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Chapter 0
Introduction

0.1 Motivation and survey of literature

In 1963 [32], Levine introduced semi-open sets in topological spaces. Since

then, many papers were devoted to many weak forms of open sets, namely pre-

open sets [34], α-open sets [38], β-open sets [1], feebly open sets [33] etc. These

open sets can be defined using some combinations of interior operators and clo-

sure operators of a topology. Császár Á. observed the similarities of these gener-

alized open sets and pointed out that these can be defined using more generalized

class of functions.

A collection µ of subsets of a set X is said to form a generalized topology on

X if ∅ ∈ µ and arbitrary union of elements in µ is again in µ and the pair (X,µ)

is called the generalized toplogical space [9].

Császár defined a map γ : P (X) → P (X), from the powerset of the under-
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0.1. Motivation and survey of literature

lying set X into itself possessing the property of monotonicity, i.e., A ⊆ B ⇒

γ(A) ⊆ γ(B) for every A,B ∈ P (X). A subset A ⊆ X is γ-open [8] if and only

if A ⊆ γ(A). Then if τ is a topology on X and we denote the interior of A ⊆ X

with respect to τ by iA and the closure of A by cA, we obtain as important par-

ticular cases the collection of all open sets (γ = i), the collection of all semi-open

sets (γ = ci), the collection of all pre-open sets (γ = ic), the collection of all

β-open sets (γ = cic) and the collection of all α-open sets(γ = ici) [9]. Thus

these generalized forms of open sets can be generalized to γ-open sets and the

collection of all γ-open sets in X constitute a generalized topology in X [8].

A generalized topology need not contain X and need not be closed under

finite intersection. Note that every topology is a generalized topology and a

generalized topology need not be a topology. Hence we get a bigger arena to

explore.

Many articles have been published in the topic related to the properties of gen-

eralized topologies such as compactness, countability, separation axioms, prod-

uct, quotient etc. For more details, see [13,35,40,43]. Discussion on generalized

topology and preorders can be seen in [24, 42]. Generalized topological spaces

has applications in evolutionary theory and combinatorial chemistry [41].

In this dissertation we consider the collection of all generalized topologies on

a set X denoted by LGT (X). Comparison of different topologies on the same

basic set has been an interesting problem ever. In 1963, Garett Birkhoff, in

his paper, “On the combination of topologies”, compared different topologies by

ordering the family of all topologies on a given set and considering the resulting
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0.2. Organisation of the thesis

lattice, LT (X). Birkhoff used the usual order of set inclusion. Orders other than

set inclusion are defined in [39] and [45]. But here in LGT (X), we use only set

inclusion as the order.

0.2 Organisation of the thesis

This dissertation comprises of 5 chapters. The introductory chapter, Chapter

0 deals with the motivation and review of literature of the study of generalized

topologies and in Chapter 1 preliminary definitions and results for the devel-

opment of the thesis are given.

Basakaran, Murugalingam and Sivaraj [4] proved that the family of all gener-

alized topologies on a nonempty set is a lattice, neither distributive nor comple-

mented. They use the notation G(X) for the lattice of generalized topologies on a

set X. They proved a characterization theorem for the existence of complement

of a generalized topology on a set X. Also the direct sum of two generalized

topologies is discussed in [4] and characterized the same. As an extension of

this paper we discuss in Chapter 2 some properties of LGT (X) and define sim-

ple expansion of a generalized topology [2]. Simple expansion of topologies has

been studied previously by many mathematicians and the similar concept can

be generalized to generalized topologies.

Let X be a non empty set, µ ∈ LGT (X) and A be a subset of X which does

not belong to µ. Then the simple expansion of µ by A, denoted by µ(A), is
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0.2. Organisation of the thesis

defined as

µ(A) = µ ∪ {G ∪ A : G ∈ µ}.

We can prove easily that a simple expansion of µ forms a generalized topol-

ogy. Also it is obvious from the definition that µ(A) is the smallest generalized

topology containing µ and A.

