f7'(1)) or (b, ) € (o, f(I)).
Hence (o, f~1(I)) is a prime ideal of (o, .J). 0

Proposition 5.1.9. Let (0,J), (u, K) be L-slices and let f : (o,J) — (1, K) be a
bijective L-slice homomorphism. Then the map f~' : (u, K) — (0,J) is an L-slice

homomorphism.

Proof. Since inverse of a lattice homomorphism is a lattice homomorphism,
[t (u, K) — (0, J) preserves finite join. Let y € (u, K) and a € L.

Then y = f(x) for some z € (o, J).

F7H (ulay)) = f= (ula, (@) = f7H(f(o(a, 7)) = o(a,2) = ola, [T (y)).
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Hence the map f~': (u, K) — (0, J) is an L-slice homomorphism. O

Definition 5.1.10. Let (o, .J), (1, K) be L-slices of a locale L. A map
f:(o,J) — (u, K) is said to be an L-slice isomorphism if

i. f is one-one

ii. f is onto

iii. f is an L-slice homomorphism.

Lemma 5.1.11. Let (0,J), (u, K) be two L-slices of a locale L.

i. The map 0:(o,J) — (u, K) defined by 0(x)=0x for x € (o,J) is an L-slice homo-
morphism.

it. If f,g:(0,J) = (u, K) are L-slice homomorphism, then the map
fvg:(o,J)— (1, K) defined by (f v g)(x) = f(x) v g(x) for x € (0,]) is an L-slice

homomorphism.

Proof. Let x,y € (0,J) and a € L.
i. 0(z v y)=0x =0(z)VvO0(y).
0(o(a, 2))=0k = p(a,0k) = p(a,0()).

Thus 0 is an L-slice homomorphism.

ii. Let the map f v g: (0,J) = (i, K) defined by (f v g)(z) = f(z) v g(z).

(fvaglevy) = flevy) vglevy)=[flx)v [y vglx)vgly)
= (fvglx)v(fvgy)
(fvglola,z)) = flola,x))vglola2)) = p(a, f(z)) v ula, g(z))
= wla, f(z) v g(x)) = pla, (f v g)())

Hence (f v g) is an L-slice homomorphism. O

85



Proposition 5.1.12. Let (o,J), (1, K) be L-slices of a locale L and L- Hom(J,K)
denote the collection of all L-slice homomorphisms from (o, J) to (u, K). Then

(0,L — Hom(J, K)) is an L-slice, where the action,

d:LxL—Hom(J,K)— L—Hom(J, K) is defined by 6(a, f)(x) = p(a, f(x)) for all
x € (o,J).

Proof. The collection L — Hom(J, K) is a poset under the partial order relation f < g

if and only if f(z) < g(x) for all x € (0, J). With respect to this partial order, the
map (f v g) : (0,J) = (u, K)defined by (f v g)(z) = f(z) v g(x) for x € (0,J) is
the join for f,g € L — Hom(J, K). By lemma 5.1.11, f v g € L — Hom(J, K). Thus
L — Hom(J, K) is a join semilattice with bottom element 0.

Define amap § : L x L — Hom(J, K) - L — Hom(J, K) as follows.

For each a € L and f € L — Hom(J, K) define §(a, f) : (o, J) = (i, K) by

o(a, f)(x) = pla, f(x)).

oa, f)(@rva) = pla, f(ar v xz)) = pla, fla1) v f(a2))
= pla, f(21)) v ila, f(z2)) = 0(a, f)(@1) v d(a, f)(z2)
o(a, f)(o(a;2)) = pla, flola,x))) = pla, pla, f(2))) = pla, d(a, f)(z))

Hence d(a, f) is a L-slice homomorphism and hence (a, f) € L — Hom(J, K).

Also § satisfies the following properties.

i 6(a, fr v f2)(x) = pla, (fr v f2)(2) = pla, fi(z) v fo(z))
= pla, f1(x)) v pla, f2(x)) = 6(a, f1)(z) v 8(a, f2)(z)
= (8(a, f1) v d(a, f2))(x)
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That is d(a, f1 v f2) = d(a, f1) v I(a, f2).
ii. 0(a,0)(x) = p(a,0(z)) = u(a,0k) = 0 = 0(x)
That is 6(a,0) = 0.
iii. 6(amb, f)(x) = planb, f(z)) = pla, pb, f(2)))
= p(a, (b, f)(x)) = d(a,5(b, f)) ()
That is 6(a M b, f) = d(a, (b, f)).
iv. 6(L, f)(x) = p(L, f(z)) = f(z)
Thus 6(1, f) = f and
(0L, f)(x) = p(Op, f(2)) = Ok = O(x)
Thus 6(0r, f) = 0.
v. O(ar v ay, f)(z) = plar v as, f(z)) = plas, f(2)) v plas, f(z))
= (0(a1, f) v 0{az, f))(2)
Thus 0 is an action of the locale L on L — Hom(J, K) and(d, L — Hom(J, K)) is an

L-slice. u

Proposition 5.1.13. i. Any L-slice homomorphism v : (o1,J) — (09, K) induces
an L-slice homomorphism v’ : (01, L — Hom(K, M)) — (02, L — Hom(J, M)) for any
L-slice(os, M).

ii. Any L-slice homomorphism u : (o1, J) — (02, K) induces an L-slice homomor-

phism u' : (p1, L — Hom(M, J)) — (pe, L — Hom(M, K)) for any L-slice (o3, M).

Proof. Let (01, J), (02, K), (03, M) be L-slices.
i. Let (01, L—Hom(K, M)), (82, L—Hom/(J, M)) be L-slices of L-slice homomorphisms

and v : (01, J) — (09, K) be an L-slice homomorphism.
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Define v’ : (61, L — Hom(K,M)) — (62, L — Hom(J, M)) by v'(f) = f ov for all

feL—Hom(K,M). Let f1,foe L— Hom(K, M),z € (02,K),a€ L.

V(fiv fo)(x) =

V(fiv fo) =
v'(01(a, f))(x) =

V(0u(a, f)) =

((frv fo) ov)(z) = (fi v fo)(v(2))

fiv(@)) v fa(v(@)) = (frow) v (faov))(@)
(0'(f1) v v'(f2)) ()

V() v (f)

Hence v’ is a L-slice homomorphism from (01, L—Hom/(K, M))) to (03, L—Hom(J, M)).

ii. Let (p1, L — Hom(M,J)), (u2, L — Hom(M, K)) be L-slices of L-homomorphisms

and v : (01, J) — (02, K) be an L-slice homomorphism.

Define v’ : (u1, L — Hom(M, J)) — (2, L — Hom(M, K)) by u/(g) = uog.

u'(g1 v g2)(x)

Ul(gl vV 92)

u'(pm(a, £)) ()

u'(pa(a, f))

= (uo (g1 v g))(z) =ul(g1 Vv g2)(z))

= u(gi(z) v g2(2)) = (u(g91) v '(g2)) ()
= u'(g1) v u'(g2)

= (uwom(a, f))(z) = u((la, f))(z))

= v(oi(a, f(2))) = o2(a, u(f(x)))

= oa(a,u'(f))() = pa(a, W' (f))(z)

= paa, v/ (f))
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Hence o’ is a L-slice homomorphism from (p, L—Hom(M, J)) to (2, L—Hom (M, K)).
[

Proposition 5.1.14. Let (o, J), (1, K), (0, M) be L-slices of a locale L.

w; (0, J) = (u, K) be an L-slice homomorphism and

u' (1, L — Hom(M, J)) — (2, L — Hom(M, K)),

v' 1 (61, L — Hom(K, M)) — (03, L — Hom(J, M)) be the induced L-slice homomor-
phism. If u is one-one, then u' is also one-one. Conversely if u' is one-one, then u

s a monomorphism.

Proof. Assume u is one-one. Let g,h € L— Hom(M, J) such that v'(g) = «'(h). Then
we have uog = woh. That is u(g(x)) = u(h(z)) for all x € (o, J). Since u is one-one,
we get g(x) = h(z) for all x € (0, J). Hence g = h. Thus «’ is one-one.

Conversely assume u' is one-one. Then we have u'(g) = «/(h) implies g = h.

That is w o g = wo h implies g = h. Hence v is a monomorphism. O]
Proposition 5.1.15. Every L-slice (o, J) is isomorphic to a subslice of L-Hom/(L,J).

Proof. Let (o,J) be an L-slice and let (6, L — Hom(L, J)) be the L-slice of L-slice
homomorphisms from (m, L) to (o, J).

Define a mapping ¢ : (o,J) — (6, L — Hom(L, J)) as follows.

