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Chapter 1
Introduction

Graph theory is an important branch of Mathematics which has a wide range of applications

in our day to day life. Generally graph theory have been motivated by the study of games and

recreational mathematics. Graphs act as mathematical models for many real life problems.

One of the interesting problems in the area of graph theory is that of labeling of graphs.

Labeled graphs are becoming an increasingly useful family of mathematical model for a broad

range of applications. They are useful in many coding theory problems, including the design

of good radar location codes, synch-set codes, missile guidance codes and convolution codes

with optimal nonstandard encoding of integers. Labeled graphs have also been applied in

determining ambiguities in X-ray crystallographic analysis, design communication network

addressing systems in determining optimal circuit layouts, database management etc. The

efforts to find solutions to many practical problems in real life situations have also led to the

development of several graph labeling methods-graceful, harmonious, prime, divisor, magic,

antimagic, cordial, product cordial, prime cordial etc.

Most graph labeling methods trace their origin to one introduced by Rosa in 1967 or one

given by Graham and Sloane in 1980. During the mid sixties J. Sedlacek introduced the magic

labelings motivated by the notion of magic squares in number theory. Magic graphs are in

fact generalizations of magic squares. A magic graph is a graph whose edges are labeled by

positive integers so that the sum of the labels of the edges incident with a vertex is the same,

independent of the choice of a vertex. The original concept of a group magic graph is due to

Sedlacek. Afterwards, Kotzig and Rosa started the study of graph labeling especially edge-

magic total labeling. Studies were made on Z−magic and Zk-magic graphs. Stanley considered

Z−magic graphs and Doob considered A-magic graphs where A is an abelian group. Given

a graph G, the problem of whether G admits a magic labeling is similar to the problem of

deciding whether a set of linear homogeneous Diophantine equations has a solution [13]. At

present, given an abelian group, no general algorithm is available for finding magic labeling of

graphs. Recently there has been a great interest in the area of magic labeling due to so many
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of its applications.

For an abelian group A, written additively, any mapping ` : E(G) −→ A \ {0} is called

a labeling, where 0 denote the identity element in A. For any abelian group A, a graph

G = (V,E) is said to be A-magic if there exists a labeling ` : E(G) −→ A \ {0} such that the

induced vertex set labeling `+ : V (G) −→ A defined by

`+(u) =
∑
{`(uv) : uv ∈ E(G)}

is a constant map [13]. Observe that A-magic labeling of a graph need not be unique. When

A = Zk, then the graph is called k- magic [13]. The Klein 4 group V4 = {0, a, b, c} = Z2 ⊕ Z2

is a group of order 4 with 0 + 0 = 0, a + a = 0, b + b = 0, c + c = 0, a + b + c = 0, a + b =

c, a + c = b, b + c = a. When A = V4, the graph is called V4 magic graph. The concept

of V4 magic graphs was first introduced by S. M. Lee et al. in 2002 [13]. There has been an

increasing interest in the study of V4 magic graphs since the publication of [13]. We say that a

graph G is a-sum V4 magic if there exists a labeling ` : E(G)→ V4 \ {0} such that the induced

vertex set labeling `+ : V (G) → A satisfies `+(v) = a for all v ∈ V (G) and for some nonzero

element a ∈ V4. If `+(v) = 0, for all v ∈ V (G), the graph is zero-sum V4 magic.

A graph G is A- barycentric magic if there exists a labeling ` : E(G) −→ A \ {0} such that

the induced vertex set labeling `+ : V (G) −→ A defined by

`+(v) =
∑
{`(uv) : uv ∈ E(G)}

is a constant map and also satisfies `+(v) = deg(v)`(uvv) for all v ∈ V , and for some vertex

uv adjacent to v [34]. We say that a graph G is a-sum V4 barycentric magic if there exists an

a ∈ V4 such that

`+(v) = deg(v)`(uvv) = a

for all v ∈ V , and for some vertex uv adjacent to v. When a = 0, G is said to be zero sum V4

barycentric magic.

If a graph G and its line graph L(G) are both a-sum V4-magic, then G is called an a-sum

V4-bimagic graph. If a graph G and its line graph L(G) are both zero-sum V4-magic, then G is

called a zero-sum V4-bimagic graph. A graph G is called a V4-bimagic graph if G and its line

graph L(G) are both a-sum V4-magic or zero-sum V4-magic.. If G or L(G) is not V4-magic,

then G is called a non V4-bimagic graph..

The concept of a ring magic graph is a very natural generalization of a group magic graph

and it was introduced by W.C.Shiu and Richard M.Low in their paper [26]. Here we introduce

the concept of an R-barycentric ring magic graph and characterize some Zp-barycentric ring

magic graphs having vertices of degrees 2 and 3. Let R be a commutative ring with unity. A

graph G = (V,E) is said to be R-barycentric ring magic if there exists a labeling ` : E(G) →
R \ {0} of the edges of G by nonzero elements of R such that the induced vertex labelings

`+ : V (G) → R defined by `+(v) =
∑
`(uv) where (u, v) ∈ Eand `× : V (G) → R defined by

`×(v) =
∏
`(uv) where (u, v) ∈ E are constant maps and satisfies:

2



i) `+(v) = deg(v)`(uvv), for all v ∈ V (G), and for some vertex uv adjacent to v.

ii) `×(v) = `(uvv)deg(v), for all v ∈ V (G), and for some vertex uv adjacent to v.

Throughout this thesis we use the following notations:

(1) Va, the class of a-sum V4 magic graphs,

(2) V0, the class of zero-sum V4 magic graphs,and

(3) Va,0, the class of graphs which are both a-sum and zero-sum V4 magic.

(4) BV a: the class of graphs that are a-sum V4 barycentric magic.

(5) BV 0: the class of graphs that are zero-sum V4 barycentric magic.

(6) BV a,0: the class of graphs that are both a-sum and zero-sum V4 barycentric magic.

(7) A := {G : G,L(G) ∈ Va}.

(8) B = {G : G ∈ Va and L(G) ∈ V0}.

(9) C = {G : G,L(G) ∈ V0}.

(10) D = {G : G ∈ V0 and L(G) ∈ Va}.

(11) E = {G : G ∈ Va and L(G) /∈ Va}.

(12) F = {G : G ∈ Va and L(G) /∈ V0}.

(13) G = {G : G /∈ Va and L(G) ∈ Va}.

(14) H = {G : G /∈ Va and L(G) ∈ V0}.

(15) I = {G : G ∈ V0 and L(G) /∈ Va}.

(16) J = {G : G ∈ V0 and L(G) /∈ V0}.

(17) K = {G : G /∈ V0 and L(G) ∈ Va}.

(18) L = {G : G /∈ V0 and L(G) ∈ V0}.

(19) M = {G : G /∈ Va and L(G) /∈ Va}.

(20) N = {G : G /∈ Va and L(G) /∈ V0}.

(21) O = {G : G /∈ V0 and L(G) /∈ Va}.

(22) P = {G : G,L(G) /∈ V0}.

The thesis mainly focus on a study of V4-magic, V4-barycentric magic, V4 bimagic and

Zp-barycentric ring magic graphs. The results are presented in the following chapters.
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• Chapter 2: Preliminaries

• Chapter 3: V4-Magic Labelings of Wheel Related Graphs

• Chapter 4: V4-Magic Labelings of Shell Related Graphs

• Chapter 5: V4-Magic Labelings of Some More Graphs

• Chapter 6: V4-Barycentric Magic Graphs

• Chapter 7: Some Special V4-Barycentric Magic Graphs

• Chapter 8: V4-Bimagic Graphs

• Chapter 9: On Zp-Barycentric Ring Magic Graphs

In Chapter 2, we provide some basic definitions and results from graph theory, group theory

and ring theory which are required for the subsequent chapters in the thesis.

In the first section of Chapter 3, we include definitions of some wheel related graphs. In

section 2 we prove that if G is a (p, q) graph with vertex set {v1, v2, . . . , vp}, and ` : E(G) →
V4 \ {0} is a labeling of G, then

∑p
i=1 `

+(vi) = 0. Subsequently we prove following results:

• Cn ∈ Va if and only if n is even and Cn ∈ V0 for all n ≥ 3.

• If C(n, k1, k2, . . . , kt) ⊂ Va, then n+k1 +k2 + · · ·+kt is even. Then naturally a question

arises whether the converse of this theorem is true. We conjecture that the converse of

this result is true as well. Furthermore, we prove a special case of the conjecture which

states that if n+ tk is even, then C(n, k, k, . . . , k︸ ︷︷ ︸
t

) ⊂ Va.

Finally, we prove the following results for the graphs Sunn, BSun(p, q), CBSun(p, q), Cn �
K2, Cn � Cm, Cn �Km, Cn �Km, Cm � Cn and �[Cn]m.

• Sunn ∈ Va for all n and Sunn /∈ V0 for all n.

• BSun(p, q) and CBSun(p, q) is contained in Va if and only if p+ q is even.

• Cn �K2 ∈ Va if and only if n is even and Cn �K2 ∈ V0 for all n ≥ 3.

• Cn�Cm ∈ Va if and only if n(m+ 1) is even and Cn�Cm ∈ V0 for all m ≥ 3 and n ≥ 3.

• Cn �Km ∈ Va if and only if n(m+ 1) is even and Cn �Km /∈ V0 for all m and n, where

Km is the complement of the complete graph with m vertices.

• Cm � Cn ∈ Va if and only if m+ n is odd and Cm � Cn ∈ V0 for all m and n.

• �[Cn]m ∈ Va if and only if m is odd and n is even.

In the third section we consider some wheel related graphs and prove the following results.
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• Wn ∈ Va if and only if n is odd and Wn ∈ V0 for all n.

• If Wn is a- sum V4-magic and if k is odd, then Wnk is a-sum V4-magic.

• If Wn is zero-sum V4 magic, so is Wkn for every k ≥ 2.

• Wn,m ∈ Va if and only if both m and n are odd and Wn,m ∈ V0 for all n and m.

• If Wn,m is a- sum V4-magic and if k is odd, then Wnk,m is a-sum V4-magic.

• SWn /∈ Va for any n ≥ 3 and SWn ∈ V0 for any n ≥ 3. Similar result holds for SWn,m

also.

• Helm graph is neither a-sum V4-magic nor zero-sum V4-magic for any n.

• W (2, n) ∈ Va if and only if n is odd but it does not belongs to V0 for any n.

• W (t, n) ∈ Va if and only if n is odd and t is even but it does not belongs to V0 for any n

and t.

• W0(t, n) ∈ Va if and only if n(t+ 1) is even but it does not belongs to V0 for any n and t.

• H(2, n) /∈ Va for any n and H(2, n) ∈ V0 for all n.

• H(t, n) ∈ Va if and only if both n and t are odd and H(2, n) ∈ V0 for all n.

• Flower graph is not a-sum V4-magic for any n but it is zero-sum V4-magic for all n.

In the first section of Chapter 4 we provide the definition of a shell graph. Also include some

well known shell related graphs. In the second section we prove the following results.

• Shell graph is a-sum V4-magic if and only if n is even.

• U(n,m) /∈ Va if m ≥ 2.

• U(n, 1) ∈ Va if n is odd.

• U(m,n, k) /∈ Va if n ≥ 2.

• If U(m, 1, k) ∈ Va then m+ k is odd.

• If m is odd and k is even, then U(m, 1, k) ∈ Va.

• If m is even and k is odd, then U(m, 1, k) /∈ Va.

• If B(t, n1, n2, . . . , nt) ∈ Va, then n1 + n2 + · · ·+ nt is odd.

• If n and t are odd then B(t, n, n, . . . , n) ∈ Va.

• H(2n, n− 2), H(2n, n− 1) ∈ Va and V0 for all n.

• H(4n+ 1, 2n), H(4n+ 3, 2n+ 2) /∈ Va but belongs to V0 for all n.
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• U(4n+ 1, 2n, 1), U(4n+ 3, 2n+ 2, 1) ∈ Va for all n.

• Cn(2, r) ∈ Va if and only if n is even and 2 ≤ r ≤ n− 3.

• Gr(n) ∈ Va if and only if n+ r is odd and Gr(n) ∈ V0 if n+r is even.

• G(n, n− 3, k) ∈ Va if and only if nk is even and G(n, n− 3, k) ∈ V0 for all n and k.

In the third section we prove that if the multiple shell graph MS(nt11 , n
t2
2 , . . . , n

tr
r ) ∈ Va, then∑r

i=1[(ni−1)ti] is odd. We conjecture that if
∑r

i=1[(ni−1)ti] is odd, thenMS{nt11 , n
t2
2 , . . . , n

tr
r } ∈

Va. We prove some special cases of the conjecture which are as follows:

• MS(nt) ∈ Va if (n− 1)t is odd.

• MS(n, n+ 1) ∈ Va.

• MS(nt, (n+ 1)t) ∈ Va for all odd t.

• MS(n,m) ∈ Va if and only if m+ n is odd.

Now we have another question whether the multiple shell graph is zero-sum V4-magic or not?.

Again we state it as a conjecture. That is MS(nt11 , n
t2
2 , . . . , n

tr
r ) ∈ V0 for all ni and ti. Moreover,

we prove the following special cases.

• MS(nt) ∈ V0 for n even, t odd and n even, t even.

• MS(nt) ∈ V0 for n odd, t odd and n odd, t even.

• If m+ n is even, then MS(n,m) ∈ V0.

Now we prove that if the chain of multiple shell and star graph MS{nt11 , n
t2
2 , . . . , n

tr
r }�K1,m ∈

Va, then
∑r

i=1[(ni − 1)ti] +m is odd. We conjecture that if
∑r

i=1[(ni − 1)ti] +m is odd, then

MS{nt11 , n
t2
2 , . . . , n

tr
r } �K1,m ∈ Va. We prove the following special cases of the conjecture.

• MS(nt) �K1,m ∈ Va if and only if (n− 1)t+m is odd.

• MS(n, n+ 1) �K1,m ∈ Va if m is even.

• MS(nt, (n+ 1)t) �K1,m ∈ Va if m is even and t is odd.

In Chapter 5, we include the definitions of some special graphs like Jahangir graph, windmill

graph, friendship graph, one-point union of t-cycles, snake graph, the graph Cm@Cn, bipyramid

graph, ladder graph, semiladder, planar grid, generalized Theta graph, n-gon book of k pages

and book graph. We prove the following results.

• Jn,m ∈ Va if and only if both n and m are odd and belongs to V0 for all n and m.
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• The windmill graph D
(m)
n ∈ Va if and only if m is odd and n is even and belongs to V0

for all n and m.

• Fm /∈ Va for any m but Fm ∈ V0 for all m.

• Cn(t) ∈ Va if and only if n is even and t is odd.

• T (m)
n ∈ Va if and only if m is even and n is odd.

• For all m,n ≥ 3, Cm@Cn ∈ Va if and only if n(m− 1) is even.

• For any n ≥ 4, the bipyramid graph BP (n) is a-sum V4-magic if and only if n is even.

Then we prove the following results for BP (G).

• IfG is a-sum V4-magic and number of vertices inG is odd, then BP (G) is a-sum V4-magic.

• If G is a-sum V4-magic and number of vertices in G is even, then BP (G) is 0-sum V4-

magic.

• If G is 0-sum V4-magic and number of vertices in G is even, then BP (G) is both a-sum

V4-magic and 0-sum V4-magic.

• If G is 0-sum V4-magic and number of vertices in G is odd, then BP (G) is 0-sum V4-magic.

• Ladders Ln and semiladders are a-sum V4-magic for all n but Ln+2 /∈ V0 for any n.

• The planar grid Pm�Pn is a-sum V4-magic if and only if mn is even.

• If the generalized Theta graph Θ(a1, a2, · · · ak) is a-sum V4-magic then either odd number

of ai’s are odd or even number of ai’s are even.

• Let Θ(a1, a2, · · · ak) be a generalized Theta graph. If k and even number of ai’s are even

then Θ(a1, a2, · · · ak) is a-sum V4 magic.

• For any n ≥ 3 and k ≥ 1, B(n, k) ∈ Va if and only if (n− 2)k is even.

• The book Bn is a-sum V4-magic and zero-sum V4-magic for all n.

• For m,n ≥ 2, the complete bipartite graph Km,n is a-sum V4-magic if and only if m+ n

is even.

Consider the complete graph Kn of order n ≥ 4 with V (Kn) = {v1, v2, · · · vn} and for

each r such that 2 ≤ r ≤ n − 2, let G(n, r) be a spanning subgraph of Kn with E(G(n, r)) =

E(Kn) − {vivj : 1 ≤ i < j ≤ r}. We prove that the graph G(n, r) is a-sum V4-magic if and

only if n is even. The graph G(n, r) is zero-sum V4-magic for all n. This can be considered

as a generalization of the result obtained by Sin Min Lee et.al. [13]. Consider the graph

G(n, r) together with pendant edges at the vertices v1, v2, · · · , vr and triangles at the vertices

vr+1, vr+2, · · · , vn. We denote this graph by Gnr (G). We prove that Gnr (G) is a-sum V4-magic

if and only if both n and r are of the same parity and it does not belongs to V0.

In the first section of Chapter 6, we introduce the concept of V4-barycentric magic graphs.

In the second section we prove the following results:

7



• The star K1,n ∈ BV a if and only if n is odd and does not belongs to BV 0 for any n.

• For m,n ≥ 2, the complete bipartite graph Km,n is a-sum V4-barycentric magic if and

only if both m and n are odd and is zero-sum V4-barycentric magic if and only if both

m and n are even.

In the third section we prove that a tree t is a-sum V4-barycentric magic if and only if the

number of vertices of t is even and all its vertices have odd degrees. In the next section we

prove the following.

• For n ≥ 2, the complete graph Kn ∈ BV a if and only if n is even and Kn ∈ BV 0 if and

only if n is odd.

• For any n > 3, Kn \ e, the complete graph with one edge removed, is neither a-sum

V4-barycentric magic nor zero-sum V4-barycentric magic for any n.

In the fifth section we include the definitions of splitting graph and mycielski graph of a graph

G. We investigate the splitting graph and mycielski graph of Km,n,K1,n, Cn, Pn which belong

to the classes BV a and BV 0. In the last section the following results are proved.

• The sun graph Cn � K1 is a-sum V4-barycentric magic for all n and is not zero-sum

V4-barycentric magic for any n.

• The wheel Wn is a-sum V4-barycentric magic if and only if n is odd and is not zero-sum

V4-barycentric magic for any n.

• For any n ≥ 3 and k ≥ 1, the n-gon book of k pages is zero-sum V4-barycentric magic if

and only if k is odd but it is not a-sum V4-barycentric magic.

• For any n ≥ 3, the bipyramid graph BP (n) is zero-sum V4-barycentric magic if and only

if n is even but it is not a-sum V4-barycentric magic.

• The sunflower graph SFn is neither zero-sum V4-barycentric magic nor a-sum V4-barycentric

magic for any n.

• Kn1,n2,n3
is zero-sum V4-barycentric magic if and only if n1, n2, n3 are of same parity and

is not a-sum V4-barycentric magic for any ni, i = 1, 2, 3.

We conclude this chapter by proving that the class BV a,0 is empty.

Chapter 7 is a continuation of chapter 6. Here we study some special V4 barycentric magic

graphs.

In the first section of Chapter 8, we define bimagic graphs and introduce the class of

graphs A ,B,C ,D ,E ,F ,G ,H ,I ,J ,K ,L ,M ,N ,O and P. In the second section we

prove the following results.
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• Let G be a V4-bimagic (p, q) graph with vertex set V (G) = {u1, u2, . . . , up} and edge set

E(G) = {e1, e2, . . . , eq}. Then
∑p

i=1 `
+(ui) =

∑q
i=1 `

+(ei) = 0.

• Let G be an a-sum V4-bimagic (p, q) graph. Then both p and q are even.

• The star graph does not belongs to the class A for all n > 1, belongs to the class B if

and only if n is odd, belongs to the class K if and only if n is even and belongs to the

class L for all n.

In the third section we prove the following results:

• Sunn belongs to the classes A , B, K and L for all n.

• BSun(n, k) and CBSun(n, k) belongs to the classes A ,B and K if and only if n+ k is

even and belongs to the L -class for all n and k.

• Wn belongs to the classes A and B if and only if n is odd and belongs to the classes C

and D for all n.

• Cm@Cn belongs to the A -class if and only if either m is odd and n is even or both m

and n are even, belongs to the B-class if and only if n(m − 1) is even, belongs to the

C -class for all m,n ≥ 3 and belongs to the D-class if and only if mn is even.

• Cn(t) belongs to the classes A and B if and only if n is even and t is odd, belongs to

the C -class for all n and t and belongs to the D-class if and only if nt is even.

• Jn,m belongs to the classes A and B if and only if n and m are odd, belongs to the

C -class for all n and m, belongs to the D-class if and only if m(n+ 1) is even.

In the fourth section we prove the following results:

• Ln belongs to the A -class and D-class if and only if n is even and belongs to the classes

B and C for all n.

• Ln+2 belongs to the classes A and K if and only if n is even and belongs to the classes

B and L for all n.

• The diamond graph belongs to the classes B,C ,E and I .

• The butterfly graph belongs to the classes C ,D ,G and H .

• The kite graph belongs to the classes G ,H ,K and L .

• The cricket graph belongs to the classes H ,L ,M and O.

• The moth graph belongs to the classes B,E ,L and O.
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In Chapter 9, we introduce the concept of R-barycentric ring magic graphs and charac-

terize a few Zp-barycentric ring magic graphs having vertices of degrees 2 and 3. We introduce

k−barycentric sequence in a commutative ring R with unity. In the second section we prove

some lemmas which characterize barycentric sequences of lengths 2 and 3. In the third section

we prove the following results.

• Any graph G is Z2- barycentric ring magic with same additive and multiplicative constant

1 if and only if all the vertices of G have odd degrees.

• A regular graph G is R-barycentric ring magic for any ring R.

• For every commutative ring R with unity, P2 is R-barycentric ring magic and Pn, n ≥ 3

is not R-barycentric ring magic.

• The cycle Cn is R-barycentric ring magic for every commutative ring R with unity.

• C(n1, n2) and C(n1, n2, · · · , nk) are Zh-barycentric magic if and only if h is even.

• If a graph is not Zh-barycentric magic, then it cannot be Zh-barycentric ring magic.

Finally we prove the following results.

• The sun graph Cn �K1 is Zp-barycentric ring magic if and only if p = 2.

• Let p be an odd prime. Then the wheel graph Wn is Zp-barycentric ring magic if and

only if there exists an a ∈ Zp \ {0} such that n ≡ 3(mod p) and an−3 ≡ 1(mod p). Wn is

Z2 barycentric ring magic if and only if n is odd.

• The planar grid Pm ×Pn is not Zp-barycentric ring magic for all m,n except m = n = 2

and for any p.

• The friendship graph Fm is Z2-barycentric ring magic for all m and Zp-barycentric ring

magic for p odd if and only if there exists an a ∈ Zp \ {0} such that m ≡ 1(mod p) and

a2m−2 ≡ 1(mod p).

• The ladder graph Ln and semiladder are not Zp-barycentric ring magic for any n and

any p and Ln+2 is Zp-barycentric ring magic if and only if p = 2.

• Let p be an odd prime. Then the graph B(n, k) is Zp-barycentric ring magic if and only

if the following holds:

• (k − 2)a+ b ≡ 0(mod p)

• a(k−2)b ≡ 1(mod p)

• B(n, k) is Z2-barycentric ring magic if and only if k is odd. This result also holds for

book graph Bn.

• Cm@Cn is Z2-barycentric ring magic for all m and n and if it is Zp-barycentric ring magic

for an odd prime p, then bi ≡ bj(mod p), i 6= j where both i and j are of same parity and

bi’s are the edge labels of the cycle Cn.

10



Chapter 2
Preliminaries

In this chapter we present some basic definitions from graph theory,

group theory and ring theory which are required for the subsequent chap-

ters in the thesis. For notations and terminology not defined in this

thesis the readers may refer to [4] and [20].

2.1 Basic Definitions from Graph Theory

Definition 2.1.1. (see [20]) A (undirected) graph is an ordered pair G = (V (G), E(G)), where

V (G) is a nonempty finite set and E(G) is a binary symmetric relation on V (G). The elements

of V (G) are called vertices and elements of E(G) are called edges.

Denoting by |S| the cardinality of a set S we define p = |V | to be the order of G and q = |E|
to be the size of G. A (p, q) graph is a graph of order p and size q.

If an edge e corresponds to the vertex pair (u, v), we will write e = uv and we say that the

edge e joins the vertices u and v or u and v are adjacent vertices. If two distinct edges u and

v are incident with a common point, then they are called adjacent edges.

Definition 2.1.2. (see [4]) A graph G is said to be complete if every pair of distinct vertices

of G are adjacent in G. A complete graph on n vertices is denoted by Kn.

Definition 2.1.3. (see [4]) Let G be a graph. Then the complement Gc of G is defined by

taking V (Gc) = V (G) and making two vertices u and v adjacent in Gc if, and only if, they are

nonadjacent in G.

Definition 2.1.4. (see [4]) A graph H is called a subgraph of G if V (H) ⊆ V (G), E(H) ⊆
E(G). A subgraph H of G is a spanning subgraph of G, if V (H) = V (G).

Definition 2.1.5. (see [4]) Let G be a graph and v ∈ V . The number of edges incident at

v ∈ G is called the degree of the vertex v ∈ G and is denoted by dG(v) or simply d(v). A
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2.2. Operations on Graphs

graph G is called k-regular, if every vertex of G has degree k. A graph is said to be regular if

it is k-regular for some nonnegative integer k. In particular a 3-regular graph is called a cubic

graph.

Definition 2.1.6. (see [4]) A vertex of degree 1 is called a pendant vertex of G, whereas the

unique edge of G incident to such a vertex of G is a pendant edge of G.

Definition 2.1.7. (see [4]) A walk in a graph G is an alternating sequence W : v0e1v1e2v2 . . . envn

of vertices and edges beginning and ending with vertices in which vi−1 and vi are the ends of

ei; v0 is the origin and vn is the terminus of W . The walk is closed if v0 = vn and is open

otherwise. A walk is called a trail if all the edges appearing in the walk are distinct. It is called

a path if all the vertices are distinct. A cycle is a closed trail in which the vertices are all

distinct. Paths and cycles of n vertices are often denoted by Pn and Cn, respectively.

Definition 2.1.8. (see [7]) Two vertices u and v in a graph G are connected if there is a path

in G from u to v. The graph is connected if every two vertices of G are connected.

Definition 2.1.9. (see [4]) A connected graph without cycles is defined as a tree.

Definition 2.1.10. (see [7]) For an integer k ≥ 1, a graph G is a k-partite graph if V (G)

can be partitioned into k subsets V1, V2, . . . , Vk(called partite sets) such that every edge joins

vertices in two different partite sets. A complete k-partite graph G is a k-partite graph such

that two vertices are adjacent in G if and only if the vertices belong to different partite sets. If

|Vi| = ni, for 1 ≤ i ≤ k, then G is denoted by Kn1,n2,...,nk
.

A complete 2-partite graph is called a complete bipartite graph and it is denoted by Km,n.

The complete bipartite graph K1,n is called a star. A complete 3-partite graph is called

complete tripartite graph and is denoted by Kn1,n2,n3
.

Definition 2.1.11. (see [9]) Two graphs G and H are said to be disjoint if they have no vertex

in common.

2.2 Operations on Graphs

Let G1 and G2 be two graphs.

Definition 2.2.1. (see [4]) The graph G = (V,E) where V = V1 ∪ V2 and E = E1 ∪ E2 is

called the union of G1 and G2 and is denoted by G1 ∪ G2. When G1 and G2 are disjoint,

G1 ∪G2 is denoted by G1 +G2 and is called the sum of the graphs G1 and G2.

Definition 2.2.2. (see [4]) Let G1 and G2 be disjoint graphs. Then the join, G1 ∨G2 of G1

and G2 is the graph in which each vertex of G1 is adjacent to every vertex of G2.

Definition 2.2.3. (see [6]) The corona G1 � G2 of graphs G1 and G2 is the graph obtained

by taking one copy of G1, which has p1 vertices, and p1 copies of G2, and then joining the ith

vertex of G1 by an edge to every vertex in the ith copy of G2.
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2.3. Line, Middle and Total Graphs

Definition 2.2.4. (see [7]) The Cartesian Product of two graphs G1 and G2, commonly de-

noted by G1�G2 or G1 ×G2, has vertex set V (G) = V (G1)× V (G2) and two distinct vertices

(u, v) and (x, y) of G1�G2 are adjacent if either u = x and vy ∈ E(G2) or v = y and

ux ∈ E(G1).

The cartesian product of graphs Pm and Pn denoted, Pm�Pn is called a planar grid.

Definition 2.2.5. (see [28]) Composition or lexicographic product of two graphs denoted by

G[H] has V (G)× V (H) as vertex set in which (g1, h1) is adjacent to (g2, h2) whenever g1g2 ∈
E(G) or g1 = g2 and h1h2 ∈ E(H).

A graph G with a fixed vertex u ∈ V (G) will be denoted by the ordered pair (G, u). Given

two ordered pairs (G, u) and (H, v), one can construct another graph by linking these two

graphs through identifying the vertices u and v. We will use the notation (G, u) � (H, v) for

this construction or simply G�H if there is no ambiguity regarding the choices of u and v [18].

Definition 2.2.6. (see [18]) Given n graphs Gi(i = 1, 2, . . . , n), the chain G1 �G2 � . . . Gn is

the graph in which one of the vertices of Gi is identified with one of the vertices of Gi+1. If

Gi = G, we use the notation �Gn for the n-link chain all of whose links are G.

2.3 Line, Middle and Total Graphs

Definition 2.3.1. (see [4]) The line graph of a graph G, denoted by L(G), is a graph whose

vertex set is in 1− 1 correspondence with the edge set of G and two vertices of L(G) are joined

by an edge if and only if the corresponding edges of G are adjacent in G.

The concept of middle graph was introduced by J. Akiyama, T. Hamada and I. Yoshimura

[1] in 1974.

Definition 2.3.2. (see [1]) The middle graph of a graph G, denoted by M(G), is the graph

obtained from G by inserting a new vertex into every edge of G and by joining those pairs of

these new vertices with edges which lie on adjacent edges of G.

M. Behzad has introduced the notions of the total graph of a graph in [5].

Definition 2.3.3. (see [5]) The total graph of a graph G, denoted by T (G), is a new graph

whose vertex set is the union of vertex and edge sets of G and two vertices of T (G) are adjacent

if they come from two adjacent vertices, two adjacent edges or an incident vertex with an edge.

2.4 Basic Definitions from Group Theory and Ring The-

ory

Definition 2.4.1. (see [11]) A binary operation ∗ on a set S is a rule that assigns to each

ordered pair (a, b) of elements of S some element of S.
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2.4. Basic Definitions from Group Theory and Ring Theory

Definition 2.4.2. (see [11]) A binary operation on a set S is commutative if a ∗ b = b ∗ a for

all a, b ∈ S.

Definition 2.4.3. (see [11]) A binary operation on a set S is associative if (a∗b)∗c = a∗(b∗c)
for all a, b, c ∈ S.

Definition 2.4.4. (see [11]) A group < G, ∗ > is a set G, closed under a binary operation ∗,
such that the following axioms are satisfied:

1 The binary operation ∗ is associative.

2 There is an element e in G such that e ∗ x = x ∗ e = x for all x ∈ G. (This element e is

an identity element for ∗ on G.)

3 For each a ∈ G, there is an element a′ in G with the property that a′ ∗ a = a ∗ a′ = e.

(The element a′ is an inverse of a with respect to the operation ∗.)

Definition 2.4.5. (see [11]) A group G is abelian if its binary operation ∗ is commutative.

The group Z2 × Z2 = {(0, 0), (0, 1), (1, 0), (1, 1)} is called the Klien 4-group. For simplicity

we denote the elements by 0, a, b, c where 0 + 0 = 0, a+a = 0, b+ b = 0, c+ c = 0, a+ b+ c =

0, a+ b = c, b+ c = a, a+ c = b. The Klien 4-group is denoted by V4.

Definition 2.4.6. (see [11]) A ring < R,+, . > is a set R together with two binary operations

denoted by “+” and “.”, which we call addition and multiplication, defined on R such that the

following axioms are satisfied:

1 < R,+ > is an abelian group.

2 Multiplication is associative.

3 For all a, b, c ∈ R, the left distributive law, a.(b+ c) = a.b+ a.c and the right distributive

law (a+ b).c = a.c+ b.c hold.

Definition 2.4.7. (see [11]) A ring in which the multiplication is commutative is a commuta-

tive ring. A ring with a multiplicative identity 1 such that 1x = x1 = x for all x ∈ R is a ring

with unity.

Definition 2.4.8. (see [11]) Let R be a ring with unity. An element u ∈ R is a unit of R if it

has a multiplicative inverse in R. If every nonzero element in R is a unit, then R is a division

ring. A field is a commutative division ring.

For a prime p, Zp denotes the set of all integers modulo p. Observe that Zp is a field.
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Chapter 3
V4-Magic Labelings of Wheel Related

Graphs

In the first section of this chapter, we introduce a-sum and zero sum V4

magic graphs. Some well known cycle related graphs and wheel related

graphs are also included. In the second section of this chapter, we discuss

some cycle related V4 magic graphs. In the last section of this chapter

we discuss some wheel related V4 magic graphs.

3.1 Introduction

Let A be an abelian group. A mapping ` : E(G) −→ A \ {0} is called an edge labeling. We say

that G is A-magic if there exists an edge labeling ` : E(G) −→ A \ {0} such that the induced

vertex labeling `+ : V (G) −→ A defined by

`+(v) =
∑
{`(uv) : uv ∈ E(G)}

is a constant map [13]. If this constant is a where a is any nonzero element in A, then we say

that ` is an a-sum A-magic labeling of G and G is said to be a-sum A-magic. We say that G is

V4-magic if there exists a labeling ` : E(G) −→ V4 \ {0} such that the induced vertex labeling

`+ : V (G) −→ V4 defined by

`+(v) =
∑
{`(uv) : uv ∈ E(G)}

is a constant map. If this constant is a where a is any nonzero element in V4, then we say that

` is an a-sum V4-magic labeling of G and G is said to be a-sum V4-magic. If this constant is 0,

then we say that ` is a zero-sum V4-magic labeling of G and G is said to be zero-sum V4-magic.

In this chapter, we investigate a class of graphs in the following categories:
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3.1. Introduction

(a) (b) (c)

Figure 3.1: (a)Sun6, (b)BSun(6, 3), (c) CBSun(6, 4)

(i) Va, the class of a-sum V4 magic graphs,

(ii) V0, the class of zero-sum V4 magic graphs,and

(iii) Va,0, the class of graphs which are both a-sum and zero -sum V4 magic.

Here we need the following.

Definition 3.1.1. (see [6]) The sun on 2n vertices is a corona of the form Cn � K1 where

n ≥ 3. The sun Cn � K1 is denoted by Sunn or Sn. A broken sun is a connected unicyclic

subgraph of a sun. We denote by BS(p, q) the set of broken suns with n = p + q vertices and

with a p-cycle, note that BS(p; p) = Cp �K1. For p > 2 and 0 < q < p, a consecutive broken

sun, denoted by CBSun(p, q) is the graph belonging to BS(p, q) such that the subgraph induced

by the vertices of degree 2 is a path on p − q vertices. A broken sun (or a sun) is odd (resp.

even) if p is odd (resp.even).

Sun6, BSun(6, 3) and CBSun(6, 4) are depicted in Figure 3.1.

Definition 3.1.2. (see [18]) A wheel graph denoted by Wn is defined as Wn = Cn +K1, where

Cn for n ≥ 3 is a cycle of length n.

Definition 3.1.3. (see [18]) A double-wheel graph Wn,2 can be obtained as join of 2Cn +K1,

and inductively we can construct an m-level wheel graph denoted by Wn,m as follows Wn,m =

mCn +K1.

Definition 3.1.4. (see [12]) The helm Hn is the graph obtained from the wheel Wn by attaching

a pendant edge at each vertex of the cycle Cn.

Definition 3.1.5. (see [12]) The web graph W (2, n) is the graph obtained by joining the

pendant points of a helm Hn to form a cycle and then adding a single pendant edge to each

vertex of the outer cycle (see figure 3.2).

Definition 3.1.6. (see [12]) The generalized web graph W (t, n) is the graph obtained by iter-

ating the processes of constructing web graph W (2, n) from the helm Hn, so that the web has t

n-cycles (see figure 3.3).
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3.2. Cycle Related Graphs

Definition 3.1.7. (see [12]) The generalized web graph without center, W0(t, n) is the graph

obtained by removing the central vertex of W (t, n) (see figure 3.4).