We prove several equivalent conditions for a simple expansion of generalized

topology by a subset A of X to be an upper neighbor of the generalized topol-

ogy. Using these we compare LT (X) and LGT (X) and we answer the following

problem: given a generalized topology on X, when does it possess a topological

upper neighbor and vice versa. We provide examples for generalized topologies

which do not possess upper neighbors. Given a generalized topological space

(X,µ) with a property P , when will a simple expansion of (X,µ) possess the

same property P , we discuss this in the same chapter. The main result we prove

in Chapter 2 is the determination of automorphism group of LGT (X).

Determination of automorphism group is interesting and important in the

lattice of topologies, LT (X). It is proved that if X contains one or two elements

or X is infinite, the group of automorphisms of LT (X) is isomorphic to the

symmetric group on X. If X is finite and contains more than two elements,

the group of automorphisms of LT (X) is isomorphic to the direct product of

the symmetric group on X with the two element group [17, 22]. This result

is important because this has the following consequence. If X is infinite, then

the only lattice automorphisms of LT (X) are elements of permutation group
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0.2. Organisation of the thesis

S(X), i.e., those which permute elements of X. Therefore if P is any topological

property then a topology possessing the property P can be identified from the

lattice structure of LT (X).

Fuzzy set theory was introduced by Zadeh in 1965 [47]. According to him a

fuzzy set is defined as a class of objects with a continuum of grades of member-

ship. He assigns a grade of membership ranging from 0 to 1. Generalizing the

lattice [0, 1], Gougen [20] introduced the concept of L-fuzzy sets, where L can be

a semigroup, a poset, a lattice or a boolean ring. Using fuzzy sets, Chang [7] in-

troduced a new branch of mathematics called fuzzy topology as a generalization

of ordinary topology and Heba I. M. [23] introduced fuzzy generalized topology

as a generalization of generalized topology.

The L-fuzzy generalized topological space is defined in the following way.

Let X be a nonempty ordinary set, L an F -lattice and µ ⊆ LX . Then µ is called

an L-fuzzy generalized topology or fuzzy generalized topology on X, and (LX , µ)

is called an L-fuzzy generalized topological space or fuzzy generalized topological

space, if µ satisfies the following conditions:

1. 0 ∈ µ,

2. ∀A ⊆ µ,
∨
A∈A

A ∈ µ.

For L = {0, 1
2
, 1}, Baby Chacko [6] determined the automorphism group of

the lattice LFT (X,L) of all L-fuzzy topological spaces on X. Madhavan Nam-

boothiri [37] determined the group of automorphisms of the lattice LFT (X,L)
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0.2. Organisation of the thesis

in the cases when L is a finite chain and when L is the diamond-type lattice. We

consider the same problem in L-fuzzy generalized topological space.

We determine the automorphism group of lattice of fuzzy generalized topolo-

gies, LFGT (X,L) on a set X and when L is a finite chain and L is the diamond-

type lattice in Chapter 3.

Many investigations have been done in the study of topological property ho-

mogeneity in topological spce. John Ginsburg in his paper [19] proved a simple

representation theorem for finite topological spaces which are homogeneous. In

Chapter 4 we discuss homogeneity in generalized topological spaces and in

L-fuzzy generalized topological spaces. In the first section of this chapter, we

characterize completely homogeneous generalized topological spaces. In the fol-

lowing sections we discuss homogeneous generalized topological spaces in a cyclic

ordered set and completely homogeneous L-fuzzy generalized topological spaces.

We try to find out new homogeneous generalized topological spaces by consider-

ing the join of homogeneous generalized topologies and discusses the properties.

We conclude the thesis with Chapter 5, some unsolved problems are dis-

cussed in this chapter and a bibliography is provided.
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Chapter 1
Preliminaries

1.1 Introduction

This chapter deals with basic definitions and preliminary results in lattice

theory, generalized topology, fuzzy set theory and fuzzy generalized topology,

which would make the reading of the thesis simpler.

1.2 Lattice theory

First let us go through the definition of a partially ordered set.

Definition 1.2.1. [12] Let P be a set. A partial order on P is a binary relation

≤ on P such that, for all x, y, z ∈ P ,

1. x ≤ x,

2. x ≤ y and y ≤ x imply x = y,

7



1.2. Lattice theory

3. x ≤ y and y ≤ z imply x ≤ z.