For each z € (o, J), let ¢¥(z) : (M, L) — (o, J) be defined by ¥ (z)(a) = o(a, x), for all

ac L.

Y(x)(ar Las) = olay Uas, ) = o(ay,7) v o(az, )
= Y(@)(a1) v P(z)(az)
Ya)arb) = olarba)=o(a o))
= o(a,¥(z)(b))
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Thus ¢(x) is an L-slice homomorphism from (m, L) to (o, J).
Hence ¢(xz) € L — Hom(L, J).

Y(zy1 v ar)(a) = oa, 21 v ) =0(a,x1) v o(a,zs)

= Y(z)(a) v i(r2)(a) = (P(x1) v P(2))(a)
P(o(a,2))(b) = o(b,o(a,x)) = o(a,o(b,z))

= o(a,¢(x)(b)) = d(a, ¥(x))(b)

Hence v is an L-slice homomorphism.

Also ¢(x) = 1 (y) implies that ¢ (z)(a) = 1(y)(a) for all a € L.

That is o(a,z) = o(a,y) for all @ € L. In particular o(1,z) = o(1,y) which implies
x =y. Thus ¢ is a one-one L-slice homomorphism from (o, J) onto (d,im1). Since
(0,9ma) is a subslice of (3, L — Hom(L,J)), (o,J) is isomorphic to a subslice of
(0,L — Hom(L, J)). O

Proposition 5.1.16. Let (o, J), (u, K) be L-slices. wu;(o,J) — (u, K) be an L-slice
homomorphism and v’ : (pn, L — Hom(L, J)) — (u2, L — Hom(L, K)) be the induced
L-slice homomorphism. 1;,vk be the L-slice homomorphisms from (o,J), (u, K) to

(u1, L —Hom(L,J)), (pa, L — Hom(L, K)). Then the following rectangle commutes.

J u K
vy Uk
1 A,
L-Hom (L,J) u L- Hom (L,K)
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Proof. For x € (0,J),a € L,

Wk ou)(z)(a) = (Yr(u(@)))(a) = pla, u(z))
(W o) (@)(a) = (@ (¥s)(x))(a) = (uor,(r))(a)
= u(y(x)(a) = u(o(a,x)) = p(a, u(r))

Hence ¢ ou = u' o)y m

Proposition 5.1.17. L-slice Isomorphism theorem Let (o, J), (i, K) be two
L-slices of a locale L and let f : (0,J) — (u, K) be a L-slice homomorphism. Let
R be the natural congruence associated with the L-slice homomorphism f. Then the
quotient slice (v, J/R) of (o,J) is isomorphic to the subslice (u,imf) of the L-slice
(n, K).

Proof. Let (o,J), (1, K) be two L-slices of a locale L and let f : (o,J) — (u, K) be

an L-slice homomorphism. Define ¢ : (v, J/R) — (u,imf) by ¥([z]) = f(z).

Wle] v ly]) = oz vyl =Fflevy) = f@) v fy) =d(z]) v oy
v(y(a,[2])) = ¢(lola,2)]) = flola, x)) = p(a, f(2)) = pla, P([x]))

Hence v is an L-slice homomorphism. Clearly 1) is one-one and onto.

Hence ¢ : (v, J/R) — (u,imf) is an L-slice isomorphism. O

5.2. Finitely Generated L-slice

The notion of finitely generated L-slice of a locale L is introduced and we have shown

that every finitely generated L-slice (o, J) of a locale L with n generators is isomorphic
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to the quotient slice of the L-slice (m, L™).

Definition 5.2.1. Let (o,J) be an L-slice of a locale L. A subset S of (o, J) is
said to be span of the set {z1, 2o, ....... xn} € (0,J) if each z € S can be written as

n
T = \/U(ai,a:i), where a; € L.
i=1

Proposition 5.2.2. Let (0, J) be an L-slice of a locale L and {xy, o, ....... zn} € (0,J).

Let S = Span({x1, xa, ....... xn}). Then (0,95) is a subslice of (o, J).

Proof. Let x,y € S. Then there is aq, as, ....., a,, by, bs, ...b, € L such that
T = \/‘7(%'7371‘)7 y= \/U(bi,ﬂ?z')-
i=1 i=1

3
n n

AVETIES \/a(ai, T;) Vv \/a(bi,xi) = \/(a(ai,xi) v o (b, z;))

i=1

o(a; ub;,x;) € S. Therefore S is a subjoin semilattice of (o, J).

n

i=1
Let a € L. Then o(a,z) = o(a, \/o(a;,x;)) = \/U(a,a(ai,xi))
i=1 i=1
= \/cr(a M a;,x;) €S
i=1
Hence (o, .5) is a subslice of (o, J). O

Definition 5.2.3. An L-slice (o, J) of a locale L is said to be finitely generated if
there is a finite subset S < (o, J) such that (o,J) = Span(S). Elements of S are
called generators of the L-slice (o, J).

An L-slice (o, J) of a locale L is said to be generated by n elements if there is a
finite subset S < (o, J) having n elements such that (o, J) = Span(S) and there is

no subset T' € (o, J) having less than n elements which spans the L-slice (o, J).
Example 5.2.4. If L is a locale, then (M, L) is a finitely generated L-slice.

Definition 5.2.5. An L-slice (o, J) with a single generator z is called cyclic L-slice.
(0,J) is a cyclic L-slice if (o, {x)) = (o, J).
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Proposition 5.2.6. Let (0,.J) be an L-slice of a locale L and let S be a finite subset
of (o,J) such that Span(S) = (o,J). Then Span(T) = (o,J) for all subset T of
(0,J) such that S < T.

Proof. Let S = {x1,x,....x,} be such that Span(S) = (o, J).

Then for any z € (0, J), x = \n/a(al-,xi).

If z; € T ,then x = \/ o (b;, zi),izvlhere b =a; if z;€ Sand b; =0 if 2, € T — S. Hence
Span(T) = (o, J). O

Proposition 5.2.7. Let (o, J) and (u, J') be L-slices of a locale L, and let (o, J) be
finitely generated with generators {xi,xa,...x,}. If f: (0,J) — (u,J') is an onto

L-slice homomorphism, then (u, J') is finitely generated.

Proof. Let y € (u,J'). There exist x € (0, J) such that y = f(x).

n
Since (o, J) is finitely generated, there is ay, as, ....a, € L such that z = \/U(ai, ;).
i=1

=/ flo(ai, )

i=1

= \/nlas, f(2)

Therefore {f(x1), f(x2),....., f(x,)} generates (u, J'). O

Proposition 5.2.8. Let (0, J) be a finitely generated L-slice of a locale L with genera-
tors {x1,xa, ... tp}. Then ¢ : (M, L") — (o0, J) defined by ¢(ay, a, ....a,) = \/U(aj, ;)
j=1

18 an onto L-slice homomorphism.
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Proof. By Proposition 4.1.4, (m, L™) is an L-slice of a locale L.

n n n

o(\/ (a1, 021, -00i)) = S\ ari, \/azi, - \/ i)

it1 i=1 i=1 i=1

Thus ¢ preserves join.

o((am(ay,ag,....an))) = ¢Plama,amag,..amay)

= \/o(a M a;, ;)
i=1
n
= o(a,o(a;,z;))
1

1=

= o(a, \/a(ai,mi))

Hence ¢ is an L-slice homomorphism.
Let y € (0,J). Then y = \/a(ai,xi).

i=1
So (a1, ag, ...a,) € (M, L") such that ¢((ay, as,...a,)) = y. Hence ¢ is onto. O

Corollary 5.2.9. Let (0, J) be a finitely generated L-slice of a locale L with generators
{z1, 29, ...xp}. Then (o,J) is isomorphic to the quotient L-slice (m,L"™/R) of the

product L-slice (m, L™).
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Proof. By proposition 5.2.8, ¢ : (m, L") — (o, J) defined by ¢(aq, as, ....an) = \ o(a;, x;)
is an onto L-slice homomorphism.
Let R be the congruence xRy if and only if ¢(z) = ¢(y). Then by isomorphism

theorem for L-slices im¢ = (o, J) is isomorphic to the quotient L-slice (v, L"/R). O

5.3. Properties of L-slice homomorphism o,

Definition 5.3.1. Let (o,J) be an L-slice of a locale L. For each a € L, define
o, (0,J) — (0,J) by 0,(x) = o(a,x).

Proposition 5.3.2. Let (0,J) be an L-slice. For each a€ L, o, : (0,J) — (0,J) is

an L-slice homomorphism.