Definition 3.1.8. (see [24]) A closed helm H(2, n) is the graph obtained from a helm by joining

each pendant vertex to form a cycle.

Definition 3.1.9. (see [24]) Closed generalized helms H(t, n) are obtained by taking a gener-

alized web and joining pendant vertices to form a cycle.

Definition 3.1.10. (see [24]) The flower graph Fln is the graph obtained from a helm Hn by

joining each pendant vertex to a central vertex of the helm (see figure 3.5).

Definition 3.1.11. (see [34]) The chain of cycles C(n1, n2, · · · , nk) denotes the graph of k

cycles Cn1
, Cn2

, · · · , Cnk
of sizes n1, n2, · · · , nk such that Cni

and Cni+1
have a common vertex,

for i = 1, 2, · · · , k.

3.2 Cycle Related Graphs

Here we prove the following:

Lemma 3.2.1. If G is a (p, q) graph with vertex set {v1, v2, . . . , vp}, and ` : E(G)→ V4 \ {0}
is a labeling of G, then

p∑
i=1

`+(vi) = 0.

Proof. Let vi be any vertex of the graph G and vi1 , vi2 , · · · vik be the k vertices adjacent to

vi. Then we have `+(vi) =
∑k

j=1 `(vivij ). In
∑p

i=1 `
+(vi), each `(vivj) appears twice. So∑p

i=1 `
+(vi) = 0.

Theorem 3.2.2. Cn ∈ Va if and only if n is even.

Proof. Assume that Cn ∈ Va. Then by lemma 3.2.1, we have
∑n

i=1 `
+(ui) = 0. That is we get

na = 0. This implies that n is even.

Conversely, assume that n is even. Define ` : E(Cn)→ V4 \ {0} by

`(uiui+1) =

{
b, for i = 1, 3, . . . , n− 1,

c, for i = 2, 4, . . . , n.

Obviously, `+(ui) = b+ c = a, for i = 1, 2, . . . , n. Thus ` is an a-sum V4-magic labeling of Cn.

This completes the proof.

Theorem 3.2.3. Cn ∈ V0 for all n ≥ 3.

Proof. If we label all the edges of Cn by a, then we obtain `+(ui) = 0 for i = 1, 2, . . . , n.

Theorem 3.2.4. If n is even, then Cn ∈ Va,0.
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3.2. Cycle Related Graphs

Proof. Proof follows from theorems 3.2.2 and 3.2.3.

Definition 3.2.5. We denote by C(n, k1, k2, . . . , kt︸ ︷︷ ︸
t

) the class of all graphs obtained by iden-

tifying the apex vertices of t stars K1,ki (i = 1, 2, . . . , t) with t (1 ≤ t ≤ n) vertices of Cn.

Observe that C(n, k, k, . . . , k︸ ︷︷ ︸
n

) is a unique graph.

Theorem 3.2.6. If C(n, k1, k2, . . . , kt) ⊂ Va, then n+ k1 + k2 + · · ·+ kt is even.

Proof. Observe that each member of C(n, k1, k2, . . . , kt) has n+ k1 + k2 + · · ·+ kt vertices. By

lemma 3.2.1, (n+ k1 + k2 + · · ·+ kt)a = 0. This implies that n+ k1 + k2 + · · ·+ kt is even.

Conjecture 3.2.7. If n+ k1 + k2 + · · ·+ kt is even, then C(n, k1, k2, . . . , kt) ⊂ Va.

We prove some special cases of conjecture 3.2.7.

Theorem 3.2.8. If n+ tk is even, then C(n, k, k, . . . , k︸ ︷︷ ︸
t

) ⊂ Va.

Proof. Consider a graph G in the set C(n, k, k, . . . , k︸ ︷︷ ︸
t

). We consider 4 cases:

Case 1: Suppose n, k and t are even. In this case, we label all edges of Cn as described in

the proof of theorem 3.2.2 and label all the pendant edges by a. Then obviously this is

an a-sum V4-magic labeling of G.

Case 2: Suppose n, k are even and t is odd. In this case, the labeling is exactly similar to

Case 1.

Case 3: Suppose n and t are even and k is odd. Without loss of generality assume that apex

vertices of the t stars are at u1, ui1 , ui2 , . . . , uit , 1 < i1 < i2 < . . . < it−1 of the cycle Cn.

First, label all pendant edges by a. We label the edges of Cn as follows:

Consider the vertex ui1 . If i1 is even, we label the edges unu1, u1u2, . . . , ui1ui1+1 as

follows:

`(unu1) = b,

`(uiui+1) = b, for i = 1, 3, . . . , i1 − 1

`(uiui+1) = c, for i = 2, 4, . . . , i1 − 2

`(ui1ui1+1) = b.

If i1 is odd, we label the edges unu1, u1u2, . . . , ui1ui1+1 as follows

`(unu1) = b,

`(uiui+1) =

{
b, for i = 1, 3, . . . , i1 − 2

c, for i = 2, 4, . . . , i1 − 1.
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3.2. Cycle Related Graphs

`(ui1ui1+1) = c.

So, we have

`(ui1−1ui1) = `(ui1ui1+1) =

b if i1 even

c if i1 odd

Therefore for all i1,

`+(ui1) = a.

Furthermore,

`+(ui) = a for all i.

Next, consider the vertex ui2 . Here we consider the following cases:

i1 and i2 are even: In this case we label the edges ui1+1ui1+2, ui1+2ui1+3, . . . , ui2ui2+1

consecutively by c, b, c, b, . . . , c, b, c, c.

i1 is even and i2 is odd : In this case we label the edges ui1+1ui1+2, ui1+2ui1+3, . . . ,

ui2ui2+1 consecutively by c, b, c, b, . . . , c, b, b.

i1 is odd and i2 is even : In this case we label the edges ui1+1ui1+2, ui1+2ui1+3, . . . ,

ui2ui2+1 consecutively by b, c, b, c, . . . , b, c, c.

i1 and i2 are odd : In this case we label the edges ui1+1ui1+2, ui1+2ui1+3, . . . , ui2ui2+1

consecutively by b, c, b, c, . . . , c, b, b.

Proceeding like this, we eventually arrive at uit . If it is even, then obviously `(uituit−1) =

`(uituit+1) = c. Then label the edges uit+1uit+2, uit+2uit+3, . . . , un−2un−1 consecutively

by b, c, b, c, . . . , b, c. If it is odd, then obviously `(uituit−1) = `(uituit+1) = b. Then label

the edges uit+1uit+2, uit+2uit+3, . . . , un−2un−1 consecutively by c, b, c, b, . . . , c. Obviously

this labeling is an a-sum V4-magic labeling of G.

Case 4: n, k and t are odd. In this case, the labeling is similar to case 3.

This completes the proof.

Theorem 3.2.9. Sunn ∈ Va for all n.

Proof. Observe that Sunn = C(n, 1, 1, . . . , 1︸ ︷︷ ︸
n

). So, the proof of the theorem follows from theo-

rem 3.2.8.

Theorem 3.2.10. Sunn /∈ V0 for all n.

Proof. Since Sunn has pendant edges, Sunn /∈ V0.

Theorem 3.2.11. BSun(p, q) ⊂ Va if and only if p+ q is even.

20



3.2. Cycle Related Graphs

Proof. Observe that any member in BSun(p, q) has p+ q number of vertices. If BSun(p, q) ∈
Va, then by lemma 3.2.1, (p+ q)a = 0. This implies that p+ q is even. Converse part follows

from theorem 3.2.8.

Theorem 3.2.12. CBSun(p, q) ⊂ Va if and only if p+ q is even.

Proof. Proof follows from theorem 3.2.8.

Theorem 3.2.13. Cn �K2 ∈ Va if and only if n is even.

Proof. Note that Cn �K2 has 3n vertices. If Cn �K2 ∈ Va, then by lemma 3.2.1, 3na = 0.

This implies that na = 0. Consequently, n is even. Conversely assume that n is even. Let

u1, u2, . . . un be the vertices of Cn and vij , i = 1, 2, . . . , n, j = 1, 2 be that of K2. Now label

the edges as follows:

`(uiui+1) =

{
b, i = 1, 3, . . . , n− 1

c, i = 2, 4, . . . , n

`(uivij) = b

`(vijvi(j+1)) = c

This gives an a-sum V4-magic labeling of Cn �K2.

Theorem 3.2.14. Cn �K2 ∈ V0 for all n ≥ 3.

Proof. Label all the edges by a. The proof follows.

Theorem 3.2.15. If n is even, then Cn �K2 ∈ Va,0.

Proof. Proof follows from theorems 3.2.13 and 3.2.14.

Theorem 3.2.16. Cn � Cm ∈ Va if and only if n(m+ 1) is even.

Proof. Suppose Cn � Cm ∈ Va. Then by lemma 3.2.1, n(m + 1)a = 0. This implies that

n(m+ 1) is even.

Conversely assume that n(m+ 1) is even. Let the vertices of Cn be (u1, u2, . . . , un, u1) and

let the vertices of Cm be vij , i = 1, 2, . . . , n, j = 1, 2, . . . ,m where vi1 = ui. We consider the

following cases.

Case 1: Assume that n is even and m is odd. Label all the edges by a. Obviously ` is an

a-sum V4-magic labeling of Cn � Cm.

Case 2: Suppose m and n are odd. In this case the labeling is exactly similar to Case 1.
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3.2. Cycle Related Graphs

Case 3: Suppose both m and n are even. Define ` : E(Cn � Cm)→ V4 \ {0} by

`(uiui+1) =

{
b for i = 1, 3, . . . , n− 1,

c for i = 2, 4, . . . , n

For i = 1, 2, . . . , n :

`(vijvi(j+1)) = `(uivij) = a, for j = 1, 2, . . . ,m

end for

This completes the proof.

Theorem 3.2.17. Cn � Cm ∈ V0 for all m ≥ 3 and n ≥ 3.

Proof. Let V (Cn) = {u1, u2, . . . , un} and V (Cm) = {v1, v2, . . . , vm}. We consider the following

cases:

Case 1: Suppose n and m are even. Define ` : E(Cn � Cm)→ V4 \ {0} by

`(uiui+1) = a for i = 1, 2, . . . , n,

`(vivi+1) =

{
b for i = 1, 3, . . . ,m− 1,

c for i = 2, 4, . . . ,m.

For j = 1, 2, . . . , n :

`(ujvi) = a for i = 1, 2, . . . ,m.

end for

Obviously ` is a zero sum V4-magic labeling of Cn � Cm.

Case 2: Suppose n is even and m is odd: Define ` : E(Cn � Cm)→ V4 \ {0} by

`(ujuj+1) = a for j = 1, 2, . . . , n,

`(vivi+1) =


b for i = 1, 3, . . . ,m− 2,

c for i = 2, 4, . . . ,m− 1,

a for i = m.

For j = 1, 2, . . . , n :

`(ujvi) = a for i = 2, . . . ,m− 1,

`(ujvm) = b, `(ujv1) = c.

end for

Then we have ` is a zero sum V4-magic labeling of Cn � Cm.

`+(uj) = a+ a+ (m− 2)a+ b+ c = 0, for j = 1, 2, . . . , n,

`+(vi) = a+ b+ c = 0, for i = 1, 2, . . . ,m.
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3.2. Cycle Related Graphs

Case 3: Suppose m and n are odd. In this case the labeling is exactly similar to Case 2.

Case 4: Suppose n is odd and m is even. In this case the labeling is exactly similar to Case

1.

This completes the proof.

Theorem 3.2.18. If n(m+ 1) is even, then Cn � Cm ∈ Va,0.

Proof. Proof follows from theorems 3.2.16 and 3.2.17.

Theorem 3.2.19. Cn �Km ∈ Va if and only if n(m+ 1) is even.

Proof. Observe that Cn�Km has n+mn vertices. If Cn�Km ∈ Va, then we have (m+1)na = 0.

This implies that n(m+ 1) is even. We consider 3 cases:

Let the vertices of Cn be u1, u2, . . . , un. We denote the jth copy of Km by Kj
m. Let the vertices

of Kj
m be {vj,1, vj,2, . . . , vj,m}.

Case 1: Suppose n is even and m is odd. In this case label all the edges of Kj
m by a. Obviously,

this is an a-sum V4-magic labeling of Cn �Km.

Case 2: Suppose n is even and m is even. In this case, first we label all edges of Kj
m by b,

j = 1, 2, . . . , n. Next, label all edges of Cn by b, c, b, c, . . . consecutively. Finally, label all

edges uivj,r by c for i = 1, 2, . . . , n; j = 1, 2, . . . , n; r = 1, 2, . . . ,m. Obviously, this is an

a-sum V4-magic labeling of Cn �Km.

Case 3: Suppose n and m are odd. In this case, first we label all edges of Kj
m by b, j =

1, 2, . . . , n. Next, label all edges of Cn by a. Finally, label all edges uivj,r by a for

i = 1, 2, . . . , n; j = 1, 2, . . . , n; r = 1, 2, . . . ,m. Obviously, this is an a-sum V4-magic

labeling of Cn �Km.

This completes the proof.

Theorem 3.2.20. Cn�Km ∈ Va if and only if n(m+1) is even, where Km is the complement

of the complete graph with m vertices.

Proof. Note that the graph Cn �Km has n(m + 1) vertices. If Cn �Km ∈ Va, then we have

n(m + 1) is even. Conversely, assume that n(m + 1) is even. Consider n copies of Km. Let

Km
j

denotes the jth copy of Km. Let

V (Cn) = {u1, u2, . . . , un},

V (Km
j
) = {vj,1, vj,2, . . . , vj,m}, j = 1, 2, . . . , n.

We consider 3 cases:
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3.2. Cycle Related Graphs

Case 1: Suppose n is even and m is odd. Define ` : V (Cn �Km)→ V4 \ {0} by

For i = 1, 2, . . . , n :

`(uivj,r) = a, j = 1, 2, . . . , n; r = 1, 2, . . . ,m

`(uiui+1) = a

end for

Then, we have ` is an a-sum V4-magic labeling of Cn �Km.

Case 2: Suppose n and m are even. Define ` : V (Cn �Km)→ V4 \ {0} by

`(uiui+1) =

{
b, for i = 1, 3, . . . , n− 1,

c, for i = 2, 4, . . . , n.

For i = 1, 2, . . . , n :

`(uivj,r) = a, j = 1, 2, . . . , n; r = 1, 2, . . . ,m

end for

Then, we have ` is an a-sum V4-magic labeling of Cn �Km.

Case 3: Suppose n and m are odd. In this case, the labeling is exactly similar to case 1.

This completes the proof.

Theorem 3.2.21. Cn �Km /∈ V0 for all m and n.

Proof. Since it has pendant edges, Cn �Km /∈ V0 for all m and n.

Theorem 3.2.22. If n(m+ 1) is even, then Cn �Km ∈ Va,0.

Proof. Proof follows from theorems 3.2.20 and 3.2.21.

Theorem 3.2.23. Cm � Cn ∈ Va if and only if m+ n is odd.

Proof. Let the vertices of Cm and Cn be respectively, u1, u2, . . . , um and v1, v2, . . . , vn. Assume

that u1 and v1 are identified with a new vertex w. Then we have,
∑m

i=2 `
+(ui)+

∑n
i=2 `

+(vi)+

`+(w) = 0. This implies that (m+ n) is odd.

Conversely, assume that m+ n is odd. Then we consider two cases:

Case 1: Suppose m is even and n is odd. Define a mapping ` : E(Cm � Cn)→ V4 \ {0} by

`(uiui+1) =

{
b for i = 1, 3, . . . ,m− 1,

c for i = 2, 4, . . . ,m,
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3.2. Cycle Related Graphs

`(vivi+1) =

{
c for i = 1, 3, . . . , n,

b for i = 2, 4, . . . , n− 1.

Clearly ` is an a-sum magic labeling of Cm � Cn.

Case 2: Suppose m is odd and n is even. The remaining part is exactly similar to Case 1.

This completes the proof.

Theorem 3.2.24. �[Cn]m ∈ Va if and only if m is odd and n is even.

Proof. Observe that �[Cn]m has mn −m + 1 vertices. If �[Cn]m ∈ Va, then we have [m(n −
1) + 1]a = 0. This implies that m(n− 1) is odd. Consequently, m is odd and n is even.

Conversely, assume that n is even and m is odd. Consider m copies of Cn. Let the vertices

of the ith cycle Ci
n be (ui1, u

i
2, . . . , u

i
n, u

i
1). First, consider the pairs (C1

n, u
1
1) and (C2

n, u
2
1) and

construct G1 = (C1
n, u

1
1)�(C2

n, u
2
1). Next consider the pairs (G1, u

2
2) and (C3

n, u
3
1) and construct

G2 = (G1, u
2
2) � (C3

n, u
3
1). Proceeding like this, we finally arrive at Gm−1 = (Gm−2, u

m−1
2 ) �

(Cm
n , u

m
1 ). We need to show that G = G1 �G2 � · · · �Gm−1 ∈ Va. We label the edges of G by

the following table:

i\edge ui1u
i
2 ui2u

i
3 ui3u

i
4 ui4u

i
5 ui5u

i
6 ui6u

i
7 . . . uin−1u

i
n uinu

i
1

1 b c b c b c . . . b c

2 b b c b c b . . . c b

3 b c b c b c . . . b c

4 b b c b c b . . . c b
...

...
...

...
...

...
... . . .

...
...

m b c b c b c . . . b c

One can easily verify that this is an a-sum V4-magic labeling ofG. This completes the proof.

Theorem 3.2.25. Cm � Cn ∈ V0 for all m and n.

Proof. Label all the edges by a, we obtain `+ ≡ 0.

Theorem 3.2.26. If m+ n is odd, then Cm � Cn ∈ Va,0.

Proof. Proof follows from 3.2.23 and 3.2.25.

Theorem 3.2.27. �Cn ∈ V0.

Proof. If we label all edges of �Cn by a, we obtain a zero sum V4-magic labeling of �Cn.
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3.3. Wheel Related Graphs

3.3 Wheel Related Graphs

Theorem 3.3.1. Wn ∈ Va if and only if n is odd.

Proof. Suppose Wn admits an a- sum V4-magic labeling. Then by lemma 3.2.1, we have∑n
i=1 `

+(ui) = `+(u) which shows that na = a, a 6= 0. This implies that n is odd.

Conversely, assume that n is odd. We will prove that Wn admits an a-sum V4-magic

labeling. Let ` : E(Wn)→ V4 \ {0} be a labeling of Wn such that `(uui) = a for all i . Since n

is odd,
∑n

i=1 `(uui) = a. Thus `+(u) = a. Note that `(uiui+1) ∈ V4 for i = 1, 2, . . . , n, where

un+1 = u1. Therefore, 2
∑n

i=1 `(uiui+1) = 0. This implies that
∑n

i=1 `(uiui+1) = 0, a, b or c.

Without loss of generality assume that
∑n

i=1 `(uiui+1) = 0. The other cases are similar. Note

that
∑n

i=1 `(uiui+1) = 0 can be written as:

`(u1u2) +

n∑
i=2

`(uiui+1) = 0. (3.1)

Let us take `(u1u2) = a. One can assign b or c to `(u1u2) instead of a. If `(u1u2) = a, the

second term in equation (3.1) can be taken as a. That is,

n∑
i=2

`(uiui+1) = a. (3.2)

Note that equation (3.2) can be written as:

`(u2u3) +

n∑
i=3

`(uiui+1) = a. (3.3)

For an a-sum V4-magic graph, we need

`(u1u2) + `(u2u3) + `(uu2) = a.

This equation implies that `(u2u3) = a. Hence `+(u2) = a. From equation (3.3), we have∑n
i=3 `(uiui+1) = 0. That is,

n∑
i=3

`(uiui+1) = 0 (3.4)

Again, equation (3.4) can be written as:

`(u3u4) +

n∑
i=4

`(uiui+1) = 0. (3.5)

For an a-sum V4-magic graph, we need

`(u3u4) + `(uu3) + `(u2u3) = a
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This implies that `(u3u4) = a. Hence `+(u3) = a, If we continue this process we finally arrive

at `(unu1) = a and `+(u1) = a. Thus ` is an a-sum V4-magic labeling of Wn.

A step by step procedure for finding an a-sum magic map for Wn, when n is odd is given

below:

1. For i = 1, 2, . . ., set `(uui) = a or b or c.

2. Consider the equation
∑n

i=1 `(uiui+1) = 0. Assume that `(uui) = a.

3. Split 0 into two parts. We have the following possibilities:

a+ a = 0, b+ b = 0, c+ c = 0

4. Consider the first sum a+ a = 0 and take `(u1u2) as a. Then
∑n

i=2 `(uiui+1) = a. One

can consider the other two cases also.

5. Split the summation
∑n

i=2 `(uiui+1) = a in the following form

`(u2u3) +

n∑
i=3

`(uiui+1) = a.

Find the value of `(u2u3) from the following equation:

`(u1u2) + `(uu2) + `(u2u3) = a.

6. Continue this processes up to the (n−1)th step. Finally the value of `(unu1) is determined

by the equation:

`(un−1un) + `(uun) + `(u1un) = a

Observe that a-sum V4-magic labeling of Wn is not unique. The following is another procedure

for obtaining an a-sum V4-magic labeling of Wn.

(1) Consider the equation
n∑

i=1

`(uiui+1) = 0, a, b or c. (3.6)

Without loss of generality assume that

n∑
i=1

`(uiui+1) = 0. (3.7)

The equation (3.7) can be written as:

`(u1u2) +

n∑
i=2

`(uiui+1) = 0. (3.8)

27
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Assign a or b or c to `(u1u2). Let us assign a to `(u1u2). Then from equation (3.8) one

obtain,
n∑

i=2

`(uiui+1) = a. (3.9)

Equation (3.9) can be written as:

`(u2u3) +

n∑
i=3

`(uiui+1) = a. (3.10)

Assign any value to `(u2u3) from the set {a, b, c}. Let us assume that `(u2u3) = b.

Choose `(uu2) such that

`(u1u2) + `(uu2) + `(u2u3) = a. (3.11)

Hence we have `+(u2) = a.

(2) From equation (3.9), we have
n∑

i=3

`(uiui+1) = c (3.12)

Applying the same procedure as explained above, one obtain:

`+(u3) = a.

(3) Continue the above processes. Finally, we obtain `+(u1) = a.

(4) Since ` is a labeling of Wn, by lemma 3.2.1, we have

`+(u) =

n∑
i=1

`+(ui) = na

Since n is odd, we have na = a. Therefore, we have `+(u) = a.

Theorem 3.3.2. Wn ∈ V0, if n is odd.

Proof. Suppose n is odd. Define ` : E(Wn)→ V4 \ {0} by

`(uui) =


a, for i = 1, 2, . . . , n− 2,

c, for i = n− 1,

b, for i = n.

`(uiui+1) =


b, for i = 1, 3, . . . , n− 2

c, for i = 2, 4, . . . , n− 3

a, for i = n− 1

c, for i = n.

Obviously ` is a zero sum V4-magic labeling of Wn.
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Theorem 3.3.3. Wn ∈ V0, if n is even

Proof. Let ` : E(Wn)→ V4 \{0} be a labeling of Wn. Then 2
∑n

i=1 `(uiui+1) = 0. This implies

that
∑n

i=1 `(uiui+1) = 0, a, b or c. Without loss of generality assume that

n∑
i=1

`(uiui+1) = 0. (3.13)

Rest of the proof is exactly similar to the algorithm for finding the a-sum V4-magic labeling of

Wn explained above subject to the condition that no element will repeat consecutively on the

outer circle of Wn.

Theorem 3.3.4. If n ≡ 0(mod 3), then Wn admits a zero sum V4-magic labeling.

Proof. Define ` : E(Wn)→ V4 \ {0} as follows:

`(uiui+1) =


b, for i = 1, 4, 7, . . . , n− 2,

c, for i = 2, 5, 8, . . . , n− 1,

a, for i = 3, 6, 9, . . . , n.

`(uui) =


c, for i = 1, 4, 7, . . . , n− 2,

a, for i = 2, 5, 8, . . . , n− 1,

b, for i = 3, 6, 9, . . . , n.

Obviously ` is a zero sum magic labeling of Wn.

Theorem 3.3.5. If Wn is a-sum V4-magic and if k is odd, then Wnk is a-sum V4-magic.

Proof. Assume that Wn is a- sum V4 magic. Then by theorem 3.3.1, we have n is odd. Since k

is odd this implies that nk is odd. Hence theorem 3.3.1 tells us that Wnk is a-sum V4 magic.

Next, we will explain a procedure for obtaining an a-sum V4-magic labeling Wnk if an a-sum

V4-magic labeling of Wn is known.

Let Cn,1 : v1, v2, v3, . . . , vn, v1 and v be the center vertex of Wn. Let Cnk,1 : u1, u2, . . . , unk, u1

and u be the center vertex of Wnk,1. Let ` : E(Wn)→ V4 \ {0} be an a-sum V4-magic labeling

of Wn. Whenever m ≡ i(mod n), define a function `′ : E(Wnk)→ V4 \ {0} by

`′(uum) = `(vvi), for m ≡ i(mod n)

`′(umum+1) = `(vivi+1), for m ≡ i(mod n).

If `′+ is the induced vertex labeling of Wnk, then `′+(u) = k`+(v) = ka = a and

`′+(ui) = `′(um−1um) + `′(uum) + `′(umum+1)

= `(u(m−1)(mod n)um(mod n)) + `(uum(mod n)) + `(um(mod n)u(m+1)(mod n)) = a.

Hence `′ is an a-sum V4-magic labeling of Wnk.
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Figure 3.6: An m-level Wheel Graph: Wn,m

Theorem 3.3.6. If Wn is zero-sum V4 magic, so is Wkn for every k ≥ 2.

Let Cn,1, . . . , Cn,m represent the cycles of Wn,m at levels 1, . . . ,m, respectively, as shown

in figure 3.6. Let u1,j , u2,j , . . . , un,j , u1,j are the vertices of the cycle Cn,j and u is the central

vertex of Wn,m.

Theorem 3.3.7. Wn,m ∈ Va if and only if both m and n are odd.

Proof. If Wn,m ∈ Va, then by lemma 3.2.1, we have (mn)a = a. This implies that mn is odd

or equivalently m and n are both odd.

Conversely, assume that both m and n are odd. If we label all the edges of Wn,m by a,

then obviously `+(u) = a and `+(uij) = a.

Theorem 3.3.8. Wn,m ∈ V0 for all m and n.

Proof. We consider the following cases.

Case 1. m is odd and n is even. Define a labeling ` : Wn,m → V4 \ {0} by:

`(uuij) = a

`(uiju(i+1)j) =

{
b, i = 1, 3, . . . , n− 1

c, i = 2, 4, . . . , n

Case 2. m is even and n is odd.

Define a labeling ` : Wn,m → V4 \ {0} by:

`(uuij) = a, i = 1, 4, . . . , n
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`(uu2j) = b, `(uu3j) = c

`(u2ju3j) = a

`(uiju(i+1)j) =

{
c, i = 1, 4, 6, . . . , n− 1

b, i = 3, 5, 7, . . . , n.

Case 3. m and n are even: The proof is similar to Case 1.

Case 4. m and n are odd: The proof is similar to Case 2.

This completes the proof.

Theorem 3.3.9. If Wn,m ∈ Va, then Wkn,m ∈ Va if k is odd.

Proof. Wn,m ∈ Va implies that mn is odd. This implies that both m and n are odd. Now,

Wkn,m ∈ Va if mnk is odd. This implies that k is odd.

Definition 3.3.10. A subdivided wheel graph denoted by SWn is obtained by dividing each

spoke uui. Similarly, we can define the subdivided m-level graph SWn,m.

Theorem 3.3.11. SWn /∈ Va for any n ≥ 3.

Proof. Assume that SWn admits an a-sum V4-magic labeling. Then by lemma 3.2.1, we have

na+ na = a. This implies that a = 0. The proof follows.

Theorem 3.3.12. SWn ∈ V0 for any n ≥ 3.

Proof. We consider two cases:

Case 1: If n is even, define ` : E(SWn)→ V4 \ {0} as follows:

`(uvi) = a, for i = 1, 2, 3, . . . , n,

`(viui) = a, for i = 1, 2, 3, . . . , n,

`(uiu(i+1)) =

{
b, for i = 1, 3, . . . , n− 1,

c, for i = 2, 4, . . . , n.

Obviously `+(u) = `+(ui) = `+(vi) = 0. Hence SWn ∈ V0 if n is even.

Case 2: If n is odd, define ` : E(SWn)→ V4 \ {0} as follows:

`(uvi) =


a, for i = 1, 2, 3, . . . , n− 2,

b, for i = n− 1,

c, for i = n.

`(viui) =


a, for i = 1, 2, . . . , n− 2,

b, for i = n− 1,

c, for i = n.
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`(uiu(i+1)) =


b, for i = 2, 4, . . . , n− 3,

c, for i = 1, 3, . . . , n− 2,

a, for i = n− 1

b, for i = n.

Observe that `+(u) = `+(ui) = `+(vi) = 0. Hence SWn ∈ V0 if n is odd.

This completes the proof.

Let u1,j , u2,j , . . . , un,j , u1,j are the vertices of the cycle Cn,j , v1,j , v2,j , . . . , vn,j are the sub-

divisions corresponding to the edges uui,j and u is the central vertex of SWn,m.

Theorem 3.3.13. SWn,m /∈ Va for any n and m.

Proof. By lemma 3.2.1, we have (2mn)a = a which is impossible. Hence the proof follows.

Theorem 3.3.14. SWn,m ∈ V0 for any n and m.

Proof. We consider two cases:

Case 1: If n is even, for j = 1, 2, . . . ,m, define ` : E(SWn,m)→ V4 \ {0} as follows:

`(uvi,j) = a for i = 1, 2, 3, . . . , n,

`(vi,jui,j) = a for i = 1, 2, 3, . . . , n,

`(ui,jui+1,j) =

{
b, for i = 1, 3, . . . , n− 1,

c, for i = 2, 4, . . . , n.

Obviously ` is a zero-sum magic labeling of SWn,m.

Case 2: If n is odd, for j = 1, 2, . . . ,m, define ` : E(SWn,m)→ V4 \ {0} as follows:

`(uvi,j) =


a, for i = 1, 2, 3, . . . , n− 2,

b, for i = n− 1

c, for i = n.

`(vi,jui,j) =


a, for i = 1, 2, 3, . . . , n− 2,

b, for i = n− 1,

c, for i = n.

`(ui,jui+1,j) =


c, for i = 1, 3, . . . , n− 2

b, for i = 2, 4, . . . , n− 3

a, for i = n− 1

b, for i = n.

Obviously ` is a zero-sum magic labeling of SWn,m.
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This completes the proof.

Theorem 3.3.15. Hn /∈ Va for any n.

Proof. By lemma 3.2.1 we have,
∑n

i=1 `
+(ui) +

∑n
i=1 `

+(vi) = `+(u) where u1, u2, . . . , un are

the vertices of the cycle Cn,1, v1, v2, . . . , vn are the pendant vertices corresponding to the spokes

uui and u is the central vertex of Wn. Suppose Hn ∈ Va for some n. This implies na+na = a

which holds if and only if a = 0. Hence Hn /∈ Va for any n.

Theorem 3.3.16. Hn /∈ V0 for any n.

Proof. Since it has pendant edges, Hn /∈ V0 for any n.

Theorem 3.3.17. W (2, n) ∈ Va if and only if n is odd.

Proof. Assume thatW (2, n) ∈ Va. Then from lemma 3.2.1, we have
∑n

i=1 `
+(ui)+

∑n
i=1 `

+(vi)+∑n
i=1 `

+(wi) = `+(u) where u1, u2, . . . , un are the vertices of the cycle Cn,1, v1, v2, . . . , vn are

the vertices of Cn,2, w1, w2, . . . , wn are the pendant vertices and u is the centre of W (2, n).

Thus we get na+ na+ na = a. This implies that na = a. This equation holds if and only if n

is odd.

Conversely, assume that n is odd. Define a mapping ` : E(W (2, n))→ V4 \ {0} by

`(uui) = a for i = 1, 2, . . . , n,

`(uiui+1) =


b, for i = 1, 3, . . . , n− 2,

c, for i = 2, 4, . . . , n− 1,

a, for i = n.

`(vivi+1) =


b, for i = 1, 3, . . . , n− 2,

c, for i = 2, 4, . . . , n− 1,

a, for i = n.

`(uivi) =


c, for i = 1,

a, for i = 2, 3, . . . , n− 1,

b, for i = n.

`(viwi) = a.

Obviously, `+(u) = a and `+(ui) = `+(vi) = `(wi) = a for i = 1, 2, . . . , n.

An a-sum V4-magic labeling is shown in figure 3.7.

Theorem 3.3.18. W (2, n) /∈ V0 for any n.

Proof. Since it has pendant edges, W (2, n) /∈ V0 for any n.

Theorem 3.3.19. W (t, n) ∈ Va if and only if n is odd and t is even.
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Figure 3.7: An a-sum V4-magic labeling of W (2, n)

Proof. Assume that W (t, n) ∈ Va. Then by lemma 3.2.1, we have
∑t

i=1

∑n
i=1 `

+(ui,j) +∑n
i=1 `

+(vi) = `+(u) where u1,j , u2,j , . . . , un,j are the vertices of the cycle Cn,j , j = 1, 2, . . . , t

and v1, v2, . . . , vn are the pendant vertices and u is the hub of W (2, n). That is n(t+ 1)a = a.

This implies that n is odd and t is even. Conversely, assume that n is odd and t is even. Define

a labeling ` : E(W (t, n))→ V4 \ {0} by:

For i = 1, 2, . . . , n do:

`(uui,1) = `(ui,tvi) = a

`(ui,jui,(j+1)) = a, for j = 1, 2, . . . , t

end for

For j = 1, 2, . . . , t do:

`(uiju(i+1)j) =


b, i = 1, 3, . . . , n− 2

c, i = 2, 4, . . . , n− 1

a, i = n.

end for

With this labeling W (t, n) ∈ Va for all n and t.

Theorem 3.3.20. W (t, n) /∈ V0 for any n and any t.

Proof. Since it has pendant edges, W (t, n) /∈ V0 for any n and any t.

Theorem 3.3.21. W0(t, n) ∈ Va if and only if n(t+ 1) is even.
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Proof. First, assume that W0(t, n) ∈ Va. Then by lemma 3.2.1, we have nta + na = 0. This

implies that n(t+ 1) is even.

Conversely, assume that n(t+ 1) is even. We consider the following cases:

Case 1: If n and t are even, define ` : E(W0(t, n))→ V4 \ {0} as follows:

`(ui,1u(i+1),1) = a for i = 1, 2, 3, . . . , n

For j = 2, 3, . . . , t :

`(ui,jui+1,j) =

{
c, for i = 1, 3, . . . , n− 1

b, for i = 2, 4, . . . , n

end for

For j = 1, 2, . . . , n :

`(ui,jui,j+1) = a for i = 1, 2, . . . , t− 1

end for

`(ui,tvi) = a for i = 1, 2, 3, 4, . . . , n.

Case 2: Assume that n is even and t is odd. In this case the labeling is exactly similar to

Case 1.

Case 3: If n is odd and t is odd, define ` : E(W0(t, n))→ V4 \ {0} as follows:

`(ui,1u(i+1),1) = a for i = 1, 2, 3, . . . , n

For j = 2, 3, . . . , t :

`(ui,jui+1,j) =

{
b, for i = 1, 3, . . . , n− 2

c, for i = 2, 4, . . . , n− 1.

end for

`(un,ju1,j) = a for j = 1, 2, . . . , t

`(ui,tvi) = a, for i = 1, 2, . . . , n

For k = 2, 3, . . . , n− 1 :

`(uk,juk,j+1) = a, for j = 1, 2, 3, . . . , t− 1,

end for

`(u1,ju1,j+1) =

{
a, for j = 1, 3, . . . , t− 2,

c, for j = 2, 4, . . . , t− 1,

`(un,jun,j+1) =

{
a, for j = 1, 3, . . . , t− 2,

b, for j = 2, 4, . . . , t− 1.

Obviously `+(ui,j) = a and `+(vi) = a.
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Theorem 3.3.22. W0(t, n) /∈ V0 for any n and t.

Proof. Since it has pendant edges, W0(t, n) /∈ V0 for any n and t.

Theorem 3.3.23. H(2, n) /∈ Va for any n.