These conditions are referred to, respectively, as reflexivity, antisymmetry, and

transitivity. A set P equipped with a partial order relation ≤ is said to be a

partially ordered set or poset and is denoted by (P,≤).

Chain. Let (P,≤) be a partially ordered set. Then (P,≤) is a chain, if for all

x, y ∈ P , either x ≤ y or y ≤ x(that is any two elements of P are comparable).

Definition 1.2.2. [12] Let (P,≤) be a partially ordered set and let S ⊆ P . An

element x ∈ P is an upper bound of S if s ≤ x for all s ∈ S. A lower bound is

defined dually. x is the least upper bound or supremum of S if

1. x is an upper bound of S, and

2. x ≤ y for all upper bounds y of S.

Dually greatest lower bound or infimum of a set can be defined.

Notation. We write x∨ y in place of supremum of {x, y} when it exists and

x∧y in place of infimum of {x, y} when it exists. Similarly we write
∨
S and

∧
S

for supremum of the set S and infimum of S respectively. Lattice and complete

lattice are defined as follows.

Definition 1.2.3. [12] Let (P,≤) be a non empty partially ordered set.

1. If x ∨ y and x ∧ y exist for all x, y ∈ P , then (P,≤) is called a lattice.

2. If
∨
S and

∧
S exist for all S ⊆ P , then (P,≤) is called a complete lattice.
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1.2. Lattice theory

The set of natural numbers with usual order is a lattice but not a complete

lattice because the set {2, 4, 6, . . .} has no supremum.

The following theorem [21] states that a lattice can be defined as an algebra and

a lattice as an algebra and a lattice as a poset are equivalent concepts.

Theorem 1.2.1. 1. Let the poset L = (L,≤) be a lattice. Set

a ∧ b = inf{a, b}, a ∨ b = sup{a, b}.

Then the algebra La = (L;∧,∨) is a lattice.

2. Let the algebra La = (L;∧,∨) be a lattice. Set

a ≤ b if and only if a ∧ b = a.

Then Lp = (L;≤) is a poset, and the poset Lp is a lattice

3. Let the poset L = (L;≤) be a lattice. Then (La)p = L.

4. Let the algebra L = (L;∧,∨) be a lattice. Then (Lp)a = L.

From now on we use the notation L instead of precise notation (L,≤) or

(L,∧,∨) for lattices and posets unless for some reason we want to be more

exact. We also use the following definitions in the forthcoming chapters. For

more details see [5, 21].

Let (L,≤) be a lattice with smallest element 0 and largest element 1. For

a, b ∈ L, we say a is an upper neighbor of b or a covers b if b ≤ a and a 6= b

and for every c ∈ L with b ≤ c ≤ a, we have either c = b or c = a. An atom

9



1.2. Lattice theory

of the lattice L is an element which covers the smallest element 0. A lattice is

atomic if every element other than the least element can be written as the join

of atoms. An anti-atom is an element which is covered by the largest element

1 in the lattice. An anti-atom is also called dual atom. A lattice is anti-atomic

if every element other than the largest element can be written as the meet of

anti-atoms.

Definition 1.2.4. A lattice L is called distributive if a∧ (b∨ c) = (a∧ b)∨ (a∧ c)

for all a, b, c ∈ L. This is equivalent to a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c) for all

a, b, c ∈ L.

Definition 1.2.5. A lattice L is called modular if for any a, b, c ∈ L, a ≤ c

implies a ∨ (b ∧ c) = (a ∨ b) ∧ c.

The following is a characterization theorem for modular lattice.

Theorem 1.2.2. [21] A lattice L is modular if and only if it has no sublattice

isomorphic to a pentagon(see Figure 1.1).

Definition 1.2.6. The lattice L is called semi-modular if for any a, b ∈ L with

a 6= b, and if a and b cover a ∧ b, then a ∨ b covers a and b.

10



1.2. Lattice theory

  a

  b

c

1

 0

Figure 1.1: Pentagon

Definition 1.2.7. Let L be a complete lattice. L is called infinitely distributive,

if L satisfies both the following two conditions (IFD1) and (IFD2), called the 1st

infinitely distributive law and the 2nd infinitely distributive law respectively:

(IFD1) ∀a ∈ L,∀B ⊆ L, a ∧
∨
B =

∨
b∈B

(a ∧ b),

(IFD2) ∀a ∈ L,∀B ⊆ L, a ∨
∧
B =

∧
b∈B

(a ∨ b).