Proof. Let z,y € (0,J),b€ L.

oz vy) = ola,xvy) =ola,x)volay) =oc.r)Vvo.y)

o.(o(b,z)) = o(a,0(b,x))=0c(bo(a,z))=0c(b,o,(z))

Hence o0, is an L-slice homomorphism. 0

Proposition 5.3.3. Let (o,J) be an L-slice and a € L
i. oa(x) < x forall x € (0,J).

ii. If Iis an ideal in (0,J), then o,(I) < I.

Proof. i. x = o(l,z) =o(au 1,2) = o(a,z) v o(l,z) = g4(x) v .
Thus o,(z) < z for all x € (o, J).
ii. Let I be any ideal in (o, J). For each x € I, since o,(z) < z, 0,(x) € I. Hence

o.(I) < I. O
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Proposition 5.3.4. Let (o, J) be an L-slice of a locale with top element 1 and bottom
element 0 and a,b€ L
i. 0g is the zero map and oy is the identity map on (o, J).

W, Ogp = Ogq vV Op aNA Ogmp = 04 © Op = O} O 0.

Proof. i. og(x) = 0(0,2) = 0, for all z € J. Hence oy is the zero map on (o, J).

o1(z) = o(1,2) = « for all x € J. Hence o, is the identity map on (o, J).

. oap(z) = o(auwbx) =o(a,z) v olbz) = o.(x) v op(z) = (04 v 0p)(x) for all
x € (o,J).
Hence o, = 0, Vv 0y.
Oarn(z) =0(amb,z) =0o(a,o(b,x)) = o(a,op(r)) = o.(0p(x))

= (040 0p)(x) = (0p 0 0,)(x) for all x € (o, J).
Hence o,y = 0,0 0 = 03 0 0. [
Definition 5.3.5. Let (X, <) be a poset.A map f : X — X is called interior operator
if
i. f is order preserving
ii. f(x) <z forallze X
. fof=f.
Proposition 5.3.6. Let (0,J) be an L-slice. Then for each a € L, o, is an interior
operator on (o, J).
Proof. Since for each a € L, g, is an L-slice homomorphism, o, is order preserving.
By proposition 5.3.3, 0,(x) < x for all x € L and by proposition 5.3.4, 0, 0 0, = 04.

Hence o, is an interior operator on (o, J). O

Proposition 5.3.7. The collection M = {0, : a € L} is a bounded distributive lattice
and a subslice of (6, L — Hom(J, J)).
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Proof. (M, ,00) is a join semilattice with bottom element oy and (M, o, 01) is a meet
semilattice with top element o;.

0 0(0q V 0h) = 040 0aip = Oan(aib) = 0 and

Oa Vv (04004) = 0q V Tamp = Oais(arb) = Ta

Thus absorption laws are satisfied and so M is a bounded lattice with top o; and

bottom oq. Also

Oq O (Ub \% Uc) = 040 (Ubuc) = Oar(buc) = O(amb)u(arc)
= Ourb V Ogre = (g 0 0p) V (04 00)
Oq V (Ub © Uc) = 0Oq V Obre = Oaui(bric) = O(aub)m(aiic)

= Oqub©O0qLc = (Ua Vv Ub) o (Ua v Uc)

Hence M is a bounded distributive lattice. Clearly M < L — Hom(J, J). Let b e L
and o, € M. Then

3(b,00)(x) = a(b,0,(x)) = o(b,o(a,x)) =co(bma,x) = Opqe(x).

Thus M is closed under action by elements of L. Hence (§, M) is a L-subslice of
(0, L — Hom(J, J))). O

Proposition 5.3.8. There is an onto L-slice homomorphism from (m, L) to (6, M).

Proof. Define ¢ : (m, L) — (§, M) by ¢(a) = o,.
dlaud) =040 =04 v op = @(a) v ¢(b) and
d(o(a,b)) = plamb) = 040 = 0400, = o(a,op) = o(a, p(b)).

Surjection of ¢ is clear from the definition. Hence ¢ is an onto L-slice homomorphism

from (m, L) to (0, M). O
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Let ¢ be natural frame homomorphism from L to Q(Sp(L)) and
¢ : (m,L) - (6, M) is the L-slice homomorphism of proposition 5.3.8. Then there
is a lattice homomorphism f from M to Q(Sp(L)) such that the following triangle

commutes. The map f is defined by f(o,) = X,

" Q(Sp(L)

If L is a spatial locale, then 1 is one-one and so ¢ is one-one. Thus if L is spatial
locale, L-slices (o, L), (§, M) are isomorphic.

Since M is a distributive lattice, by Priestley duality, the distributive lattice M is
dual to a topological space P. Then there is a frame homomorphism f from Q(Sp(L))
to Q(P) such that the following rectangle commutes. Then f, : Q(P) — Q(Sp(L)) is

a localic map.
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4
P
v f v
Q(sp(L)) S

5.4. Fixed points with respect to the L-slice
homomorphism o,

In this section we discuss some properties of the set Fiz,, = {x € J : g,(x) = x}. We

will show that N = {Fiz,,;a € L} together with an action 7 is an L-slice.

Proposition 5.4.1. For each a € L, let Fiz,, = {v € J : o,(x) = z}. Then

(0, Fix,,) is a subslice of the L-slice (o, J).

Proof. Let xz,y € Fix,,. Then o,(x) = x,0,(y) = y.
oa(v vy) = ola,zvy)=o(ax)volay) =0cur)voly) =z vy
So Fix,, is a subjoin semilattice of (o, J). Let « € Fix,, and b€ L.
oq.(o(b,z)) = o(a,o(b,x))=0c(bo(a,x))=0c(b,x)
So o(b,z) € (0, Fiz,,). Hence (o, Fiz,,) is an L-subslice of (o, J) O
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Proposition 5.4.2. Let (0,J) be an L-slice of a locale L and a € L. Then the
following statements are equivalent.

i. 04 has the property that if v < y < z with 0,(x) = x and 0,(z) = z, then o,(y) = y.
ii. (0, Fix,,) is an ideal of (o, J).

Proof. First assume statement i. By above theorem (o, Fiz,,) is a subslice of (o, J).
Let = € (o, Fiz,,) and y € (0,J) such that y < z. We have o,(y) < y < = and
04(0a(y)) = 04(y),04(x) = x. Then by assumption o,(y) = y. So y € (o, Fiz,,) and

hence (o, Fliz,,) is an ideal in (o, J).
ii implies i follows directly from the definition of ideal of an L-slice. m

Proposition 5.4.3. Let (o0, Fiz,,) is an ideal for some fixzed a € L. If oy or o, is

one-one for all b, c with o(bm ¢, x) € (o, Fix,,), then (o, Fiz,,) is a prime ideal.

Proof. Let (o0, Fiz,,) is an ideal and o(bm ¢, z) € (0, Fiz,,).

Then o,(c(bmc,z)) = o(brmc,z) or 0,(0pne)(T) = Tpne(T).

Equivalently (o, o 03 0 0.)(x) = (03 0 0.) ().

Suppose o, is one-one and (b, z) ¢ (o, Fiz,,). Then o,(c(b,x)) # o(b, x).

That is (04 © 0p) () # op(x). Since o, is one-one, (0. 0 0, 0 0p)(x) # (0. 0 0p) ()
(0400 00.)(x) # (0 0 0.)(x), which is a contradiction. Hence o(b, z) € (o, Fiz,,).
Similarly if o, is one-one, then o(c,x) € (o, Fiz,,). Hence (o, Fiz,,) is a prime

ideal. O

Proposition 5.4.4. Consider the L-slice (m,L). Then for each a € L, (o, Fix,,) is
a principal ideal.
Proof. Fiz,, ={reL:o,(x)=a}={rxel:amnx=ux}

={rel:xCa}=|a

Hence (o, Fiiz,,) is a principal ideal. ]
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Proposition 5.4.5. Let R be a congruence on an L-slice (o,J) for a locale L and
(v, J/R) be the quotient L-slice of (o,J) with respect to the congruence R. Then

i. {[x] : x € Fiz,,} < Fix.,

ii. Fiz,, ={[z];0(a,x)Rx}

iii. {[x]: x € kery,} < ker.,

w. ker,, = {[z];o(a,z)R0}.

Proof. i. Let o € Fiz,,. Then o(a,z) = .

Ya([2]) = (a, [2]) = [o(a, 2)] = [2]. So [z] € Fix,.

Hence {[z] : z € Fiz,,} < Fix,,.

i, Fizy, = {[z];7a([z]) = [2]} = {[2]; [o(a, 2)] = [=]}.

But [o(a, )] = [z] if and only if o(a,z)Rx. Hence Fix,, = {|x];0(a,z)Rx}.

iii. Let = € ker,,. Then o,(x) = 0.