Proof. Assume that H(2, n) ∈ Va. Then by lemma 3.2.1, we have
∑n

i=1 `
+(ui)+

∑n
i=1 `

+(vi) =

`+(w) where u1, u2, . . . , un are the vertices of the cycle Cn,1, v1, v2, . . . , vn are the vertices of

the cycle Cn,2 and w is the central vertex. From this we get na + na = a. This implies that

a = 0. This is a contradiction.

Theorem 3.3.24. H(2, n) ∈ V0 for all n.

Proof. Case 1: Assume that n is even. Define a labeling ` : E(H(2, n))→ V4 \ {0} as follows:

For i = 1, 2, . . . , n,

`(uiw) = `(uiui+1) = `(uivi) = a

end for

`(vivi+1) =

{
b, for i = 1, 3, . . . , n− 1,

c, for i = 2, 4, . . . , n.

Obviously, ` is a zero- sum V4-magic labeling of H(2, n).

Case 2: Assume that n is odd. Define a labeling ` : E(H(2, n))→ V4 \ {0} as follows:

`(u1w) = a, `(u2w) = b, `(u3w) = c,

`(uiw) = a, for i = 4, 5, . . . , n,

`(uiui+1) = a for i = 1, 2, . . . , n,

`(u1v1) = a, `(u2v2) = b, `(u3v3) = c,

`(uivi) = a, for i = 4, 5, . . . , n,

`(v1v2) = c, `(v2v3) = a, `(v3v4) = b,

`(vivi+1) = c for i = 4, 6, . . . , n− 1,

`(vivi+1) = b for i = 5, 7, . . . , n.

One can easily verify that ` is a zero sum magic labeling of H(2, n).

Theorem 3.3.25. H(t, n) ∈ Va if and only if both n and t are odd.

Proof. First, assume that H(t, n) ∈ Va. Then by lemma 3.2.1, we have
∑t

j=1

∑n
i=1 `

+(ui,j) =

`+(w) where u1,j , u2,j , . . . , un,j are the vertices of the cycle Cn,j , and w is the central vertex.
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Hence we get (nt+ 1)a = 0. This implies that both n and t are odd. Conversely, assume that

both n and t are odd. Define ` : E(H(t, n))→ V4 \ {0} by:

`(u1,1w) = a,

`(ui,1w) = b, for i = 2, 3, . . . , n,

For j = 1, 2, . . . , t− 1 :

`(ui,jui+1,j) =

{
c, for i = 1, 3, . . . , n− 2,

b, for i = 2, 4, . . . , n− 1, n

end for

`(ui,tui+1,t) =

{
b, for i = 1, 3, . . . , n,

a, for i = 2, 4, . . . , n− 1

For j = 1, 2, . . . , t− 1 :

`(u1,ju1,j+1) = a,

`(ui,jui,j+1) = b, for i = 2, 3, . . . , n− 1,

end for

`(un,jun,j+1) =

{
c, for j = 1, 3, . . . , t− 2,

b, for j = 2, 4, . . . , t− 1.

Obviously ` is an a-sum magic labeling of H(t, n).

Theorem 3.3.26. H(t, n) ∈ V0 for all n and t.

Proof. Case 1: Assume that n is even. Define ` : E(H(t, n))→ V4 \ {0} by:

For i = 1, 2, . . . , n :

`(ui,1w) = a,

`(ui,jui,j+1) = `(ui,jui+1,j) = a, for j = 1, 2, . . . , t− 1,

end for

`(ui,tui+1,t) =

{
b, for i = 1, 3, . . . , n− 1,

c, for i = 2, 4, . . . , n.

Obviously, ` is a zero sum V4-magic labeling of E(H(t, n).

Case 2: Assume that n is odd. Define ` : E(H(t, n))→ V4 \ {0} by:

`(u1,1w) = a, `(u2,1w) = b `(u3,1w) = c

`(ui,1w) = a, for i = 4, 5, . . . , n,

For j = 1, 2, . . . , t− 1 :

`(ui,jui+1,j) = a, for i = 1, 2, . . . , n,

`(u1,ju1,j+1) = a, `(u2,ju2,j+1) = b, `(u3,ju3,j+1) = c,
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`(ui,jui,j+1) = a, for i = 4, 5, , . . . , n,

end for

`(u1,tu2,t) = c, `(u2,tu3,t) = a, `(u3,tu4,t) = b,

`(ui,tui+1,t) = c, for i = 4, 6, , . . . , n− 1,

`(ui,tui+1,t) = b, for i = 5, 7, , . . . , n.

Obviously ` is a zero sum magic labeling of E(H(t, n).

Theorem 3.3.27. H(t, n) ∈ Va,0 if and only if both n and t are odd.

Proof. Proof follows from theorems 3.3.25 amd 3.3.26.

Theorem 3.3.28. Fln /∈ Va for any n.

Proof. Suppose Fln ∈ Va. Then by lemma 3.2.1, we have
∑n

i=1 `
+(ui) +

∑n
i=1 `

+(vi) = `+(w)

where ui are the vertices on the cycle, vi are the corresponding vertices outside the cycle

and w is the central vertex. Thus we get na + na = a. This implies that a = 0 which is a

contradiction.

Theorem 3.3.29. Fln ∈ V0 for all n.

Proof. If we label all the edges by a, we obtain that, `+(ui) = `+(vi) = `+(w) = 0.

Corollary 3.3.30. Fln /∈ Va,0 for any n.

Proof. The proof follows from theorems 3.3.28 and 3.3.29.
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Chapter 4
V4-Magic Labelings of Shell Related

Graphs

In the first section of this chapter, definition of some shell related graphs

are provided. In the second section of this chapter, we discuss some shell

related V4 magic graphs. In the last section of this chapter we discuss

some multiple shell related V4 magic graphs.

4.1 Introduction

For positive integers n, k, 1 ≤ k ≤ n− 3, H(n, k) is used to denote the cycle Cn with k chords

sharing a common endpoint called the apex. In general H(n, k) represents a family of graphs.

For certain choices of n and k, the family H(n, k) may be singleton. For example, when

k = n− 3, the family H(n, n− 3) is singleton, called a shell (see figure 4.1) [10]. Observe that

the shell H(n, n− 3) is the same as the fan Fn−1 = Pn−1 +K1. For, 2 ≤ p ≤ n− r, let Cn(p, r)

denote cycle Cn : (v0, v1, . . . , vn−1, v0) with consecutive r chords v0vp, v0vp+1, . . . , v0vp+r−1.

Definition 4.1.1. (see [14]) An umbrella graph U(m,n) is defined to be a graph obtained by

joining a path Pn with the apex of a shell H(m,m− 3).

Definition 4.1.2. (see [14]) An extended umbrella graph U(m,n, k) is a graph obtained by

identifying the pendant vertex of the umbrella U(m,n) with the center(apex) of the star K1,k.

Definition 4.1.3. (see [25]) A multiple shell MS(nt11 , n
t2
2 , . . . , n

tr
r ) is a graph formed by ti

shells of width ni each, 1 ≤ i ≤ r, which have a common apex.

Thus a multiple shell is a one point union of many shells. Observe that the multiple shell

MS(nt11 , n
t2
2 , . . . , n

tr
r ) has

∑n
i=1(ni−1)ti+1 vertices. If there are k shells with a common apex,

then it is called a k- tuple shell.
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Figure 4.1: The Shell graph H(n, n− 3)

Definition 4.1.4. (see [25]) A multiple shell is said to be balanced if it is of the form MS(pt)

or of the form MS(pt, (p+ 1)s).

4.2 Shell Related Graphs

Theorem 4.2.1. H(n, n− 3) ∈ Va if and only if n is even.

Proof. Assume that H(n, n− 3) ∈ Va. Then `+(ui) = a for i = 0, 1, . . . , n− 1. Then by lemma

3.2.1, we have
n−1∑
i=0

`+(ui) = 0. (4.1)

Thus we get na = 0. This implies that n is even.

Conversely, assume that n is even. We need to show that H(n, n − 3) ∈ Va. Let the

vertices of H(n, n− 3) be v0, v1, . . . , vn−1. Assume that v0 be the apex of H(n, n− 3). Define

` : E(H(n, n− 3))→ V4 \ {0} by:

`(v0vi) =

c, for i = 1, n− 1,

a, for i = 2, 3, . . . , n− 2,

`(vivi+1) = b, for i = 1, 2, 3, . . . , n− 2.
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Then we have

`+(vi) =


c+ c+ (n− 3)a = a, for i = 0,

b+ c = a, for i = 1, n− 1,

b+ b+ a = a, for i = 2, 3, . . . , n− 2.

This completes the proof.

Theorem 4.2.2. (see [28]) H(n, n− 3) ∈ V0 if n is even.

Theorem 4.2.3. If n is even, H(n, n− 3) ∈ Va,0.

Proof. From theorem 4.2.1 we have H(n, n − 3) ∈ Va if and only if n is even. From theorem

4.2.2 it follows that H(n, n− 3) ∈ V0 if n is even. Combining this the proof follows.

Theorem 4.2.4. U(n,m) /∈ Va if m ≥ 2.

Proof. Since any graph with a path pendant of length at least two is non-magic, U(n,m) /∈ Va

if m ≥ 2.

Theorem 4.2.5. U(n, 1) ∈ Va if n is odd.

Proof. Let the vertices of U(n, 1) be {v0, v1, v2, . . . , vn−1, un}, where v0 is the apex ofH(n, n−3)

and un is the pendant vertex. Define ` : E(U(n, 1))→ V4 \ {0} by

`(v0vi) =

c, for i = 1, n− 1, n,

a, for i = 2, 3, . . . , n− 2,

`(vivi+1) = b, for i = 1, 2, 3, . . . , n− 2.

Then we have,

`+(vi) =


c+ c+ (n− 3)a+ a = a, for i = 0,

b+ c = a, for i = 1, n− 1, n,

b+ b+ a = a, for i = 2, 3, . . . , n− 2.

This completes the proof.

Theorem 4.2.6. U(m,n, k) /∈ Va if n ≥ 2.

Proof. Assume that n ≥ 2 and U(m,n, k) ∈ Va. Let v0 be the apex of H(m,m− 3) and un−1

be the apex of K1,k. Let V (H(m,m−3)) = {v0, v1, . . . , vm−1}, V (Pn) = {v0, u1, u2, . . . , un−1}
and V (K1,n) = {un−1, w1, w2, . . . , wk}. Since `+(v) = a for all v ∈ V (U(m,n, k)), we can

label all pendant vertices of U(m,n, k) by a. Assume that `(un−2un−1) = x, x ∈ V4 \ {0}.
Since `+(un−1) = a, ka + x = a. This implies that x = (k − 1)a. Hence, x = 0, if k is odd
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and x = a, if k is even. Observe that x = 0 is not admissible. Moreover, x = a implies that

`(un−3un−2) = 0. This is also not admissible. This completes the proof.

Theorem 4.2.7. If U(m, 1, k) ∈ Va then m+ k is odd.

Proof. Observe that U(m, 1, k) has m+k+ 1 vertices. If U(m, 1, k) ∈ Va, then by lemma 3.2.1

we have (m+ k + 1)a = 0. This implies that m+ k is odd.

Theorem 4.2.8. If m is odd and k is even, then U(m, 1, k) ∈ Va.

Proof. Let V (H(m,m − 3)) = {v0, v1, . . . , vm−1} and V (K1,k) = {u0, u1, . . . , uk}. Define

` : U(m, 1, k)→ V4 \ {0} by:

`(v0vi) =

c for i = 1,m− 1,

a, for i = 2, 3, . . . ,m− 2,

`(vivi+1) = b for i = 1, 2, 3, . . . ,m− 2,

`(v0u0) = a.

`(u0uj) = a for j = 1, 2, . . . , k.

Then we have,

`+(vi) =


c+ c+ (m− 3)a+ a = a, for i = 0,

b+ c = a, for i = 1, n− 1,

b+ b+ a = a, for i = 2, 3, . . . ,m− 2,

`+(ui) =

ka+ a = a for i = 0,

a, for i = 1, 2, 3, . . . , k.

This completes the proof.

Theorem 4.2.9. If m is even and k is odd, then U(m, 1, k) /∈ Va.

Proof. Label all the pendant edges of the star by a and label the edge v0u0 by x. If U(m, 1, k) ∈
Va, then ka + x = a. This implies that x = 0. This is a contradiction. The result now

follows.

Let B(t, n1, n2, . . . , nt) be the graph obtained by identifying each pendant vertex vi of the star

K1,t with apex of shells H(ni, ni − 3), i = 1, 2, . . . , t. Then we have the following:

Theorem 4.2.10. If B(t, n1, n2, . . . , nt) ∈ Va, then n1 + n2 + · · ·+ nt is odd.

Proof. Observe that B(t, n1, n2, . . . , nt) has n1 + n2 + · · · + nt + 1 vertices. So, we have by

lemma 3.2.1, (n1 + n2 + · · ·+ nt + 1)a = 0. This implies that n1 + n2 + · · ·+ nt is odd.
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Theorem 4.2.11. If n and t are odd then B(t, n, n, . . . , n) ∈ Va.

Proof. Let the vertex set of K1,t be {v0, v1, v2, . . . , vt}, where v0 is the apex. Consider t

copies of the shell H(n, n − 3). Let Hi(n, n − 3) be the ith copy of H(n, n − 3). Let the

vertex set of Hi(n, n − 3) be {vi, vi1, vi2, . . . , vin−1}, where vi is the apex. Define a labeling

` : E(B(t, n, n, . . . , n))→ V4 \ {0} by

`(v0vi) = a, for i = 1, 2, . . . , t,

For i = 1, 2, . . . , t :
`(viv

i
1) = c,

`(viv
i
n−1) = c,

`(vijv
i
j+1) = b, for j = 1, 2, . . . , n− 2,

`(viv
i
j) = a, for j = 2, 3, . . . , n− 2.

end for

Obviously ` is an a-sum magic labeling of B(t, n, n, . . . , n).

Let H(2n, n − 2) be the graph obtained by taking the cycle C2n : (v0, v1, . . . , v2n−1, v0) and

its chords v0v3, v0v5, . . . , v0v2n−3. Observe that H(2n, n − 2) has n − 2 chords. We have the

following theorem:

Theorem 4.2.12. H(2n, n− 2) ∈ Va for all n.

Proof. We consider two cases.

Case 1: Assume that n is even. Let n = 2t. Observe that in this case, the graph H(2n, n−2)

has 4t vertices. Let the vertex set of H(2n, n− 2) be {v0, v1, . . . , v4t−1}, where v0 is the

apex. For convenience, we denote the vertex v0 by v4t. Define ` : E(H(2n, n − 2)) →
V4 \ {0} by:

`(vi−1vi) =

c for i = 1, 4t− 1,

b for i = 2, 4t,

`(vi−1vi) = `(vivi+1) =

c for i = 3, 7, 11, . . . , 4t− 5,

b for i = 5, 9, 13, . . . , 4t− 3,

`(v0vi) = a for i = 3, 5, 7, . . . , 4t− 3.
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Obviously,

`+(vi) =


b+ c+ (2t− 2)a = a for i = 0,

b+ c = a, for i = 1, 2, 4, 6, . . . , 2t+ 4, 4t− 4, 4t− 2, 4t− 1,

c+ c+ a = a, for i = 3, 7, . . . , 4t− 5,

b+ b+ a = a, for i = 5, 9, . . . , 4t− 3.

Case 2: Assume that n is odd. Let n = 2t+ 1. In this case, the graph has 4t+ 2 vertices. Let

the vertex set of H(2n, n − 2) be {v0, v1, v2, . . . , v4t+2}. For convenience, we denote the

vertex v0 by v4t+2. Define ` : E(H(2n, n− 2))→ V4 \ {0} by:

`(vi−1vi) =

c for i = 1, 4t+ 2,

b for i = 2, 4t+ 1,

`(vi−1vi) = `(vivi+1) =

c for i = 3, 7, 11, . . . , 4t− 5, 4t− 1,

b for i = 5, 9, 13, . . . , 4t− 3,

`(v0vi) = a, for i = 3, 5, 9, . . . , 4t− 1.

Obviously,

`+(vi) =


c+ c+ (2t− 1)a = a, for i = 0,

b+ c = a, for i = 1, 2, 4, 6, . . . , 4t, 4t+ 1,

c+ c+ a = a, for i = 3, 7, . . . , 4t− 1,

b+ b+ a = a, for i = 5, 9, . . . , 4t− 3.

This completes the proof.

Theorem 4.2.13. H(2n, n− 2) ∈ V0 for all n.

Proof. We consider two cases.

Case 1: Suppose n is even. Let n = 2t. Let the vertex set ofH(2n, n−2) be {v0, v1, v2, . . . , v4t−1}.
Define ` : E(H(2n, n− 2))→ V4 \ {0} by:

`(vi−1vi) = `(vivi+1) =

c for i = 2, 6, 10, 14, . . . , 4t− 6, 4t− 2, 4t,

b for i = 4, 8, 12, . . . , 4t− 4,

`(v0vi) = a for i = 3, 5, 7, . . . , 4t− 3.
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where v4t = v0. Obviously,

`+(vi) =


c+ c+ (2t− 2)a = 0 for i = 0,

c+ c = 0, for i = 1, 2, 6, . . . , 4t− 2, 4t− 1,

a+ b+ c = 0, for i = 3, 5, 7, . . . , 4t− 3,

b+ b = 0, for i = 4, 8, 12, . . . , 4t− 4.

Case 2: Assume that n is odd. Let n = 2t + 1. In this case, the graph has 4t + 2 vertices.

Define ` : E(H(2n, n− 2))→ V4 \ {0} by:

`(vi−1vi) = `(vivi+1) =

c for i = 1, 2, 6, 10, 14, . . . , 4t− 2,

b for i = 4, 8, 12, . . . , 4t− 4, 4t, 4t+ 1,

`(v0vi) = a for i = 3, 5, 7, . . . , 4t− 1,

where v4t+2 = v0. Obviously,

`+(vi) =


b+ c+ (2t− 1)a = 0, for i = 0,

c+ c = 0, for i = 1, 2, 6, . . . , 4t− 2,

a+ b+ c = 0, for i = 3, 5, . . . , 4t− 1,

b+ b = 0, for i = 4, 8, . . . , 4t, 4t+ 1.

This completes the proof.

Theorem 4.2.14. H(2n, n− 2) ∈ Va,0.

Proof. From theorem 4.2.12 we have, H(2n, n− 2) ∈ Va for all n and from theorem 4.2.13 we

get, H(2n, n− 2) ∈ V0 for all n. Combining these results the proof follows.

Let H(2n, n− 1) be the graph obtained by taking the cycle C2n : (v0, v1, . . . , v2n−1, v0) and its

alternate chords v0v2, v0v4, . . . , v0v2n−2. Observe that H(2n, n− 1) has n− 1 chords. We have

the following theorem:

Theorem 4.2.15. H(2n, n− 1) ∈ Va for all n.

Proof. Case 1: Assume that n is even. Let n = 2t. Observe that in this case, the graph

H(2n, n− 1) has 4t vertices. Define ` : E(H(2n, n− 1))→ V4 \ {0} by:

`(vi−1vi) = `(vivi+1) =

c for i = 4, 8, 12, . . . , 4t− 4, 4t,

b for i = 2, 6, 10, . . . , 4t− 2,

`(v0vi) = a for i = 2, 4, 6, . . . , 4t− 2.
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Obviously,

`+(vi) =


c+ c+ (2t− 1)a = a, for i = 0,

b+ c = a, for i = 1, 3, 5, 7, . . . , 4t− 3, 4t− 1,

a+ b+ b = a, for i = 2, 6, . . . , 4t− 2,

c+ c+ a = a, for i = 4, 8, . . . , 4t− 4.

Case 2: Assume that n is odd. Let n = 2t + 1. In this case, the graph has 4t + 2 vertices.

Define ` : E(H(2n, n− 1))→ V4 \ {0} by:

`(vi−1vi) =

c for i = 1,

b for i = 4t+ 2,

`(vi−1vi) = `(vivi+1) =

c for i = 4, 8, 12, . . . , 4t− 4, 4t,

b for i = 2, 6, 10, . . . , 4t− 2,

`(v0vi) = a for i = 2, 4, 6, . . . , 4t,

where v4t = v0. Obviously,

`+(vi) =


b+ c+ (2t)a = a, for i = 0,

b+ c = a, for i = 1, 3, 5, 7, . . . , 4t− 1, 4t+ 1,

c+ c+ a = a, for i = 4, 8, . . . , 4t,

b+ b+ a = a, for i = 2, 6, . . . , 4t− 2.

This completes the proof.

Theorem 4.2.16. (see [28]) H(2n, n− 1) ∈ V0 for all n.

Theorem 4.2.17. H(2n, n− 1) ∈ Va,0 for all n.

Proof. From theorem 4.2.15 we have H(2n, n − 1) ∈ Va for all n and from theorem 4.2.16 it

follows that H(2n, n− 1) ∈ V0 for all n. Combining this the result follows.

Let H(4n+ 1, 2n) be the graph obtained by taking the cycle C4n+1 := (v0, v1, . . . , v4n, v0), the

consecutive middle chords v0v2n and v0v2n+1 and all alternate chords symmetrically placed

between the apex, that is, the chords:v0v2, v0v4, . . . , v0v2n−2; v0v2n+3, v0v2n+5, . . . , v0v4n−1.

Theorem 4.2.18. H(4n+ 1, 2n) /∈ Va.

Proof. Since the order of the graph H(4n+ 1, 2n) is odd, H(4n+ 1, 2n) /∈ Va.

Theorem 4.2.19. (see [28]) H(4n+ 1, 2n) ∈ V0.
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Let U(4n + 1, 2n, 1) be the graph obtained by identifying the apex of H(4n + 1, 2n) with a

vertex of K2. Then we have the following:

Theorem 4.2.20. U(4n+ 1, 2n, 1) ∈ Va for all n.

Proof. We consider two cases:

Case 1: Suppose n = 2t. Then U(4n + 1, 2n, 1) has 8t + 2 vertices. Let the vertex set

of H(4n + 1, 2n) be {v0, v1, v2, . . . , v8t} and let u be the pendant vertex. Define ` :

E(U(4n+ 1, 2n, 1))→ V4 \ {0} by

`(vi−1vi) = `(vivi+1) =

c for i = 2, 6, 10, . . . , 4t− 2, 4t+ 3, 4t+ 7, . . . , 8t− 1,

b for i = 4, 8, 10, . . . , 4t− 4, 4t, 4t+ 1, 4t+ 4, 4t+ 8, . . . , 8t+ 1

`(v0vi) = a for i = 2, 4, . . . , 4t, 4t+ 1, 4t+ 3, . . . , 8t− 1,

`(v0u) = a.

where v8t+1 = v0 and v8t+2 = v1. We have,

`+(vi) =


a+ b+ b+ 4ta = a for i = 0,

b+ c = a for i = 1, 3, 5, . . . , 4t− 1, 4t+ 2, 4t+ 4, . . . , 8t,

c+ c+ a = a for i = 2, 6, 10, . . . , 4t− 2, 4t+ 3, 4t+ 7, . . . , 8t− 1,

b+ b+ a = a for i = 4, 8, 10, . . . , 4t− 4, 4t, 4t+ 1, 4t+ 4, 4t+ 8, . . . , 8t− 3

Case 2: Suppose n = 2t+ 1. In this case U(4n+ 1, 2n, 1) has 8t+ 6 vertices. Let the vertex

set of H(4n + 1, 2n) be {v0, v1, . . . , , v8t+4} and let the pendant vertex be u. Define

` : E(U(4n+ 1, 2n, 1))→ V4 \ {0} by

`(vi−1vi) = `(vivi+1) =

b, for i = 2, 6, 10, . . . , 4t+ 2, 4t+ 3, 4t+ 7, . . . , 8t+ 3,

c, for i = 4, 8, 10, . . . , 4t− 4, 4t, 4t+ 5, 4t+ 9, . . . , 8t+ 5

where v8t+5 = v0 and v8t+6 = v1 and

`(v0vi) = a for i = 2, 4, . . . , 4t+ 2, 4t+ 3, 4t+ 5, . . . , 8t+ 3

`(v0u) = a.

We have,

`+(vi) =


a+ c+ c+ (4t+ 2)a = a for i = 0,

b+ c = a for i = 1, 3, . . . , 4t+ 1, 4t+ 6, 4t+ 8, . . . , 8t+ 4,

c+ c+ a = a for i = 4, 8, 10, . . . , 4t− 4, 4t, 4t+ 5, 4t+ 9, . . . , 8t+ 1,

b+ b+ a = a for i = 2, 6, 10, . . . , 4t+ 2, 4t+ 3, 4t+ 7, . . . , 8t+ 3.
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This completes the proof.

Let H(4n+3, 2n+2) denotes cycle C4n+3 := (v0, v1, . . . , v4n+2, v0), the four consecutive middle

chords v0v2n, v0v2n+1, v0v2n+2, v0v2n+3 and all alternate chords symmetrically placed between

the apex, that is, the chords : v0v2, v0v4, . . . , v0v2n−2; v0v2n+5, v0v2n+7, . . . , v0v4n+1. Then we

have the following:

Theorem 4.2.21. H(4n+ 3, 2n+ 2) /∈ Va.

Proof. Since the graph has odd number of vertices, H(4n+ 3, 2n+ 2) /∈ Va for any n.

Theorem 4.2.22. (see [28]) H(4n+ 3, 2n+ 2) ∈ V0.

Let U(4n + 3, 2n + 2, 1) be the graph obtained by identifying the apex of H(4n + 1, 2n + 2)

with a vertex of K2. Then we have the following:

Theorem 4.2.23. U(4n+ 3, 2n+ 2, 1) ∈ Va.

Proof. We consider two cases.

Case 1: Suppose n = 2t. Then U(4n+ 3, 2n+ 2, 1) has 8t+ 4 vertices. Let the vertex set of

U(4n+3, 2n+2) be {v0, v1, . . . , v8t+2}. Let u be the pendant vertex of U(4n+3, 2n+2, 1).

Define ` : E(U(4n+ 3, 2n+ 2, 1))→ V4 \ {0} by

`(vi−1vi) = `(vivi+1) =


c for i = 2, 6, 10, . . . , 4t− 2, 4t+ 5, 4t+ 9, . . . , 8t+ 1,

b for i = 4, 8, . . . , 4t, 4t+ 1, 4t+ 2, 4t+ 3, 4t+ 7, 4t+ 11,

. . . , 8t+ 3.

where v8t+3 = v0 and v8t+4 = v1 and

`(v0vi) = a for i = 2, 4, 6, . . . , 4t− 2, 4t, 4t+ 1, 4t+ 2, 4t+ 3, 4t+ 5, . . . 8t+ 1,

`(v0u) = a.

We have, `+(u) = a and

`+(ui) =



a+ (4t+ 2)a+ b+ b = a for i = 0,

b+ c = a for i = 1, 3, 5, . . . , 4t− 1, 4t+ 4, 4t+ 6, 4t+ 8, . . . 8t+ 2,

c+ c+ a = a for i = 2, 6, 10, . . . , 4t− 2, 4t+ 5, 4t+ 9, . . . , 8t+ 1,

b+ b+ a = a for i = 4, 8, . . . , 4t, 4t+ 1, 4t+ 2, 4t+ 3, 4t+ 7, 4t+ 11,

. . . , 8t− 1.
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Case 2: Suppose n = 2t+ 1. In this case, the graph has 8t+ 7 vertices. Define ` : E(U(4n+

3, 2n+ 2, 1))→ V4 \ {0} by

`(vi−1vi) = `(vivi+1) =

b for i = 2, 6, . . . , 4t+ 2, 4t+ 3, 4t+ 4, 4t+ 5, 4t+ 9, . . . , 8t+ 5,

c for i = 4, 8, . . . , 4t, 4t+ 7, 4t+ 11, . . . , 8t+ 7.

where v8t+7 = v0 and v8t+8 = v1 and

`(v0vi) = a for i = 2, 4, 6, . . . , 4t+ 2, 4t+ 3, 4t+ 4, 4t+ 5, 4t+ 7, . . . , 8t+ 5,

`(v0u) = a.

We have,

`(vi) =


c+ c+ (4t+ 2)a+ a = a for i = 0,

b+ b+ a = a for i = 2, 6, . . . , 4t+ 2, 4t+ 3, 4t+ 4, 4t+ 5, 4t+ 9, . . . , 8t+ 5,

c+ c+ a = a for i = 4, 8, . . . , 4t, 4t+ 7, 4t+ 11, . . . , 8t+ 3,

b+ c = a for i = 1, 3, 5, . . . , 4t− 3, 4t+ 6, 4t+ 8, . . . , 8t+ 6.

This completes the proof.

Theorem 4.2.24. Cn(2, r) ∈ Va if n is even and 2 ≤ r ≤ n− 3.

Proof. Let the vertex set of Cn(2, r) be {u0, u1, u2, . . . , un−1}, where u0 is the apex. Here we

consider two cases:

Case 1: Suppose r is odd. Now, we give the labeling to the edges of G as follows:

`(u0u1) = b,
for i = 1, 2, . . . , r + 1 :

`(uiui+1) = c.

end for
for i = r + 2, r + 4, . . . , n− 1 :

`(uiui+1) = b.

end for
for i = r + 3, r + 5, . . . , n− 2 :

`(uiui+1) = c.

end for
for i = 2, 3, . . . , r + 1 :

`(u0ui) = a.

end for
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Observe that,

`+(ui) =


b+ b+ ra = a, for i = 0,

c+ c+ a = a, for i = 2, 3, . . . , r + 1,

b+ c = a, for i = 1, r + 2, r + 3, . . . , n− 1.

Case 2: Suppose r is even. In this case, labeling is similar to case 1.

This completes the proof.

Theorem 4.2.25. If 2 ≤ p ≤ n− r and n is even, then Cn(p, r) ∈ Va.

Proof. Label the edges as follows:

`(u0u1) = b,
for i = 1, 2, . . . , r + 1 :

`(uiui+1) = c.

end for
for i = r + 2, r + 4, . . . , n− 1 :

`(uiui+1) = b.

end for
for i = r + 3, r + 5, . . . , n− 2 :

`(uiui+1) = c.

end for
for i = p, p+ 1, . . . , p+ r − 1 :

`(u0ui) = a.

end for

Observe that,

`+(ui) =


b+ b+ ra = a, for i = 0,

c+ c+ a = a, for i = 2, 3, . . . , r + 1,

b+ c = a, for i = 1, r + 2, r + 3, . . . , n− 1.

Let Gr(n) denote graph Pn−1 +Kr (see figure 4.2). Let the vertex sets of Pn−1 and Kr be

{v1, v2, . . . , vn−1} and {u1, u2, . . . , ur}, respectively.

Theorem 4.2.26. Gr(n) ∈ Va if and only if n+ r is odd.
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Proof. Assume that Gr(n) ∈ Va. Then by lemma 3.2.1, we have
∑n−1

i=1 `
+(vi)+

∑r
j=1 `

+(uj) = 0

which implies that (n− 1)a+ ra = 0. This shows that n+ r is odd.

Conversely, assume that n+ r is odd. We consider two cases.

Case 1: Suppose n is odd and r is even. Let n = 2s + 1. Now, we give the labeling to the

edges of Gr(n) as follows: 
For j = 1, 2, . . . , r :

`(ujv1) = b,

`(ujv2s) = c.

end for

`(u1vi) = a for i = 2, 3, . . . , 2s− 1,

`(vivi+1) =

{
a, for i = 1, 3, . . . , 2s− 1,

c, for i = 2, 4, . . . , 2s− 2,
For j = 2, 3, . . . , r :

`(ujvi) = b for i = 2, 3, . . . , 2s− 1

end for

We have

`+(vi) =


rb+ a = a for i = 1,

rc+ a = a for i = 2s,

a+ c+ a+ (r − 1)b = a, for i = 2, 3, . . . , 2s− 1

`+(ui) =

b+ c+ (2s− 2)a = a for i = 1

b+ c+ (2s− 2)b = a, for i = 2, 3, . . . , r.

Case 2: Suppose n is even and r is odd. Let n = 2s. Now, we give the labeling to the edges of

Gr(n) as follows:

`(vivi+1) = c for i = 1, 2, . . . , 2s− 2,

For j = 1, 2, . . . , r :
`(ujv1) = b,

`(ujv2s−1) = b,

`(ujvi) = a for i = 2, 3, . . . , 2s− 1.

end for
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We have

`+(vi) =

rb+ c = a for i = 1, 2s− 1

c+ c+ ra = a for i = 2, 3, . . . , 2s− 2

`+(ui) = b+ b+ (2s− 3)a = a for i = 1, 2, . . . , r.

This completes the proof.

Theorem 4.2.27. Gr(n) ∈ V0 if n+r is even.

Proof. Assume that n+ r is even. We consider two cases.

Case 1: Suppose n and r are both odd. Let n = 2s + 1. Now, we give the labeling to the

edges of Gr(n) as follows:

`(vivi+1) =

b for i = 1, 3, . . . , 2s− 1,

c for i = 2, 4, . . . , 2s− 2,

`(u1vi) = b for i = 1, 2s

`(u1vi) = a for i = 2, 3, . . . , 2s− 1
for j = 2, 3, . . . , r :

`(ujvi) = a for i = 1, 2, 3, . . . , 2s

end for

We have,

`+(vi) =

b+ b+ (r − 1)a = 0 for i = 1, 2s

b+ c+ ra = 0 for i = 2, 3, . . . , 2s− 1,

`+(uj) =

b+ b+ (2s− 2)a = 0 for j = 1,

2sa = 0 for j = 2, 3, . . . , r.

Case 2: Suppose both n and r are both even.

`(u1v2s−1) = c,

`(u1vs) = a,

`(vivi+1) = a, for i = 1, 2, . . . , 2s− 2,

`(u1vi) = b, For i = 1, 2, 3, . . . , s− 1, s+ 1, s+ 2, . . . 2s, 2s− 2
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

for j = 2, 3, . . . , r :

`(ujv1) = c

`(ujv2s−1) = b

`(ujvs) = a

`(ujvi) = b, for i = 2, 3, . . . , s− 1, s+ 1, s+ 2, . . . , 2s− 2

end for

We have,

`+(vi) =


a+ b+ (r − 1)c = 0 for i = 1

a+ a+ b+ (r − 1)b = 0 for i = 2, 3, . . . , s− 1, s+ 1, s+ 2, . . . , 2s− 2

a+ a+ a+ (r − 1)a = 0 for i = s

c+ a+ (r − 1)b = 0 for i = 2s− 1

`+(ui) =(2s− 3)b+ a+ c = 0 for i = 1, 2, . . . , r,

This completes the proof.

Let G(n, n− 3, k) denote the graph obtained by taking the union of k copies of H(n, n− 3)

having the edges v0v1’s identified (see figure 4.3).

Let {vi,0, vi,1, vi,2, vi,3, . . . , vi,n−1} be the vertex set of the ith copy of H(n, n− 3). Then

Theorem 4.2.28. G(n, n− 3, k) ∈ Va if and only if nk is even.

Proof. Assume that G(n, n−3, k) ∈ Va. Then by lemma 3.2.1, we have na+(k−1)(n−2)a = 0.

This implies that nk is even.

Conversely, assume that nk is even. We consider the following cases:

Case 1: Assume that both n and k are even. In this case, we label the edges of G(n, n− 3, k)

as follows:

`(v1,0v1,1) = a,
For i = 1, 2, . . . , k

`(vi,jvi,j+1) = c, for j = 1, 2, 3, . . . , n− 2,

end for
For i = 1, 2, . . . , k

`(v1,0vi,j+1) = a, for j = 1, 2, 3, . . . , n− 3,

end for

`(v1,0vi,n−1) = b for i = 1, 2, 3, . . . , k.
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So, we have `+(vi,j) = a for all i, j.

Case 2: Assume that n is even and k is odd. In this case, the labeling is exactly similar to

case 1 with only difference is that `(v1,0v1,1) = a is to be replaced by `(v1,0v1,1) = b.

Case 3: Assume that n is odd and k is even. In this case, the labeling is similar to case 1.

This completes the proof.

v vvvvvv v
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v v v(n-2)
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u

u

u
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Figure 4.2: The graph Gr(n)

Theorem 4.2.29. G(n, n− 3, k) /∈ Va if n and k are both odd.

Proof. Assume that G(n, n − 3, k) ∈ Va. Since n and k are both odd, nk is odd. Then by

lemma 3.2.1, we have
∑n−1

j=0 `
+(v1,j) +

∑k
i=2

∑n−1
j=2 `

+(vi,j) = 0 which implies that nka = 0.

In turn we get a = 0. This is a contradiction. The result now follows.

Theorem 4.2.30. G(n, n− 3, k) ∈ V0 if n and k are odd.