Definition 1.2.8. [36] Let L be a complete lattice. L is called completely dis-

tributive, if L satisfies the following two conditions called completely distributive

laws:

∀{{ai,j : j ∈ Ji} : i ∈ I} ⊆ P (L) \ {∅}, I 6= ∅, where P (L) denotes the powerset

of L,

1.
∧
i∈I

(
∨
j∈Ji

ai,j) =
∨

φ∈
∏
Ji

i∈I

(
∧
i∈I
ai,φ(i)),

2.
∨
i∈I

(
∧
j∈Ji

ai,j) =
∧

φ∈
∏
Ji

i∈I

(
∨
i∈I
ai,φ(i)).
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1.2. Lattice theory

Definition 1.2.9. [36] Let L be a lattice. A mapping ′ : L→ L is called order

reversing, if ∀a, b ∈ L, a ≤ b⇒ a
′ ≥ b

′
; called involution on L, if ′′ = idL : L→

L; called complementary operation, if ∀a ∈ L, a′ is a complement of a.

Definition 1.2.10. [21] The lattices (L0,≤) and (L1,≤
′
) are isomorphic and

the map φ : L0 → L1 is an isomorphism if and only if φ is one-to-one and onto

and

a ≤ b in L0 if and only if φ(a) ≤′ φ(b) in L1

By Theorem 1.2.1, the previous definition of isomorphism is equivalent to the

following result.

Proposition 1.2.1. [21] The lattices (L0,∧,∨) and (L1,∧,∨) are isomorphic

and the map φ : L0 → L1 is an isomorphism if and only if φ is one-to-one and

onto and

φ(a ∨ b) = φ(a) ∨ φ(b)

φ(a ∧ b) = φ(a) ∧ φ(b)

An isomorphism of a lattice with itself is called an automorphism. A lattice

is called self dual if it is isomorphic to its dual lattice.

Definition 1.2.11. [21] A poset P is called graded if we can define an integer-

valued function h on P such that for x, y ∈ P with x ≤ y we have that h(x)+1 =

h(y) if and only if y covers x.

Example 1.2.1. The following diagram represents a graded poset(1.2) and it

can be easily seen that a pentagon(1.1) is not a graded poset.
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1.3. Generalized topology

0

a
b c

1

Figure 1.2: Poset

1.3 Generalized topology

Generalized topology has been extensively studied by Császár. For more de-

tails of his work, see [9–11]. Let us go through some basic definitions in general-

ized topology.

Definition 1.3.1. [9] A collection µ of subsets of a set X is said to form a

generalized topology on X if ∅ ∈ µ and arbitrary union of elements in µ is again

in µ and the pair (X,µ) is called a generalized toplogical space.

Let (X,µ) be a generalized topological space. The elements of µ are called

µ-open sets or simply open sets. A subset H ⊆ X is said to be µ-closed or a

closed set if the complement of H is in µ. A subset A of X with the generalized

topology µ ∩ A = {G ∩ A : G ∈ µ} is called a subspace of (X,µ). If A is open

13



1.3. Generalized topology

in (X,µ), then (A, µ∩A) is called an open subspace and if A is closed in (X,µ),

then (A, µ∩A) is called a closed subspace. The union of all elements of µ will be

denoted by Mµ. A non-empty µ-open subset A of a generalized topological space

(X,µ) is called a minimal µ-open set if the only non-empty µ-open set which is

contained in A is A. The collection of all minimal µ-open sets in (X,µ) will be

denoted by min(X,µ) [18] and min(X,µ) is a base for (X,µ).

Let F be a subset of X. Then the closure of F with respect to µ, denoted by

F , is the smallest closed set in (X,µ) containing F . If F µ = Mµ, then A is said

to be dense in (X,µ).

Let β ⊆ µ, then β is said to be a base for the generalized topology (X,µ)

if each and every element of µ can be written as the union of some elements of

β [26]. A generalized topological space generated by the subfamily A ⊆ P (X) is

the set ∩{τ : τ is a generalized topology on X containing A}. In fact it is the

smallest generalized topology containing A.