Ya([2]) = (a, [2]) = [o(a, )] = [0,] = Oy/r. So [x] € kery,.

Hence {[z] : x € ker,,} < ker,,.

iv. ker.,, = {[z];[o(a,x)] = v.[z] = [0]}. But [o(a,z)] = [0] if and only if o(a, z) RO.
Hence ker.,, = {[z]; o(a, z)RO0}. O
Proposition 5.4.6. Let (0,J) be an L-slice and a,be€ L

i. Ifa ©0b, then Fiz,, < Fix,,.

ii. Fizy, =1{0;} and Fix,, = (0,J).

wi. iz, , = Fiz,, N Fiz,,.

Proof. (o,J) be an L-slice and a,be L

i. Let a © b and z € Fiz,,, then amb = a and o,(z) = x.

0.(z) = x implies that o(a,x) = o(am b, z) = .

Then we have o(b, o(a,x)) = x. Equivalently o,(x) = x and so z € Fix,,.
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Thus Fiz,, € Fiz,,.

ii. Since o¢(z) =0, for all x € J, Fiz,, = {0,}.

Fixz, ={x € (0,J):01(x) =0(1,2) =z} = (0,J]).

iii. By part i, Fiz,, , © Fiz,, N Fiz,,.
Now let z € Fiz,, N Fiz,,. Then o,(x) = oy(z) = .
Oarp(z) = o(am b,x) = o(a,o(b,z)) = o(a,op(x)) = o(a,z) = o,(xr) = x. Thus

x € Fiz,, , and hence Fiz,, , = Fiz,, N Fiz,,. O

Proposition 5.4.7. Let (0, J), (i, J) be two L-slices and let o, or g, is onto for some

a€ L. Then o, = i, if and only if Fix,, = Fix,,.

Proof. Suppose o, is onto and Fiz,, = Fiz,,. Let y € (0,J). Then there exist

x € (0,J) such that o,(x) = y. Now

oaly) = ola,y) = o(a,04(z))

— o(a.0(a,2) = ola,2) =y

Hence y € Fiz,, = Fiz,,. So u.(y) = y. Hence o,(y) = pa(y). Converse is

simple. O

Proposition 5.4.8. Let (0,J) be an L-slice of a locale L and N = {Fizx,, : a € L}.
Define Fix,, v Fiz,, = Fiz,, ,,Fiz,, A Fiz, = Fiz,, ,. Then (N,v,A) is a

distributive lattice and an L-slice.

Proof. Tt is easy to show that (N, v, Fiz,,), (N, A, Fiz,,) are semilattices.
Also Fiz,, v (Fiz,, n Fiz,,) = Fiz,, v Fiz,, , = Fizs, oy = Fizs, and

Fiz,, A (Fiz,, v Fiz,,) = Fiz,, A Fiz,, , = Fiz, = Fix,,. Hence absorption

ar(aub)
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laws are satisfied and so (N, v, A) is a lattice. Also we can verify distributive law

easily. Define v: L x N — N by ~(b, Fiz,,) = Fiz,,_,.

i. v(b, Fiz,, v Firg,) = (b, Fizs,,.) = Fite, .. = FiTo, o 000

= Fiz,, ., v Fiz,, = (b, Fiz,,) v (b, Fiz,,)
ii. (b, Fiz,,) = Fizty, , = Fizy,
iii. y(bme, Fizg,) = Fizg, . = Fizg, ., =70 Fit,..,) = v(b,7(c, Fiz,,))

iv. v(1, Fiz,,) = Fiz,,,,, = Fiz,,

(0, Fiz,,) = Fix,,., = Fizy,

v. y(bue, Firy,) = Fivg, . . = Fitoy oo = FiTo,., vV Fits..,

c)na

= ’Y(b7 Fixo'u) v 7(07 Fixa'a)
Hence (v, N) is an L-slice. O

Proposition 5.4.9. There is an onto L-slice homomorphism from the L-slices (§, M)

to (v, N).

Proof. The map g : (6, M) — (v, N) defined by ¢(o,) = Fiz,, is an onto L-slice
homomorphism from (d, M) to (v, N). O

Since the composition of two L-slice homomorphism is again an L-slice homo-

morphism, g o ¢ is an L-slice homomorphism from (m, L) to (v, N).

5.5. Filters in L with respect to the slice (o, J)

Let (o,J) be an L-slice of a locale L and let x € (o, J). In this section we discuss

about the map o, : (M, L) — (0, J) defined by o,(a) = o(a,x). We will show that
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for each z € (o0, J), 0, is an L-slice homomorphism. We look into various properties

of the collection F, = {a € L;0,(a) = z}.

Proposition 5.5.1. Let (0,.J) be an L-slice of a locale L. For each x € J,

o, (M, L) — (0,J) is an L-slice homomorphism.

Proof. Let a,be L
o(aubd) = olaubzx)=o0c(a,x)volbz)=oc.(a)vo.(b)
oy(amb) = olamb,x)=o0(a,o(b,z)) =0c(a,o,(b))

[]

Remark. Let I be any ideal in the L-slice (m, L). Since o, is an L-slice homomor-

rphism, 0, (I) is a subslice of (o, J)

Proposition 5.5.2. Let I, K be ideals of the L-slice (m,L) and let I < K. Then
o.(1) € 0,(K).

Proof. Let I, K be ideals of a locale L such that I < K. Let y € 0,(I). Then
y = 0,(a) for some a € I < K. Hence y = 0,(a) € 0,(K). Thus 0,(I) € 0,(K). O

Proposition 5.5.3. Let (o, J) be an L-slice of a locale L and let P = {0, : x € (0, J)}.
Then (0, P) is an L- subslice of (0, L — Hom(L, J)).

Proof. Let 05,0, € P.

(0x v oy)a) = ox(a)voyla)=0(a,z)vola,y)

= 0((1,1‘ \Y% y) = U:evy(a)
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Thus 0, v 0, = 0,y € P. Hence P is a subjoin semilattice of L — Hom(L, J).
Also o¢(a) = o(a,0) =0 = 0(a). Hence oy is the bottom element of P.

Also for a,be L and o, € P,

§(b,o.)(a) = o(b,ox(a)) =0(a,0(b,x)) = oo (a)

Thus §(b,0,) = 0s40) € P. Hence (6, P) is an L-subslice of (6, L — Hom(L,J)). O

Proposition 5.5.4. Let (o, J) be an L-slice of a locale L and let P = {0, : x € (0, J)}.
Then the slices (o, J) and (0, P) are isomorphic.

Proof. Define ¢ : (0,J) — (0, P) by ¢(x) = 0,.

d(rVYy) =04y =0, Vo, =0()Vv d(y) and

$(0(0,2)) = ota) = 8(a,02) = 6(a,6(2)).

Thus ¢ is an L-slice homomorphism.

From the definition of P, clearly ¢ is onto.

Now let ¢(z) = ¢(y). Then o, = 0, which implies o,(a) = o,(a) for all a € L.

In particular, 0,(1) = 0,(1). Then o(1,2) = (1, y). So x = y and hence ¢ is one-one.

Thus ¢ : (0, J) — (4, P) is an isomorphism. O

Proposition 5.5.5. Let (0,J) be an L-slice of a locale L. For each x € (o,J), let
F,={a€e L;o(a,z) = x}. Then F, is a filter in L.

Proof. By Definition 4.1.1(iv), 1 € F,. Hence F is nonempty.

Let a,be F,. Then o(a,z) = z,0(b,x) = x.

olamb,z) =o0(a,o(b,x)) =0(a,x) =z. Hence ambe F,.

Let a € F,, and ¢ € L such that a < c.

o(la,z) =c(amec,x) =0(cma,x) =0(c,0(a,x)) = o(c,z). Hence c € F,.

Thus F, is a filter in L. O
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Proposition 5.5.6. Let (o,J) be an L-slice and x < y € (0,J). Then

i. x <ola,y) for all a € F,.

ii. o(b,x) <y forallbe F,.

Proof. i. Let x <y € (0,J) and a € F,. Then o(a,z) = x.

ola,y) =o(a,x vy) =oc(ax)volay) =zvolay).

Hence = < o(a,y) for all a € F,.

ii. Let be F,. Then o(b,y) = y.

olb,y) =0cb,xvy)=o0cbx)vaolby) =obzx)vy.

Hence o (b, z) <y for all b e F,. O

Proposition 5.5.7. The filter F, is proper for x # 0.