Proof. Now, we give the labeling to the edges of G as follows:
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Figure 4.3: The graph G(n, n− 3, k)

`(v1,0v1,1) = b,

`(vi,n−1v1,0) = b, for i = 1, 2, . . . , k,

for i = 1, 2, . . . , k :
`(vi,jvi,j+1) = b, j = 1, 3, . . . , n− 2,

`(vi,jvi,j+1) = c, j = 2, 4, . . . , n− 3,

`(v1,0vi,j) = a, j = 2, 3, . . . , n− 2.

end for

Obviously,

`+(vi,j) =


k(n− 3)a+ 2b = 0, for i = 1, j = 0,

b+ b = 0, for i = 1, 2, 3, . . . , k; j = n− 1

b+ kb = 0, for i = 1, j = 1,

b+ c+ a = 0, for i = 1, 2, . . . , k; j = 2, 3, . . . , n− 2.

This completes the proof.
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Theorem 4.2.31. G(n, n− 3, k) ∈ V0 if n is even and k odd.

Proof. Now, we give the labeling to the edges of G as follows:

`(v1,0v1,1) = c,

`(vi,n−1v1,0) = b, i = 1, 2, 3, . . . , k,

for i = 1, 2, . . . , k :
`(vi,jvi,j+1) = c, j = 1, 3, . . . , n− 3,

`(vi,jvi,j+1) = b, j = 2, 4, . . . , n− 2,

`(v1,0vi,j) = a, j = 2, 3, . . . , n− 2.

end for

Obviously,

`+(vi,j) =


k(n− 3)a+ kb+ c = a+ b+ c = 0, for i = 1, j = 0,

b+ b = 0, for i = 1, 2, 3, . . . , k; j = n− 1,

c+ kc = 0, for i = 1, j = 1,

b+ c+ a = 0, for i = 1, 2, . . . , k; j = 2, 3, . . . , n− 2.

This completes the proof.

Theorem 4.2.32. G(n, n− 3, k) ∈ V0 if n and k are even.

Proof. We give the labeling to the edges of G as follows:

`(v1,0v1,1) = a,

`(v1,n−1v1,0) = b,

`(v1,jv1,j+1) =

{
c, for j = 1, 3, . . . , n− 3,

b, for j = 2, 4, . . . , n− 2,

For i = 2, 3, . . . , k :`(vi,jvi,j+1) = b, j = 1, 3, . . . , n− 3,

`(vi,jvi,j+1) = c, j = 2, 4, . . . , n− 2,

end for

`(v1,0vi,n−1) = c, for i = 2, 3, . . . , k,

For i = 1, 2, 3, . . . , k :

`(v1,0vi,j) = a, j = 2, 3, . . . , n− 2.

end for
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Then we have,

`+(vi,j) =



+a+ (n− 3)ka+ (k − 1)c = a+ b+ c = 0, for i = 1, j = 0,

a+ c+ (k − 1)b = a+ b+ c = 0, for i = 1, j = 1,

c+ c = 0, for i = 2, 3, . . . , k; j = n− 1

b+ b = 0, for i = 1, j = n− 1,

b+ c+ a = 0 for i = 1, 2, . . . , k; j = 2, 3, . . . , n− 2.

Theorem 4.2.33. G(n, n− 3, k) ∈ V0 if n is odd and k is even.

Proof. We give the labeling to the edges of G as follows:

`(v1,n−1v1,0) = c

`(v1,0v1,1) = a

For i = 1, 2, . . . , k :

`(v1,0vi,j) = a, for j = 1, 2, . . . , n− 2,

end for

For i = 2, 3, . . . , k :

`(v1,0vi,n−1) = b

end for

`(v1,jv1,j+1) = c, for j = 1, 3, . . . , n− 2,

`(v1,jv1,j+1) = b, for j = 2, 4, . . . , n− 3,

`(v1,1vi,2) = b, for i = 2, . . . , k,

for i = 2, 3, . . . , k :

`(vi,jvi,j+1) = c, j = 2, 4, . . . , n− 3,

`(vi,jvi,j+1) = b j = 3, 5, . . . , n− 2,

end for

Obviously,

`+(vi,j) =



c+ (k − 1)b+ (n− 3)ka+ a = 0, for i = 1, j = 0,

a+ c+ (k − 1)b = 0, for i = 1, j = 1,

b+ b = 0, for i = 2, . . . , k, j = n− 1,

c+ c = 0, for i = 1, j = n− 1,

a+ b+ c = 0, for i = 1, 2, . . . , k; j = 2, . . . , n− 2.

This completes the proof.
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4.3 Multiple Shell Graphs

Let G denotes the multiple shell MS(nt11 , n
t2
2 , . . . , n

tr
r ). Let {u, vtik,j}, j = 1, 2, . . . , ni, 1 ≤ i ≤ r

be the vertices of G with apex u.

Theorem 4.3.1. If MS(nt11 , n
t2
2 , . . . , n

tr
r ) ∈ Va, then

∑r
i=1[(ni − 1)ti] is odd.

Proof. Let ` : E(G)→ V4\{0} is a labeling ofG, then by lemma 3.2.1,
∑r

i=1

∑ti
k=1

∑ni−1
j=1 `+(vtik,j)+

`+(u) = 0. Hence if MS(nt11 , n
t2
2 , . . . , n

tr
r ) ∈ Va, it follows that

∑r
i=1[(ni− 1)ti]a+ a = 0 which

implies that
∑r

i=1[(ni − 1)ti] is odd.

Conjecture 4.3.2. If
∑r

i=1[(ni − 1)ti] is odd, then MS{nt11 , n
t2
2 , . . . , n

tr
r } ∈ Va.

We prove that the conjecture is true for r = 1.

Corollary 4.3.3. MS(nt) ∈ Va if (n− 1)t is odd.

Proof. Assume that (n − 1)t is odd. This implies that n is even and t is odd. Observe that

MS(nt) is the one point union of t shells Hi(n, n − 3), i = 1, 2, . . . , t. Let the vertex set of

Hi(n, n − 3) be {u0,0, ui,1, ui,2, . . . , ui,n−1}, where u0,0 is the apex of all shells. Now, we give

the labeling to the edges of G as follows:

For i = 1, 2, 3, . . . , t :
`(u0,0ui,1) = `(u0,0ui,n−1) = b,

`(ui,jui,j+1) = c, j = 1, 2, . . . , n− 2,

`(uui,j) = a, j = 2, 3, . . . , n− 2.

end for

Then we have,

`+(ui,j) =


(n− 3)ta+ tb+ tb = a+ b+ b = a, for i = 0, j = 0,

b+ c = a, for i = 1, 2, 3, . . . , t; j = 1, n− 1,

c+ c+ a = a, for i = 1, 2, 3, . . . , t; 2, 3, . . . , n− 2.

This completes the proof.

Next we prove that the conjecture is true for r = 2, n1 = n, n2 = n+ 1 and t1 = t2 = 1.

Corollary 4.3.4. MS(n, n+ 1) ∈ Va.

Proof. Observe that MS(n, n+1) is the one point union of H(n, n−3) and H(n+1, n−2). Let

V (H(n, n− 3)) = {u0, u1, u2, . . . , un−1} and V (H(n+ 1, n− 2)) = {v0, v1, v2, . . . , vn}. Assume
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that uo = v0 be the apex of both the shells H(n, n− 3) and H(n+ 1, n− 2). Now, we give the

labeling to the edges of MS(n, n+ 1) as follows:

`(uiui+1) = c, for i = 1, 2, 3, . . . , n− 2,

`(u0ui) =

{
a, for i = 2, 3, . . . , n− 2,

b, for i = 1, n− 1.

`(vivi+1) = c, for j = 1, 2, 3, . . . , n− 1,

`(v0vi) =

{
a, for i = 2, 3, . . . , n− 1,

b, for i = 1, n.

We have,

`+(ui) =


(n− 3)a+ (n− 2)a+ 4b = (2n− 5)a = a, for i = 0,

b+ c = a, for i = 1, n− 1

a+ c+ c = a, for 2, 3, . . . , n− 2,

`+(vi) =

b+ c = a, for i = 1, n

a+ c+ c = a, for 2, 3, . . . , n− 1,

This completes the proof.

Corollary 4.3.5. MS(nt, (n+ 1)t) ∈ Va for all odd t.

Proof. Label the edges of all the t copies of H(n, n− 3), H(n+ 1, n− 2) as in corollary 4.3.4.

The proof follows.

Corollary 4.3.6. MS(n,m) ∈ Va if and only if m+ n is odd.

Proof. Assume that MS(n,m) ∈ Va. Observe that MS(n,m) has (m+ n− 1) vertices. Then

by theorem 4.3.1, m+ n is odd.

Conversely, assume that m+n is odd. We need to show that MS(n,m) ∈ Va. We consider

two cases.

Case 1: Suppose n is even and m is odd. Assume that v0 is the apex of both the shells and,

let

V (H(n, n− 3)) = {v0, v1, v2, . . . , vn−1}

V (H(m,m− 3)) = {v0, u1, u2, . . . , um−1}.

Now, we give the labeling to the edges of H(n,m, n− 3,m− 3) as follows:

`(v0vi) =

{
a, for i = 2, . . . , n− 2,

b, for i = 1, n− 1.
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`(vivi+1) = c, for i = 1, 2, . . . , n− 2,

`(ujuj+1) = c, for j = 1, 2, . . . ,m− 2,

`(v0uj) =

{
b, for j = 1,m− 1,

a, for j = 2, . . . ,m− 2.

We have

`+(vi) =


b+ b+ (n− 3)a+ b+ b+ (m− 3)a = a for i = 0,

b+ c = a for i = 1, n− 1,

c+ c+ a = a for i = 2, 3, 4, . . . , n− 2.

`+(ui) =

b+ c = a for i = 1,m− 1,

c+ c+ a = a for i = 2, 3, 4, . . . ,m− 2.

Case 2: Suppose n is odd and m is even. In this case the labeling is exactly similar to case 1.

This completes the proof.

Conjecture 4.3.7. MS(nt11 , n
t2
2 , . . . , n

tr
r ) ∈ V0 for all ni and ti.

We prove some special cases of conjecture 4.3.7.

Corollary 4.3.8. MS(nt) ∈ V0 for n even, t odd and n even, t even.

Now, we give the labeling to the edges of MS(nt) as follows:

`(u0,0ui,1) = b, for i = 1, 2, . . . , t,

`(u0,0ui,n−1) = c, for i = 1, 2, . . . , t,

For i = 1, 2, 3, . . . , t :
`(ui,jui,j+1) = b, for j = 1, 3, . . . , n− 3,

`(ui,jui,j+1) = c, for j = 2, 4, . . . , n− 2,

`(u0,0ui,j) = a, for j = 2, 3, . . . , n− 2,

end for

Then we have,

`+(ui,j) =


(n− 3)ta+ tb+ tc = a+ b+ c = 0, for i = 0, j = 0,

b+ b = 0, for i = 1, 2, 3, . . . , t; j = 1,

c+ c = 0, for i = 1, 2, 3, . . . , t; j = n− 1,

b+ c+ a = 0, for i = 1, 2, 3, . . . , t; j = 2, 3, . . . , n− 3.

This completes the proof.
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Corollary 4.3.9. MS(nt) ∈ V0 for n odd, t odd and n odd, t even.

Proof. We give the labeling to the edges of MS(nt) as follows:

`(u0,0ui,1) = b, for i = 1, 2, . . . , t,

`(u0,0ui,n−1) = b, for i = 1, 2, . . . , t,

For i = 1, 2, 3, . . . , t :
`(ui,jui,j+1) = b, for j = 1, 3, . . . , n− 2,

`(ui,jui,j+1) = c, for j = 2, 4, . . . , n− 3,

`(uui,j) = a, for j = 2, 3, . . . , n− 3,

end for

Then we have,

`(ui,j) =


(n− 3)ta+ tb+ tb = 0, for i = 0, j = 0

b+ b = 0, for i = 1, 2, 3, . . . , t, j = 1, n− 1

b+ c+ a = 0, for i = 1, 2, 3, . . . , t, j = 2, 3, . . . , n− 2.

This completes the proof.

Corollary 4.3.10. If m+ n is even, then MS(n,m) ∈ V0.

Let the vertex set of the graph be as in corollary 4.3.6. We consider two cases.

Case 1: Suppose both n and m are even. Now, we give the labeling to the edges of MS(n,m)

as follows:

`(v0vi) =

b for i = 1,

c for i = n− 1,

`(vivi+1) =

c for i = 2, 4, 6, . . . , n− 2,

b for i = 3, 5, 8, . . . , n− 3,

`(v0vi) = a for i = 2, . . . , n− 2,

`(v1v2) = `(u1u2) = b,

`(v0uj) =

b for j = 1,

c for j = m− 1,

`(ujuj+1) =

c for j = 2, 4, 6, . . . ,m− 2,

b for j = 3, 5, 8, . . . ,m− 3,

`(u0uj) = a for j = 2, . . . ,m− 2.
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We have,

`+(vi) =


b+ c+ (n− 3)a+ b+ c+ (m− 3)a = 0 for i = 0,

b+ b = 0 for i = 1,

c+ C = 0 for i = n− 1,

b+ c+ a = 0 for i = 2, 3, 4, . . . , n− 2.

`+(uj) =


b+ b = 0 for j = 1,

c+ c = 0 for j = m− 1,

a+ b+ c = 0 for j = 2, 3, 4, . . . ,m− 2.

Case 2: Suppose both m and n are odd. In this case, the labeling is similar to case 1.

This completes the proof.

Consider the multiple shell MS{nt11 , n
t2
2 , . . . , n

tr
r } with vertex set {u, vtik,j}, j = 1, 2, . . . , ni,

1 ≤ i ≤ r. Let K1,m denotes the star graph with vertex set {v, v1, v2, . . . , vm}. Here v denotes

the apex of K1,n. Let MS{nt11 , n
t2
2 , . . . , n

tr
r } �K1,m denotes the graph obtained by identifying

the vertices u and v.

Theorem 4.3.11. If MS{nt11 , n
t2
2 , . . . , n

tr
r } �K1,m ∈ Va, then

∑r
i=1[(ni − 1)ti] +m is odd.

Proof. Suppose thatMS{nt11 , n
t2
2 , . . . , n

tr
r }�K1,m ∈ Va. LetG denotes the graphMS{nt11 , n

t2
2 , . . . , n

tr
r }�

K1,m. Then if ` : E(G)→ V4\{0} is a labeling ofG, then by lemma 3.2.1,
∑r

i=1

∑ti
k=1

∑ni−1
j=1 `+(vtik,j)+∑m

i=1 `
+(vi) + `+(u) = 0. Thus we have [

∑r
i=1[(ni − 1)ti] +m+ 1]a = 0. That is

∑r
i=1[(ni −

1)ti] +m is odd.

Conjecture 4.3.12. If
∑r

i=1[(ni − 1)ti] +m is odd, then MS{nt11 , n
t2
2 , . . . , n

tr
r } �K1,m ∈ Va.

We prove some special cases of the conjecture 4.3.12.

Corollary 4.3.13. MS(nt) �K1,m ∈ Va if and only if (n− 1)t+m is odd.

Proof. Assume that MS(nt)�K1,m ∈ Va. Then by lemma 3.2.1, we have [(n−1)t+m+1]a = 0.

This implies that (n− 1)t+m is odd.

Conversely, assume that (n− 1)t+m is odd. Then we have the following cases:

Case 1: Suppose n is even, t is odd and m is even. Let u0,0 be the apex of both MS(nt) and

K1,m. Let {u0,0, ui,1, ui,2, . . . , ui,n−1} be the vertex set of the ith copy of Hi(n, n − 3)

and let {u0,0, v1,1, v1,2, . . . , v1,m} be the vertex set of K1,m. Now, we give the labeling to

the edges of G as follows:

`(u0,0ui,1) = b, for i = 1, 2, . . . , t,
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`(u0,0ui,n−1) = b, for i = 1, 2, . . . , t,

For i = 1, 2, 3, . . . , t : `(ui,jui,j+1) = c, for j = 1, 2, . . . , n− 2,

`(u0,0ui,j) = a, for j = 2, 3, . . . , n− 2,

end for

`(u0,0v1,k) = a, for k = 1, 2, 3, . . . ,m.

Then we have,

`+(ui,j) =


(n− 3)ta+ tb+ tb+ma = a+ b+ b = a, for i = 0, j = 0

b+ c = a, for i = 1, 2, . . . , t, j = 1, n− 1

c+ c+ a = a, for i = 1, 2, . . . , t, j = 1, 2, 3, . . . , n− 2

`+(vi,k) = a for i = 1; k = 1, 2, 3, . . . ,m

Case 2: n is even, t is even and m is odd. In this case, the labeling is similar to case 1.

Case 3: n is odd, t is even and m is odd. In this case, the labeling is similar to case 1.

Case 4; m, n and t are odd. In this case, the labeling is similar to case 1.

This completes the proof.

Corollary 4.3.14. MS(n, n+ 1) �K1,m ∈ Va if m is even.

Proof. First, label all the edges of K1,m by a. Next, label all edges of MS(n, n+1) as described

in Corollary 4.3.4. Then we can easily verify that this labeling is an a-sum V4-magic labeling

of MS(n, n+ 1) �K1,m.

Corollary 4.3.15. MS(nt, (n+ 1)t) �K1,m ∈ Va if m is even and t is odd.

Proof. Labeling is similar to Corollary 4.3.14.
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Chapter 5
V4-Magic Labelings of Some More

Graphs

In the first section of this chapter, definition of some more cycle re-

lated graphs and path related graphs are provided. Some wellknown book

graphs, ladder graphs and Kn-related graphs are also included. In the

second section of this chapter, we discuss some cycle related V4-magic

graphs. In the third section of this chapter we discuss ladder related

V4-magic graphs. In the fourth section path related V4-magic and in the

fifth section some book related V4-magic graphs are discussed. In the last

section of this chapter we discuss Km,n and some Kn-related V4-magic

graphs.

5.1 Introduction

Here we need the following:

Definition 5.1.1. (see [16]) The windmill graph D
(m)
n is the graph obtained by taking m copies

of the complete graph Kn with a vertex in common.

The graph D
(m)
3 is called the Dutch windmill graph or the friendship graph, Fm [22].

Definition 5.1.2. (see [28]) A snake graph is formed by taking n-copies of a cycle Cm and

identifying exactly one edge of each copy to a distinct edge of the path P(n+1), which is called

as the backbone of the snake. It is denoted by T
(m)
n (see figure 5.1).

Definition 5.1.3. (see [28]) The book Bn is the graph Sn�P2 where Sn is the star with n+ 1

vertices.
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5.1. Introduction

Figure 5.1: Snake Graph T
(m)
n

Definition 5.1.4. (see [13]) When k copies of Cn share a common edge it will form the n-gon

book of k pages and is denoted by B(n, k).

Definition 5.1.5. (see [28]) One point union of any number of connected graphs is obtained

by identifying one vertex from each graph. One point union of t cycles each of length n is

denoted by Cn(t).

Definition 5.1.6. (see [21]) The sunflower graph SFn is obtained from a wheel with the central

vertex v0 and the cycle Cn : v1v2 . . . vnv1 and additional vertices w1, w2, . . . , wn where wi is

joined by edges to vi, vi+1 where vi+1 is taken modulo n.

Definition 5.1.7. (see [17]) The Jahangir graph Jn,m for m ≥ 3 is a graph consisting of a

cycle Cnm with one additional vertex called the central vertex which is adjacent to m vertices

of Cnm at distance n to each other on Cnm.

Definition 5.1.8. (see [13]) Given a cycle Cn construct a cycle Cm on each edge of this cycle.

The resulting graph is denoted by Cm@Cn.

Let N2 = {v1, v2} be the disconnected graph of order two.

Definition 5.1.9. (see [13]) Given a graph G, we can define the bipyramid based on G to be

G ∨ N2. This graph will be denoted by BP (G). The graph Cn ∨ N2 is called the bipyramid

based on Cn and is denoted by BP (n).

Definition 5.1.10. (see [13]) Given k natural numbers a1, a2, · · · ak, if we connect the two

vertices of N2 = {u, v} by k parallel paths of length a1, a2, · · · ak, the resulting graph is called

the generalized Theta graph and is denoted by Θ(a1, a2, · · · ak).

Note that in this graph, deg(u)= deg(v)= k and all the other vertices are of degree two.

Definition 5.1.11. (see [28]) The graph P2�Pn is called a ladder. It is denoted by Ln.
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Definition 5.1.12. (see [28]) The graph G with the vertex set {u0, u1, · · ·un+1, v0, v1, · · · vn+1}
and the edge set {uiui+1, vivi+1 : 0 ≤ i ≤ n}

⋃
{uivi/i = 1, 2, · · ·n} is called ladder Ln+2.

Definition 5.1.13. (see [28]) The graph G with the vertex set {u1, u2, · · ·un, v1, v2, · · · vn} and

edge set {uiu(i+1), viv(i+1), viu(i+1) : 1 ≤ i ≤ n− 1}
⋃
{uivi : 1 ≤ i ≤ n} is called a semiladder

of length n.

5.2 Some More Cycle Related Graphs

Theorem 5.2.1. Jn,m ∈ Va if and only if both n and m are odd.

Proof. Let u1, u2, · · ·um are the m vertices of Cnm which is adjacent to the central vertex

w and vi1, vi2, · · · vi(n−1) are the (n − 1) vertices between ui and ui+1, i = 1, 2, · · ·m where

um+1 = u1. Without loss of generality assume that ui = ui(mod m) and vij = vi(mod m)j(mod n).

First suppose that Jn,m ∈ Va. Then we have (nm+ 1)a = 0. This implies that nm+ 1 is even

which in turn implies that both n and m are odd. Conversely, assume that n and m are odd.

Define a labeling ` : E(Jn,m) −→ V4 \ {0} as follows.

For i = 1, 2, · · ·m do :

`(uiw) = a,

`(uivi1) = b,

`(vijvi(j+1)) =

{
c, j = 1, 3, · · ·n− 2,

b, j = 2, 4, · · ·n− 3.

end for

`(uiv(i−1)(n−1)) = b, i = 1, 2, 3, · · ·m.

With this labeling we get `+(v) = a for all v ∈ V (Jn,m). Obviously, ` is an a-sum V4-magic

labeling of Jn,m.

Theorem 5.2.2. Jn,m ∈ V0 for all n and m.

Proof. Let the vertices of Jn,m be as in the proof of theorem 5.2.1. We consider the following

cases.

Case 1: m is even.

Define a labeling ` : E(Jn,m) −→ V4 \ {0} as follows.

`(uiw) = c, for i = 1, 2, · · ·m,

For j = 1, 2, · · ·n− 2 do :

`(vijvi(j+1)) =

{
a, for i = 1, 3, · · ·m− 1,

b, for i = 2, 4, · · ·m.
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end for

`(uivi1) =

{
a, for i = 1, 3, · · ·m− 1,

b, for i = 2, 4, · · ·m.

`(ui+1vi(n−1)) =

{
a, i = 1, 3, · · ·m− 1

b, i = 2, 4, · · ·m+ 1

Obviously, ` is a zero-sum V4-magic labeling of Jn,m.

Case 2: m is odd.

Define a labeling ` : E(Jn,m) −→ V4 \ {0} as follows.

`(uiw) = a, for i = 1, 4, 5, · · ·m,

`(u2w) = b, `(u3w) = c,

For j = 1, 2, · · ·n− 2 do :

`(v2jv2(j+1)) = a,

`(vijvi(j+1)) = b, for i = 3, 5, · · ·m,

`(vijvi(j+1)) = c, for i = 4, 6, · · ·m− 1,m+ 1.

end for

`(u2v21) = `(u3v2(n−1)) = a,

`(uivi1) = `(u(i+1)vi(n−1)) = b, for i = 3, 5, · · ·m,

`(uivi1) = `(u(i+1)vi(n−1)) = c, for i = 4, 6, · · ·m− 1,m+ 1.

Obviously, ` is a 0-sum V4-magic labeling of Jn,m.

Theorem 5.2.3. Jn,m ∈ Va,0 if and only if both m and n are odd.

Proof. From theorem 5.2.1 we have Jn,m ∈ Va if and only if both n and m are odd. From

theorem 5.2.2 it follows that Jn,m ∈ V0 for all n and m. Combining this we get the result.

Theorem 5.2.4. The windmill graph D
(m)
n ∈ Va if and only if m is odd and n is even.

Proof. Suppose D
(m)
n ∈ Va. Then by lemma 3.2.1, [m(n − 1) + 1]a = 0. This implies that

m(n− 1) is odd. This holds only when m is odd and n is even. Conversely suppose that m is

odd and n is even. Let ui1, u
i
2, · · ·ui(n−1) are the vertices of ith copy of Kn in D

(m)
n and v is the

common vertex. Define a labeling ` : E(D
(m)
n ) −→ V4 \ {0} by

For i = 1, 2, · · ·m do :

`(uijv) = a, j = 1, 2, · · ·n,

`(uiju
i
j+1) = a, j = 1, 2, · · ·n.

end for
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Obviously ` is an a-sum V4-magic labeling of D
(m)
n .

Theorem 5.2.5. D
(m)
n ∈ V0 for all n and m.

Proof. We consider the following cases.

Case 1: n is odd.

Label all the edges by a. Then we have `+(v) = 0 for all v ∈ V (D
(m)
n ).

Case 2: n is even.

Define a labeling ` : E(D
(m)
n ) −→ V4 \ {0} by

For i = 1, 2, · · ·m do :

`(uiju
i
j+1) =

{
a, j = 1, 3, · · ·n− 1,

b, j = 2, 4, · · ·n.

`(uiju
i
k) = c, j, k = 1, 2, · · ·n, k 6= j + 1.

end for

Thus we get `+(v) = 0 for all v ∈ V (D
(m)
n ). Obviously ` is a zero-sum V4-magic labeling

of D
(m)
n .

This completes the proof of the theorem.

Theorem 5.2.6. D
(m)
n ∈ Va,0 if and only if m is odd and n is even.

Proof. From theorem 5.2.4 we have the windmill graph D
(m)
n ∈ Va if and only if m is odd and

n is even. From theorem 5.2.5 we get D
(m)
n ∈ V0 for all n and m. Combining this the result

follows.

Theorem 5.2.7. Fm /∈ Va for any m.

Proof. Observe that Fm is the one-point union of m copies of a rooted triangle. Let the vertices

of the ith copy be 0, ui and vi. Assume that 0 is the common apex of the triangles. If Fm

admits an a-sum V4-magic labeling, then

`+(ui) = `+(vi) = a.

This implies that for all i,

`(uivi) = b, `(0ui) = `(0vi) = c

or `(uivi) = c, `(0ui) = `(0vi) = b.

In both the cases, `+(0) = 2ma = 0. This is a contradiction.

Theorem 5.2.8. Fm ∈ V0 for all m.
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Proof. Label all the edges by a. Obviously this is a zero-sum V4-magic labeling of Fm.

Theorem 5.2.9. Fm /∈ Va,0 for any m.

Proof. From theorem 5.2.7 we have Fm /∈ Va for any m and theorem 5.2.8 states that Fm ∈ V0

for all m. Combining both we get the result.

Theorem 5.2.10. Cn(t) ∈ Va if and only if n is even and t is odd.

Proof. First assume that Cn(t) ∈ Va. Then by lemma 3.2.1, [(n− 1)t+ 1]a = 0. This equation

holds if and only if n is even and t is odd. Conversely suppose that n is even and t is odd.

Define a labeling ` : Cn(t) −→ V4 \ {0} as follows:

For j = 1, 2, · · · t do :

`(uiju(i+1)j) =

{
b, for i = 1, 3, · · ·n− 1,

c, for i = 2, 4, · · ·n.

end for

Obviously `+(uij) = a, `+(v) = a.

Theorem 5.2.11. (see [28]) Cn(t) ∈ V0 for all n and t.

Theorem 5.2.12. Cn(t) ∈ Va,0 if and only if n is even and t is odd.

Proof. From theorem 5.2.10, Cn(t) ∈ Va if and only if n is even and t is odd and from theorem

5.2.11 we have Cn(t) ∈ V0 for all n and t. Combining all this the result follows.

Theorem 5.2.13. T
(m)
n ∈ Va if and only if m is even and n is odd.

Proof. Suppose that T
(m)
n ∈ Va. Let uij , i = 1, 2, · · ·n, j = 1, 2, · · ·m be the vertices in the

graph. Without loss of generality assume that u(n+1)j = u1j . Then we have

n∑
i=2

m∑
j=2

`+(uij) +

m∑
j=1

`+(u1j) = 0

This implies that [(m − 1)n + 1] is even which again implies that m is even and n is odd.

Conversely assume that m is even and n is odd. Define a labeling ` : E(T
(m)
n ) −→ V4 \ {0} by

For i = 1, 3, · · ·n do :

`(uiju(j+1)) =

{
b, j = 1, 3, · · ·m− 1

c, j = 2, 4, · · ·n

end for

For i = 2, 4, · · ·n− 1 do :
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`(uiju(j+1)) =

{
c, j = 2, 3, · · ·m− 2

b, j = 1,m− 1,m

end for

Clearly `+(v) = a for all v ∈ V (T
(m)
n ).

Theorem 5.2.14. (see [28]) T
(m)
n ∈ V0 for all n and m.

Theorem 5.2.15. T
(m)
n ∈ Va,0 if and only if m is even and n is odd.

Proof. From theorem 5.2.13 we get T
(m)
n ∈ Va if and only if m is even and n is odd and from

theorem 5.2.14 we get T
(m)
n ∈ V0 for all n and m. Combining them the result follows.

Theorem 5.2.16. For all m,n ≥ 3, Cm@Cn ∈ Va if and only if n(m− 1) is even.

Proof. Suppose that Cm@Cn ∈ Va. Then [n(m − 1)]a = 0. This implies that n(m − 1) is

even. Now let u1, u2, · · ·un be the vertices of Cn and v1j , v2j , · · · v(m−2)j be the vertices of

Cj , j = 1, 2, · · ·n. We consider the following cases.

Case 1: n is even and m is odd.

For j = 1, 2, · · ·n do :

`(uju(j+1)) = a, `(ujv1j) = c,

`(u(j+1)v(m−2)j) = b,

`(vijvi(j+1)) =

{
b, i = 1, 3, · · ·m− 4,

c, i = 2, 4, · · ·m− 3.

end for

Case 2: Both n and m are even.

`(uju(j+1)) = a, j = 1, 2, · · ·n,

For j = 1, 3, · · ·n− 1 do :

`(vijvi(j+1)) =

{
c, i = 1, 3, · · ·m− 3,

b, i = 2, 4, · · ·m− 4.

end for

For j = 2, 4, · · ·n do :

`(vijvi(j+1)) =

{
b, i = 1, 3, · · ·m− 3,

c, i = 2, 4, · · ·m− 4.

end for
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Case 3: Both n and m are odd.

For j = 1, 2, · · ·n do :

`(uju(j+1)) = a, `(ujv1j) = b,

`(u(j+1)v(m−2)j) = c,

`(vijvi(j+1)) =

{
c, i = 1, 3, · · ·m− 4,

b, i = 2, 4, · · ·m− 3.

end for

Thus ` is an a-sum V4-magic labeling of Cm@Cn. This completes the proof.

Theorem 5.2.17. (see [13]) For all m,n ≥ 3, Cm@Cn ∈ V0.

Theorem 5.2.18. For all m,n ≥ 3, Cm@Cn ∈ Va,0 if and only if n(m− 1) is even.

Proof. From theorem 5.2.16 we have for all m,n ≥ 3, the Cm@Cn ∈ Va if and only if n(m− 1)

is even and theorem 5.2.17 states that for all m,n ≥ 3, Cm@Cn ∈ V0. Combining the theorems

we get the result.

Theorem 5.2.19. For any n ≥ 4, the bipyramid graph BP (n) is a-sum V4-magic if and only

if n is even.

Proof. Suppose that BP (n) ∈ Va. This implies that (n+ 2)a = 0. Thus we obtained that n is

even. Conversely assume that n is even.

For i = 1, 2 do :

`(viu1) = c,

`(viuj) = b, j = 2, 3, · · ·n

end for

`(uju(j+1)) =

{
b, j = 1, 3, · · ·n− 1,

c, j = 2, 4, · · ·n.

Obviously BP (n) ∈ Va.

Theorem 5.2.20. (see [13]) For any n ≥ 4, BP (n) is zero-sum V4-magic.

Theorem 5.2.21. For any n ≥ 4, BP (n) ∈ Va,0 if and only if n is even.

Proof. Theorem 5.2.19 states that for any n ≥ 4, the bipyramid graph BP (n) is a-sum V4-

magic if and only if n is even and from theorem 5.2.20 we have for any n ≥ 4, BP (n) is zero-sum

V4-magic. Combining the two theorems the result follows.
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Theorem 5.2.22. Consider the bipyramid graph BP (G) based on G. We have the following.

i) If G is a-sum V4-magic and number of vertices in G is odd, then BP (G) is a-sum V4-

magic.

ii) If G is a-sum V4-magic and number of vertices in G is even, then BP (G) is 0-sum

V4-magic.

iii) If G is 0-sum V4-magic and number of vertices in G is even, then BP (G) is both a-sum

V4-magic and 0-sum V4-magic.

iv) If G is 0-sum V4-magic and number of vertices in G is odd, then BP (G) is 0-sum V4-

magic.

Proof. Let u1, u2, . . . , un be the vertices of G and v1, v2 be the remaining vertices in BP (G).

i) Suppose that G is a-sum V4-magic and number of vertices in G is odd. Then `+(uj) = a

for all j = 1, 2, . . . , n. Since |V (G)| is odd, deg(vi) is odd for i = 1, 2. Moreover,

deg(uj) in BP (G) is [(deg(uj) in G) + 2]. Thus by defining a labeling `(ujvi) = a, j =

1, 2, . . . , n, i = 1, 2 the result follows.

ii) Suppose that G is a-sum V4-magic and number of vertices in G is even. That is `+(uj) = a

for all j = 1, 2, . . . , n. Define a labeling as follows:

`(ujv1) = b, `(ujv2) = c, j = 1, 2, . . . , n.

Then BP (G) is 0-sum V4-magic.

iii) Suppose that G is 0-sum V4-magic and number of vertices in G is even. By defining a

labeling `(ujvi), j = 1, 2, . . . , n i = 1, 2, BP (G) becomes zero-sum V4-magic. Moreover,

BP (G) is a-sum V4-magic if we define a labeling as follows:

`(u1v1) = c, `(u1v2) = b

For j = 2, 3, . . . , n

`(ujv1) = b, `(ujv2) = c

end for

iv) Define a labeling as follows:

For i = 1, 2,

`(viu1) = b, `(viu2) = c,

`(viuj) = a, j = 1, 2, . . . , n

end for

Then the result follows.
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5.3 Ladder Graphs

Theorem 5.3.1. Ladders Ln are a-sum V4-magic for all n.

Proof. Let u1, u2, · · ·un and v1, v2, · · · vn be the vertices of a ladder Ln such that E(G) =

{uiu(i+1)/i = 1, 2, · · ·n − 1} ∪ {vjv(j+1)/j = 1, 2, · · ·n − 1} ∪ {uivi/i = 1, 2, · · ·n}. Define a

labeling ` : E(Ln) −→ V4 \ {0} by

`(u1v1) = `(unvn) = b,

`(uivi) = a, for i = 2, 3, · · ·n− 1,

`(uiu(i+1)) = `(viv(i+1)) = c, for i = 1, 2, · · ·n− 1.

Then clearly ` is an a-sum V4-magic labeling of Ln.

Theorem 5.3.2. (see [28]) Ln ∈ V0 for all n.

Theorem 5.3.3. Ln ∈ Va,0 for all n.

Proof. From theorem 5.3.1 we have ladders Ln are a-sum V4-magic for all n. Theorem 5.3.2

states that Ln ∈ V0 for all n. From the two theorems the result follows.

Theorem 5.3.4. (see [28]) Ln+2 ∈ Va for all n.

Theorem 5.3.5. Ln+2 /∈ V0 for any n.

Proof. Since the graph has pendant edges it is not zero-sum V4-magic for any n.

Theorem 5.3.6. Semiladders are a-sum V4-magic for all n.

Proof. Let G be a semiladder of length n. We consider two cases.

Case 1: n is odd

Define a labeling ` : E(G) −→ V4 \ {0} by

`(u1v1) = `(unvn) = b,

`(uivi) = a, for i = 2, 3, · · ·n− 1,

`(viu(i+1)) = a, for i = 1, 2, · · ·n− 1.