Definition 1.3.2. Let f : (X,µ)→ (Y, λ) be a function on generalized topological

space.

1. [9]f is said to be (µ, λ)-continuous if B ∈ λ implies that f−1(B) ∈ µ.

2. [11]f is said to be (µ, λ)-open if A ∈ µ implies that f(A) ∈ λ.

3. [10]f is called a (µ, λ)-homeomorphism if f is bijective, (µ, λ)-continuous,

and f−1 is (λ, µ)-continuous, equivalently if f is bijective, (µ, λ)-continuous,

and (µ, λ)-open. If f : (X,µ) → (Y, λ) is a (µ, λ)-homeomorphism, then

we say that (X,µ) is homeomorphic to (Y, λ).

14



1.3. Generalized topology

Definition 1.3.3. [18] A generalized topological space (X,µ) is said to be ho-

mogeneous if for any two points x, y ∈Mµ there exists a (µ, µ)-homeomorphism

f : (X,µ) → (X,µ) such that f(x) = y and (X,µ) is called completely homoge-

neous if every bijection on X is a homeomorphism on (X,µ).

Let us go through the definitions of separation axioms in generalized topolo-

gies which are taken from [46].

Definition 1.3.4. A generalized topological space (X,µ) is said to be µ-To if for

every x, y ∈ X there exists a set U ∈ µ such that either U ∩ {x, y} = {x} or

U ∩ {x, y} = {y}.

Definition 1.3.5. A generalized topological space (X,µ) is said to be µ-T1 if

there exist sets U, V ∈ µ such that U ∩ {x, y} = {x} and V ∩ {x, y} = {y}.

Definition 1.3.6. A generalized topological space (X,µ) is said to be µ-T2 if for

every x, y ∈ X there exist disjoint open sets U, V ∈ µ such that x ∈ U and y ∈ V .

Definition 1.3.7. A generalized topological space (X,µ) is said to be µ- regular

if for every x ∈ X and a closed set F , not containing x, there exist disjoint open

sets U, V such that x ∈ U and F ⊆ V .

Definition 1.3.8. A generalized topological space (X,µ) is said to be µ- normal

if for every pair of disjoint closed sets F,H, there exist disjoint open sets U, V

such that F ⊆ U and H ⊆ V .

Definition 1.3.9. [3] A generalized topological space (X,µ) is said to be a µ-

second countable if there is a countable base for the generalized topology µ and

(X,µ) is said to be µ-separable if X contains a countable dense subset.
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1.4. Fuzzy set theory and fuzzy generalized topology

If there is no confusion we call a (µ, λ)-continuous function(µ-open set, (µ, λ)-

open, (µ, µ)-homeomorphism) simply continuous function(open set, open map

and homeomorphism) on (X,µ).

1.4 Fuzzy set theory and fuzzy generalized topol-

ogy

Fuzzy set was introduced by L. A. Zadeh in 1965 [47]. He described fuzzy

sets using the unit interval [0, 1] as the lattice. Goguen generalized this concept

with general lattice L. Here first we define general L-fuzzy set and consider the

fuzzy set based on [0, 1] as a particular case.

Definition 1.4.1. [36] Let X be a nonempty ordinary set, L be a complete

lattice. An L-fuzzy subset on X is a mapping A : X → L, i.e. the family of all

the L-fuzzy subsets on X is just LX consisting of all the mappings from X to L.

LX here is called L-fuzzy space.

[36]An L-fuzzy set A ∈ LX is called a crisp subset on X, if there exists an

ordinary subset U ⊆ X such that A = χU : X → {0, 1} ⊆ L, i.e. if A is a

characteristic function of some ordinary subset of X.

An L-fuzzy point on X is an L-fuzzy subset xa ∈ LX where a ∈ L, a 6= 0 is

defined as, for every y ∈ X,

xa(y) =

 a, y = x,

0, y 6= x.
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1.4. Fuzzy set theory and fuzzy generalized topology

A constant function from X to L is also an L−fuzzy set and is denoted by a if

every element of X takes the value a ∈ L.