Proof. Suppose x # 0;. If 0, € F, then 0,(0;) = 2, which implies 0; = 0(0, ) = z.
Hence if x # 04, 01, ¢ F, and so F} is proper. O
Proposition 5.5.8. Consider the L-slice (m,L). Then for each b € (m,L), Fy is a
closed sublocale of L.
Proof. Fy={aeL:oya)=0b}={aeL:amb=0b}={aecL:a3b}

=10.
Hence F}, is a closed sublocale of L. O

Proposition 5.5.9. Let z € (0, J) be join-irreducible element of (o, J), then F, is a

prime filter in L.

Proof. By proposition 5.5.5, F, is a filter in L. Let a L b€ F.

Then o,(a ub) = o(a uwb,x) = x. That is o(a,z) v o(b,x) = x. Since z is join-
irreducible, = < o(a,x) or x < o(b,x). But we have o(a,z) < z for all a € L. Hence
o(a,x) = x or o(b,x) = x. Hence either a € F, or b € F,.

Thus F, is a prime filter in L. n
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Definition 5.5.10. An element x € (o, J) is said to be compact element of the L-slice
(0, J), if for any collection {a,} of L whenever o(ua,, ) = z, then there exist a finite
sub collection {ay, as, ....a,} of {a,} such that o(ay,z) v o(az,z) v ... v o(an, z) = .

A slice (o, J) is compact if each element z € (o, J) is compact.

From the definition of compact L-slice, it is clear that every L-subslice of a

compact L-slice is compact.
Example 5.5.11. Let (0,J) be any L-slice. Then 0y is a compact element.

Proposition 5.5.12. Let L be a locale. If the L-slice (m, L) is compact, then the

locale L is compact.

Proof. Suppose the L-slice (m, L)is compact and let {a,} € L such that wa, = 1.
Then for any b e (m, L), (uay,) mb=1mb=b. Since (m, L) is compact, there exist
a finite sub collection {ay,ay, ....a,} of {a,} such that (a; was ... wa,) b =b.
In particular this is true for b = 1. Hence (a; U ag L ... b a,) M1 = 1. Then

(a3 Wag L ... ua,) =1 and hence the locale L is compact. O

The above proposition shows that the notion of compactness in the L-slice is

stronger than the topological compactness and compactness in locale.

Proposition 5.5.13. Let L be a compact locale and (o, J) be an L-slice. Let x € (o, J)

be such that o, is one one. Then = is a compact element of the L-slice (o, J).

Proof. Let L be a compact locale and x € (o, J). Suppose o(ua,, ) = .

That is 0,(Uas) = x = 0,(1).

Since o, : L — J is one one, La, = 1.

Since L is a compact locale, there exist a finite sub collection ay, as, ....a, of {a,} such

that a; Las L ... L a, = 1.
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Then o(a; Lay L ... ua,,z) =0(l,2) ==z.

Hence z is a compact element of the L-slice (o, J). O

Corollary 5.5.14. Let L be a compact locale and (o, J) be an L-slice. If o, is one

one for every x € (o,J), then (o,J) is a compact L-slice..

Corollary 5.5.15. Let L be a compact locale and let M, : L — L is one one for every

x € (m,L). Then the L-slice (m, L) is compact.

Proposition 5.5.16. Let (0, J), (u, K) be L-slices of a locale L and
f:(o,J)— (1, K) be a one-one L-slice homomorphism. If x is a compact element of

the L-slice (0, J), then f(x) is a compact element of the L-slice (j, K).

Proof. Let f : (0,J) — (p, K) be a one-one L-slice homomorphism and let z be a
compact element of the L-slice (o, J). Let {a,} € L such that u(ua,, f(x)) = f(z).
Then we have f(o(Uaq,x)) = f(x).

Since f is a one-one L-slice homomorphism, o(ua,, ) = .

Then by compactness of the element x € (o,.J), there exist a finite sub collection
ai, s, ...a, of {as} such that o(a; was ... Ua,, ) ==

Then we have p(ay Lag L .... U ay, f(x)) = f(olag wag L ... ua,, ) = f(z).

Hence f(z) is a compact element of the L-slice (p, K). O

Definition 5.5.17. A proper filter F' in a locale L is partially completely prime
filter if for any indexing set I and a;, € L;i € I, \/ a; € F' = Ja1, as....a,, such that

aLVvayVv..va,€F.

Proposition 5.5.18. Let (o, J) be an L-slice of a locale L and z € (0,J). Then x is
a compact element of the slice (o, J) if and only if the filter F, is partially completely

prime.
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Proof. Suppose z is a compact element of the L-slice (¢, J). By proposition 5.5.5, F,
is a filter in L. Let wa, € F,. Then we have o(ua,, ) = .

Since x is a compact element, there is a finite collection {ay, as, ....a,} of {a,} such
that o(ay,z) v o(as,z) v ... v o(a,, z) = .

That is o(a; LWas U ... U a,,x) = x. So a Uay U ... ua, € F, and hence F, is a
partially completely prime filter.

Conversely assume F, is partially completely prime. Let {a,} € L such that

o(uae, ) = x. Then we have La, € F.

Since F}, is partially completely prime, there is a finite collection {ay, as, ....a,} of {a,}
such that a; La, L ... L a, € F,.

Hence o(ay,z) v o(ag, x) v ... v o(a,, z) = .

So z is a compact element of the L-slice (o, J). O

Proposition 5.5.19. Let x € (0,J) be join-irreducible compact element of (o, J),

then F, is a completely prime filter.

Proof. Let x € (0,J) be join-irreducible compact element of (o, J) and let La, € F,.
Since x is a compact element, by proposition 5.5.18, F}, is a partially completely prime
filter. Hence there is ay, ag, ....a, € {a,} such that a; L as L ... L a, € F,.

Since x is join-irreducible element of (o, J), there is some a; such that a; € F,,. Hence

F, is completely prime filter. n

Definition 5.5.20. A compact element = of an L-slice (o,J) of a locale L is said
to be maximal compact element if the filter F, associated with x € (o, J) has the

property that F, < F, for all compact elements y € (o, J).
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Proposition 5.5.21. If the collection of all compact elements of a locale forms a

chain with maximal element x, then x is a mazximal compact element of the L-slice

(m, L).

Proof. By Proposition 5.5.8, F, =1 x.
Let y € L be any other compact element of the L-slice (m, L).
Since y < z,F, =1 x =1 y = F,. Hence z is a maximal compact element of the

L-slice (M, L). O

Proposition 5.5.22. Let F = {a € L : o(a,z) = x Vz € (0,J)}. Then F =\ F,
and F is a filter in L

Proof. Let a € F. Then o,(a) = o(a,z) for all z € (,J). So a € F, for all x € (o, ).
Hence F < () F,. In a similar way we can show that [ F, € F. Hence F = F,.

Since the intersection of filters of L is a filter in L, F' is a filter in L. n
Construction of Sublocale of locale L with respect to L-slice (o, J)

Proposition 5.5.23. Let Y = {F, : x is join irreducible and compact in (o, J)}.
Then (Y,Q2(Sp(L))/Y) is a topological space.

Proof. 1t x € (0, J) is join-irreducible compact element, then by proposition 5.5.19,
F, is completely prime filter and so Y < Sp(L). Then Q(Sp(L))/Y is the subspace

topology on Y and (Y, Q(Sp(L))/Y) is a topological space. O

Examples 5.5.24. i. Let (m, L) be an L-slice. By Proposition 5.5.8, we have I}, =1 b,
a principal filter of L. ThenY = {1 b:be (m, L)is join—irreducible compact element}.
But b € (m, L) is join-irreducible and compact element if and only 1 b is completely

prime filter in the locale L. Hence' Y = Sp(L).
ii. Let L be a locale and let I be an ideal of L.Consider the L-slice (m,1). As in the
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case of above example,
Y ={1b:10bis a completely prime filter in L,b € (n,I)} < Sp(L). Hence
(Y, Q(Sp(L))/Y) is a proper subspace of Sp(L).

iti. Let the L-slice (o, J) is the L-slice of example 4.2.2(i1). For x € (o, J),
F, = L\{0p}. Hence Y = L\{0p}. Let b € L be minimal element of L, then
Y = I\{0.} = 3. So Y is an open subset of Sp(L) and Q(Sp(L))/Y is isomor-

phic to 2.

The subspace (Y,Q(Sp(L))/Y) depends on the L-slice (o,J). If Y is an open
set in Sp(L), then Q(Sp(L))/Y is a sublocale of the locale Q2(Sp(L)) and hence a
sublocale of L. If Y = Sp(L), the points of L is completely determined by the L-slice
(o,J).