For i = 1, 3, · · ·n− 2 do :

`(uiu(i+1)) = c,

`(viv(i+1)) = b.

end for

For i = 2, 4, · · ·n− 1 do :

`(uiu(i+1)) = b,
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`(viv(i+1)) = c.

end for

Thus ` is an a-sum V4-magic labeling of G.

Case 2: n is even

Define a labeling ` : E(G) −→ V4 \ {0} by

`(u1v1) = b, `(unvn) = c,

`(uivi) = a, for i = 2, 3, · · ·n− 1,

`(viu(i+1)) = a, for i = 1, 2, · · ·n− 1,

For i = 1, 3, · · ·n− 1 do :

`(uiu(i+1)) = c,

`(viv(i+1)) = b.

end for

For i = 2, 4, · · ·n− 2 do :

`(uiu(i+1)) = b,

`(viv(i+1)) = c.

end for

Thus ` is an a-sum V4-magic labeling of G.

Theorem 5.3.7. (see [28]) Semiladders are zero-sum V4-magic for all n.

Theorem 5.3.8. If G is a semiladder, then G ∈ Va,0.

Proof. By theorem 5.3.6, semiladders are a-sum V4-magic for all n. And by theorem 5.3.7,

semiladders are zero-sum V4-magic for all n. Hence the proof follows.

5.4 Path Related Graphs

Theorem 5.4.1. The composition Pn[Kc
2] is a-sum V4-magic for all n.

Proof. Let v1, v2, · · · vn be the vertices of Pn and x, y be that of Kc
2. Let ui denote the vertices

(vi, x) and wi denote (vi, y) of Pn[Kc
2], 1 ≤ i ≤ n. Define a labeling ` : E(Pn[Kc

2]) −→ V4 \ {0}
by

`(uiu(i+1)) = b, for i = 1, 2, · · ·n− 1,

`(w1w2) = b,

`(wiw(i+1)) = c, for i = 2, 3, · · ·n− 1,
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`(u1w2) = c,

`(uiw(i+1)) = b, for i = 2, 3, · · ·n− 1,

`(u(i+1)wi) = c, for i = 1, 2, · · ·n− 1.

Thus ` is an a-sum V4-magic labeling of Pn[Kc
2].

Theorem 5.4.2. (see [28]) Pn[Kc
2] ∈ V0 for all n.

Theorem 5.4.3. Pn[Kc
2] ∈ Va,0 for all n.

Proof. Combining theorems 5.4.1 and 5.4.2, we have Pn[Kc
2] ∈ Va,0 for all n.

Theorem 5.4.4. The planar grid Pm�Pn is a-sum V4-magic if and only if mn is even.

Proof. Suppose that Pm�Pn ∈ Va. Let (i, j), i = 0, 1, · · ·m − 1, j = 0, 1, · · ·n − 1 denote the

vertices of Pm�Pn. By lemma 3.2.1, we have
∑m−1

i=1

∑n−1
j=1 `

+((i, j)) = 0. Thus we have mn is

even. For the converse consider the following cases.

Case 1: Both m and n are even.

Define a labeling ` : E(Pm�Pn) −→ V4 \ {0} as follows.

For i = 0, 1, · · ·m− 2 do :

`((i, j)(i+ 1, j)) = b, j = 0, n− 1

end for

For j = 0, 1, · · ·n− 2 do :

`((i, j)(i, j + 1)) = c, i = 0,m− 1

end for

For i = 1, 2, · · ·m− 2 do :

`((i, j)(i, j + 1)) =

{
a, j = 0, 2, · · ·n− 2

c, j = 1, 3, · · ·n− 3

end for

For j = 1, 2, · · ·n− 2 do :

`((i, j)(i+ 1, j)) =

{
a, i = 0, 2, · · ·m− 2

b, j = 1, 3, · · ·m− 3

end for

With this labeling Pm�Pn is a-sum V4 magic.
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Case 2: m is even and n is odd.

Define a labeling ` : E(Pm�Pn) −→ V4 \ {0} as follows.

`((i, 0)(i+ 1, 0)) = b, i = 0, 1, · · ·m− 2

`((i, n− 1)(i+ 1, n− 1)) =

{
b, i = 0, 2, · · ·m− 2

a, i = 1, 3, · · ·m− 3

For j = 0, 1, · · ·n− 2 do :

`((i, j)(i, j + 1)) = c, i = 0,m− 1

end for

For j = 1, 2, · · ·n− 2 do :

`((i, j)(i+ 1, j)) =

{
a, i = 0, 2, · · ·m− 2

c, i = 1, 3, · · ·m− 3

end for

For i = 1, 2, · · ·m− 2 do :

`((i, j)(i, j + 1)) =

{
a, j = 0, 2, · · ·n− 3

b, j = 1, 3, · · ·n− 2

end for

Obviously Pm�Pn is a-sum V4 magic.

Case 3: m is odd and n is even.

By interchanging the roles of m and n in Case 2, we get `+(v) = a for all v ∈ V (Pm�Pn).

This completes the proof.

Theorem 5.4.5. (see [28]) Pm�Pn ∈ V0 for all m and n.

Theorem 5.4.6. Pm�Pn ∈ Va,0 if and only if mn is even.

Proof. From theorem 5.4.4 we have Pm�Pn ∈ Va if and only if mn is even and by theorem 5.4.5,

we have Pm�Pn ∈ V0 for all m and n. Combining the two theorems the result follows.

Theorem 5.4.7. If the generalized Theta graph Θ(a1, a2, · · · ak) is a-sum V4-magic then either

odd number of ai’s are odd or even number of ai’s are even.

Proof. First suppose that Θ(a1, a2, · · · ak) is a-sum V4 magic. Then we have

(
k∑
ai

i=1

− k
)
a = 0.

This implies that

(
k∑
ai

i=1

)
a = ka. This is if and only if both

k∑
ai

i=1

and k are odd or even

simultaneously. This happens if and only if odd number of ai’s are odd or even number of ai’s

are even.
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Theorem 5.4.8. Let Θ(a1, a2, · · · ak) be a generalized Theta graph. If k and even number of

ai’s are even then Θ(a1, a2, · · · ak) is a-sum V4 magic.

Proof. Let vi1, v
i
2, · · · viai−1 be the vertices of the ith path and let u,w be the common vertices.

Define a labeling ` : Θ(a1, a2, · · · ak) −→ V4 \ {0} by

For i = 1, 2, · · · k − 1 do :

`(uvi1) = b

end for

`(uvk1 ) = c

For i = 1, 2, · · · k do :

`(vijv
i
j+1) =

{
c, j = 1, 3, · · · ai − 2, if ai is odd

j = 1, 3, · · · ai − 3, if ai is even

`(vijv
i
j+1) =

{
b, j = 2, 4, · · · ai − 2, if ai is even

j = 2, 4, · · · ai − 3, if ai is odd

Now label the edge viak−1w, i = 1, 2, · · · k in the following way.

If `(viak−2v
i
ak−1) = b, let `(viak−1w) = c and viceversa. Thus ` is an a-sum V4-magic labeling

of Θ(a1, a2, · · · ak).

Theorem 5.4.9. (see [13]) Θ(a1, a2, · · · ak) is zero-sum V4-magic for any sequence a1, a2, · · · ak.

Theorem 5.4.10. Let Θ(a1, a2, · · · ak) be a generalized Theta graph. If k and even number of

ai’s are even then Θ(a1, a2, · · · ak) ∈ Va,0.

Proof. By theorem 5.4.8, if k and even number of ai’s are even then Θ(a1, a2, · · · ak) is a-sum

V4 magic. Also from theorem 5.4.9, it follows that Θ(a1, a2, · · · ak) is zero-sum V4-magic for

any sequence a1, a2, · · · ak. Combining both we get the result.

5.5 Book Graphs

Theorem 5.5.1. For any n ≥ 3 and k ≥ 1, B(n, k) ∈ Va if and only if (n− 2)k is even.

Proof. First assume that B(n, k) ∈ Va. Then [(n − 2)k + 2]a = 0. This implies that (n − 2)k

is even. Conversely assume that (n− 2)k is even. We consider the following cases.

Case 1: Both n and k are even.

Define a labeling ` : E(B(n, k)) −→ V4 \ {0} by

`(uv) = a,

For j = 1, 2, · · · k do :
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`(uuj1) = `(vuj(n−2)) = b,

`(uj2iu
j
2i+1) = b, for i = 1, 2, · · · n− 4

2
,

`(uj2i−1u
j
2i) = c, for i = 1, 2, · · · n− 4

2
.

end for

Then ` is an a-sum V4-magic labeling of B(n, k).

Case: 2 n is odd and k is even,

Define a labeling ` : E(B(n, k)) −→ V4 \ {0} by

`(uv) = a,

For j = 1, 2, · · · k do :

`(uuj1) = b,

`(vuj(n−2)) = c,

`(uj2iu
j
2i+1) = b, for i = 1, 2, · · · n− 3

2
,

`(uj2i−1u
j
2i) = c, for i = 1, 2, · · · n− 3

2
.

end for

Case 3: n is even and k is odd

Define a labeling ` : E(B(n, k)) −→ V4 \ {0} by

`(uv) = c,

For j = 1, 2, · · · k do :

`(uuj1) = `(vuj(n−2)) = b,

`(uj2iu
j
2i+1) = b, for i = 1, 2, · · · n− 4

2
,

`(uj2i−1u
j
2i) = c, for i = 1, 2, · · · n− 2

2
.

end for

Thus ` is an a-sum V4-magic labeling of B(n, k).

Theorem 5.5.2. (see [13]) For any n ≥ 3 and k ≥ 1, B(n, k) is zero-sum V4 magic.

Theorem 5.5.3. For any n ≥ 3 and k ≥ 1, B(n, k) ∈ Va,0 if and only if (n− 2)k is even.

Proof. From theorem 5.5.1, B(n, k) ∈ Va if and only if (n−2)k is even and from theorem 5.5.2,

for any n ≥ 3 and k ≥ 1, B(n, k) is zero-sum V4 magic. Thus we have the result.

Theorem 5.5.4. The book Bn is a-sum V4-magic for all n.
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Proof. Let w1, w2 be the vertices of the common edge. Let {u1, u2, · · ·un} ∪ {v1, v2, · · · vn} be

the vertices of Bn.

Case 1: n is odd.

`(w1w2) = c,

For i = 1, 2, · · ·n do :

`(w1ui) = `(w2vi) = b,

`(uivi) = c.

end for

Case 2: n is even.

`(w1w2) = a,

For i = 1, 2, · · ·n do :

`(w1ui) = `(w2vi) = b,

`(uivi) = c.

end for

Clearly ` is an a-sum V4-magic labeling of Bn.

Theorem 5.5.5. Bn ∈ V0 for all n.

Proof. We consider the following cases:

Case 1: n is odd.

Label all the edges by a. Then we get `+(v) = 0 for all v ∈ V (G).

Case 2: n is even.

Define a labeling ` : E(Bn) −→ V4 \ {0} by

`(w1w2) = a,

`(u1w1) = `(v1w1) = `(u1v1) = c,

`(w1ui) = `(w2vi) = b, i = 2, 3, · · ·n,

`(uivi) = b, i = 2, 3, · · ·n.

With this labeling we get `+(v) = 0 for all v ∈ V (G).

Corollary 5.5.6. Bn ∈ Va,0 for all n.

Proof. The proof follows from theorems 5.5.4 and 5.5.5.
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5.6 Km,n and Kn-Related Graphs

Consider the complete bipartite graph Km,n.

Theorem 5.6.1. For m,n ≥ 2, the complete bipartite graph Km,n is a-sum V4-magic if and

only if m+ n is even.

Proof. First assume that Km,n is a-sum V4 magic. Let {ui, i = 1, 2, · · ·m}∪{vj , j = 1, 2, · · ·n}
be the vertices of the graph with E(G) = {uivj : i = 1, 2, · · ·m, j = 1, 2, · · ·n}. Then we have∑m

i=1 `
+(ui) +

∑n
j=1 `

+(vj) = 0. This implies that m + n is even. Conversely suppose that

m+ n is even. Then we have the following cases.

Case 1: m and n are odd.

Define a labeling ` : E(Km,n) −→ V4 \ {0} by

For i = 1, 2, · · ·m do :

`(uivj) = a, j = 1, 2, · · ·n.

end for

Thus `+(v) = a.

Case 2: m and n are even.

`(uiv2) = c, i = 1, 3, 4, · · ·m,

`(u2vj) = c, j = 1, 3, 4, · · ·n,

`(u2v2) = b,

For i = 1, 3, 4, · · ·m do :

`(uivj) = b, j = 1, 3, 4, · · ·n.

end for

Obviously, Km,n is a-sum V4 magic.

Theorem 5.6.2. (see [13]) Km,n is zero-sum V4-magic for all m and n.

Theorem 5.6.3. Km,n ∈ Va,0 if and only if m+ n is even.

Proof. The proof follows from theorems 5.6.1 and 5.6.2.

Now we discuss the classification of certain V4-magic graphs obtained from Kn.

Consider the complete graph Kn of order n ≥ 4 with V (Kn) = {v1, v2, · · · vn} and for each

r such that 2 ≤ r ≤ n − 2, let G(n, r) be a spanning subgraph of Kn with E(G(n, r)) =

E(Kn) − {vivj : 1 ≤ i < j ≤ r}. In [13], Sin Min Lee et al. proved that, for any n > 3,

Kn \ e the complete graph with one edge removed is V4-magic. Here we generalize this result

as follows.
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Theorem 5.6.4. The graph G(n, r) is a-sum V4-magic if and only if n is even.

Proof. Suppose G(n, r) ∈ Va. Then by lemma 3.2.1,
∑n

i=1 `
+(vi) = 0 where v1, v2, · · · , vn are

the vertices of the graph G(n, r). That is na = 0. This implies that n is even. Conversely

suppose that n is even.

Case 1: r is odd

Label all the edges by a. With this labeling we have `+(v) = a for all v ∈ V (G(n, r)).

Case 2: r is even

Define a labeling ` : E(G(n, r)) −→ V4 \ {0} by

For i = 1, 2, · · · , r do:

`(vivj) =

b, j = r + 1, r + 2, · · · , n− 2, n

c, j = n− 1

end for

For i = r + 1, r + 2, · · · , n do:

`(vivj) = a, j = r + 2, r + 3, · · · , n

end for

One can easily verify that, `+(v) = a for all v ∈ V . That is, `+(v) = a for all v ∈ V (G(n, r)).

Thus ` is an a-sum V4-magic labeling of G(n, r). This completes the proof.

Theorem 5.6.5. The graph G(n, r) is zero-sum V4-magic for all n.

Proof. Let v1, v2, · · · , vn be the vertices of G(n, r).

Case 1: r is even.

Subcase 1: n is odd.

Define a labeling ` : E(G(n, r)) −→ V4 \ {0} by

For i = 1, 2, · · · , r

`(vivn) = a

`(vivn−1) = b

`(vivn−2) = c

`(vivj) = a, j = r + 1, · · · , n− 3

end for

For i = r + 1, · · · , n

`(vivj) = a, j = r + 2, · · · , n

end for
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With this labeling we get ` is a zero sum V4-magic labeling of G(n, r).

Subcase 2: n is even.

Define a labeling ` : E(G(n, r)) −→ V4 \ {0} by

For j = r + 1, · · · , n

`(v1vj) = a

`(v2vj) = b

end for

`(vivj) = c, i = 3, · · · , n

With this labeling we have ` is a zero sum V4-magic labeling of G(n, r).

Case 2: r is odd.

Subcase 1 : n is odd.

Label all the edges by a. then we get `+(v) = 0 for all v ∈ V (G(n, r)).

Subcase 2 : n is even.

The edge labeling of the graph is shown in the following table.

v1 v2 v3 v4 · · · vr vr+1 vr+2 vr+3 vr+4 · · · vn−3 vn−2 vn−1 vn

v1 a a a a . . . a c b a

v2 b b b b . . . b a c b

v3 c c c c . . . c b a c

v4 a a a a . . . a c b a

...
...

...
...

...
...

...
...

...
...

vr a a a a . . . a c b a

vr+1 a b c a . . . a a a a . . . a a a a

vr+2 a b c a . . . a a a a . . . a a a a

vr+3 a b c a . . . a a a a . . . a a a a

vr+4 a b c a . . . a a a a . . . a a a a

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

vn−3 a b c a . . . a a a a a . . . a a a

vn−2 c a b c . . . c a a a a . . . a a a

vn−1 b c a b . . . b a a a a . . . a a a

vn a b c a . . . a a a a a . . . a a a

With this labeling we get `+(v) = 0 for all v ∈ V (G). Thus ` is a zero-sum V4-magic labeling

of G(n, r). This completes the proof.

Theorem 5.6.6. The graph G(n, r) ∈ Va,0 if and only if n is even.

Proof. The proof follows from theorems 5.6.4 and 5.6.5.

Consider the graph G(n, r) together with pendant edges at the vertices v1, v2, · · · , vr and

triangles at the vertices vr+1, vr+2, · · · , vn. We denote this graph by Gnr (G).
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Theorem 5.6.7. Gnr (G) is a-sum V4-magic if and only if both n and r are of the same parity.

Proof. First suppose that Gnr (G) is a-sum V4 magic. Then by lemma 3.2.1,
∑n

i=1 `
+(vi) +∑r

i=1 `
+(ui) +

∑n
i=r+1

∑2
j=1 `

+(wj
i ) = 0. That is [n + r + 2(n − r)]a = 0. This implies that

either both n and r are even or both are odd. Conversely assume that both n and r are of

same parity.

Case 1: n and r are even.

Define a labeling ` : E(Gnr (G)) −→ V4 \ {0} by

`(viui) = a, i = 1, 2, · · · , r

For i = 1, 2, · · · , n

`(vivj) = a, j = r + 1, · · · , n

end for

For i = r + 1, · · · , n

`(vivj) = a, j = r + 1, · · · , n

`(viw
j
i ) = b, j = 1, 2

`(w1
iw

2
i ) = c

end for

With the above labeling we have `+(v) = a for all v ∈ V (Gnr (G)). Thus ` is an a-sum

V4-magic labeling of Gnr (G).

Case 2: n and r are odd.

Subcase 1: r = n− 2

Define a labeling ` : E(Gnr (G)) −→ V4 \ {0} by

`(viui) = a, i = 1, 2, · · · , r

For j = n− 1, n

`(vivj) = a, i = 1, 2, · · · , r − 1

`(vrvj) = b

end for

`(vn−1vn) = c

For i = r + 1, · · · , n

`(viw
j
i ) = b, j = 1, 2

`(w1
iw

2
i ) = c

end for

With the above labeling ` is an a-sum V4-magic labeling of Gnr (G).
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5.6. Km,n and Kn-Related Graphs

Subcase 2: r 6= n− 2. Define a labeling ` : E(Gnr (G)) −→ V4 \ {0} by

`(viui) = a, i = 1, 2, · · · , r

For j = r + 1, · · · , n

`(vivj) = a, i = 1, 2, · · · , r − 1

`(vrvj) = b

end for

For j = r + 2, · · · , n

`(vivj) = a, i = r + 2, · · · , n

`(vr+1vj) = c

end for

For i = r + 1, · · · , n

`(viw
j
i ) = b, j = 1, 2

`(w1
iw

2
i ) = c

end for

With the above labeling we have ` is an a-sum V4-magic labeling of Gnr (G).

Theorem 5.6.8. Gnr (G) /∈ V0 for any n and r.

Proof. Since the graph has pendant edges it can never be zero-sum V4-magic for any n and

r.
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Chapter 6
V4-Barycentric Magic Graphs

In the first section of this chapter, we introduce a-sum and zero sum V4

barycentric magic graphs. In the second section of this chapter, we dis-

cuss V4 barycentric magic star graph and complete bipartite graph. In the

third section of this chapter we characterize a-sum V4 barycentric magic

trees. In the fourth section we discuss V4 barycentric magic complete

graph and Kn-related graph which is not V4 barycentric magic. In the

fifth section we include the definitions of splitting graphs and mycielski

graphs. Furthermore, we discuss V4 barycentric magic splitting graphs

and mycielski graphs of certain graphs. In the last section we discuss

some cycle related and some more special V4 barycentric magic graphs.

6.1 Introduction

A graph G is said to be A-barycentric magic if there exists a labeling ` : E(G) −→ A \ {0}
such that the induced vertex set labeling `+ : V (G) −→ A defined by

`+(v) =
∑
{`(uv) : uv ∈ E(G)}

is a constant map and also satisfies `+(v) = deg(v)`(uvv) for all v ∈ V , and for some vertex

uv adjacent to v [34].

In the definition of an A-barycentric magic graph instead of any abelian group we particularly

choose the Klein 4-group V4 and then define the following:

Definition 6.1.1. A graph G is said to be V4- barycentric magic if there exists a labeling

` : E(G) −→ V4 \ {0} such that the induced vertex set labeling `+ : V (G) −→ V4 defined by

`+(v) =
∑
{`(uv) : uv ∈ E(G)}
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6.1. Introduction

is a constant map and also satisfies `+(v) = deg(v)`(uvv) for all v ∈ V , and for some vertex uv

adjacent to v. If this constant is some a ∈ V4, the graph G is said to be a-sum V4 barycentric

magic. When a = 0, G is said to be zero-sum V4 barycentric magic.

In this chapter we investigate graphs that belong to the following classes:

(i) BV a: the class of graphs that are a-sum V4 barycentric magic.

(ii) BV 0: the class of graphs that are zero-sum V4 barycentric magic.

(iii) BV a,0: the class of graphs that are both a-sum and zero-sum V4 barycentric magic.

And finally we come to the conclusion that the class BV a,0 is empty.

This chapter is mainly built upon the following lemmas.

Lemma 6.1.2. If a graph G has a vertex of even degree, then G is not a-sum V4-barycentric

magic.

Proof. Suppose that G is a-sum V4-barycentric magic. Let v be a vertex of even degree, say

k. Then we have k`(uvv) = a, for some vertex uv adjacent to v. This implies that a = 0. This

is a contradiction to the fact that G is a-sum V4-barycentric magic.

Lemma 6.1.3. If a graph G has a vertex of odd degree, then G is not zero-sum V4-barycentric

magic.

Proof. Suppose that G is zero-sum V4-barycentric magic. Let v be a vertex of odd degree, say

k. Then we have k`(uvv) = 0, for some vertex uv adjacent to v. This implies that `(uvv) = 0

which is not possible.

Lemma 6.1.4. Let G be a graph such that all of its vertices are of even degree then G is

zero-sum V4-barycentric magic.

Proof. If we label all the edges of G by a, then `+(v) = 0. Moreover, deg(v)`(vuv) = 0. Thus,

G is zero-sum V4-barycentric magic.

Lemma 6.1.5. Let G be a graph such that all of its vertices are of odd degree then G is a-sum

V4-barycentric magic.

Proof. If we label all the edges of G by a, then `+(v) = a. Moreover, deg(v)`(vuv) = a. Thus,

G is a-sum V4-barycentric magic.
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6.2. Star and Complete bipartite graph

6.2 Star and Complete bipartite graph

Theorem 6.2.1. The star K1,n ∈ BV a if and only if n is odd.

Proof. Assume that K1,n ∈ BV a. Then by lemma 3.2.1, we have (n + 1)a = 0. This implies

that n is odd.

Conversely, assume that n is odd. Then deg(v) is odd for all v ∈ V (K1,n). Then by lemma

6.1.5, we have K1,n ∈ BV a.

Theorem 6.2.2. The star K1,n /∈ BV 0 for any n.

Proof. Since K1,n has a vertex of degree 1, the proof follows from lemma 6.1.3.

Corollary 6.2.3. The star K1,n /∈ BV a,0 for any n.

Proof. The proof follows from theorems 6.2.1 and 6.2.2.

Theorem 6.2.4. For m,n ≥ 2, the complete bipartite graph Km,n is a-sum V4-barycentric

magic if and only if both m and n are odd.

Proof. Assume that Km,n is a-sum V4-barycentric magic. Then by lemma 3.2.1, we have

(m + n)a = 0. This implies that (m + n) is even. That is, m and n are of the same parity.

Since Km,n is a-sum V4-barycentric magic, we have, deg(v)`(uvv) = a for all v ∈ V . This

implies that deg(v) is odd for all v ∈ V and `(uvv) = a. Hence m and n are odd. Conversely

assume that m and n are odd. Label all the edges by a. Then the result follows.

Theorem 6.2.5. For m,n ≥ 2, the complete bipartite graph Km,n is zero-sum V4-barycentric

magic if and only if both m and n are even.

Proof. Assume that Km,n is zero-sum V4-barycentric magic. Then we have, deg(v)`(uvv) = 0

for all v ∈ V which implies that deg(v) is even for all v ∈ V . That is m+n,m and n are even.

Hence the proof. Conversely assume that m and n are even. Label all the edges by a. Then

the result follows.

6.3 Trees

We define the following.

Definition 6.3.1. Let t be a (p, q) tree. For each vertex vi we define a new tree t ∗ vi ∗ P3

obtained by identifying vi with the end vertex of P3. Note that for each vertex vi we have a

tree t ∗ vi ∗P3. Now consider all such trees t ∗ vi ∗P3, i = 1, 2, . . . p. These trees form a class of

trees with (p+ 2) vertices and (q + 2) edges. This class is denoted by t ∗ P3.
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6.4. Kn and Kn-related graph

A similar class of trees t ∗MP3 is obtained by identifying vi with the middle vertex of P3.

Definition 6.3.2. Let t be a (p, q) tree. Consider two copies of P2. For each of the vertices

vi, vj of t, we define a new tree t ∗ vi ∗ vj ∗ P2 obtained by identifying vi with a vertex of one

copy of P2 and vj with a vertex of the other copy. Note that for each of the vertices vi, vj we

obtain a tree t ∗ vi ∗ vj ∗ P2. Now consider all such trees t ∗ vi ∗ vj ∗ P2, i, j = 1, 2, . . . p, i 6= j.

We denote this class by t ∗ P2 ∗ P2. They form a class of (p+ 2, q + 2) trees.

Theorem 6.3.3. A tree t is a-sum V4-barycentric magic if and only if the number of vertices

of t is even and all its vertices have odd degrees.

Proof. If all the vertices of a tree t have odd degrees, then by lemma 6.1.5, t ∈ BV a.

Conversely, assume that t is a-sum V4-barycentric magic. Then by lemma 3.2.1, we have

na = 0. This implies that n is even. That is the number of edges of t say q is odd. We will

prove the theorem by induction on q. The statement is true for q = 1. Consider trees with

3 edges. The possibilities are t = P4 or t = K1,3. Since P4 have vertices of even degree, by

lemma 6.1.2, P4 is not a-sum V4-barycentric magic. Obviously all the vertices of K1,3 are of

odd degree. Suppose the statement is true for all nontrivial trees t with at most 2k + 1 edges,

and let t′ be the class of all trees with 2k+ 3 edges. Then t′ = t ∗ P3 or t ∗MP3 or t ∗ P2 ∗ P2.

Note that all these family of trees have 2k + 3 edges. Moreover, both the families t ∗ P3 and

t∗P2 ∗P2 have vertex of degree two. So, by lemma 6.1.2 these families are not a-sum V4 magic.

Now consider the class t ∗MP3. By induction hypothesis all the vertices of this class of trees

have odd degrees. This completes the proof.

Theorem 6.3.4. A tree is not zero-sum V4-barycentric magic.

Proof. Since a tree has pendant edges it cannot be zero-sum V4-barycentric magic.

6.4 Kn and Kn-related graph

Theorem 6.4.1. For n ≥ 2, the complete graph Kn ∈ BV a if and only if n is even.

Proof. Suppose n is even. Then deg(v) is odd for all v ∈ V (Kn). Then by lemma 6.1.5,

Kn ∈ BV a. Conversely assume that Kn ∈ BV a. Then by lemma 3.2.1, n is even.

Theorem 6.4.2. For n ≥ 2, the complete graph Kn ∈ BV 0 if and only if n is odd.

Proof. Suppose that n is odd. Then deg(v) is even for all v ∈ V (Kn). Then by lemma

6.1.4, Kn ∈ BV 0. Conversely assume that Kn, n ≥ 2 ∈ BV 0. Then we have `+(v) = 0 =

deg(v)`(uvv). Without loss of generality assume that `(uvv) = a. That is, (n− 1)a = 0 which

implies that n is odd.

Corollary 6.4.3. For any n ≥ 2, the complete graph Kn /∈ BV a,0.
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6.5. Splitting graphs and Mycielski graphs

Proof. From theorems 6.4.1 and 6.4.2, the result follows.

Theorem 6.4.4. For any n > 3, Kn \ e, the complete graph with one edge removed, is not

a-sum V4-barycentric magic for any n.

Proof. Let V (Kn) = {v1, v2, . . . , vn}. We consider the following cases:

Case 1: Suppose n is even. Without loss of generality, we may remove the edge v1v2. Then

deg(v1) = n− 2. This implies that degree of v1 is even. So by lemma 6.1.2, Kn \ e is not

a-sum V4-barycentric magic.

Case 2: Suppose n is odd. In this case, all vertices except v1 and v2 are of even degree. So, by

lemma 6.1.2, Kn \ e is not a-sum V4-barycentric magic.

This completes the proof.

Theorem 6.4.5. For any n > 3, Kn \ e, the complete graph with one edge removed, is not

zero-sum V4-barycentric magic for any n.

Proof. We consider the following cases:

Case 1: Suppose n is even. Without loss of generality, we may remove the edge v1v2. Then

deg(v) = n − 1 for all v except v1 and v2. This implies that degree of v is odd for all

v except v1 and v2. In this case, degv`(vuv) = 0 is not satisfied for any `(vuv). So by

lemma 6.1.3, Kn \ e is not zero-sum V4-barycentric magic.

Case 2: Suppose n is odd. Without loss of generality, we may remove the edge v1v2. Then

deg(v1) = deg(v2) = n − 1. This implies that degree of vi is odd for i = 1, 2. Then

degvi`(viuvi) = 0 is not satisfied for any `(viuvi). So by lemma 6.1.3, Kn \ e is not

zero-sum V4-barycentric magic.

This completes the proof.

6.5 Splitting graphs and Mycielski graphs

Definition 6.5.1. (see [23]) For any graph G, the splitting graph S(G) is obtained by adding

to each vertex ui in G a new vertex vi such that vi is adjacent to the neighbours of ui in G.

Definition 6.5.2. (see [27]) The Mycielski graph µ(G) is obtained by adding to each vertex

ui a new vertex vi such that vi is adjacent to the neighbours of ui. Finally, add a new vertex

u such that u is adjacent to each and every ui.

Theorem 6.5.3. S(Km,n) is zero-sum V4-magic for all m,n ≥ 3 and zero-sum V4-barycentric

magic if and only if m and n are even.

89



6.5. Splitting graphs and Mycielski graphs

Proof. Let S1 = {u1, u2, . . . , um} and S2 = {v1, v2, . . . , vn} be the partite sets and S′1 =

{u′1, u′2, . . . , u′m} and S′2 = {v′1, v′2, . . . , v′n} be the new vertices. The edge set is given by

E(S(K(m,n))) = {uivj : 1 ≤ i ≤ m, 1 ≤ j ≤ n} ∪ {u′

ivj : 1 ≤ i ≤ m, 1 ≤ j ≤ n} ∪ {uiv
′

j : 1 ≤
i ≤ m, 1 ≤ j ≤ n}. Without loss of generality assume that m ≥ n. We consider 4 cases:

Case 1: Assume that both m and n are odd. Define a labeling ` : E(S(Km,n))→ V4 \ {0} by:

v1 v2 v3 v4 v5 v6 v7 · · · vn

u′1 a b c a a a a · · · a

u′2 b c a a a a a · · · a

u′3 c a b a a a a · · · a

u′4 a b c a a a a · · · a

u′5 a b c a a a a · · · a

u′6 a b c a a a a · · · a
...

...
...

...
...

...
...

...
...

...

u′m a b c a a a a · · · a

v′1 v′2 v′3 v′4 v′5 v′6 v′7 · · · v′n
u1 a a a a a a a · · · a

u2 b b b b b b b · · · b

u3 c c c c c c c · · · c

u4 a a a a a a a · · · a

u5 a a a a a a a · · · a

u6 a a a a a a a · · · a
...

...
...

...
...

...
...

...
...

...

um a a a a a a a · · · a

u1 u2 u3 u4 u5 u6 u7 · · · um

v1 a b c a a a a · · · a

v2 a b c a a a a · · · a

v3 a b c a a a a · · · a

v4 a b c a a a a · · · a

v5 a b c a a a a · · · a

v6 a b c a a a a · · · a
...

...
...

...
...

...
...

...
...

...

vn a b c a a a a · · · a

Obviously `+(v) = 0 for all v ∈ V . Also by lemma 6.1.3, S(K(m,n)) is not zero sum

V4-barycentric magic.

Case 2: Assume that m and n are even. In this case, label all the edges by a. Obviously this

is a zero sum V4-magic labeling of S(Km,n) and by lemma 6.1.4, S(Km,n) ∈ BV 0.

Case 3: Assume that m is odd and n is even. Define a labeling ` : E(S(Km,n)) → V4 \ {0}
by:
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6.5. Splitting graphs and Mycielski graphs

v1 v2 v3 v4 v5 v6 v7 · · · vn

u′1 a a a a a a a · · · a

u′2 a a a a a a a · · · a

u′3 a a a a a a a · · · a

u′4 a a a a a a a · · · a

u′5 a a a a a a a · · · a

u′6 a a a a a a a · · · a
...

...
...

...
...

...
...

...
...

...

u′m a a a a a a a · · · a

v′1 v′2 v′3 v′4 v′5 v′6 v′7 · · · v′n
u1 a a a a a a a · · · a

u2 b b b b b b b · · · b

u3 c c c c c c c · · · c

u4 a a a a a a a · · · a

u5 a a a a a a a · · · a

u6 a a a a a a a · · · a
...

...
...

...
...

...
...

...
...

...

um a a a a a a a · · · a

u1 u2 u3 u4 u5 u6 u7 · · · um

v1 a a a a a a a · · · a

v2 a a a a a a a · · · a

v3 a a a a a a a · · · a

v4 a a a a a a a · · · a

v5 a a a a a a a · · · a

v6 a a a a a a a · · · a
...

...
...

...
...

...
...

...
...

...

vn a a a a a a a · · · a

Obviously `+(v) = 0 for all v ∈ V . Also by lemma 6.1.3, S(Km,n) /∈ BV 0.

Case 4: m is even and n is odd.

This case is similar to case 3.

This completes the proof.

Theorem 6.5.4. S(Km,n) is a-sum V4-magic for all m,n ≥ 3 and a-sum V4-barycentric magic

if and only if m and n are odd.

Proof. We consider the following cases:

Case 1: Assume that m is odd and n is even. Define ` : S(Km,n)→ V4 \ {0} by:
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6.5. Splitting graphs and Mycielski graphs

v1 v2 v3 v4 v5 v6 v7 · · · vn

u′1 b c a a a a a · · · a

u′2 b c a a a a a · · · a

u′3 b c a a a a a · · · a

u′4 b c a a a a a · · · a

u′5 b c a a a a a · · · a

u′6 b c a a a a a · · · a
...

...
...

...
...

...
...

...
...

...

u′m−2 b c a a a a a · · · a

u′m−1 b c b b b b b · · · b

u′m c b c c c c c · · · c

v′1 v′2 v′3 v′4 v′5 v′6 v′7 · · · v′n
u1 a a a a a a a · · · a

u2 a a a a a a a · · · a

u3 a a a a a a a · · · a

u4 a a a a a a a · · · a

u5 a a a a a a a · · · a

u6 a a a a a a a · · · a
...

...
...

...
...

...
...

...
...

...

um a a a a a a a · · · a

u1 u2 u3 u4 u5 u6 u7 · · · um

v1 b b b b b b b · · · b

v2 c c c c c c c · · · c

v3 a a a a a a a · · · a

v4 a a a a a a a · · · a

v5 a a a a a a a · · · a

v6 a a a a a a a · · · a
...

...
...

...
...

...
...

...
...

...

vn a a a a a a a · · · a

Obviously, `+(v) = a for all v ∈ V (S(Km,n)). By lemma 6.1.2, S(Km,n) /∈ BV a.

Case 2: Assume that m is even and n is odd. In this case the labeling is similar to case 1. By

lemma 6.1.2, S(Km,n) /∈ BV a.

Case 3: Assume that m and n are odd. Define ` : E(S(Km,n))→ V4 \ {0} by:
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v1 v2 v3 v4 v5 v6 v7 · · · vn

u′1 a a a a a a a · · · a

u′2 a a a a a a a · · · a

u′3 a a a a a a a · · · a

u′4 a a a a a a a · · · a

u′5 a a a a a a a · · · a

u′6 a a a a a a a · · · a
...