Definition 1.4.2. [36] Let LX be an L-fuzzy space. Define the partial order ≤

in LX by:

∀A,B ∈ LX , A ≤ B ⇔ ∀x ∈ X,A(x) ≤ B(x).

Proposition 1.4.1. [36] Let LX be an L-fuzzy space. Then

1. LX is a complete lattice and for every A ⊆ LX , the join
∨
A and the meet∧

A satisfy,

∀x ∈ X, (
∨
A)(x) =

∨
A∈A

A(x), and (
∧
A)(x) =

∧
A∈A

A(x).

2. L is distributive ⇔ LX is distributive.

3. L satisfies (IFD1)⇔ LX satisfies (IFD1).

4. L satisfies (IFD2)⇔ LX satisfies (IFD2).

5. L is completely distributive ⇔ LX is completely distributive.

Definition 1.4.3. [36] Let LX , LY be L-fuzzy spaces. Let f : X → Y be an

ordinary mapping. Based on f : X → Y , define L-fuzzy mapping f : LX → LY

and its reverse mapping f−1 : LY → LX by

f(A)(y) = ∨{A(x) : x ∈ X, f(x) = y} ∀A ∈ LX , ∀y ∈ Y and

f−1(B)(x) = B(f(x)) ∀B ∈ LY , ∀x ∈ X.

In this case, we say the ordinary mapping f : X → Y produces the correspondent

L-fuzzy mapping f : LX → LY , or say f : LX → LY is induced from f : X → Y .
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1.4. Fuzzy set theory and fuzzy generalized topology

The definition of a fuzzy set and fuzzy topological space is defined in [36].

Before stating the definition of L-fuzzy generalized topological space let us go

through some other basic definitions.

Definition 1.4.4. [36] A completely distributive lattice L is called an F -lattice,

if L has an order-reversing involution ′ : L→ L.

Let X be a nonempty ordinary set, L an F -lattice and ′ the order-reversing

involution on L. ∀A ∈ LX , ∀B ⊆ LX , use the order-reversing involution ′ to

define an operation ′ on LX by:

A
′
(x) = (A(x))

′
,∀x ∈ X;

also define:

B′ = {B′ : B ∈ B}.

Call ′ : LX → LX the pseudo-complementary operation on LX , A
′

the pseudo-

complementary set of A in LX .

Proposition 1.4.2. [36] Let X be a nonempty ordinary set, L an F -lattice,

then the pseudo-complementary operation ′ : LX → LX is an order reversing

involution.

Now a fuzzy generalized topology is defined as follows.

Definition 1.4.5. [23] Let X be a nonempty ordinary set, L an F -lattice,

µ ⊆ LX . Then µ is called an L-fuzzy generalized topology or fuzzy generalized

topology on X, and (LX , µ) is called an L-fuzzy generalized topological space or

fuzzy generalized topological space, if µ satisfies the following conditions:
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1.5. Group theory

1. 0 ∈ µ,

2. ∀A ⊆ µ,
∨
A ∈ µ.

If the largest L-fuzzy set 1 also belongs to the L-fuzzy generalized topology

µ, then it is called a strong L-fuzzy generalized topology on X. Every element

in µ is called an open set in LX , every pseudo-complementary set of an open set

is called a closed set in LX .

Example 1.4.1. Let X = {a, b, c, d} and L = {0, 1
2
, 1} with order 0 < 1

2
<

1. Then L is an F -lattice with order reversing involution 0′ = 1 and 1
2

′
= 1

2
.

Also {0, 1, a1, b 1
2
, f} is an L-fuzzy generalized topology where f(a) = 1, f(b) =

1
2
, f(c) = f(d) = 0.

Definition 1.4.6. [23] Let µ1, µ2 are L-fuzzy generalized topologies on X and

Y respectively. Let f : X → Y . Then f is called a continuous function if for

every A ∈ µ2, f
−1(A) ∈ µ1, where f−1 is the L-fuzzy reverse mapping induced

from f . f is called a homeomorphism if it is bijective and the induced L-fuzzy

map, f and L-fuzzy reverse map, f−1 are continuous.

1.5 Group theory

In the following chapters we use the terms symmetric group and cycles in group

theory. Definitions of symmetric group and cycle are given in this section.