Proposition 5.5.25. If the L-slice (o,J) of a locale L has a mazimal compact irre-
ducible element z, then
(Y ={F,:x is join irreducible and compact in (o,J)},Q2Sp(L))/Y) is a com-

pact subspace of spectrum Sp(L) of the locale L

Proof. Let {3,, : @ € I} be an open cover for Y. Then Y < | JX,, = ¥ ,,. Since
F.eY F,eX ,, or La, € F,. Since F, is a completely prime filter, there is some
p € I such that ag € F,. Then F, € ¥,,. Also for any F, € Y, we have ag € F, S F}.

Hence Y € %, and so Y is compact. O

5.6. Weak S-module

Given a complete semiring (S, +, ., 0g, 1g), where finite product - distribute over infi-

nite sum +, and a monoid (M, =, 0,), a weak S-module is introduced to be an action
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of S on (M,*,0p). We have defined weak S-module homomorphism between two
weak S-modules (0, M), (v, N) and it is proved that if (V, ') is commutative, then
the collection of all weak S-module homomorphisms from (d, M) to (v, N) is a weak

S-module.

Definition 5.6.1. A semiring is a triple (S, +,-), where S is a set and + and - are
binary operations, such that + is commutative, both (S, +) and (S, ) are semigroups
and the following distributive laws holds for all z,y,z € S.

Lo(y+z2)=zy+uzx.z.

i (x+y)z=(r.2)+ (y.2) .

If (S,-) is a monoid, then (S, +,-) is a semiring with 1.

Definition 5.6.2. A complete semiring is a semiring for which the addition monoid
is a complete monoid and the following infinitary distributive laws hold

Y(a.a;) = a.Xa; and X(a;.a) = (3a;).a.

Definition 5.6.3. A topological semiring is a semiring S togather with a topology

under which the semiring operations are continuous.

Definition 5.6.4. Let (S, +,.,05, 15) be a complete semiring where finite . distribute
over infinite + and let (M, *,05/) be a monoid. By an action of S on M, we mean a
function § : S x M — M such that the following conditions are satisfied.

i 0(r+s,x) =0(r,x) = (s,x) for all r,s € S,z e M

. d(r,x=y) =d(r,x) =0(r,y)

. 5(r, 0ar) = Ons

iv. 0(r.s,x) = d(r,0(s,x))

v. 0(0g,x) = 0y and §(1g, z) = .
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If § is an action of S on M, we call (8, M) as a weak S-module.
Note If (5, -) is commutative, then 6(r.s,z) = §(r, (s, x)) = (s, (r, x)).
Example 5.6.5. FEvery L-slice is an example for weak L-module.

Definition 5.6.6. Let (6, M) be a weak S-module, a submonoid M’ of M is said to

be a weak S-submodule of (4, M) if M’ is closed under action by elements of S.

Definition 5.6.7. A weak S-module homomorphism between weak S-modules (d, M), (v, N)
is a map g : (6, M) — (v, N) such that
ig(z=y) =g(x) < g(y)

ii. g(6(r,z)) = ~v(r,g(z)) for all x,y € M,r e S.

Proposition 5.6.8. Composition of two weak S-module homomorphisms is a weak

S-module homomorphism.

Proof. Let g : (6, M) — (&', M"), h : (&', M) — (6", M") be two weak S-module

homomorphisms.

(hog)(x=y) = h(glx=y)) = h(g(x)+ g(y)) = hlg(z)) «" h(g(y))
(hog)(d(r,x)) = h(g(d(r,z))) = h(d'(r, g(x)))

= 0"(r,h(g(z))) = 8"(r, (h o g)(x))

Hence h o g is a weak S-module homomorphism. O]

Proposition 5.6.9. Let (0, M), (v, N) be two weak S-modules. Then
i. The map 0: (6, M) — (v, N) defined by O(x) = Oy for all x € (6, M) is a weak
S-module homomorphism.

ii. If fog : (0, M) — (v, N) are two weak S-module homomorphisms and (N,+') is
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commutative, then f g : (6, M) — (v, N) defined by f = g(x) = f(x)+ g(z) is a weak
S-module homomorphism.

iii. If f (0, M) — (v, N) be a weak S-module homomorphism. Then for any r € S,
the map n(r, f) : (0, M) — (v, N) defined by n(r, f)(z) = v(r, f(x)) is a weak S-

module homomorphism.

Proof. Let (6, M), (, N) be two weak S-modules.
i. Let x,y e (6, M),re S

O(z+y) = Oy =0(x)+«0(y)

0(5(r,z)) = Oy =~(r,0n) = 7(r,0(z))

Hence 0 is a weak S-module homomorphism.

ii. Let f,g: (6, M) — (v, N) be two weak S-module homomorphism.

(feg)@sy) = flaxy) glaxy) = flx) fly) g(x) g(y)
= f(x)« g(x) " fly) « g(y) = (f = g)(@) < (f = g)(y)
(f = 9)(6(r,2)) = f((r,2))« g((r,2)) = ~(r, f(x)) «' 7(r, 9(x))
= (r fx) " g(z)) = 7(r, (f * 9(x)))

Hence f = g is a weak S-module homomorphism.
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iii. Let re §

n(r, @=y) = v, flzxy) =0 f(@)+ f))
= (r, f(@) < A f () = n(a, £)(x) ' n(a, 9) ()
n(r, [)(0(s,z)) = ~(r, f(0(s,2))) = ~(r,7(s, f(2)))
= ’}/(8,’7(7",]((1’))) = 7(377](7’ f)(x)
Hence n(r, f) is a weak S-module homomorphism. O

Proposition 5.6.10. Let (0, M), (v, N) be two weak S-modules, where (N, ') is com-
mutative. Then the collection A of all weak S-module homomorphisms from (6, M)

to (v, N) is weak S-module.

Proof. For any f,g € A define f g : (6, M) — (v,N) by f*g(x) = f(x) + g(z).
Then (A, *) is a monoid. Define n: S x A — A as a map n(r, f) : (6, M) — (v, N)
by n(r, f)(x) = ~(r, f(x)). Then n is an action of S on A.
Let r,s € S,z € (6, M)
Lon(r+s, [)(@) =+, f(2) =70+, f(2) = v(r, [(2)) <" v(s, f[(2))

= 77(73 f)(l’) ! 77(37 f)(l’) = 77(73 f) * 77(57 f)($)
i nr, f=g)(w) =~(r, f = g(x)) =(r, f(x) ' g(x)

= 7(r7 f(ZU)) +! 7(7n7g(33)) = (77(74’ f) * 77(7"7 g))(a:)

iii. 7(r,0)(z) = 7(r,0(z)) = 7(r,0n) = On = 0(z)

iv. n(r.s, f)(x) = y(r.s, f(x)) = v(r,v(s, f(2)))
= 7(73 77(37 f)(m) = 77(7”a 77(57 f))(l‘)

v. n(0s, f)(@) = (0s, f(x)) = On = 0O(x)



Hence (n, A) is a weak S-module homomorphism. O

Proposition 5.6.11. Let f : (6, M) — (v, N) be a weak S-module homomorphism.

i. kerf ={xe (0,M): f(x) =0xn} is a weak S-submodule of (6, M).

ii. imf ={ye (v,N):y = f(x)for some x € (0, M)} is a weak S-submodule of
(7; ).

Proof. Let f: (6, M) — (v,N) be a weak S-module homomorphism.

i. Since f(0pr) = On, Ops € kerf. Let x,y € kerf. Then f(x) = f(y) = On.

flxy) = f(x)+ f(y) =0n+ 0n =0y

fO(r,x)) = ~(r, f(x)) = 7(r,0n) = Oy

So kerf is a a weak S-submodule of (9, M).
ii. Since f(0p) = On,0n € imf. Let 2/;y € imf. Then x,y € (0, M) such that
fl@) =2 fly) =y

?y = f@) o f(y) = fleey) e imf
Wra') = A f(@) = f(3(r2)) € imf

Hence imf is a weak S-submodule of (v, N). O

Proposition 5.6.12. Let f : (0, M) — (6, M) be a weak S-module homomorphism.
Then F = {x € (6, M) : f(z) =z} is a weak S-submodule.

Proof. Let f: (6, M) — (0, M) be a weak S-module homomorphism. Since
f(Orr) = 0p,00p € F. Let 2,y € F. Then f(x+y) = f(z) * f(y) = x +y. Hence
x =y € F. Thus (F,+) is a submonoid of (M, ).
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Let r € S,z € F. Then f(§(r,z)) = d(r, f(x)) = d(r,z). Thus §(r,x) € F. Hence
(0, F') is a weak S-submodule of (6, M). O
Definition 5.6.13. A weak S-module (§, M, «), is said to be finitely generated if

there exist 1, xa, ...z, € (0, M) such that each x € (0, M) can be written as

x =0(r1,x1) * 0(rg, x2) * .. % 0(1p, ), Where 11,79, .7, € S.