...
...

...
...

...
...

...
...

...

u′m a a a a a a a · · · a

v′1 v′2 v′3 v′4 v′5 v′6 v′7 · · · v′n
u1 a a a a a a a · · · a

u2 a a a a a a a · · · a

u3 a a a a a a a · · · a

u4 a a a a a a a · · · a

u5 a a a a a a a · · · a

u6 a a a a a a a · · · a
...

...
...

...
...

...
...

...
...

...

um a a a a a a a · · · a

v1 v2 v3 v4 v5 v6 v7 · · · vn

u1 a b c a a a a · · · a

u2 b c a a a a a · · · a

u3 c a b a a a a · · · a

u4 a a a a a a a · · · a

u5 a a a a a a a · · · a

u6 a a a a a a a · · · a
...

...
...

...
...

...
...

...
...

...

um−2 a a a a a a a · · · a

um−1 a b c b b b b · · · b

um a b c c c c c · · · c

Obviously `+(v) = a for all v ∈ V . By lemma 6.1.5, S(Km,n) ∈ BV a.

Case 4: Assume that m and n are even.

Define ` : E(S(Km,n))→ V4 \ {0} by:
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v1 v2 v3 v4 v5 v6 v7 · · · vn

u′1 b c b b b b b · · · b

u′2 c b c c c c c · · · c

u′3 b c b b b b b · · · b

u′4 b c b b b b b · · · b

u′5 b c b b b b b · · · b

u′6 b c b b b b b · · · b
...

...
...

...
...

...
...

...
...

...

u′m b c b b b b b · · · b

v′1 v′2 v′3 v′4 v′5 v′6 v′7 · · · v′n
u1 b c b b b b b · · · b

u2 c b c c c c c · · · c

u3 b c b b b b b · · · b

u4 b c b b b b b · · · b

u5 b c b b b b b · · · b

u6 b c b b b b b · · · b
...

...
...

...
...

...
...

...
...

...

um b c b b b b b · · · b

u1 u2 u3 u4 u5 u6 u7 · · · um

v1 b b b b b b b · · · b

v2 b b b b b b b · · · b

v3 b b b b b b b · · · b

v4 b b b b b b b · · · b

v5 b b b b b b b · · · b

v6 b b b b b b b · · · b
...

...
...

...
...

...
...

...
...

...

vn b b b b b b b · · · b

Obviously ` is an a-sum V4-magic labeling of S(Km,n) and by lemma 6.1.2, S(Km,n) /∈
BV a.

Theorem 6.5.5. µ(Km,n) is not a-sum V4-magic and not a-sum V4-barycentric magic for any

m,n ≥ 2.

Proof. Suppose that µ(Km,n) is a-sum V4-magic. Then by lemma 3.2.1, we have [2(m+ n) +

1]a = 0 which is a contradiction. Thus µ(Km,n) is not a-sum V4-magic and hence not a-sum

V4-barycentric magic for any m,n ≥ 2.
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6.5. Splitting graphs and Mycielski graphs

Theorem 6.5.6. µ(Km,n) is zero-sum V4-magic and zero-sum V4-barycentric magic if and

only if m and n are odd.

Proof. Let V (µ(Km,n)) = V (S(Km,n)) ∪ {u} and E(µ(Km,n)) = E(S(Km,n)) ∪ {uu′i : 1 ≤ i ≤
m} ∪ {uv′j : 1 ≤ j ≤ n}. We consider the following cases:

Case 1: Assume that m and n are even.

For j = 1, 2, · · · , n, do:

`(uiv
′
j) = a, i = 1, 4, · · · ,m,

`(u2v
′
j) = b, `(u3v

′
j) = c.

end for

For i = 1, 2, · · · ,m, do:

`(u′ivj) = a, i = 1, 4, · · · , n,

`(u′iv2) = b, `(u′iv3) = c.

end for

For i = 1, 2, · · · ,m

For j = 1, 2, · · · , n

`(u′iu) = `(v′ju) = `(uivj) = a.

end for

end for

Case 2: Assume that m and n are odd.

Label all the edges by a.

Case 3: Assume that m is odd and n is even.

For i = 1, 2, · · · ,m

For j = 1, 2, · · · , n

`(v′jui) = a.

end for

end for

For j = 1, 2, · · · , n

`(uivj) = a, i = 1, 4, 5, · · · ,m

`(u2vj) = b, `(u3vj) = c.

end for

For j = 1, 4, · · · , n

`(u′ivj) = a, i = 1, 4, 5, · · · ,m

`(u′2vj) = b, `(u′3vj) = c.
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6.5. Splitting graphs and Mycielski graphs

end for

`(v2u
′
1) = `(v3u

′
3) = b

`(v2u
′
2) = `(v3u

′
1) = c

`(v2u
′
i) = a, for i = 3, 4, · · · ,m

`(v3u
′
i) = a, for i = 2, 4, 5, · · · ,m

`(u′iu) = a, i = 1, 4, 5, · · · ,m

`(u′2u) = b, `(u′3u) = c.

Case 4: Assume that m is even and n is odd.

Interchange the roles of m and n in case 3.

This completes the proof.

Theorem 6.5.7. S(K1,n) is a-sum V4-magic if n is even.

Proof. Let V (S(K1,n)) = {u} ∪ {u′} ∪ {ui : 1 ≤ i ≤ n} ∪ {u′i : 1 ≤ i ≤ n} and edge set

E((S(K1,n))) = {uui : 1 ≤ i ≤ n} ∪ {uu′i : 1 ≤ i ≤ n} ∪ {u′ui : 1 ≤ i ≤ n}. Define a labeling

` : E((S(K1,n))) −→ V4 \ {0} by

`(uu′i) = a, 1 ≤ i ≤ n

`(uui) =

c, for i = 1, 3 ≤ i ≤ n,

b, for i = 2.

`(uiu
′) =

b, for i = 1, 3 ≤ i ≤ n,

c, for i = 2.

With this labeling `+(v) = a for all v ∈ V .

Theorem 6.5.8. S(K1,n) is not a-sum V4-barycentric magic for any n.

Proof. By lemma 6.1.2, S(K1,n) is not a-sum V4-barycentric magic for any n.

Theorem 6.5.9. S(K1,n) is not zero-sum V4-magic and not zero-sum V4-barycentric magic

for any n.

Proof. Since it has pendant edges, S(K1,n) is not zero-sum V4-magic and hence not zero-sum

V4-barycentric magic for any n.

Theorem 6.5.10. µ(K1,n) is zero sum V4-magic if n is odd.

Proof. Label all edges by a. The result follows.

Theorem 6.5.11. µ(K1,n) is zero sum V4-barycentric magic if n is odd.
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Proof. By lemma 6.1.4, the result follows.

Theorem 6.5.12. µ(K1,n) is not a-sum V4-magic and is not a-sum V4-barycentric magic for

any n.

Proof. Suppose that µ(K1,n) is a-sum V4-magic. Then by lemma 3.2.1, (2n+ 3)a = 0 which is

a contradiction. Then the result follows.

Theorem 6.5.13. Cn, S(Cn) ∈ BV 0 for all n.

Proof. Label all the edges by a.

Theorem 6.5.14. S(Cn) is a-sum V4-magic for all n but Cn, S(Cn) /∈ BV a for any n.

Proof. Let V (Cn) = {v1, v2, . . . , vn}. Then the vertex set and edge set of S(Cn) are respectively

given by:

V (S(Cn)) = {vi : 1 ≤ i ≤ n} ∪ {v′i : 1 ≤ i ≤ n},

E(S(Cn)) = {v′ivi+1 : 1 ≤ i ≤ n} ∪ {viv′i+1 : 1 ≤ i ≤ n} ∪ {vivi+1 : 1 ≤ i ≤ n}

Without loss of generality assume that vn+1 = v1, v
′
n+1 = v′1. Define ` : E(S(Cn))→ V4 \ {0}

by:

`(vivi+1) = a, for 1 ≤ i ≤ n,

`(v′ivi+1) = b, for 1 ≤ i ≤ n,

`(viv
′
i+1) = c, for 1 ≤ i ≤ n.

Observe that, `+(vi) = `+(v′i) = a for 1 ≤ i ≤ n. Thus S(Cn) is a-sum V4 magic. But by

lemma 6.1.2, Cn and S(Cn) are not a-sum V4-barycentric magic.

Theorem 6.5.15. µ(Cn) is zero sum V4-magic for all n and is not zero sum V4-barycentric

magic for any n.

Proof. The vertex set of µ(Cn), V (µ(Cn)) = V (S(Cn)) ∪ {w} and edge set is given by

E(µ(Cn)) = E(S(Cn)) ∪ {wv′i : 1 ≤ i ≤ n}. We consider two cases:

Case 1: When n is even. Define ` : E(µ(Cn))→ V4 \ {0} by:

`(vivi+1) =

b, for i = 1, 3, 5, . . . , n− 1,

c, for i = 2, 4, 6, . . . , n.

`(v′ivi+1) = b, for 1 ≤ i ≤ n,

`(viv
′
i+1) = c, for 1 ≤ i ≤ n,

`(wv′i) = a, for 1 ≤ i ≤ n.
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Observe that `+(vi) = `+(v′i) = 0 for 1 ≤ i ≤ n and `+(w) = 0.

Case 2: When n is odd. Define `(E(µ(Cn))→ V4 \ {0} by:

`(vivi+1) =


c, for i = 1, n− 2, n

a, for i = 2

b, for 3, 4, . . . , n− 3, n− 1,

`(v′ivi+1) =


c, for i = 1, 4, 5, . . . , n

a, for i = 2,

b, for i = 3,

`(viv
′
i+1) =


c, for i = 1,

a, for i = 2,

b, for i = 3, . . . , n− 1, n,

`(wv′i) =


a, for i = 1, 4, 5, . . . , n,

b, for i = 2,

c, for i = 3.

Obviously, `+(v) = 0 for all v ∈ V. Also by lemma 6.1.3, µ(Cn) /∈ BV 0.

This completes the proof.

Theorem 6.5.16. µ(Cn) is not a-sum V4-magic and not a-sum V4-barycentric magic for any

n.

Proof. Suppose µ(Cn) is a-sum V4 magic. Then (2n+ 1)a = 0. This implies a = 0 which is a

contradiction. Also by lemma 6.1.2, µ(Cn) /∈ BV a.

Theorem 6.5.17. Pn /∈ BV a and BV 0 for any n.

Proof. By lemmas 6.1.2 and 6.1.3, the result follows.

Corollary 6.5.18. Pn /∈ BV a,0 for any n.

Proof. By theorem 6.5.17, the proof follows.

Theorem 6.5.19. S(Pn) is a-sum V4-magic for all n and does not belongs to the class BV a.

Proof. We have V (S(Pn)) = {vi : 1 ≤ i ≤ n} ∪ {v′i : 1 ≤ i ≤ n} and E(S(Pn)) = {vivi+1 : 1 ≤
i ≤ n− 1}∪ {viv′i+1 : 1 ≤ i ≤ n− 1}∪ {v′ivi+1 : 1 ≤ i ≤ n− 1}. Define ` : E(S(Pn))→ V4 \ {0}
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by

`(vivi+1) =


b, for i = 1,

c, for i = n− 1,

a, for 2 ≤ i ≤ n− 2.

`(viv
′
i+1) =

c, for 1 ≤ i ≤ n− 2,

a, for i = n− 1.

`(v′ivi+1) =

a, for i = 1,

b, for 2 ≤ i ≤ n− 1.

Thus we get ` is an a-sum V4-magic labeling of S(Pn). Moreover, lemma 6.1.2 implies that

S(Pn) /∈ BV a.

Theorem 6.5.20. S(Pn) is not zero-sum V4-magic and not zero-sum V4-barycentric magic for

any n.

Proof. Since it has pendant edges, S(Pn) is not zero-sum V4-magic and hence not zero-sum

V4-barycentric magic for any n.

Theorem 6.5.21. µ(Pn) is zero-sum V4-magic for all n and not zero-sum V4-barycentric magic

for any n.

Proof. V (µ(Pn)) = V (S(Pn))∪{u} and E(µ(Pn)) = E(S(Pn))∪{uv′i : 1 ≤ i ≤ n}. We consider

two cases:

Case 1: Suppose n is odd. Define ` : E(µ(Pn))→ V4 \ {0} by

`(vivi+1) =

a, for i = 1, 3, · · · , n− 2,

c, for i = 1, 2, · · · , n− 1,

`(viv
′
i+1) = a, for i = 1, 2, . . . , n− 1,

`(v′ivi+1) = c, for i = 1, 2, . . . , n− 1,

`(v′iu) = b, for i = 2, 3, . . . , n− 1,

`(v′1u) = c, `(v′nu) = a.

We have `+(u) = 0 and `+(vi) = `+(v′i) = 0 for all i.

Case 2: Suppose n is even. Define ` : E(µ(Pn))→ V4 \ {0} by

`(v′iu) =

b, for i = 1, n,

a, for 2 ≤ i ≤ n− 1,

`(viv
′
i+1) = b, for 1 ≤ i ≤ n− 1,
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Figure 6.1: A zero-sum V4-magic labeling of µ(P7)
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Figure 6.2: A zero-sum V4-magic labeling of µ(P8)

`(v′ivi+1) =

b, for i = 1,

c, for 2 ≤ i ≤ n− 1,

`((vivi+1) =

b, for 1, 2, 4, 6, . . . , n− 2

c, for 3, 5, . . . , n− 1.

Obviously, `+(u) = 0 and `+(v′i) = `+(vi) = 0 for all i.

By lemma 6.1.3, µ(Pn) /∈ BV 0.

Theorem 6.5.22. µ(Pn) is not a-sum V4-magic and not a-sum V4-barycentric magic for any

n.

Proof. Suppose that µ(Pn) is a-sum V4-magic. Then by lemma 3.2.1 we have, (2n + 1)a = 0

which is not possible. Hence the proof.
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6.6 Cycle related and some other graphs

Theorem 6.6.1. The sun graph Cn �K1 is a-sum V4-barycentric magic for all n.

Proof. If we label all the edges by a ∈ V4, we obtain an a-sum V4-barycentric magic labeling

of Cn �K1.

Theorem 6.6.2. The sun graph Cn �K1 is not zero-sum V4-barycentric magic for any n.

Proof. By lemma 6.1.3, the sun graph Cn �K1 is not zero-sum V4-barycentric magic for any

n.

Theorem 6.6.3. The wheel Wn is a-sum V4-barycentric magic if and only if n is odd.

Proof. Suppose that n is odd. Then by lemma 6.1.5, Wn is a-sum V4-barycentric magic.

Conversely suppose that Wn is a-sum V4-barycentric magic. Then we have (n− 3)a = 0 which

implies that n is odd.

Theorem 6.6.4. The wheel Wn is not zero-sum V4-barycentric magic for any n.

Proof. By lemma 6.1.3, the result follows.

Theorem 6.6.5. For any n ≥ 3 and k ≥ 1, the n-gon book of k pages is zero-sum V4-

barycentric magic if and only if k is odd.

Proof. Suppose that k is odd. Then by lemma 6.1.4, the n-gon book of k pages is zero-sum

V4-barycentric magic. Conversely suppose that the n-gon book of k pages is zero-sum V4-

barycentric magic. Let the edges be labeled a. Then we have (k + 1)a = 2a = 0 implies k is

odd.

Theorem 6.6.6. For any n ≥ 3 and k ≥ 1, the n-gon book of k pages is not a-sum V4-

barycentric magic.

Proof. By lemma 6.1.2, the result follows.

Theorem 6.6.7. For any n ≥ 3, the bipyramid graph BP (n) is zero-sum V4-barycentric magic

if and only if n is even.

Proof. Suppose that n is even. Then by lemma 6.1.4, BP (n) is zero-sum V4-barycentric magic.

Conversely suppose that BP (n) is zero-sum V4-barycentric magic. If we label the edges by a,

then we have na = 2a = 0 which implies that n is even.

Theorem 6.6.8. For any n ≥ 3, the bipyramid graph BP (n) is not a-sum V4-barycentric

magic.
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Proof. By lemma 6.1.2, BP (n) is not a-sum V4-barycentric magic.

Theorem 6.6.9. The sunflower graph SFn is zero-sum V4-magic for all n but is not zero-sum

V4-barycentric magic for any n.

Proof. We consider two cases:

Case 1: n is even.

Define a labeling ` : E(SFn)→ V4 \ {0} by

For i = 1, 2, · · · , n do:

`(v0vi) = a,

`(wivi) = `(wivi+1) = a.

end for

`(vivi+1) =

{
b, i = 1, 3, · · · , n− 1,

c, i = 2, 4, · · · , n.

Case 2: n is odd.

`(v0vi) = a, for i = 1, 4, 5, · · · , n

`(v0v2) = b, `(v0v3) = c.

For i = 1, 2, · · · , n do:

`(wivi) = `(wivi+1) = a.

end for

`(v1v2) = c, `(v2v3) = a,

`(vivi+1) =

{
b, i = 3, 5, · · · , n,
c, i = 4, 6, · · · , n− 1.

Thus ` is a zero-sum V4-magic labeling of SFn. But by lemma 6.1.3, SFn is not zero-sum

V4-barycentric magic for any n.

Theorem 6.6.10. SFn is neither a-sum V4-magic nor a-sum V4-barycentric magic for any n.

Proof. Suppose that SFn is a-sum V4-magic. Then we have (2n+ 1)a = 0 which implies that

a = 0. This is a contradiction. Hence the proof.

Now consider the complete tripartite graph Kn1,n2,n3
.

Theorem 6.6.11. Kn1,n2,n3
is zero-sum V4-magic for all n1, n2, n3 and is zero-sum V4-

barycentric magic if and only if n1, n2, n3 are of same parity.

Proof. We consider the following cases:
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Case 1: Assume that n1, n2 and n3 are even.

Label all the edges by a. Then Kn1,n2,n3
is zero-sum V4 magic. By lemma 6.1.4, Kn1,n2,n3

is zero-sum V4-barycentric magic.

Case 2: Assume that n1, n2 and n3 are odd.

The case is similar to case 1.

Case 3: n1, n2 are odd and n3 is even. Define a labeling ` : E(Kn1,n2,n3
)→ V4 \ {0} by:

u1 u2 u3 u4 · · · un1

v1 a b c a · · · a

v2 b c a b · · · b

v3 c a b c · · · c

v4 a b c a · · · a
...

...
...

...
... · · ·

...

vn2
a b c a · · · a

w1 w2 w3 · · · wn3

u1 a a a · · · a

u2 b b b · · · b

u3 c c c · · · c

u4 a a a · · · a
...

...
...

... · · ·
...

un1
a a a · · · a

v1 a a a · · · a

v2 b b b · · · b

v3 c c c · · · c

v4 a a a · · · a
...

...
...

... · · ·
...

vn2
a a a · · · a

Case 4: n1, n2 are even and n3 is odd.

The case is similar to case 3.

Case 5: n1, n3 are odd and n2 is even.

Take n2 = n3 in case 3.

Case 6: n1, n3 are even and n2 is odd.

Take n2 = n3 in case 4.

Case 7: n2, n3 are odd and n1 is even.

Take n1 = n3 in case 3.

Case 8: n2, n3 are even and n1 is odd.

Take n1 = n3 in case 4.

Hence Kn1,n2,n3 is zero-sum V4-magic for all ni, i = 1, 2, 3 and is zero-sum V4-barycentric magic

if and only if n1, n2, n3 are of same parity.

Theorem 6.6.12. Kn1,n2,n3
is a-sum V4-magic if and only if n1 + n2 + n3 is even and is not

a-sum V4-barycentric magic for any ni, i = 1, 2, 3.

Proof. First assume that Kn1,n2,n3
is a-sum V4 magic. Then by lemma 3.2.1, we have n1 +

n2 + n3 is even.
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Conversely assume that n1 + n2 + n3 is even. Then the following cases arise:

Case 1: n1, n2, n3 are even.

Define a labeling ` : E(Kn1,n2,n3
)→ V4 \ {0} by:

For i = 1, 2, . . . , n1, do:

`(uivj) = a, for j = 1, 4, . . . , n2,

`(uiv2) = b, `(uiv3) = c.

`(uiwk) = a, for k = 1, 2, . . . , n3.

end for

For j = 1, 3, . . . , n2, do:

`(wkvj) = b, for k = 1, 3, . . . , n3,

`(w2vj) = c.

end for

`(wkv2) = c, for k = 1, 3, . . . , n3,

`(w2v2) = b.

Case 2: n1, n2 are odd and n3 is even.

Define a labeling ` : E(Kn1,n2,n3
)→ V4 \ {0} by:

For i = 1, 2, . . . , n1, do:

`(uivj) = a, for j = 1, 2, . . . , n2,

`(uiwk) = a, for k = 1, 2, . . . , n3.

end for

For k = 1, 2, . . . , n3, do:

`(vjwk) = a, for j = 1, 4, . . . , n2,

`(v2wk) = b, `(v3wk) = c.

end for.

Case 3: n2, n3 are odd and n1 is even.

Interchange the roles of n1 and n3 in case 2.

Case 4: n1, n3 are odd and n2 is even.

Interchange the roles of n2 and n3 in case 2.

Thus ` is an a-sum V4-magic labeling of Kn1,n2,n3
. Also by lemma 6.1.2, Kn1,n2,n3

is not a-sum

V4-barycentric magic for any ni, i = 1, 2, 3.

In previous chapters we have proved that there exist graphs which are both a-sum V4-magic

and zero-sum V4 magic. That is the class Va,0 is nonempty. From lemmas 6.1.2 and 6.1.3, we
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can conclude that all the vertices of the graph must be of same parity in order to become a-

sum V4-barycentric magic or zero-sum V4-barycentric magic. Hence a graph cannot be a-sum

V4-barycentric magic and zero-sum V4-barycentric magic simultaneously. Thus we have the

following theorem:

Theorem 6.6.13. No graph belong to the class BV a,0. That is, BV a,0 = φ.
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Chapter 7
Some Special V4-Barycentric Magic

Graphs

In this chapter, we consider some special V4 barycentric magic graphs.

Line, middle and total graphs of some wellknown graphs are considered.

7.1 Introduction

In this chapter we investigate the line, middle and total graphs of some wellknown graphs

which are a-sum and zero-sum V4-barycentric magic.

7.2 Line, Middle and Total Graphs

Theorem 7.2.1. A cubic graph is a-sum V4-magic and a-sum V4-barycentric magic.

Proof. Label all the edges by a. The result follows.

A cubic graph and its line graph are shown in figure 7.1.

Theorem 7.2.2. A cubic graph is zero-sum V4-magic but not zero-sum V4-barycentric magic.

Proof. A zero-sum V4-magic labeling of a cubic graph is shown in figure 7.1. By lemma 6.1.3,

it follows that the cubic graph is not zero-sum V4-barycentric magic.

Theorem 7.2.3. The line graph of a cubic graph is not a-sum V4-magic and not a-sum V4-

barycentric magic.
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a

a

a

b

b

b

c

c

c

Figure 7.1: Cubic graph and its line graph

Proof. Since the number of vertices is odd, the line graph of cubic graph is not a-sum V4-magic

and by lemma 6.1.2, it is not a-sum V4-barycentric magic.

Theorem 7.2.4. The line graph of a cubic graph is zero-sum V4-magic and zero-sum V4-

barycentric magic.

Proof. Since all the vertices have degree 2 or 4, by labeling all the edges by a the proof

follows.

The middle graph and total graph of a cubic graph is shown in figure 7.2.

Figure 7.2: Middle graph of cubic graph (left), Total graph of cubic graph (right)

Theorem 7.2.5. The middle graph of a cubic graph is not a-sum V4-magic and not a-sum

V4-barycentric magic.

Proof. Since the number of vertices is odd, the middle graph of cubic graph is not a-sum

V4-magic and by lemma 6.1.2, it is not a-sum V4-barycentric magic.

The middle graph of a cubic graph is not zero-sum V4-barycentric magic since it has vertices

of odd degree.

107



7.2. Line, Middle and Total Graphs

Figure 7.3: Middle Graph of Path M(Pn) (left), Total Graph of Path T (Pn) (right)

Theorem 7.2.6. The total graph of a cubic graph is not a-sum V4-magic and not a-sum

V4-barycentric magic.

Proof. Since the number of vertices is odd, the total graph of cubic graph is not a-sum V4-magic

and by lemma 6.1.2, it is not a-sum V4-barycentric magic.

The total graph of a cubic graph is not zero-sum V4-barycentric magic since it has vertices

of odd degree.

Consider the path graph Pn.

Theorem 7.2.7. The middle graph of Pn, M(Pn) is not a-sum V4-magic and is not a-sum

V4-barycentric magic for any n.

Proof. Suppose M(Pn) is a-sum V4-magic. Then we have (2n− 1)a = 0 which implies a = 0.

This is a contradiction. Hence the result follows.

Theorem 7.2.8. The middle graph of Pn,M(Pn) is not zero-sum V4-magic and is not zero-

sum V4-barycentric magic for any n.

Proof. Since it has pendant edges, the result follows.

Theorem 7.2.9. The total graph of Pn, T (Pn) is not a-sum V4-magic and is not a-sum V4-

barycentric magic for any n.

Proof. Suppose T (Pn) is a-sum V4-magic. Then we have (2n − 1)a = 0 which implies a = 0.

This is a contradiction. Hence the result follows.
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Theorem 7.2.10. T (Pn) is zero-sum V4-magic for all n and it is not zero-sum V4-barycentric

magic for any n.

Proof. Let the vertices of T (Pn) be labeled as in figure 7.3. Define a labeling ` : E(T (Pn))→
V4 \ {0} as follows:

For i = 1, 2, · · · , n do:

`(uivi) = `(uivi+1) = c

`(vivi+1) = a

end for

`(uiui+1) = i = 1, 2, · · · , n− 2

This is a zero-sum V4-magic labeling of T (Pn). By lemma 6.1.3, T (Pn) is not zero-sum V4-

barycentric magic for any n.

Theorem 7.2.11. M(Cn) is a-sum V4-magic for all n ≥ 3 and is not a-sum V4-barycentric

magic for any n.

Proof. The vertices of M(Cn) are labeled as given in figure 7.4. Define an edge labeling

` : E(M(Cn))→ V4 \ {0} by:

For i = 1, 2, · · · , n do :

`(uivi) = b

`(uivi+1) = c

`(uiui+1) = a

end for

This gives an a-sum V4-magic labeling of M(Cn). By lemma 6.1.2, it is not a-sum V4-

barycentric magic for any n.

Theorem 7.2.12. M(Cn) is zero-sum V4-magic for all n ≥ 3 and zero-sum V4-barycentric

magic for all n ≥ 3.

Proof. Label all the edges by a. Then it is easy to see that M(Cn) is zero-sum V4-magic for

all n ≥ 3. By lemma 6.1.4, M(Cn) is zero-sum V4-barycentric magic for all n ≥ 3.

Theorem 7.2.13. T (Cn) is a-sum V4-magic for all n ≥ 3 and is not a-sum V4-barycentric

magic for any n.
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Figure 7.4: Middle Graph of Cycle M(Cn) (left), Total Graph of Cycle T (Cn) (right)

Proof. The vertices of T (Cn) are labeled as given in figure 7.4. Define an edge labeling ` :

E(T (Cn))→ V4 \ {0} by:

For i = 1, 2, · · · , n do :

`(uivi) = b, `(uivi+1) = c

`(uiui+1) = `(vivi+1) = a

end for

This gives an a-sum V4-magic labeling of T (Cn). By lemma 6.1.2, it is not a-sum V4-barycentric

magic for any n.

Theorem 7.2.14. T (Cn) is zero-sum V4-magic for all n ≥ 3 and zero-sum V4-barycentric

magic for all n ≥ 3.

Proof. Label all the edges by a. Then it is easy to see that T (Cn) is zero-sum V4-magic for all

n ≥ 3. By lemma 6.1.4, T (Cn) is zero-sum V4-barycentric magic for all n ≥ 3.

Consider the sun graph Sn.

Theorem 7.2.15. L(Sn) is not a-sum V4-barycentric magic for any n.

Proof. The proof follows from lemma 6.1.2.

Theorem 7.2.16. L(Sn) is zero-sum V4-barycentric magic for all n.

Proof. The proof follows from lemma 6.1.4.

Next we prove similar results for middle and total graphs of sun graph.
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Figure 7.5: Line Graph of Sun Graph L(Sn) (left), Middle Graph of Sun Graph M(Sn) (right)

Theorem 7.2.17. M(Sn) is a-sum V4-magic for all n and is not a-sum V4-barycentric magic

for any n.

Proof. The graph of M(Sn) with labeled vertices is shown in figure 7.5. Define a labeling

` : E(M(Sn))→ V4 \ {0} as follows:

For i = 1, 2, · · · , n do:

`(uiu
′
i) = `(viu

′
i) = a

`(viv
′
i) = `(v′ivi+1) = a

`(v′iv
′
i+1) = a

`(v′iu
′
i+1) = b

`(v′iu
′
i) = c

end for

Then with this labeling M(Sn) is a-sum V4-magic for all n and by lemma 6.1.2, it is not a-sum

V4-barycentric magic for any n.

Theorem 7.2.18. M(Sn) is not zero-sum V4-magic for any n and is not zero-sum V4-barycentric

magic for any n.

Proof. Since M(Sn) has pendant edges, it is not zero-sum V4-magic for any n and hence not

zero-sum V4-barycentric magic for any n.

Theorem 7.2.19. T (Sn) is a-sum V4-magic for all n and is not a-sum V4-barycentric magic

for any n.
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Figure 7.6: Total Graph of Sun Graph T (Sn)

Proof. The graph of T (Sn) with labeled vertices is shown in figure 7.6. Define a labeling

` : E(T (Sn))→ V4 \ {0} as follows:

For i = 1, 2, · · · , n do:

`(uiu
′
i) = b

`(viu
′
i) = `(viui) = c

`(viv
′
i) = b

`(v′ivi+1) = c

`(v′iv
′
i+1) = `(vivi+1) = a

`(v′iu
′
i+1) = `(v′iu

′
i) = a

end for

Then with this labeling T (Sn) is a-sum V4-magic for all n and by lemma 6.1.2, it is not a-sum

V4-barycentric magic for any n.

Theorem 7.2.20. T (Sn) is zero-sum V4-magic for all n and is zero-sum V4-barycentric magic

for all n.

Proof. Label all the edges by a. Then the graph is zero-sum V4-magic for all n. Moreover by

lemma 6.1.4, T (Sn) is zero-sum V4-barycentric magic for all n.

Now we consider the wheel graph Wn.

Theorem 7.2.21. L(Wn) is not a-sum V4-barycentric magic for any n.

Proof. By lemma 6.1.2, the theorem holds.
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Theorem 7.2.22. L(Wn) is zero-sum V4-barycentric magic if and only if n is odd.

Proof. Suppose that n is odd. Then all the vertices of L(Wn) are of even degree. Then by

lemma 6.1.4, L(Wn) is zero-sum V4-barycentric magic. For the converse we assume that n is

even. Then the graph has vertices of odd degree. By lemma 6.1.3, L(Wn) cannot be zero-sum

V4-barycentric magic. This proves the theorem.

The middle graph and total graph of Wn with labeled vertices are shown in figure 7.7.

Theorem 7.2.23. M(Wn) is a-sum V4-magic if and only if n is even and is not a-sum V4-

barycentric magic for any n.

Proof. First suppose that M(Wn) is a-sum V4 magic. Then by lemma 3.2.1, 3na = 0 which

implies n is even. Conversely assume that n is even. Define a labeling ` : E(M(Wn))→ V4\{0}
by

`(viui) = b

`(uivi+1) = c

`(eiej) = `(eivi) = `(uiui+1) = a

`(eiui−1) = `(eiui) = a

This gives an a-sum V4-magic labeling of M(Wn). By lemma 6.1.2, M(Wn) is not a-sum

V4-barycentric magic for any n.

Theorem 7.2.24. M(Wn) is zero-sum V4-magic if n is even and is not zero-sum V4-barycentric

magic for any n.

Proof. For n even, label the edges as follows:

For i = 1, 2, · · · , n do:

`(viui) = a

`(uivi+1) = b

`(eivi) = c

`(eiui) = `(ei+1ui) = `(eiv) = a

`(eiej) = a, j = 1, 2, · · · , n, i 6= j, i+ 1 6= j

`(uiui+1) =

{
a, i = 1, 3, · · · , n− 1

b, i = 2, 4, · · · , n

`(eiei+1) =

{
a, i = 1, 3, · · · , n− 1

c, i = 2, 4, · · · , n

With this labeling, M(Wn) is zero-sum V4-magic. It follows from lemma 6.1.3 that M(Wn) is

not zero-sum V4-barycentric magic for any n.
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Figure 7.7: Middle Graph of Wheel Graph M(Wn) (left), Total Graph of Wheel Graph T (Wn)
(right)

Theorem 7.2.25. T (Wn) is a-sum V4-magic if and only if n is odd and is not a-sum V4-

barycentric magic for any n.

Proof. Suppose that T (Wn) is a-sum V4-magic. Then by lemma 3.2.1, (3n + 1)a = 0 which

implies n is odd. Conversely suppose that n is odd.

For i = 1, 2, · · · , n do:

`(uivi) = `(uivi+1) = a

`(uiui+1) = `(vivi+1) = a

`(eivi) = `(eiv) = `(eiui) = b

`(viv) = `(eiui−1) = c

`(eiej) = a, j = 1, 2, · · · , n, i 6= j

end for

With this labeling, T (Wn) is a-sum V4-magic. By lemma 6.1.2, T (Wn) is not a-sum V4-

barycentric magic for any n.

Theorem 7.2.26. T (Wn) is zero-sum V4-magic for all n and is zero-sum V4-barycentric magic

if n is odd.

Proof. We consider the following cases:

Case 1: n is odd.

Label all the edges by a. This gives a zero-sum V4-magic labeling of T (Wn) and by lemma

6.1.4, T (Wn) is zero-sum V4-barycentric magic.
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Case 2: n is even.

Define a labeling ` : E(T (Wn))→ V4 \ {0} by:

For i = 1, 2, · · · , n do:

`(eiej) = a

`(eiv) = `(eivi) = a

`(ui+1vi) = `(uivi) = a

`(uiui+1) = `(vivi+1) = a

`(eiui−1) =

{
b, i = 1, 3, · · · , n
c, i = 2, 4, · · · , n− 1

`(eiui) =

{
c, i = 1, 3, · · · , n
b, i = 2, 4, · · · , n− 1

With this labeling T (Wn) is zero-sum V4-magic. Furthermore, it follows from lemma

6.1.3, that T (Wn) is not zero-sum V4-barycentric magic.

Theorem 7.2.27. The helm graph Hn is not a-sum V4-barycentric magic for any n.

Proof. By lemma 6.1.2, Hn is not a-sum V4-barycentric magic for any n.

Theorem 7.2.28. Hn is not zero-sum V4-barycentric magic for any n.

Proof. Since the graph has pendant edges, it is not zero-sum V4-barycentric magic for any

n.

The line and middle graphs of Hn are shown in figure 7.8.

Theorem 7.2.29. L(Hn) is a-sum V4-magic if and only if n is even and is not a-sum V4-

barycentric magic for any n.

Proof. Suppose that L(Hn) is a-sum V4-magic. Then by lemma 3.2.1, (3n)a = 0 which implies

n is even. Conversely assume that n is even. Define a labeling ` : E(L(Hn))→ V4 \ {0} by:

For i = 1, 2, · · · , n do:

`(e′i−1si) = `(e′isi) = a

`(eisi) = `(e′ie
′
i+1) = a

`(eiej) = a, j = 1, 2, · · · , n, i 6= j

`(eie
′
i) = b

`(eie
′
i−1) = c

end for
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Figure 7.8: Line Graph of Helm Graph L(Hn) (left), Middle Graph of Helm Graph M(Hn)
(right)

By lemma 6.1.2, it is not a-sum V4-barycentric magic for any n.

Theorem 7.2.30. L(Hn) is zero-sum V4-magic for all n and is not zero-sum V4-barycentric

magic for any n.

Proof. We consider the following cases:

Case 1: n is even.

`(sie
′
i−1) =

{
b, i = 1, 3, · · · , n− 1

c, i = 2, 4, · · · , n

`(sie
′
i) =

{
c, i = 1, 3, · · · , n− 1

b, i = 2, 4, · · · , n

Label the remaining edges by a.

Case 2: n is odd.