Definition 1.5.1. [16] A permutation of a set A is a function φ : A→ A, that

is both one to one and onto.
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1.5. Group theory

The function composition is a binary operation on the collection of all per-

mutations of a set A. This operation is called permutation multiplication.

Theorem 1.5.1. [16] Let A be a nonempty set and let S(A) be the collection of

all permutations of A. Then S(A) is a group under permutation multiplication

called the symmetric group on A.

Definition 1.5.2. [16] Let A be the finite set {1, 2, . . . , n}. The group of all

permutations of A is the symmetric group on n-letters and is denoted by Sn.

Let A be a nonempty set and σ be a permutation of A. We define a relation

on A. For a, b ∈ A, let a ∼ b if and only if b = σn(a) for some n ∈ Z. This

relation is in fact an equivalence relation.

Definition 1.5.3. [16] Let σ be a permutation of a set A. The equivalence

classes in A determined by the above equivalence relation are the orbits of σ.

Definition 1.5.4. [16] A permutation σ ∈ Sn is a cycle if it has atmost one

orbit containing more than one element.

Notation of a cycle: If

 1 2 3 4 5 6 7 8

3 2 6 4 5 1 7 8

 is a permutation on 8

element set {1, 2, . . . , 8}, then we use single cyclic notation for this, (1 3 6).
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Chapter 2
The lattice of generalized topologies

Baskaran, Murugalingam and Sivaraj proved that the collection, LGT (X),

of all generalized topologies on a set X forms a complete lattice and studied the

properties of LGT (X) in their paper [4]. In the first part of this chapter we

discuss some simple properties of the lattice LGT (X) and determine the auto-

morphism group of LGT (X). We try to study the lattice structure of LGT (X)

by introducing simple expansion in the following sections of this chapter.

2.1 Some properties of LGT (X)

Let X be any set. Consider the collection LGT (X), of all generalized topolo-

gies on X. This is a partially ordered set under the order of set inclusion.

Moreover it is a complete lattice [4]. Let µ1, µ2 ∈ LGT (X). Then µ1 ∨ µ2 is the

smallest generalized topology containing µ1∪µ2 and µ1∧µ2 = µ1∩µ2. Note that

the smallest element and largest element of the lattice LGT (X) is respectively
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2.1. Some properties of LGT (X)

{∅} and P (X), where P (X) denotes the power set of X.

To start our study on the lattice of generalized topologies, first we verify the

basic properties of the lattice, i.e., atomic, anti-atomic, distributive, modular and

semi modular properties of the lattice. This will give a better understanding of

the lattice structure of LGT (X). We know that the lattice LT (X) of topologies

on a set X is both atomic and anti-atomic [28]. Here we prove that LGT (X) is

atomic but not anti atomic. Throughout this chapter X will denote a set(X can

be empty also) unless otherwise specified and P (X) denotes the power set of X.

Theorem 2.1.1. The lattice LGT (X) is an atomic lattice. If X 6= ∅ then the

atoms are generalized topologies of the form {∅, A}, where ∅ ( A ⊆ X. If X is

finite and if |X| = n, then LGT (X) contain 2n − 1 atoms. If X is infinite and

|X| = α, then LGT (X) contain 2α atoms.

Proof. If X = ∅, then obviously it is an atomic lattice. It can be seen that the

atoms in LGT (X) are precisely the generalized topologies of the form {∅, A},

where A is a nonempty subset of X. Also given any generalized topology µ on

X, we have µ = ∨
A∈µ
A 6=φ

{∅, A}. Thus LGT (X) is an atomic lattice. Since we are

considering every non empty subset A of X here, the total number of atoms in

LGT (X) is 2n − 1 where n = |X| and number of atoms in LGT (X) is 2α if X is

an infinite set of cardinality α.