Definition 5.6.14. A topological weak S-module is a (9, M, 7), where 7 is a topology
on (0, M) such that
i. = : M x M — M is continuous

ii. 8, : M — M defined by d,(x) = d(a,x) is continuous for every a € S.

Definition 5.6.15. A morphism between topological weak S-module (6, M, 1), (v, M, 72)
is a map h: (0, M, 1) — (v, M, 73) such that

i h(z+y) = h(z) = h(y)
ii. h(0(a,x)) = v(a,h(z)) for all z,y e M,a € S.

iii. h is continuous.

5.7. Relation between the categories L-slice and

TopWMod

Let L-slice denotes the category of L-slices and L-slice homomorphisms.

Proposition 5.7.1. Let f : (0,J) — (u, K) be an injective L-slice homomorphism.
If image imf =| z, where z € (u, K) is a mazimal element of (u, K), then fis a

section in the category L-slice.

Proof. Define g : (u, K) — (0, J) as follows.

Let y € (u, K). If y € imf, then y = f(x) for a unique = € (0,J). Then define
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gy) = x. If y ¢ imf, define g(y) = 0;. Then g : (u, K) — (0,J) is an L-slice
homomorphism and (g o f)(z) = z, for all z € (0, J). Hence f is a section in the

category L-slice. O]

Proposition 5.7.2. Let [ : (0,J) — (u, K) be an L-slice homomorphism. Then f is

a retraction in the category L-slice if and only if f is onto.

Proof. Let f: (0,J) = (u, K) be a retraction in the category L-slice.

Let y € (i, K). Since f : (0,J) — (i, K) is a retraction, there is an L-slice homomor-
phism ¢ : (u, K) — (o, J) such that (f o g) = I. Hence f(g(y)) = y and so f is onto.
Conversely let f : (0,J) — (i, K) be on onto L-slice homomorphism. For each
y € (u, K), there is some x € (0, J) such that y = f(z). Define g : (1, K) — (0, J) by
g(f(x)) = x. Then we have g is an L-slice homomorphism and (f o g)(y) = vy, for all

y € (i, K). Hence f is a retraction in the category L-slice. O
In a similar manner we can show the following propositions.

Proposition 5.7.3. Let [ : (0,J) — (1, K) be an L-slice homomorphism. Then f is

a monomorphism in the category L-slice if and only if f is injective.

Proposition 5.7.4. Let f : (0,J) — (1, K) be an L-slice homomorphism. Then f is

an epimorphism in the category L-slice if and only if f is surjective.

Topological weak L-module associated with a L-slice
Let (o,J) be an L-slice with bottom element 0. Let Pt(J) = {| = : = € (o,J)}.
Define the binary operation = on Pt(J) by | = | y =] v y. Then (Pt(J),*,0) is a
commutative monoid. Define § : L x Pt(J) — Pt(J) by d(a, | x) =| o(a,x). In the
next proposition, we will show that ¢ is an action of the semiring L on the monoid

(Pt(J),*,0).
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Proposition 5.7.5. (d, Pt(J)) is a weak L-module.

Proof. § : L x Pt(J) — Pt(J) is defined by d(a, | z) =| o(a, x).
. d(a+bx)=0aud |x)=|lolaubzx)=|(c(a,x)v o))

=l o(a,x)* | o(b,z) =d(a, | x) =0(b, | z)

i 6(a, L aw L) = 8a Lo v y) =L ola, @ v 1) =) (0(a, ) v o(a,))
=| o(a,x)* | o(a,y) = d(a,| x) = (a, | y)

iii. 6(a,0) =| 0(a,0)=,0=0
iv. 6(a.b,| z) =d(amb,x) =] o(amb,x) =] o(a,o(b,x))
=0(a, | o(b,xz)) = d(a,d(b, | z))

v. §(0,l x) =| 0(0,2) = 0=0
01, x)=lo(l,z)=|x

Hence (9, Pt(J)) is a weak L-module. O
For each z € (0, J) define \, = {| y € Pt(J) : z €] y}.

Proposition 5.7.6. Let (0,.J) be an L-slice and x,y € (o, J).Then
i. Ao = Pt(J)

i Ao (0 Ay = Apuy.
Proof. i. Ao = {| y € Pt(J) : 0 €| y}. Since ideal of a slice is closed under taking
lower elements, 0 €] y, for every | y € Pt(J). Hence A\g = Pt(J).

. lzedn Ay =] zeX and | z€e ),
=xrelzandye| z

=szr<zandy <z
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=S TVYSZ

=] 2€ Ay
Hence Ay N Ay S Apuy-

lzedvy =2 Vvy<z
= T,YSTVYSZ
=l zel and | z€ ),

=lzeX N,
Thus Ayvy © Az N Ay, Hence Ay 0 Ay = Apyy. O

By above proposition B = {\, : z € J} is closed under finite intersection and

hence B is a base for a unique topology 7 on Pt(J).
Proposition 5.7.7. (§, Pt(J), ) is a topological weak L-module.

Proof. We have (9, Pt(J)) is a weak L-module.

Let f: Pt(J) x Pt(J) — Pt(J) be defined by f(| z,| y) =l o= | y =| z v y. We will
show that f is continuous with respect to the topology 7.

Let U be any open set containing f(] z, | y) =] x* | y =] v y. Then there exist a
basic open set A\, such that | x vye A, and \, € U.

| vy e A\, implies that = v y > 2. By construction A;, A, are open set containing
| z,] y respectively. Now we will show that f(\, x \,) € U.

Let Jae X, lbe X, Thenz <a,y<b. f(la,lb)=lax|b=|avhb

But z < a,y < bimpliesthat z vy <avb Hence z<zxvy<avborz<avhb.
Hence | a v be A,. Thus f(A; x \y) € A\, € U. Hence f: Pt(J) x Pt(J) — Pt(J) is

continuous with respect to the topology 7.
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Now we will show that for every a € L the map d, : Pt(J) — Pt(J) defined by

do(} ) = d(a, | x) =] o(a,x) is continuous. For any basic open set A,

6, (M) = {lzePt(J):6,(12) =0(a,] 2) e N}
= {lzePt(J):|o(a,z)e A}
= {lzePt(J):x<o0(a,z) <z}

-\

Thus d, is continuous with respect to the topology 7. Hence (6, Pt(J),T) is a topo-

logical weak L-module. O

Proposition 5.7.8. If f : (0,J) — (u, K) is an L-slice homomorphism, then there
is a morphism ¢ : (p, Pt(K),7) — (9, Pt(J), 1) in the category Top WMod of
topological weak L-modules.

Proof. Let f: (o,J) — (u, K) be an L-slice homomorphism.

Define ¢ : (p, PH(K), 72) — (6, P(J), 71) by ¢(l y) =] [~ (1).

oLy Lz) = o(lyv'z) =]l fHyv'2)=Lf v )
= LWL i) =0l y) = o 2)

d(pla,l 2)) = o(l pla,2)) =] [~ (ula,2)) =] o(a, [~ (2))
= d(a, | f7H(x)) = d(a, o(l )

Now we will show that the map ¢ is continuous. Let A, be an open set containing
ol ) =| f~4(x). Then | f~'(x) € A, and so z < f~!(x). Thus f(z) < z and so
L @ € Apezy. Thus Ag(.) is an open set containing | . We will show that ¢(As.)) S A..

Let | a € Agz). Then f(z) < a. Now ¢(| a) =| f'(a). f(z) < a implies that
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z < f~'(a). Hence | f~'(a) € A.. Thus ¢(Asz)) S A.. Hence ¢ is continuous. Thus

¢ is a morphism in the category TopWMod. ]

Proposition 5.7.9. There is contravariant functor from the category L-slice to the

category Top WMod.

Proof. Define ¥ : Ob(L-slice) — Ob(TopWMod) by ¥(J) = Pt(J).

Also define ¥ : Mor(L-slice) - Mor(TopWMod) as follows.

Let f: (0,J) — (i, K) be an L-slice homomorphism.

Define ¥(f) : (p, Pt(K),m2) — (6, Pt(J),71) by ¥(f)(| =) =] f~'(x). Then by above
proposition ¥(f) € Mor(TopWMod).

If f:(0,J) > (11, K) and g : (u, K) — (v, K') be L-slice homomorphisms.

T(gof)la) = L(gof) ' (z) =L [T g7 (@) = ¥(N)(L g7 (x))
= V(W) ) = ¥(g) o V() 2)

Let id : (o,J) — (0,J) be an identity morphism in L-slice.