`(siei) = `(e′ie
′
i+1) = a

`(e′i−1si) = `(eie
′
i) = b

`(e′isi) = `(ei+1e
′
i) = c

`(eiej) = a, j = 1, 2, · · · , n, i 6= j

Therefore, L(Hn) is zero-sum V4-magic for all n. By lemma 6.1.3, L(Hn) is not zero-sum

V4-barycentric magic for any n.
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Theorem 7.2.31. M(Hn) is a-sum V4-magic if and only if n is odd and is not a-sum V4-

barycentric magic for any n.

Proof. Suppose that M(Hn) is a-sum V4-magic. Then (5n + 1)a = 0 which implies n is odd.

Conversely suppose that n is odd. Define a labeling ` : E(M(Hn))→ V4 \ {0} by:

For i = 1, 2, · · · , n do:

`(e′i−1vi) = b

`(e′ivi) = c

end for

Label the remaining edges by a. By lemma 6.1.2, it is not a-sum V4-barycentric magic for any

n.

Theorem 7.2.32. M(Hn) is not zero-sum V4-magic and is not zero-sum V4-barycentric magic

for any n.

Proof. Since the graph has pendant edges, it is not zero-sum V4-barycentric magic for any

n.

Definition 7.2.33. (see [29]) A gear graph Gn is obtained from the wheel graph by adding a

vertex between every pair of adjacent vertices of the cycle where V (Gn) = {v}∪{v1, v2, · · · , v2n}.

Theorem 7.2.34. The line graph of gear graph L(Gn) is a-sum V4-magic if and only if n is

even and is a-sum V4-barycentric magic for all n.

Proof. Suppose that L(Gn) is a-sum V4-magic. Then by lemma 3.2.1, n is even. Conversely

assume that n is even. Label all the edges by a. Then L(Gn) is a-sum V4-magic. By lemma

6.1.5, L(Gn) is a-sum V4-barycentric magic for all n.

The line and middle graphs of Gn are shown in figure 7.9.

Theorem 7.2.35. L(Gn) is zero-sum V4-magic for all n and is not zero-sum V4-barycentric

magic for any n.

Proof. We consider the following cases:

Case 1: n is odd.

For i = 1, 2, · · · , n, do:

`(eiej) = a, j = 1, 2, · · · , n, i 6= j

`(eie
′
j) = `(eie

′
j+1) = a, j = 1, 2, · · · , 2n where ei is adjacent to e′j and e′j+1
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Figure 7.9: Line Graph of Gear Graph L(Gn) (left), Middle Graph of Gear Graph M(Gn)
(right)

`(e′ke
′
k+1) =

{
b, k = 1, 3, · · · , 2n− 1

c, k = 2, 4, · · · , 2n

end for

Case 2: n is even.

For i = 1, 2, · · · , n, do:

`(eie
′
j) = `(eie

′
j+1) = a, j = 1, 2, · · · , 2n where ei is adjacent to e′j and e′j+1

`(eiei+1) =

{
b, i = 1, 3, · · · , n− 1

c, i = 2, 4, · · · , n

`(e′ke
′
k+1) =

{
b, k = 1, 3, · · · , 2n− 1

c, k = 2, 4, · · · , 2n

`(eiej) = a, j = 1, 2, · · · , n, j 6= i, i+ 1

end for

With this labeling, L(Gn) is zero-sum V4-magic for all n. By lemma 6.1.3, L(Gn) is not

zero-sum V4-barycentric magic for any n.

Now consider the middle graph of Gn.

Theorem 7.2.36. M(Gn) is a-sum V4-magic if and only if n is odd and is not a-sum V4-

barycentric magic for any n.

Proof. Suppose that M(Gn) is a-sum V4-magic. Then by lemma 3.2.1, (5n + 1)a = 0 which

implies n is odd. Let the vertices of M(Gn) be as shown in figure 7.9. For the converse we
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define an edge labeling as follows:

`(vie
′
i) =

{
a, i = 1, 3, · · · , 2n− 1

c, i = 2, 4, · · · , 2n

`(vi+1e
′
i) =

{
b, i = 1, 3, · · · , 2n− 1

a, i = 2, 4, · · · , 2n

`(e′ie
′
i+1) = a, i = 1, 2, · · · , 2n

For i = 1, 2, · · · , n do:

`(vie2i−1) = `(eiv) = a

`(eie
′
2i−1) = b

`(eie
′
2i−2) = c

`(eiej) = a, j = 1, 2, · · · , n, i 6= j

end for

Thus M(Gn) admits an a-sum V4-magic labeling and by lemma 6.1.2, it is not a-sum V4-

barycentric magic for any n.

Theorem 7.2.37. M(Gn) is zero-sum V4-magic for all n and is not zero-sum V4-barycentric

magic for any n.

Proof. We consider two cases:

Case 1: n is even.

For i = 1, 2, · · · , n do:

`(eiv) = `(eiej) = `(eiv2i−1) = a

For k = 1, 2, · · · , 2n do:

`(vie
′
k) = b

`(e′kvi+1) =

{
b, k = 1, 3, · · · , 2n− 1

c, k = 2, 4, · · · , 2n

`(e′ie
′
i+1) =

{
c, k = 1, 3, · · · , 2n− 1

a, k = 2, 4, · · · , 2n

end for

end for

Case 2: n is odd.

`(eiv) =


a, i = 1, 4, 5, · · · , n
b, i = 2

c, i = 3
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`(eiv2i−1) =


a, i = 1, 4, 5, · · · , n
b, i = 2

c, i = 3

For i = 1, 2, · · · , n do:

`(eiej) = a, j = 1, 2, · · · , n, i 6= j

end for

`(e′ie
′
i+1) =

{
c, i = 3

a, otherwise

`(v1e
′
1) = c

`(v2e
′
2) = b

`(v3e
′
3) = a

`(vie
′
i) = `(vi+1ei+1′) =

{
b, i = 4, 8, · · · , 2n− 1

c, i = 6, 10, · · · , 2n

`(e′1v2) = `(e′3v4) = b

`(e′2v3) = `(e′5v6) = c

`(e′4v5) = a

`(e′ivi+1) = `(e′i+1vi+2) =

{
b, i = 6, 10, · · · , 2n
c, i = 8, 12, · · · , 2n− 2

Thus M(Gn) is zero-sum V4-magic for all n. Moreover, by lemma 6.1.3, M(Gn) is not

zero-sum V4-barycentric magic for any n.
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Chapter 8
V4-Bimagic Graphs

In the first section of this chapter, we introduce a-sum and zero sum

V4-bimagic graphs and define sixteen different classes of graphs. In the

second section of this chapter, we discuss the classification of star graph.

In the third section we discuss the classification of some cycle related

graphs. In the last section of this chapter we discuss the classification of

ladders and some special graphs.

8.1 Introduction

If a graph G and its line graph L(G) are both a-sum V4-magic, then G is called an a-sum

V4-bimagic graph. If a graph G and its line graph L(G) are both zero-sum V4-magic, then G

is called a zero-sum V4-bimagic graph. A graph G is called a V4-bimagic graph if G and its

line graph L(G) are both a-sum V4-magic or zero-sum V4-magic. An example of a V4-bimagic

graph is the cycle Cn. If G or L(G) is not V4-magic, then G is called a non V4-bimagic graph.

In this chapter we define the following classes of graphs:

(1) If both the graph G and its line graph L(G) are a-sum V4-magic, we say that G belongs

to the class A .

(2) If G is a-sum V4-magic and L(G) is zero-sum V4-magic, we say that G belongs to the

class B.

3) If both the graph G and its line graph L(G) are zero-sum V4-magic, we say that G belongs

to the class C .

4) If G is zero-sum V4-magic and L(G) is a-sum V4-magic, we say that G belongs to the

class D .
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5) If G is a-sum V4-magic and L(G) is not a-sum V4-magic, we say that G belongs to the

class E .

6) If G is a-sum V4-magic and L(G) is not zero-sum V4-magic, we say that G belongs to the

class F .

7) If G is not a-sum V4-magic and L(G) is a-sum V4-magic, we say that G belongs to the

class G .

8) If G is not a-sum V4-magic and L(G) is zero-sum V4-magic, we say that G belongs to the

class H .

9) If G is zero-sum V4-magic and L(G) is not a-sum V4-magic, we say that G belongs to the

class I .

10) If G is zero-sum V4-magic and L(G) is not zero-sum V4-magic, we say that G belongs to

the class J .

11) If G is not zero-sum V4-magic and L(G) is a-sum V4-magic, we say that G belongs to the

class K .

12) If G is not zero-sum V4-magic and L(G) is zero-sum V4-magic, we say that G belongs to

the class L .

13) If both G and L(G) are not a-sum V4-magic, we say that G belongs to the class M .

14) If G is not a-sum V4-magic and L(G) is not zero-sum V4-magic, we say that G belongs

to the class N .

15) If G is not zero-sum V4-magic and L(G) is not a-sum V4-magic, we say that G belongs

to the class O.

16) If both G and L(G) are not zero-sum V4-magic, we say that G belongs to the class P.

A graph is V4-bimagic if it belongs to the class A ∪ C .

8.2 Basic Results

Theorem 8.2.1. Let G be a V4-bimagic (p, q) graph with vertex set V (G) = {u1, u2, . . . , up}
and edge set E(G) = {e1, e2, . . . , eq}. Then

p∑
i=1

`+(ui) =

q∑
i=1

`+(ei) = 0.

Proof. Proof follows from lemma 3.2.1.

Theorem 8.2.2. Let G be an a-sum V4-bimagic (p, q) graph. Then both p and q are even.
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Proof. Proof follows from theorem 8.2.1.

Theorem 8.2.3. The star K1,n is not a-sum V4-bimagic for all n > 1.

Proof. Proof follows from theorem 8.2.2.

Theorem 8.2.4. (see [13]) The star K1,n is a-sum V4-magic if and only if n is odd.

Theorem 8.2.5. K1,n is not zero-sum V4-magic for any n.

Proof. Since the graph has pendant edges, it is not zero-sum V4-magic for any n.

Theorem 8.2.6. L(K1,n) = Kn is zero-sum V4-magic for all n.

Proof. Let v1, v2, · · · vn be the vertices of Kn. We consider the following cases.

Case 1: n is odd. Label all the edges by a. Then we get `+(v) = 0 for all v ∈ V (Kn).

Case 2: n is even.

For i = 1, 2, · · · , n do:

`(vivj) = a, j = 1, 2, · · · , n, j 6= i+ 1, j 6= i

end for

`(vivi+1) =

{
b, i = 1, 3, · · ·n− 1

c, i = 2, 4, · · ·n

Thus `+(v) = 0 for all v ∈ V (L(K1,n)).

Theorem 8.2.7. L(K1,n) is a-sum V4-magic if and only if n is even.

Proof. L(K1,n) = Kn ∈ Va ⇒ na = 0 ⇒ n is even. If n is even, label all the edges by a. The

result follows.

Theorem 8.2.8. K1,n belongs to the class B if and only if n is odd.

Proof. The proof follows from theorems 8.2.4 and 8.2.6.

Theorem 8.2.9. K1,n belongs to the class K if and only if n is even.

Proof. The proof follows from theorems 8.2.5 and 8.2.7.

Theorem 8.2.10. K1,n belongs to the class L for all n.

Proof. The proof follows from theorems 8.2.5 and 8.2.6.
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8.3 Cycle Related Graphs

Let Sn = Cn�K1 be the sun graph on 2n vertices. Let V (Sn) = {v1, v2, · · · , vn}∪{u1, u2, · · · , un}
where v′i s are the vertices of the cycle taken in cyclic order and u′i s are the pendant vertices

such that each viui is a pendant edge. Let E(Sn) = {e′i : 1 ≤ i ≤ n} ∪ {ei : 1 ≤ i ≤ n}
where ei is the edge vivi+1 and e′i is the edge viui(1 ≤ i ≤ n). By the definition of line graph

V (L(Sn)) = E(Sn) = {u′i : 1 ≤ i ≤ n}∪{v′i : 1 ≤ i ≤ n} where v′i and u′i represents the edge ei

and e′i(1 ≤ i ≤ n) respectively. The edge set E(L(Sn)) = {v′iv′i+1 : 1 ≤ i ≤ n} ∪ {v′iu′i+1 : 1 ≤
i ≤ n} ∪ {v′iu′i : 1 ≤ i ≤ n}. Hence the line graph of the sun graph Sunn is the graph Cn@C3.

Theorem 8.3.1. L(Sn) is zero-sum V4-magic for all n.

Proof. Label all the edges by a. Then we have the graph L(Sn) is zero-sum V4-magic.

Theorem 8.3.2. L(Sn) is a-sum V4-magic for all n.

Proof. Define a labeling ` : E(L(Sn))→ V4 \ {0} as follows:

For i = 1, 2, · · ·n do:

`(v′iv
′
i+1) = a, `(u′iv

′
i) = b

`(u′iv
′
i+1) = c

end for

With this labeling `+(v) = a for all v ∈ V (L(G)). Hence the graph L(Sn) is a-sum V4-magic

for all n.

Theorem 8.3.3. Sunn belongs to the classes A , B, K and L for all n.

Proof. The proof follows from theorems 3.2.9, 3.2.10, 8.3.1 and 8.3.2.

BSun(n, k) denote the broken sun on n vertices. Let V (BSun(n, k)) = {v1, v2, · · · , vn} ∪
{u1, u2, · · · , uk} where v′i s are the vertices of Cn and u′j s are the pendant vertices such

that vijuj is a pendant edge where vij denote the particular vertex vi adjacent to uj . Let

E(BSun(n, k)) = {ei : 1 ≤ i ≤ n}∪ {e′j : 1 ≤ j ≤ k} where ei is the edge vivi+1(1 ≤ i ≤ n− 1)

and e′j is the edge vijuj . The vertex vij is a point of intersection of the edges ei−1, ei and

e′j . By the definition of line graph, V (L(BSun(n, k))) = {v′1, v′2, · · · , v′n} ∪ {u′1, u′2, · · · , u′k}
where v′i represents the edge ei, 1 ≤ i ≤ n and u′j represents the edge e′j , 1 ≤ j ≤ k and

E(L(BSun(n, k))) = {v′iv′i+1 : 1 ≤ i ≤ n} ∪ {v′ij−1u
′
j : v′ij−1 is the edge ei−1 which is incident

to vij , j = 1, 2, · · · , k}∪{v′iju
′
j : v′ij is the edge ei which is incident to vij , j = 1, 2, · · · , k}.

Theorem 8.3.4. BSun(n, k) is not zero-sum V4-magic for any n.

Proof. Since it has pendant edges the result follows.
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Theorem 8.3.5. The line graph of a broken sun BSun(n, k) is a-sum V4-magic if and only if

n+ k is even.

Proof. Suppose that L(BSun(n, k)) is a-sum V4-magic. Then by lemma 3.2.1, (n + k)a = 0

which implies that n+ k is even. Conversely suppose that n+ k is even.

Define a labeling ` : E(L(BSun(n, k))) −→ V4 \ {0} as follows:

Case 1: Both n and k are even.

Subcase i: All the pendant edges vijuj are on adjacent vertices of BSun(n, k).

For i = 1, 2, · · · , n

For j = 1, 2, · · · , k

`(v′ij−1v
′
ij ) = a, `(v′ij−1u

′
j) = b

`(v′iju
′
j) = c

end for

end for

If `(v′iu
′
j) = b, then v′iv

′
i+1 = b and viceversa. If `(v′iv

′
i+1) = b then `(v′i+1v

′
i+2) = c

and if `(v′iv
′
i+1) = c then `(v′i+1v

′
i+2) = b.

Subcase ii: All the pendant edges are on alternate vertices of BSun(n, k).

For i = 1, 2, · · · , n

For j = 1, 3, · · · , k − 1

`(v′ij−1v
′
ij ) = a, `(v′ij−1u

′
j) = b

`(v′iju
′
j) = c

end for

end for

For i = 1, 2, · · · , n

For j = 2, 4, · · · , k

`(v′ij−1v
′
ij ) = a, `(v′ij−1u

′
j) = c

`(v′iju
′
j) = b

end for

end for

If `(v′iu
′
j) = b, then v′iv

′
i+1 = b and viceversa.

Subcase iii: The pendant edges vijuj are on random vertices.

For i = 1, 2, · · · , n

For j = 1, 2, · · · , k
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`(v′ij−1v
′
ij ) = a, `(v′ij−1u

′
j) = b

`(v′iju
′
j) = c

end for

end for

Depending on the labeling of the edge vivi+1, for some edges

For i = 1, 2, · · · , n

For j = 1, 2, · · · , k

`(v′ij−1u
′
j) = b, `(v′iju

′
j) = c

end for

If `(v′iu
′
j) = b, then v′iv

′
i+1 = c and viceversa. If `(v′iv

′
i+1) = b then `(v′i+1v

′
i+2) = c

and viceversa.

Case 2: Both n and k are odd.

The proof is similar to case 1.

This completes the proof.

Theorem 8.3.6. L(BSun(n, k)) is zero-sum V4-magic for all n and k.

Proof. Define a labeling ` : E(L(BSun(n, k))) −→ V4 \ {0} as follows:

For i = 1, 2, · · · , n, do:

For j = 1, 2, · · · , k, do:

`(v′ijuj) = `(v′ij+1uj) = a,

`(v′ijv
′
ij+1) = b, `(vivi+1) = c

end for

end for

Hence the proof.

Theorem 8.3.7. BSun(n, k) belongs to the classes A ,B and K if and only if n+ k is even.

Proof. The proof follows from theorems 3.2.11, 8.3.4, 8.3.5 and 8.3.6.

Theorem 8.3.8. BSun(n, k) belongs to the L -class for all n and k.

Proof. The proof follows from theorems 8.3.4 and 8.3.6.
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For n > 2 and 0 < k < n, a consecutive broken sun, denoted by CBSun(n, k) is the graph

belonging to BSun(n, k) such that the subgraph induced by the vertices of degree 2 is a path

on n− k vertices.

For n > 2 and 0 < k < n, the line graph of CBSun(n, k), denoted by L(CBS(n, k)) is the

graph belonging to the class L(BSun(n, k)) such that the subgraph induced by the vertices of

degree 2 is a path on n− k − 1 vertices.

The vertex set and edge set are similar to that of the line graph of BSun(n, k).

Theorem 8.3.9. CBSun(n, k) is not zero-sum V4-magic for any n.

Proof. Since it has pendant edges the result follows.

Theorem 8.3.10. L(CBSun(n, k)) is a-sum V4-magic if and only if n+ k is even.

Proof. It is already proved as subcase (i) in the proof of theorem 8.3.5.

Theorem 8.3.11. The line graph of CBSun(n, k) is zero-sum V4-magic for all n and k.

Proof. The proof is similar to the proof of theorem 8.3.6.

Theorem 8.3.12. CBSun(n, k) belongs to the classes A ,B and K if and only if n + k is

even.

Proof. The proof follows from theorems 3.2.12, 8.3.9, 8.3.10 and 8.3.11.

Theorem 8.3.13. CBSun(n, k) belongs to the L -class for all n and k.

Proof. The proof follows from theorems 8.3.9 and 8.3.11.

Wn denotes the wheel graph on n+ 1 vertices. Let V (Wn) = {u1, u2, · · · , un} ∪ {u} where

u is the central vertex and E(Wn) = {ei : 1 ≤ i ≤ n} ∪ {e′i : 1 ≤ i ≤ n} where ei is the edge

uui, 1 ≤ i ≤ n and e′i is the edge uiui+1, 1 ≤ i ≤ n. Consider the line graph L(Wn). Then

V (L(Wn)) = {v′1, v′2, · · · , v′n} ∪ {v1, v2, · · · , vn} where vi represents the edge ei, 1 ≤ i ≤ n and

v′i represents the edge e′i, 1 ≤ i ≤ n and E(L(Wn)) = {vivj : i, j = 1, 2, · · · , n, i 6= j}∪{v′ivi+1 :

1 ≤ i ≤ n} ∪ {v′ivi : 1 ≤ i ≤ n} ∪ {v′iv′i+1 : 1 ≤ i ≤ n}.

Theorem 8.3.14. L(Wn) is a-sum V4-magic for all n.

Proof. Define a labeling ` : E(L(Wn)) −→ V4 \ {0} by

Case 1: n is odd.

For i = 1, 2, · · · , n do :

`(viv
′
i) = b. `(vi+1v

′
i) = c
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`(v′iv
′
i+1) = a

`(vivj) = a, j = 1, 2, · · · , n

end for

Case 2: n is even.

For i = 1, 2, · · · , n do :

`(vivj) = a, j = 1, 2, · · · , n, i 6= j

`(v′iv
′
i+1) = a

end for

For i = 1, 3, · · · , n− 1 do :

`(viv
′
i) = b, `(vi+1v

′
i) = c,

end for

For i = 2, 4, · · · , n do :

`(viv
′
i) = c, `(vi+1v

′
i) = b,

end for

We can easily verify that ` is an a-sum V4-magic labeling of L(Wn).

Theorem 8.3.15. L(Wn) is zero-sum V4-magic for all n.

Proof. Define a labeling ` : E(L(Wn)) −→ V4 \ {0} as follows:

Case 1: n is odd.

Label all the edges by a. Then we get `+(v) = 0 for all v ∈ V (L(Wn)).

Case 2: n is even.

For i = 1, 2, · · · , n do:

`(v′ivi) = `(v′ivi+1) = a

`(v′iv
′
i+1) = a

`(vivj) = a, j = 1, 2, · · · , n, j 6= i+ 1

end for

`(vivi+1) =

{
b, i = 1, 3, · · · , n− 1

c, i = 2, 4, · · · , n

Thus ` is a zero-sum V4-magic labeling of L(Wn).

Theorem 8.3.16. Wn belongs to the classes A and B if and only if n is odd.
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Proof. The proof follows from theorems 3.3.1, 8.3.14 and 8.3.15.

Theorem 8.3.17. Wn belongs to the classes C and D for all n.

Proof. The proof follows from theorems 3.3.2, 3.3.3, 8.3.14 and 8.3.15.

Consider the graph Cm@Cn. Let V (Cm@Cn) = {ui, 1 ≤ i ≤ n} ∪ {uij : 1 ≤ i ≤ n, 1 ≤
j ≤ m − 2} and E(Cm@Cn) = {uiui+1 : 1 ≤ i ≤ n} ∪ {uijui(j+1) : 1 ≤ i ≤ n, 1 ≤ j ≤
m− 2} ∪ {uiui1 : 1 ≤ i ≤ n} ∪ {ui(m−2)ui+1 : 1 ≤ i ≤ n}. Consider the line graph L(Cm@Cn).

Then V (L(Cm@Cn)) = {vi : 1 ≤ i ≤ n}∪{vij : 1 ≤ i ≤ n, 1 ≤ j ≤ m−1} and E(L(Cm@Cn)) =

{vivi+1 : 1 ≤ i ≤ n}∪ {vivi1 : 1 ≤ i ≤ n}∪ {vivi(m−1) : 1 ≤ i ≤ n}∪ {vijvi(j+1) : 1 ≤ i ≤ n, 1 ≤
j ≤ m− 2} ∪ {viv(i+1)1 : 1 ≤ i ≤ n} ∪ {vi+1vi(m−1) : 1 ≤ i ≤ n}.

Theorem 8.3.18. (see [13]) For all m,n ≥ 3, Cm@Cn is zero-sum V4 magic.

Theorem 8.3.19. L(Cm@Cn) is a-sum V4-magic if and only if mn is even.

Proof. Suppose that L(Cm@Cn) is a-sum V4 magic. Then by lemma 3.2.1, n + n(m − 1) is

even. This implies that mn is even. Conversely suppose that mn is even.

We consider the following cases:

Case 1: m is odd and n is even.

Define a labeling ` : E(L(Cm@Cn)) −→ V4 \ {0} as follows:

`(vivi+1) =

{
b, i = 1, 3, · · · , n− 1

c, i = 2, 4, · · · , n

For i = 1, 2, · · · , n do:

`(vivi(m−1)) = `(viv(i+1)1) = `(vi+1vi(m−1)) = `(vivi1) = `(vi(m−1)v(i+1)1) = b

`(vijvi(j+1)) =

{
c, j = 1, 3, · · · ,m− 2

b, j = 2, 4, · · · ,m− 3

end for

Case 2: m is even and n is odd.

Define a labeling ` : E(L(Cm@Cn)) −→ V4 \ {0} as follows:

For i = 1, 2, · · · , n do:

`(vivi+1) = `(v(i+1)vi(m−1)) = `(viv(i+1)1) = `(v(i+1)1vi(m−1)) = a

`(vivi1) = b, `(vivi(m−1)) = c

`(vijvi(j+1)) =

{
c, i = 1, 3, · · · ,m− 3

b, i = 2, 4, · · · ,m− 2

end for
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Case 3: Both m and n are even.

The proof is similar to case 2.

With the above defined labeling L(Cm@Cn) is a-sum V4 magic.

Theorem 8.3.20. L(Cm@Cn) is zero-sum V4-magic for all m,n ≥ 3.

Proof. The proof is quite trivial.

Theorem 8.3.21. Cm@Cn belongs to the A -class if and only if either m is odd and n is even

or both m and n are even.

Proof. The proof follows from theorems 5.2.16 and 8.3.19.

Theorem 8.3.22. Cm@Cn belongs to the B-class if and only if n(m− 1) is even.

Proof. The proof follows from theorems 5.2.16 and 8.3.20.

Theorem 8.3.23. Cm@Cn belongs to the C -class for all m,n ≥ 3.

Proof. The proof follows from theorems 8.3.18 and 8.3.20.

Theorem 8.3.24. Cm@Cn belongs to the D-class if and only if mn is even.

Proof. The proof follows from theorems 8.3.18 and 8.3.19.

Cn(t) denote the one point union of t copies of cycle Cn. Let V (Cn(t)) = {w} ∪ {wij :

1 ≤ i ≤ t, 1 ≤ j ≤ n − 1} and E(Cn(t)) = {wijwi(j+1) : 1 ≤ i ≤ t, 1 ≤ j ≤ n − 2} ∪ {wwi1 :

1 ≤ i ≤ t} ∪ {wwi(n−1) : 1 ≤ i ≤ t}. Consider the line graph L(Cn(t)). Then the vertex set

V (L(Cn(t))) = {vij : 1 ≤ i ≤ t, j = 1, 2} ∪ {uij : 1 ≤ i ≤ t, 1 ≤ j ≤ n − 2} where vi1 denotes

the edge wwi1, vi2 denotes the edge wwi(n−1) and uij denotes the edge wijwi(j+1). The edge

set is given by E(L(Cn(t))) = {vijvkl : 1 ≤ i, k ≤ t, j, l = 1, 2 except for the case i = k, j =

l} ∪ {vi1ui1 : 1 ≤ i ≤ t} ∪ {vi2ui(n−2) : 1 ≤ i ≤ t} ∪ {uijui(j+1) : 1 ≤ i ≤ t, 1 ≤ j ≤ n− 3}.

Theorem 8.3.25. (see [28]) Cn(t) is zero-sum V4-magic for all n and t.

Theorem 8.3.26. L(Cn(t)) is a-sum V4-magic if and only if nt is even.

Proof. L(Cn(t)) is a-sum V4-magic implies that [2t + t(n − 2)]a = 0. This implies that nt is

even. Conversely suppose that nt is even. Then the following three cases arise.

i) Both n and t are even.

ii) n is even and t is odd.

iii) n is odd and t is even
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i) Both n and t are even.

For i = 1, 2, · · · , t do:

`(vi1vi2) = `(vi2v(i+1)1) = b

`(vi1ui1) = `(vi2ui(n−2)) = b

`(uijui(j+1)) =

{
c, j = 1, 3, · · · , n− 3

b, j = 2, 4, · · · , n− 4

For k = 1, 2, · · · , t, j, l = 1, 2, do:

`(vijvkl) = c, vij 6= vkl, k 6= i and l 6= j + 1, k 6= i+ 1 and l 6= j − 1

end for

end for

ii) n is even and t is odd.

For i = 1, 2, · · · , t do:

`(vijvkl) = b, k = 1, 2, · · · , t, j, l = 1, 2, vij 6= vkl

`(uijui(j+1)) =

{
b, j = 1, 3, · · · , n− 3

c, j = 2, 4, · · · , n− 4

`(vi1ui1) = `(vi2ui(n−2)) = c

end for

iii) n is odd and t is even

`(vi1vi2) =

{
b, i = 1, 3, · · · , t− 1

c, i = 2, 4, · · · , t

`(vi2v(i+1)1) =

{
c, i = 1, 3, · · · , t− 1

b, i = 2, 4, · · · , t

For i = 1, 2, · · · , t, do:

`(vi1ui1) = b

`(vi2ui(n−2)) = c

`(uijui(j+1)) =

{
c, j = 1, 3, · · · , n− 3

b, j = 2, 4, · · · , n− 4

For k = 1, 2, · · · , t, j, l = 1, 2, do:

`(vijvkl) = c, vij 6= vkl, k 6= i and l 6= j + 1, k 6= i+ 1 and l 6= j − 1

end for

With the labeling defined above L(Cn(t)) is a-sum V4-magic.

Theorem 8.3.27. L(Cn(t)) is zero-sum V4-magic for all n and t.
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Proof. Label all the edges by a. Since all the vertices have even degree, `+(v) = 0 for all

v ∈ V (L(Cn(t))).

Theorem 8.3.28. Cn(t) belongs to the classes A and B if and only if n is even and t is odd.

Proof. The proof follows from theorems 5.2.10, 8.3.26 and 8.3.27.

Theorem 8.3.29. Cn(t) belongs to the C -class for all n and t.

Proof. The proof follows from theorems 8.3.25 and 8.3.27.

Theorem 8.3.30. Cn(t) belongs to the D-class if and only if nt is even.

Proof. The proof follows from theorems 8.3.25 and 8.3.26.

Jn,m denotes the Jahangir graph on nm + 1 vertices. Let V (Jn,m) = {u} ∪ {ui : 1 ≤ i ≤
m} ∪ {vij : 1 ≤ i ≤ m, 1 ≤ j ≤ n − 1} and edge set is given by E(Jn,m) = {uui : 1 ≤ i ≤
m}∪{uivi1 : 1 ≤ i ≤ m}∪{ui+1vi(n−1) : 1 ≤ i ≤ m}∪{vijvi(j+1) : 1 ≤ i ≤ m, 1 ≤ j ≤ n−2}. By

the definition of the line graph, the vertex set of the line graph of Jn,m is given by V (L(Jn,m)) =

{vi : i = 1, 2, · · · ,m} ∪ {ui1, ui2 : i = 1, 2, · · · ,m} ∪ {wij : i = 1, 2, · · · ,m, j = 1, 2, · · · , n− 2}
where vi is the edge uui, i = 1, 2, · · · ,m. ui1 denotes the edge uiv(i−1)(m−1), ui2 denotes the

edge uivi1, wij denotes the edge vijvi(j+1). The edge set of the line graph E(L(Jn,m)) is given by

{vivj : 1 ≤ i, j ≤ m, i 6= j} ∪ {viuij : 1 ≤ i ≤ m, j = 1, 2} ∪ {ui1ui2 : 1 ≤ i ≤ m} ∪ {wijwi(j+1) :

1 ≤ i ≤ m, 1 ≤ j ≤ n− 3} ∪ {ui2wi1 : 1 ≤ i ≤ m} ∪ {wi(n−2)u(i+1)1 : 1 ≤ i ≤ m}.

Theorem 8.3.31. L(Jn,m) is a-sum V4-magic if and only if m(n+ 1) is even.

Proof. First assume that L(Jn,m) is a sum V4 magic.

L(Jn,m) is a sum V4-magic⇒ [m+ 2m+m(n− 2)]a = 0

⇒ [m+mn]a = 0

⇒ m(n+ 1) is even.

Conversely assume that m(n+ 1) is even.

Case 1: m and n are even. Define a labeling ` : E(G) −→ V4 \ {0} by

For i = 1, 2, · · · ,m do:

`(vivj) = a, j = 1, 2, · · · ,m, i 6= j

`(viuij) = a, j = 1, 2

`(ui1ui2) = b

`(wijwi(j+1)) =

{
c, j = 1, 3, · · · , n− 3

b, j = 2, 4, · · · , n− 4
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`(ui2wi1) = b, `(wi(n−2)u(i+1)1) = b

end for

With this labeling defined above `+(v) = a for all v ∈ V (L(Jn,m)).

Case 2: m is even and n is odd. Define a labeling ` : E(G) −→ V4 \ {0} by

For i = 1, 2, · · · ,m do:

`(vivj) = a, j = 1, 2, · · · ,m, i 6= j

`(viuij) = a, j = 1, 2

end for

`(ui1ui2) =

{
b, i = 1, 3, · · · ,m− 1

c, i = 2, 4, · · · ,m

`(ui2wi1) =

{
b, i = 1, 3, · · · ,m− 1

c, i = 2, 4, · · · ,m

`(wi(n−2)u(i+1)1) =

{
c, i = 1, 3, · · · ,m− 1

b, i = 2, 4, · · · ,m

For i = 1, 3, · · · ,m− 1 do:

`(wijwi(j+1)) =

{
c, j = 1, 3, · · · , n− 2

b, i = 2, 4, · · · , n− 3

end for

For i = 2, 4, · · · ,m do:

`(wijwi(j+1)) =

{
b, j = 1, 3, · · · , n− 2

c, i = 2, 4, · · · , n− 3

end for

With this labeling defined above `+(v) = a for all v ∈ V (L(Jn,m)).

Case 3: m and n are odd. Define a labeling ` : E(G) −→ V4 \ {0} by

For i = 1, 2, · · · ,m do:

`(vivj) = a, j = 1, 2, · · · ,m, i 6= j

`(viui1) = b, `(viui2) = c

`(ui1ui2) = a

`(wijwi(j+1)) =

{
b, j = 1, 3, · · · , n− 4

c, j = 2, 4, · · · , n− 3

`(ui2wi1) = c

`(wi(n−2)u(i+1)1) = b

end for
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With this labeling defined above `+(v) = a for all v ∈ V (L(Jn,m)).

Thus ` is an a-sum V4-magic labeling of L(J(n,m)).

Theorem 8.3.32. L(J(n,m)) is zero-sum V4-magic for all n and m.

Proof. Case 1: Both m and n are odd.

For i = 1, 2, · · · ,m do:

`(vivj) = a, j = 1, 2, · · · ,m, i 6= j

`(viui1) = `(viui2) = a

`(ui1ui2) = b, `(ui2wi1) = c

`(wi(n−2)u(i+1)1) = c

`(wijwi(j+1)) = c, j = 1, 2, · · · , n− 2

end for

Case 2: m and n are even.

For i = 1, 2, · · · ,m do:

`(vivj) = a, j = 1, 2, · · · ,m, i 6= j

end for

`(viui1) = `(ui2wi1) =

{
b, i = 1, 3, · · · ,m− 1

c, i = 2, 4, · · · ,m

`(viui2) =

{
c, i = 1, 3, · · · ,m− 1

b, i = 2, 4, · · · ,m

`(ui1ui2) = a

For j = 1, 2, · · · , n− 3 do:

`(wijwi(j+1)) =

{
b, i = 1, 3, · · · ,m− 1

c, i = 2, 4, · · · ,m

= `(wi(n−2)u(i+1)1)

end for

Case 3: m is odd and n is even.

The proof is similar to case 1.

Case 4: m is even and n is odd.

The proof is similar to case 2.

One can easily verify that with the labeling defined above, ` is a zero-sum V4-magic labeling

of L(Jn,m).
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Theorem 8.3.33. Jn,m belongs to the classes A and B if and only if n and m are odd.

Proof. The proof follows from theorems 5.2.1, 8.3.31 and 8.3.32.

Theorem 8.3.34. Jn,m belongs to the C -class for all n and m.

Proof. The proof follows from theorems 5.2.2 and 8.3.32.

Theorem 8.3.35. Jn,m belongs to the D-class if and only if m(n+ 1) is even.

Proof. The proof follows from theorems 5.2.2 and 8.3.31.

8.4 Ladder Graphs

The line graph of the ladder Ln is a graph with vertex set V (G) = {ui : i = 1, 2, · · · , n−1}∪{vi :

i = 1, 2, · · · , n} ∪ {u′i : i = 1, 2, · · · , n − 1} and edge set given by E(G) = {uivi : i =

1, 2, · · · , n − 1} ∪ {u′ivi : i = 1, 2, · · · , n − 1} ∪ {uivi+1 : i = 1, 2, · · · , n − 1} ∪ {u′ivi+1 : i =

1, 2, · · · , n− 1} ∪ {uiui+1 : i = 1, 2, · · · , n− 2} ∪ {u′iu′i+1 : i = 1, 2, · · · , n− 2}.

