C 5759	(Pages : 2)	Name	
	,	Reg No	

SECOND SEMESTER P.G. DEGREE (SUPPLEMENTARY) EXAMINATION SEPTEMBER 2021

(CUCSS)

Physics

PHY 2C 07—STATISTICAL MECHANICS

(2012 Syllabus)

Time: Three Hours

Maximum: 36 Weightage

Section A

12 Short questions answerable within 7.5 minutes. Answer all questions, each question carries 2 marks.

- 1. State Liouville's theorem. What are its consequences?
- 2. Differentiate between distinguishable and indistinguishable particles.
- 3. Differentiate between μ-space and Γ-space.
- 4. Define partition function. What is the significance of partition function in statistical mechanics?
- 5. What do you mean by a grand canonical ensemble and write an expression for the density function ?
- 6. How is Bose-Einstein condensation different from the ordinary condensation of a gas in physical space?
- 7. State the postulates of equal a priori probability.
- 8. Why is the electronic contribution to the specific heat of a metal vary with temperature at low temperatures?
- 9. Define Fermi energy. What is its significance at (i) T = 0 K (ii) T > 0 K?
- 10. Define black body radiation. What are its characteristic properties?
- 11. How Maxwell-Boltzmann distribution can be considered as a limiting case of Bose-Einstein distribution?
- 12. What do you mean by fluctuations? When are these fluctuations negligible?

 $(12 \times 1 = 12 \text{ weightage})$

Turn over

2 C 5759

Section B

2 essay questions answerable within 30 minutes.

Answer any two questions, each question carries 6 weightage.

- 1. What is Gibb's paradox? How is it resolved?
- 2. Derive expressions for energy fluctuations in the case of canonical ensemble.
- 3. Derive Plank's formula for black body radiation using Bose-Einstein statistics. Using the result, deduce Stefan's -Boltzmann law.
- 4. Explain Pauli Para magnetism and obtain the expression for susceptibility.

 $(2 \times 6 = 12 \text{ weightage})$

Section C

4 problems answerable within 15 minutes.

Answer any four questions, each question carries 3 weightage.

- 1. A system in contact with a heat bath at temperature T has two accessible energy states with energies 0 and 0.1eV. If the probability of the system being in the higher energy state is 0.1 eV, find the temperature of the heat bath.
- 2. How does the number of microstates of 1 g of H₂ gas change, if its volume gets doubled by a process of reversible adiabatic expansion?
- 3. The entropy of a microstate of a system is 1 JK^{-1} while that of another one is 1.001 Jk⁻¹. How many times more likely is the second microstate as compared to the first one?
- 4. State and explain equipartition theorem.
- 5. The density of electron in lithium is $4.7 \times 10^{28} \text{m}^{-3}$. Calculate the degeneracy pressure of the electron gas in the metal.
- 6. Find out the wavelength corresponding to maximum emission by a black body at 500° C. Would you be able to see this radiation?

 $(4 \times 3 = 12 \text{ weightage})$

		7	C	Λ
\mathbf{C}	U	ı	O	v

(Pages: 2)

Name	•••
------	-----

Reg. No.....

SECOND SEMESTER P.G. DEGREE (SUPPLEMENTARY) EXAMINATION SEPTEMBER 2021

(CUCSS)

Physics

PHY 2C 08—COMPUTATIONAL PHYSICS

(2012 Syllabus)

Time: Three Hours

Maximum: 36 Weightage

Section A

12 Short questions answerable within 7.5 minutes. Answer all questions, each question carries 1 mark.

- 1. Explain the arithmetic operators in python.
- 2. What are the collection data types in python?
- 3. Comment on the output of python lambda function.
- 4. Write a program to print all numbers from 0 to 5, and print a message when the loop has ended.
- 5. Explain the functions that return the matrices filled with zeros and ones.
- 6. Compare the functions, NumPy array copy and view.
- 7. Write a program to draw a line from position (1, 1) to position (7, 10).
- 8. Give the syntax of the function, subplot().
- 9. State and explain the sampling theorem.
- 10. What are zeros of polynomial?
- 11. Explain the Runge-Kutta (RK4) numerical solution for differential equations.
- 12. What are the advantages of numerical method over analytical one?

 $(12 \times 1 = 12 \text{ weightage})$

Turn over

2 C 5760

Section B

2 essay questions answerable within 30 minutes.

Answer any two questions, each question carries 6 weightage.

- 13. Explain the standard trigonometric functions provided in NumPy module.
- 14. Explain the methods of plotting (i) Exponential; (ii) Bessel; and (iii) Gamma functions in Matplotlib.
- 15. Outline the Monte Carlo method of simple integration.
- 16. Outline the Euler method to solve simple harmonic oscillator.

 $(2 \times 6 = 12 \text{ weightage})$

Section C

4 problems answerable within 15 minutes.

Answer any four questions, each question carries 3 weightage.

- 17. Write a python program to find the area of a triangle.
- 18. Write a program in python to check if a given number is prime or not.
- 19. Using NumPy functions, write a program to find the determinant and the inverse of the matrix,

$$\begin{bmatrix} 6 & 1 & 1 \\ 4 & -2 & 5 \\ 2 & 8 & 7 \end{bmatrix}$$

- 20. Explain the scatter plots in matplotlib.
- 21. Consider the data points: $\{(0,0),(\pi/2,1),(\pi,0)\}$ for the function, $y = \sin x$; $\{0 \le x \le \pi\}$. Determine the cubic splines and evaluate the approximate values of $y(\pi/6)$? [Given n = 2; $M_0 = M_2 = 0$].
- 22. Write a python program to estimate the value of π using Monte Carlo simulation method.

 $(4 \times 3 = 12 \text{ weightage})$