Then ¥ (id)(| =) =| id'(z) =| x. Hence ¥(id) is an identity morphism in
TopWDMod. This shows that ¥ is a contravariant functor from the category L-slice
to the category TopWMod. ]

Proposition 5.7.10. The functor ¥ maps the subcategory FinL-slice of finitely
generated L-slices of L-slice into the subcategory FinTop WMod of finitely generated

topological weak modules of Top WMon.

Proof. If the L-slice (o, J) is finitely generated, then the weak L-module (9, Pt(J)) is
finitely generated. Hence ¥ maps the subcategory FinL-slice into the subcategory

FinTopWMod. O
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Chapter 6

Extended Diffie Hellman Key
Exchange Protocol Using L-Slices

of a Locale L

A basic principle of cryptography is formulated by Auguste Kerckhoffs [38] in 1883
and is reformulated by Claude Shannon [44]. In a cryptosystem, the only unknown
to an attacker is the key used. The cryptosystem is constituted with attacker model
in mind in order to make the system more secure, but depends on changing keys on
regular basis. The problem of providing both parties with secret key beforehand for
any secured communication, had its first solution provided by Whitfield Diffie and
Martin Hellman [7].

In this chapter we have developed a key exchange protocol that utilizes the con-
cept of L-slices for the generation of secret and public keys. The L-slice and its
properties are utilized to extend the existing Diffie Hellman key exchange protocol

that uses groups in algebra to the background of L-slices of a locale L. A modifica-
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tion is given to the extended Diffie Hellman key exchange protocol using L-slices of a

locale L inorder to give optimum security to the system.

6.1. Key Exchange Protocol based on L-slice

In this section, we present an extension of Diffie-Hellman key exchange protocol[7] to

the back ground of L-slices of a locale L.

Key Exchange Protocol based on L-slice

0. Setup:

Alice and Bob concur on the protocol specifies and these involve the L-slice (o, J),
x € (o,J).

1. Generation of secret and public keys

Both parties select 14 = a € L,ig = b € L as their secret keys. Their public keys are

the maps

ca = ofa,x)

cg = o(bx)

2. Interchange public keys
Alice and Bob interchange their public keys cy, cg.
3. Computing the shared key

After getting cg from Bob, Alice computes

Ka = o(a,cg) =0(a,0(b,x)) =0c(amb,x)
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Bob similarly computes,

K = o(bca)=0(bo(a,x))=0c(amb,z)

The correctness of protocol follows as K4 = Kp.

Mathematical aspects of above protocol

From Proposition 5.5.5 for each x € (0,J), F, = {l € L;o(l,x) = z} is a filter in L.
Thus it is hard to find a particular [ € L such that o(l,z) = x. In the same way,
given z,y € (0, J), it is hard to find [ € L with o(l,z) = y. Hence recovering secret
keys 14,1 from public keys c4, cp is very hard, as the action o : L x J — J is not

an invertible function.

The task of recovering the secret key from public key is equivalent to the following

problem.

Problem
Given an L-slice (o, J) and two elements y, z € (0, J), find an element [ € L such that
o(l,y) = z.

The solution of this problem is not necessarily unique and we define the set of
all solutions as L,, = {l€ L:0,(l) =2} = {le L:o(l,y) = z}. The solution set L,,
represents the level set of the L-slice homomorphism o, : (m, L) — (o, J).

If the attacker Eve get some a € L such that o(a,z) = o(a,x), then Eve can
calculate the shared secret K, = K, from it as follows. Using the public key of Bob,

Eve calculates,

ola,o(b,x)) = o(b,o(a,x)) =0(b,o(a,x)) =c(lamnbzx)=K,
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If the level set L, contains more elements, then the probability of getting a € L
such that o(a,z) = o(a, ) is high. Thus the security of the system depends on the
cardinality of L,, .

If cardinality of L,, > n, where n is a small integer, we can increase the security
by adopting the following method for generation of keys.

Let R be the natural congruence associated with the L-slice homomorphism
o, : (M, L) — (0,J) and let (m, L/R) be the corresponding quotient L-slice of the
L-slice (1, L). Then (0,J) is an L/R-slice, where § : L/R x J — J is defined by
i([a],z) = o(a, z).

If cardinality of L, > n, where n is a small integer, we use modified form of Key

Exchange Protocol based on L-slice of a locale L.

6.2. Modified key exchange protocol

i. Setup:

Alice and Bob concur on the protocol specifies, these involve the L/R-slice (4, .J),
x € (6,J).

ii. Generation of Public/Private keys

Both parties select i4 = |a],ip = [b] € L/R as their secret keys. Their public keys

are the maps

ca = 0([a],z) =0o(a,x)

cg = O([b],x) = o(b,x)
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iii. Interchange of public keys
Alice and Bob interchange their common keys cy, cp.
iv. Computinging the shared key

After getting cp from Bob, Alice computes

Ka = 0(la],cg) = o(a,cp) = o(a,§([b],x)) = o(a,0(b,x)) = o(am b, z)

Bob similarly computes,

Kg = ([b],ca) = a(b,ca) = a(b,d(|la],x)) = o(b,o(a,x)) = c(amb,z)

In this case the problem of retrieving secret keys from common key is equivalent

to the problem.

Problem

Given an L/R-slice (4, J) and two elements z, z € (0, J), find an element [ € L such
that o(l, z) = z. The solution set of this problem is

L/Rs, = {[l] € L/R : 0,([l]) = 2z} = {[l] € L/R : o(l,x) = z} and this set contains
a unique element of L/R. Hence the probability of getting [«] € L/R such that
o(a,x) = o(a,z) is very small and so it is very hard to find shared secret from

common keys.

We can extend ElGamal encryption [14] procedure into L-slice background as

follows.

Extension of ElGamal Encryption
Let (o,J) be an L-slice,where J is a vector lattice. Then we can extend ElGamal

encryption [14] to the background of L-slice as follows.
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i. The secret and common keys are generated and exchanged using the key exchange
protocol discussed in 3.1.
ii. For every message m;, Bob calculates the pair (o(b,x), m; + o(a m b, x))

iii. Alice can decrypt the message using m; = m; + o(amb,x) — o(a m b, z)
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Conclusion

In the existing context of theory of topological semigroups, topological groups,
topological lattices, topological vector spaces and so on, the development of these
theories pertain to points, their neighbourhoods and their local behaviour, where as
in the set up of the theory of locales which are also called generalized topological
spaces, we have the background of point free topology. This framework is used, in
the study in our thesis, to develop the notion of an action ¢ of a locale L on a join
semilattice J with bottom element 0; to form the entity (o, J), which we call L-slice,
that has properties which could be studied algebraically as well as topologically.

Various properties of an L-slice (o, J) of a locale L are investigated. The action
o of the locale L on the join semilattice J is utilized to construct sublocales of L.
An L-slice congruence R is defined and a quotient L-slice (v, J/R) with respect to
the congruence R is obtained. An Isomorphism theorem for L-slices of the locale L is
derived and as an application, it is proved that every finitely generated L-slice with
n generators is isomorphic to the quotient slice of (m, L™).

For a € L,x € J, various properties of the L-slice homomorphisms
o, (0,J) = (0,J),0. : (M, L) — (0,J) have been studied. Properties of the fixed
set of o, : (0,J) — (0,J) are discussed. The property of compactness in the L-slice

(0,J) is defined and is characterized in terms of the filter F,, = {a € L : 0,(a) = z}.
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It has been shown that L-slice compactness is stronger than topological compactness
and localic compactness.

It is known that there is a contravariant functor from the category JSLat of join
semilattice with 0, and semilattice homomorphism to the category iTopMon of idem-
potent topological monoids, and continuous monoid homomorphisms. In this study,
the existence of a contravariant functor from the category L-slice of L-slices and L-
slice homomorphisms to the category TopWMod of topological weak modules and
continuous weak module homomorphisms has been established.

Several intermediary results were obtained during the above studies.

As an application, a key exchange protocol that uses the concept of L-slice for
generation of secret and public keys are developed. As the action o of a locale L on a
join semilattice J is not an invertible function, it is very hard to find secret keys from
publicly known common keys. Hence this method gives a more secure cryptosystem.

There is ample scope for further studies in the background of above investigations.
The topological properties such as separation axioms, countable compactness, con-
nectedness etc. are to be analyzed in the context of L-slice. Viewing topology as
theory of information, the properties of L-slice could be used as an effective tool in
image processing and mathematical morphology. The connection between the concept

of L-slice and semantics of programming language could be developed.
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