Theorem 8.4.1. (see [28]) Ln is zero-sum V4-magic for all n.

Theorem 8.4.2. L(Ln) is a-sum V4-magic if and only if n is even.

Proof. Suppose that L(Ln) is a-sum V4 magic. Then (3n − 2)a = 0. This implies that 3n is

even which again implies that n is even. Conversely assume that n is even. Define a labeling

` : E(L(Ln))→ V4 \ {0} by

For i = 1, 2, · · · , n− 2 do:

`(uivi) = `(uiui+1) = b

`(u′iu
′
i+1) = `(viu

′
i) = c

end for

`(un−1vn) = b, `(u′n−1vn) = c

`(u1v2) = `(u′1v2) = `(un−1vn−1) = `(u′n−1vn−1) = a

`(uivi+1) = c, i = 2, 3, · · · , n− 2

`(u′ivi+1) =

{
b, i = 2, 4, · · · , n− 2

c, i = 3, 5, · · · , n− 3

Thus ` is an a-sum V4-magic labeling of L(Ln).

Theorem 8.4.3. L(Ln) is zero-sum V4-magic for all n.
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Proof. Define a labeling ` : E(L(Ln)) −→ V4 \ {0} by

`(u1v1) = `(u′1v1) = a

`(un−1vn) = `(u′n−1vn) = a

For i = 1, 2, · · · , n− 1, do:

`(uiui+1) = `(u′iu
′
i+1) = c

end for

For i = 2, 3, · · · , n− 1, do:

`(uivi) = `(u′ivi) = b

end for

For i = 1, 2, · · · , n− 2, do:

`(uivi+1) = `(u′ivi+1) = b

end for

Hence the labeling ` defined above makes the graph L(Ln) zero-sum V4 magic.

Theorem 8.4.4. Ln belongs to the A -class if and only if n is even.

Proof. The proof follows from theorems 5.3.1 and 8.4.2.

Theorem 8.4.5. Ln belongs to the classes B and C for all n.

Proof. The proof follows from theorems 5.3.1, 8.4.1 and 8.4.3.

Theorem 8.4.6. Ln belongs to the D-class if and only if n is even.

Proof. The proof follows from theorems 8.4.1 and 8.4.2.

The line graph of Ln+2 is a graph with vertex set V (L(Ln+2)) = {vi/i = 1, 2, · · · , n} ∪
{ui/i = 0, 1, · · · , n}∪{u′i/i = 0, 1, · · · , n} and edge set E(L(Ln+2)) = {uivi+1/i = 0, 1, · · · , n−
1} ∪ {u′ivi+1/i = 0, 1, · · · , n− 1} ∪ {uivi/i = 1, 2, · · · , n} ∪ {u′ivi/i = 1, 2, · · · , n} ∪ {uiui+1/i =

0, 1, · · · , n− 1} ∪ {u′iu′i+1/i = 0, 1, · · · , n− 1}.

Theorem 8.4.7. (see [28]) Ln+2 is a-sum V4-magic for all n.

Theorem 8.4.8. L(Ln+2) is a-sum V4-magic if and only if n is even.

Proof. Suppose that L(Ln+2) is a-sum V4 magic. This implies that (3n+2)a = 0 which implies

that n is even. Conversely suppose that n is even. Define a labeling ` : E(L(Ln+2))→ V4 \{0}
by

`(uiui+1) =

{
c, i = 0, 2, · · · , n− 2

b, i = 1, 3, · · · , n− 1
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`(u′iu
′
i+1) =

{
c, i = 0, 2, · · · , n− 2

b, i = 1, 3, · · · , n− 1

`(uivi+1) = b, i = 0, 1, · · · , n− 1

`(u′ivi+1) =

{
b, i = 0, 2, · · · , n− 2

c, i = 1, 3, · · · , n− 1

`(uivi) = b, i = 1, 2, · · · , n− 1

`(unvn) = c

`(u′ivi) =

{
c, i = 1, 3, · · · , n− 1, n

b, i = 2, 4, · · · , n− 2

With this labeling L(Ln+2) is a-sum V4 magic.

Theorem 8.4.9. L(Ln+2) is zero-sum V4-magic for all n.

Proof. Label all the edges by a. Since all the vertices have degree either 2 or 4, it is easy to

verify that `+(v) = 0 for all v ∈ V (L(Ln+2)).

Theorem 8.4.10. Ln+2 belongs to the classes A and K if and only if n is even.

Proof. The proof follows from theorems 8.4.7, 5.3.5 and 8.4.8.

Theorem 8.4.11. Ln+2 belongs to the classes B and L for all n.

Proof. The proof follows from theorems 8.4.7, 5.3.5 and 8.4.9.

Theorem 8.4.12. Path Pn is non V4-bimagic for n ≥ 4.

Proof. The path graph Pn is neither a-sum V4-magic nor zero-sum V4-magic. The line graph of

Pn is Pn−1 which is again neither a-sum V4-magic nor zero-sum V4-magic. Hence the proof.

A C A ∩ C

Cm@Cn Cm@Cn Cm@Cn

Cn(t) Cn(t) Cn(t)

Jn,m Jn,m Jn,m
Ln Ln Ln

Wn Wn Wn

Sunn
BSun(n, k)

CBSun(n, k)

Ln+2

K1,n
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In this chapter, we have classified a few cycle related graphs into a-sum V4-bimagic, zero-sum

V4-bimagic and graphs which are both a-sum and zero-sum V4-bimagic. The classification is

shown in the above table. The graphs which we have discussed mainly belong to the classes

A ,B,C and D . A few graphs which belong to some of the other classes are discussed below.

Moreover, from the above table we have A ∩ C = C . That is C ⊂ A . Then a question arises

whether this is always true. The following theorems provide an answer to this question.

The labelings of diamond graph and its line graph are shown in Figure 8.1.

Theorem 8.4.13. The diamond graph belongs to the classes B,C ,E and I .

Proof. A zero-sum V4 magic labeling of diamond graph is shown in figure 8.1. An a-sum V4

magic labeling is shown in brackets in the same figure. Also a zero-sum V4 magic labeling of

line graph of diamond graph is depicted in figure 8.1. Moreover suppose it is a-sum V4 magic.

Then we have 5a = 0 which is a contradiction. Then the result follows.

The labelings of kite graph and its line graph are shown in Figure 8.2.

Theorem 8.4.14. The kite graph belongs to the classes G ,H ,K and L .

Proof. Since the kite graph has a pendant edge, it is not zero-sum V4 magic and it is not a-sum

V4 magic as it has 5 vertices. A zero-sum V4 magic labeling of its line graph is shown in figure

8.2 and its a-sum V4 magic labeling is shown in brackets in the same figure. Obviously the

result follows.

Figure 8.1: Diamond graph and its line graph
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Figure 8.2: Kite graph and its line graph

Figure 8.3: Butterfly graph and its line graph(above), Cricket graph and its line graph(below)

The labelings of butterfly graph and its line graph are given in Figure 8.3.

Theorem 8.4.15. The butterfly graph belongs to the classes C ,D ,G and H .
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Proof. Since the number of vertices is odd, the butterfly graph is not a-sum V4 magic. By

labeling all the edges by a, we get a zero-sum V4 magic labeling of the graph and its line graph.

An a-sum V4 magic labeling of the line graph is given in figure 8.3. Then clearly the result

follows.

The labelings of cricket graph and its line graph are shown in Figure 8.3.

Theorem 8.4.16. The cricket graph belongs to the classes H ,L ,M and O.

Proof. By similar arguments in the above theorems, the cricket graph is neither a-sum V4

magic nor zero-sum V4 magic. Its line graph is also not a-sum V4 magic. A zero-sum V4 magic

labeling of the line graph is depicted in figure 8.3. Then the proof follows.

The labelings of moth graph and its line graph are shown in Figure 8.4.

Theorem 8.4.17. The moth graph belongs to the classes B,E ,L and O.

Proof. An a-sum V4 magic labeling of moth graph and a zero-sum V4 magic labeling of its line

graph are shown in figure 8.4. As it has pendant edges the graph is not zero-sum V4 magic

and its line graph is not a-sum V4 magic as it has odd number of vertices. Then we can easily

verify the result.

Figure 8.4: Moth graph and its line graph

From theorems 8.4.13 and 8.4.15 we can conclude that C * A since diamond graph and

butterfly graph are zero-sum V4-bimagic but not a-sum V4-bimagic.
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Chapter 9
On Zp-Barycentric Ring Magic Graphs

In the first section of this chapter, we define k−barycentric sequence

in a commutative ring R with unity and introduce the concept of R-

barycentric ring magic graphs. In the second section of this chapter, we

characterize 2-barycentric and 3-barycentric sequence in fields. In the

last section of this chapter we characterize a class of Zp-barycentric ring

magic graphs.

9.1 Introduction

Here we define k−barycentric sequence in a commutative ring R with unity.

Definition 9.1.1. Let a1, a2, · · · , ak be k not necessarily distinct nonzero elements of a com-

mutative ring R with unity. This sequence is k−barycentric if there exist i such that a1 + a2 +

· · ·+ ai + · · ·+ ak = kai and a1a2 · · · ai · · · ak = aki . The element ai is called a barycenter.

Definition 9.1.2. Let R be a commutative ring with unity. A graph G = (V,E) is said to

be R-barycentric ring magic if there exists a labeling ` : E(G) → R \ {0} of the edges of G

by nonzero elements of R such that the induced vertex labelings `+ : V (G) → R defined by

`+(v) =
∑
`(uv) where (u, v) ∈ Eand `× : V (G) → R defined by `×(v) =

∏
`(uv) where

(u, v) ∈ E are constant maps and satisfies:

i) `+(v) = deg(v)`(uvv), for all v ∈ V (G), and for some vertex uv adjacent to v.

ii) `×(v) = `(uvv)deg(v), for all v ∈ V (G), and for some vertex uv adjacent to v.
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9.2. Basic Results

9.2 Basic Results

Here we need the following:

Lemma 9.2.1. In every commutative ring with unity R, a sequence a1, a2, · · · , ak where a1 =

a2 = · · · = ak = a ∈ R is k−barycentric.

Proof. We have

a1 + a2 + · · ·+ ai + · · ·+ ak = a+ a+ · · ·+ a+ · · ·+ a︸ ︷︷ ︸
k terms

= ka.

Moreover,

a1a2 · · · ai · · · ak = aa · · · a · · · a︸ ︷︷ ︸
k terms

= ak.

This proves the lemma.

Lemma 9.2.2. Let R be a field. Any sequence in R with 2 elements is barycentric if and only

if the elements are equal.

Proof. Let a1, a2 be any two elements in the field R which are barycentric. Without loss

of generality assume that a1 + a2 = 2a1 which implies a1 = a2. Again, a1a2 = a1
2 implies

a1
−1a1a2 = a1

−1a1
2. That is, a1 = a2. Conversely assume that a1 = a2. Then clearly,

a1 + a2 = a+ a = 2a and

a1a2 = aa = a2.

This proves the lemma.

Lemma 9.2.3. Let R be a field. A 3-sequence in R is barycentric if and only if all the elements

are equal.

Proof. Suppose that a1, a2, a3 be a 3-sequence in R in which all the elements are equal. That

is ai = a for i = 1, 2, 3. Then it is clear that the sequence is barycentric. Conversely assume

that the 3-sequence in R is barycentric. Then consider the following three cases:

Case 1 : Suppose a1 + a2 + a3 = 3a1 and a1a2a3 = a1
3.

This implies

a2 + a3 = 2a1 and (9.1)

a2a3 = a1
2. (9.2)
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From equation 8.1 we have a3 = 2a1 − a2. Substituting this in equation 8.2 we get,

a2(2a1 − a2) = a1
2 ⇒ 2a1a2 − a22 = a1

2

⇒ a1
2 − 2a1a2 + a2

2 = 0

⇒ (a1 − a2)2 = 0

⇒ a1 = a2.

Substituting this in equation 8.1 we get, a1 = a2 = a3.

Case 2: a1 + a2 + a3 = 3a2 and a1a2a3 = a2
3.

The proof is similar to case 1.

Case 3: a1 + a2 + a3 = 3a3 and a1a2a3 = a3
3.

The proof is similar to case 1.

This completes the proof.

Since the last two lemmas work for only fields, in the foregoing sections we focus mainly

on Zp-barycentric ring magic graphs where p is prime.

9.3 Main Results

Theorem 9.3.1. Any graph G is Z2-barycentric ring magic with same additive and multi-

plicative constant 1 if and only if all the vertices of G have odd degrees.

Proof. First suppose that all the vertices of G have odd degrees.

deg(vi) = ki = 2s+ 1 for all vi ∈ V and for some s ∈ N.

Then we have,

`+(vi) =
∑

`(uv) = 1, `×(vi) =
∏

`(uv) = 1.

Moreover,

deg(v)`(uvv) = 1 and `(uvv)deg(v) = 1.

Therefore G is Z2 barycentric ring magic with the same additive and multiplicative constant

1. Conversely assume that G is Z2-barycentric ring magic with the same additive and mul-

tiplicative constant 1. Obviously deg(v) = k for all v ∈ V where k is odd. This proves the

theorem.

Corollary 9.3.2. Any graph G is Z2-barycentric ring magic with same additive and multi-

plicative constant 1 if and only if G is k-regular with k odd.
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Proof. First suppose that G is Z2-barycentric ring magic with same additive and multiplicative

constant 1. Then by theorem 9.3.1, all the vertices of G have odd degrees. This is true if G is

k-regular with k odd. Conversely assume that G is k-regular with k odd. Then clearly all the

vertices of G have odd degrees. Hence by theorem 9.3.1, the result follows.

Theorem 9.3.3. A regular graph G is R-barycentric ring magic for any ring R.

Proof. Label all the edges by a ∈ R \ {0}. Then `+ and `× are constant maps and also

`+(v) = deg(v)`(uvv) and `×(v) = `(uvv)deg(v).

Theorem 9.3.4. For every commutative ring R with unity, P2 is R-barycentric ring magic

and Pn, n ≥ 3 is not R-barycentric ring magic.

Proof. Label the edge by a. Then P2 is R-barycentric ring magic for every commutative ring R

with unity. Pn, n ≥ 3 is in fact not even barycentric magic. Hence it cannot be R-barycentric

ring magic.

Theorem 9.3.5. Every Z2-ring magic graph is Z2-barycentric ring magic.

Proof. Suppose that G is Z2-ring magic. Then the only possible edge label is 1. Thus we have

`+(v) =
∑
`(uv) =

∑
1 = deg(v)`(uv) and `×(v) =

∏
`(uv) =

∏
1 = `(uv)deg(v). The proof

follows.

Theorem 9.3.6. For n ≥ 3, if K1,n is Zh-ring magic then K1,n is Zh-barycentric ring magic.

Proof. Let v1, · · · , vn be the pendant vertices and v0 be the central vertex of K1,n. First

suppose that K1,n is Zh ring magic. We can easily see that all the pendant edges must have

the same label. That is, `(v0vi) = a, i = 1, 2, · · · , n. Also deg(v0) = n and deg(vi) = 1 for all

i. Thus we have,

`+(vi) = a, `+(v0) = na, `×(vi) = a, `×(v0) = an

Furthermore,

deg(vi)`(uvivi) = 1.a = a, deg(v0)`(uv0v0) = n.a

`(uvivi)
deg(vi) = a = a1, `(uv0v0)deg(v0) = an

Hence the proof.

Theorem 9.3.7. The cycle Cn is R-barycentric ring magic for every commutative ring R with

unity.

Proof. Label all the edges by the same element. The result follows.

Theorem 9.3.8. (see [34]) C(n1, n2) is Zh-barycentric magic if and only if h is even.

Theorem 9.3.9. (see [34]) C(n1, n2, · · · , nk) is Zh-barycentric magic if and only if h is even.
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Theorem 9.3.10. C(n1, n2) is Zp-barycentric ring magic if and only if p = 2.

Proof. By lemma 9.2.2 and theorem 9.3.8, the result follows.

The generalized form of the theorem 9.3.10 is as follows:

Theorem 9.3.11. C(n1, n2, · · · , nk) is Zp-barycentric ring magic if and only if p = 2.

Proof. By lemma 9.2.2 and theorem 9.3.9, the result follows.

Theorem 9.3.12. K2,3 is not Zp-barycentric ring magic for any prime p.

Proof. Let {u1, u2} and {v1, v2, v3} be the two partite sets of K2,3. By lemmas 9.2.2 and 9.2.3,

the edges incident to ui must have the same labels and those incident to vj must also have the

same labels. Let us label all the edges incident to u1 by a. Then all the edges incident to u2

must also be labeled a since all the edges incident to vj must have the same label. Therefore

we have,

`+(ui) = 3a, `+(vj) = 2a,

`×(ui) = a3, `×(vj) = a2.

If the graph is Zp-barycentric ring magic, then it follows that a = 0 which is a contradiction.

Thus the graph K2,3 cannot be Zp-barycentric ring magic for any prime p.

Remark 9.3.13. If a graph is not Zh-barycentric magic, then it cannot be Zh-barycentric ring

magic.

From theorem 3.19 in [26] and remark 9.3.13, we obtain the following result:

Theorem 9.3.14. K2,3 is not Zh-barycentric ring magic for any h.

Theorem 9.3.15. The sun graph Cn �K1 is Zp-barycentric ring magic if and only if p = 2.

Proof. Let u1, u2, · · · , un be the vertices of the cycle Cn and v1, v2, · · · , vn be the pendant

vertices. Then deg(ui) = 3 and deg(vi) = 1. By lemma 9.2.3, all the edges incident to u1 is

labeled the same element a. Moreover, we get that the edge labels of all those incident to

ui, i = 2, 3, · · · , n are a itself. Hence we get, `+(ui) = 3a and `+(vi) = a. If the graph is

Zp-barycentric ring magic we get the congruence, 3a ≡ a(mod p) which implies 2a ≡ 0(mod p)

which inturn shows that p is even. That is p is exactly equal to 2. From our assumption we

also have the congruence,

`×(ui) ≡ `×(vi)(mod p)⇒ a3 ≡ a(mod p)

⇒ a(a2 − 1) ≡ 0(mod p).
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Since a ≡ 0(mod p) is not possible, we have

(a2 − 1) ≡ 0(mod p)⇒ a2 ≡ 1(mod p)

⇒ a = 1, p− 1.

Since p = 2, a = 1. To prove the converse, simply label all the edges by 1. The proof

follows.

Theorem 9.3.16. Let p be any prime number. Then the wheel graph Wn is Zp-barycentric ring

magic if and only if there exists an a ∈ Zp \{0} such that n ≡ 3(mod p) and an−3 ≡ 1(mod p).

Proof. Let u1, u2, · · · , un, v be the vertices of Wn where v is the central vertex. We have

deg(ui) = 3, i = 1, 2, · · · , n and deg(v) = n. First suppose that Wn is Zp-barycentric ring

magic. Then by lemma 9.2.3, all the edges incident to ui, i = 1, 2, · · · , n are labeled by the

same element a. Thus we get `+(ui) = 3a, `+(v) = na, `×(ui) = a3, `×(v) = an. By

assumption, we obtain the congruence as follows:

na ≡ 3a(mod p)⇒ (n− 3)a ≡ 0(mod p)

⇒ n ≡ 3(mod p).

Furthermore,

an ≡ a3(mod p)⇒ a3(an−3 − 1) ≡ 0(mod p)

If a3 ≡ 0(mod p) then a = 0 which is a contradiction. Hence (an−3 − 1) ≡ 0(mod p) which

gives the congruence an−3 ≡ 1(mod p), where a ∈ Zp \ {0}.

Conversely suppose that there exists an a ∈ Zp \ {0} such that n ≡ 3(mod p) and an−3 ≡
1(mod p). Then we have,

n ≡ 3(mod p)⇒ n.1 ≡ 3.1(mod p)

Obviously we can choose a to be 1 for which the congruence is satisfied. This gives a Zp-

barycentric ring magic labeling of Wn.

Corollary 9.3.17. Wn is Z2 barycentric ring magic if and only if n is odd.

Proof. Suppose that Wn is Z2 barycentric ring magic. Then by theorem 9.3.16 we have n−3 ≡
0(mod 2). That is n− 3 is even which implies n is odd. Conversely suppose that n is odd. The

only possible edge label is 1. Then clearly n ≡ 3(mod 2) and an−3 − 1 ≡ 0(mod 2).

The following example illustrates theorem 9.3.16.

Example 9.3.18. Consider the wheel graph W10 and the ring Z7. Here 10 ≡ 3(mod 7). Let

a = 1. Then a7 = 17 ≡ 1(mod 7). Then W10 is Z7 barycentric ring magic.
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Example 9.3.19. Consider the wheel graph W5 and the ring Z3. Let ui denote the outer

vertices and v denotes the central vertex of Wn. Here n − 3 = 2 is not congruent to 0

modulo 3 and a2 − 1 = 12 − 1 ≡ 0(mod 3). If we label all the edges by 1, then

`+(ui) = 3(mod 3) = 0

`+(v) = 5(mod 3) = 2

Hence W5 is not Z3-barycentric ring magic.

Remark 9.3.20. Example 9.3.19 shows that the condition n ≡ 3(mod p) in theorem 9.3.16 is

necessary.

Theorem 9.3.21. The splitting graph S(P3) of the path graph P3 is Zp-barycentric ring magic

if and only if p = 2.

Proof. Let {u1, u2, u3} ∪ {v1, v2, v3} be the vertex set of S(P3). By lemma 9.2.2, all the edges

incident to u1 are labeled by the same element a1. Similarly all the edges incident to each of

the vertices u3, v1 and v3 are labeled by the elements a2, a3 and a4 respectively. If the graph

is Zp-barycentric ring magic, then we get the congruence,

2a1 ≡ 2a2 ≡ 2a3 ≡ 2a4 ≡ a1 + a2 + a3 + a4(mod p). (9.3)

We consider the following cases:

i) p is odd.

From congruence 9.3 we get, a1 = a2 = a3 = a4 = a(say). Thus we have 4a ≡ 2a(mod p)

which implies 2a ≡ 0(mod p) which is a contradiction since p is odd.

ii) p = 2.

The only possible edge labeling is 1. This will give `+(ui) = `+(vi) = 0 and for all vertex

u in S(P3), deg(u)`(uvv) = `+(u). Also `×(ui) = `×(vi) = 1 and `(uvv)deg(u) = 1. Thus

S(P3) is Z2 barycentric ring magic.

The converse is trivial. Hence the proof.

Theorem 9.3.22. The Mycielski graph µ(P3) is not Zp-barycentric ring magic for any p.

Proof. We have V (µ(P3)) = V (S(P3))∪ {u} where u is the newly added vertex. Suppose that

µ(P3) is Zp-barycentric ring magic for all p. Since deg(u) = 3, by lemma 9.2.3, all the edges

incident to u are labeled by the same element a1 ∈ Zp \ {0}. Then from our assumption it is

obvious that the edges incident to both v1 and v3 must have the same label. Let the edges

incident to u1 be labeled a2 and those incident to u3 be labelled a3. Then we have,

3a1 ≡ 2a2 ≡ 2a3 ≡ 3a1 + a2 + a3 ≡ 2a1 + a2 + a3(mod p).
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Considering the congruence 3a1 +a2 +a3 ≡ 2a1 +a2 +a3(mod p), it follows that a1 ≡ 0(mod p)

which is not possible.

Theorem 9.3.23. The planar grid Pm × Pn is not Zp-barycentric ring magic for all m,n

except m = n = 2 and for any p.

Proof. By lemma 9.2.2, two edges incident to the corner vertices of the planar grid can only be

labeled by the same element a. Moreover, by lemma 9.2.3, the edges incident to the adjacent

vertices of degree 3 must also be labeled the same element a. Then if Pm×Pn is Zp-barycentric

ring magic, the following congruence holds.

3a ≡ 2a(mod p)

which is not possible. Furthermore, for m = n = 2 the graph P2 × P2 is the cycle C4 itself

which is R-barycentric ring magic for all commutative ring R with unity by theorem 9.3.7.

Consider the Dutch windmill graph D
(m)
3 or the friendship graph Fm.

Theorem 9.3.24. The friendship graph Fm is Z2-barycentric ring magic for all m and Zp-

barycentric ring magic for p odd if and only if there exists an a ∈ Zp \ {0} such that m ≡
1(mod p) and a2m−2 ≡ 1(mod p).

Proof. Let ui,j , i = 1, 2, · · · ,m, j = 1, 2 be the vertices of the graph and u be the central

vertex. Let the edge u11u12 be labeled a1. Then by lemma 9.2.2, the edges uu11 and uu12

must also be labeled by the same element a1. By a similar argument we label the edges

ui1ui2, uui1, uui2, i = 2, 3, · · · ,m by a2, a3, · · · , am. Suppose that Fm is Zp-barycentric ring

magic. Then we get the congruences

2a1 ≡ 2a2 ≡ · · · ≡ 2am ≡ 2(a1 + a2 + · · ·+ am)(mod p) and (9.4)

a21 ≡ a22 ≡ · · · ≡ a2m ≡ a21a22a23 · · · a2m(mod p) (9.5)

We consider the following cases:

Case 1: p is odd.

2a1 ≡ 2a2 ≡ · · · ≡ 2am(mod p) implies a1 = a2 = · · · = am = a. Also, 2(
∑m

i=1 ai) = 2ma.

Hence we get

2ma ≡ 2a(mod p)⇒ (2m− 2)a ≡ 0(mod p)

⇒ m ≡ 1(mod p).

Now consider the congruence 9.5. From the congruence a21 ≡ a22 ≡ · · · ≡ a2m(mod p),

there arises two cases:
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Subcase 1: a1 = a2 = · · · = am = a

Substituting in (9.5) we get, a21a
2
2a

2
3 · · · a2m = a2m. Thus we have

a2m ≡ a2(mod p)⇒ a(a2m−2 − 1) ≡ 0(mod p)

⇒ a2m−2 ≡ 1(mod p)

Subcase 2: Let 1 ≤ k ≤ m and choose ai such that

ai =

{
a, 1 ≤ i ≤ k
p− a = b, k + 1 ≤ i ≤ m

Therefore, a21a
2
2a

2
3 · · · a2m ≡ a2kb2(m−k)(mod p). From the congruence 9.4, we have

a2kb2(m−k) ≡ a2 ≡ b2(mod p). (9.6)

Since a2 ≡ b2(mod p), we have

a2kb2(m−k) ≡ (a2)k(a2)(m−k)(mod p) ≡ (a2)m(mod p)

≡ a2m(mod p)

Substituting in congruence 9.5, we get,

a2m ≡ a2(mod p)⇒ a2(a2m−2 − 1) ≡ 0(mod p)

⇒ a2m−2 ≡ 1(mod p).

Case 2: p = 2.

2a1 ≡ 2a2 ≡ · · · ≡ 2am(mod 2) implies that all a′js can be even distinct. There is

no restriction on a′js. If all are equal, we are done. Since we are considering only Z2-

barycentric ring magic graphs, all the edges must have the same label 1. Then we get

the following congruences.

2m ≡ 2(mod 2) and 1m ≡ 1(mod 2).

which holds for all m.

Conversely assume that m ≡ 1(mod p) and a2m−2 ≡ 1(mod p). Then

m ≡ 1(mod p)⇒ 2m ≡ 2(mod p) for all m

⇒ p = 2.

Choose a = 1. This choice satisfies the other assumption 12m−2 ≡ 1(mod p). This gives a

Zp-barycentric ring magic labeling of Fm.

We prove that the ladder graph Ln and semiladder are not Zp-barycentric ring magic for
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any n and p.

Theorem 9.3.25. The ladder graph Ln is not Zp-barycentric ring magic for any n and any

p.

Proof. Suppose Ln is Zp-barycentric ring magic for some n and p. Then by lemmas 9.2.2 and

9.2.3, all the edges must be labeled the same element say a. Then we get the congruence

3a ≡ 2a(mod p) which is not possible.

Theorem 9.3.26. Ln+2 is Zp-barycentric ring magic if and only if p = 2.

Proof. First we label all the pendant edges by the same element a. Then by lemma 9.2.3, all

the other edges of the graph admits the same labeling a. Assuming that Ln+2 is Zp-barycentric

ring magic, we end up in the congruence, 3a ≡ a(mod p) which implies that 2a ≡ 0(mod p)⇒ p

is even. By labeling all the edges by 1 we can prove the converse.

Theorem 9.3.27. Semiladders are not Zp-barycentric ring magic for any n and any p.

Proof. Suppose that semiladders are Zp-barycentric ring magic for some n and p. Then by

lemmas 9.2.2 and 9.2.3, the corner vertices must have the same label, say a. Then we have the

congruence, 3a ≡ 2a(mod p) which is not possible.

Theorem 9.3.28. The graph Cn(t) is Z2-barycentric ring magic for all n, t and Zp-barycentric

ring magic for p odd if and only if there exists an a ∈ Zp \ {0} such that t ≡ 1(mod p) and

a2t−2 ≡ 1(mod p).

Proof. The proof is similar to theorem 9.3.24.

Remark 9.3.29. Theorem 9.3.24 is a special case of theorem 9.3.28.

Theorem 9.3.30. Let p be an odd prime. Then the graph B(n, k) is Zp-barycentric ring magic

if and only if the following holds:

i) (k − 2)a+ b ≡ 0(mod p)

ii) a(k−2)b ≡ 1(mod p)

Proof. Let uv be the common edge and uj1, u
j
2, · · · , u

j
n−2 be the remaining vertices of the jth

cycle Cn. If we label the edge uu11 by a1, then by lemma 9.2.2, we must label the edges

u1iu
1
i+1, i = 1, 2, · · · , n − 2 by a1. Similarly we have the edge labels a2, a3, · · · , ak for the

remaining cycles. Let the edge uv be labeled b. If it is Zp barycentric ring magic, then we have

the congruences

2a1 ≡ 2a2 ≡ · · · ≡ 2ak ≡ a1 + a2 + · · ·+ ak + b(mod p) (9.7)

a11 ≡ a22 ≡ · · · ≡ a2k ≡ a1a2 · · · akb(mod p) (9.8)
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Since we are considering only the case where p is odd, considering 2a1 ≡ 2a2 ≡ · · · ≡ 2ak(mod p)

in the congruence 9.7 implies that a1 = a2 = · · · = ak = a. Then it follows that a1 + a2 + · · ·+
ak + b ≡ ka+ b(mod p). Combining all this, from congruence 9.7 we get,

ka+ b ≡ 2a(mod p)⇒ (k − 2)a+ b ≡ 0(mod p).

Now consider the congruence 9.8. There arises two cases.

Subcase 1: a1 = a2 = · · · = ak = a.

From congruence 9.8, we obtain,

akb ≡ a2(mod p)⇒ a2(ak−2b− 1) ≡ 0(mod p)

⇒ ak−2b− 1 ≡ 0(mod p)

⇒ ak−2b ≡ 1(mod p).

Subcase 2:

ai =

{
a, 1 ≤ i ≤ m
p− a, m+ 1 ≤ i ≤ k.

Then the congruence become,

am(p− a)k−mb ≡ a2 ≡ (p− a)2(mod p).

We have (p− a)k−m ≡ ak−m(mod p). Then

amak−mb ≡ a2(mod p)⇒ akb ≡ a2(mod p)

⇒ a2(ak−2b− 1) ≡ 0(mod p)

⇒ ak−2b ≡ 1(mod p).

Assume the converse. We choose a = b = 1. By assumption we have (k − 2)a+ b ≡ 0(mod p).

(k − 2)a+ b ≡ 0(mod p)⇒ ka+ b ≡ 2a(mod p)

⇒ k + 1 ≡ 2(mod p).

Moreover, ak−2b−1 = 0 ≡ 0(mod p). This implies akb ≡ a2(mod p). This gives a Zp-barycentric

ring magic labeling of B(n, k) where p is an odd prime.

The following theorem characterizes Z2-barycentric ring magic n-gon book of k pages

B(n, k).

Theorem 9.3.31. B(n, k) is Z2-barycentric ring magic if and only if k is odd.

Proof. Suppose B(n, k) is Z2-barycentric ring magic. The only possible edge labeling is 1.
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Then we have

k.1 + 1 ≡ 2(mod 2)⇒ k + 1 ≡ 2(mod 2)

⇒ k − 1 ≡ 0(mod 2)

⇒ k is odd.

Also the congruence, 1k+1 ≡ 12(mod 2) holds for all k. Conversely suppose that k is odd. Then

we have k ≡ 1(mod 2). That is, k − 1 ≡ 0(mod 2) which implies k + 1 ≡ 2(mod 2). Again the

congruence 1k+1 ≡ 12(mod 2) is vacuosly true. Hence the graph is Z2-barycentric ring magic

for all n.

Similar characterization theorems hold for book graph Bn = Sn × P2. In fact, Bn is a

special case of B(n, k). We state them as follows:

Theorem 9.3.32. Let p be an odd prime. Bn is Zp-barycentric ring magic if and only if the

following holds:

i) (n− 2)a+ b ≡ 0(mod p)

ii) a(n−2)b ≡ 1(mod p)

Proof. The proof is similar to that of theorem 9.3.30.

Theorem 9.3.33. Bn is Z2-barycentric ring magic if and only if n is odd.

Proof. The proof is similar to that of theorem 9.3.31.

Theorem 9.3.34. Cm@Cn is Z2-barycentric ring magic for all m and n and if it is Zp-

barycentric ring magic for an odd prime p, then bi ≡ bj(mod p), i 6= j where both i and j are

of same parity and bi’s are the edge labels of the cycle Cn.

Proof. Label the edges of the cycle Cn by b1, b2, · · · , bn. Consider the cycle Cm on the edge

labeled b1. Label one of its edge by a1. Then by lemma 9.2.2, all the remaining edges of the

cycle must have the same label a1. In a similar manner, we can label all the edges of the

remaining cycles by a2, a3, · · · , an respectively. First assume that Cm@Cn is Zp-barycentric

ring magic. Then we have the following congruences.

2a1 ≡ 2a2 ≡ · · · ≡ 2an ≡ a1 + a2 + b1 + b2 ≡ a2 + a3 + b2 + b3 ≡ · · · ≡ an−1 + an (9.9)

+bn−1 + bn ≡ an + a1 + bn + b1(mod p)

a21 ≡ a22 ≡ · · · ≡ a2n ≡ a1a2b1b2 ≡ a2a3b2b3 ≡ · · · ≡ an−1anbn−1bn ≡ a1anb1bn(mod p) (9.10)

Case 1: p=2.

The only possible edge label is 1. Then the congruences become 4 ≡ 2(mod 2) and

1 ≡ 1(mod 2) which is true. Hence the graph is Z2-barycentric ring magic.
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Case 2: p is odd.

From the congruence 9.9, 2a1 ≡ 2a2 ≡ · · · ≡ 2an(mod p) we get, a1 = a2 = · · · = an = a.

Substituting in 9.9 we get,

b1 + b2 + 2a ≡ b2 + b3 + 2a ≡ · · · ≡ bn−1 + bn + 2a ≡ bn + b1 + 2a ≡ 2a(mod p) Then it

follows that b1 ≡ b3 ≡ · · · bn−1(mod p)

b2 ≡ b4 ≡ · · · bn(mod p)
if n is even

b1 ≡ b3 ≡ · · · bn(mod p)

b2 ≡ b4 ≡ · · · bn−1(mod p)
if n is odd

bi ≡ bj(mod p) where both i, j are odd or both are even and i 6= j.

Subcase 1: From congruence 9.10, we have a1 = a2 = · · · = an = a. Moreover,

b1b2a
2 ≡ b2b3a2 ≡ · · · ≡ bnb1a2 ≡ a2(mod p)⇒ b1b2 ≡ b2b3 ≡ · · · bnb1 ≡ 1(mod p)

⇒ bi ≡ bi+2(mod p) for all i

Thus we get bi ≡ bj(mod p) where both i, j are odd or both are even and i 6= j.

Subcase 2:

ai =

{
a, 1 ≤ i ≤ k
p− a, k + 1 ≤ i ≤ n.

Then from congruence 9.10, we get

a(p− a) ≡ a2 ≡ a2b1b2 ≡ a2b2b3 ≡ · · · ≡ a2bk−1bk ≡ a(p− a)bkbk+1 ≡ · · ·

≡ a(p− a)bnb1(mod p)

⇒ b1b2 ≡ b2b3 ≡ · · · ≡ bk−1bk ≡ 1(mod p) and bkbk+1 ≡ · · · ≡ bnb1 ≡ 1(mod p)

This implies bi ≡ bj(mod p) where both i, j are odd or both are even and i 6= j.
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