Note 2.1.1. LGT (X) possess anti-atoms. The anti-atoms are precisely the

generalized topologies of the form P (X) \ {{x}}, x ∈ X. Because given any

generalized topology µ on X with µ 6= P (X), there exists an element x ∈ X

such that {x} does not belong to µ. This implies µ ⊆ P (X) \ {{x}} and also

P (X)\{{x}} is a generalized topology since ∅ ∈ P (X)\{{x}} and any arbitrary
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2.1. Some properties of LGT (X)

union of elements in P (X) \ {{x}} is again in the same collection. Also it is

obvious that there exists no proper subset of P (X) between P (X) and P (X) \

{{x}} and hence no generalized topology exists between them for any x ∈ X. If

|X| = α, LGT (X) contain α anti-atoms. But LGT (X) is not anti-atomic since

{∅, {x}} cannot be written as the meet of any collection of anti-atoms because

every anti-atom contains X so is their intersection.

Now the question we face is whether there are generalized topologies which

can be written as the meet of some dual atoms? Note that here meet is the set

theoretic intersection since the order we are considering is the usual order of set

inclusion. We answer this question in the following result.

Proposition 2.1.1. A generalized topology µ on X can be written as meet of

some dual atoms if and only if it contains all subsets A of X which has cardinality

atleast 2.

Proof. Let µ be a generalized topology on X such that µ =
∧
x∈K

(P (X) \ {{x}})

for some K ⊆ X. Since P (X) \ {{x}}, ∀x ∈ X, contains every subset A of X

such that |A| ≥ 2, so is its intersection.

Conversely, let µ be a generalized topology which contain all subsets A of X

such that |A| ≥ 2, and let L = {y ∈ X : {y} /∈ µ}. Then µ can be written as

µ =
∧
y∈L

(P (X) \ {{y}}), where P (X) \ {{y}} are dual atoms of LGT (X) and

hence the proof is complete.

Thus a generalized topology µ on X, which is the meet of some dual atoms

has the form P (X) \ {{x}}x∈K for some K ⊆ X. Thus if |X| = α, then there
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2.1. Some properties of LGT (X)

are exactly 2α generalized topologies which can be written as the meet of some

dual atoms.

It is known that every distributive lattice is modular [21]. But it is proved

in [4] that LGT (X) is not distributive for |X| ≥ 2. In the next theorem we

enquires when LGT (X) is modular.

Recall from Chapter 1 that a lattice is modular if and only if it has no sublattice

isomorphic to a pentagon.

Theorem 2.1.2. LGT (X) is modular if |X| ≤ 1 and not modular if |X| ≥ 2.

Proof. If |X| ≤ 1, we can see from the lattice diagrams below(2.1) that it has no

sublattice isomorphic to a pentagon. Hence LGT (X) is modular if |X| ≤ 1.

But when |X| = 2, from the below lattice diagram, {{∅}, {∅, {b}}, {∅, {b}, X},

{∅, {a}, X}} constitute a pentagon and hence it is not modular. Now let |X| = n

with n ≥ 3. Then there exist elements a, b, c ∈ X with a 6= b 6= c. Consider the

generalized topologies Gi, i = 1, 2, . . . 5 on X, where G1 = {∅}, G2 = {∅, {a, b}},

G3 = {∅, {a, c}}, G4 = {∅, {a, b}, {a, b, c}} and G5 = {∅, {a, b}, {a, c}, {a, b, c}}.

{   , {a}}

{   } {   }

{   , {a}}
{   , {X}}

{   , {b}}

{   , {a},X} {   , {b},X}

P(X)

LGT(X) when X={a,b}LGT(X) when X={a} 

{   }

LGT(X) when X=

Figure 2.1:
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2.1. Some properties of LGT (X)

It can be observed that in the lattice diagram of LGT (X), the above five gen-

eralized topologies constitute a pentagon as below(2.2) and hence is not modular.

G1

G2

G4

G3

G5

Figure 2.2:

Definition 2.1.1. [21] Let L be a lattice with least element 0. We define the

height function as follows: for a ∈ L, let h(a) denotes the length of a longest

maximal chain in [0, a], where [0, a] = {l ∈ L : 0 ≤ l ≤ a} if it exists and is

finite; otherwise, put h(a) =∞.

Recall the definition of semi-modular lattice. A lattice L is called semi-

modular if for any a, b ∈ L with a 6= b, and if a and b cover a ∧ b, then a ∨ b

covers a and b. Next theorem gives a necessary and sufficient condition for semi-

modularity using height function of the lattice.

Theorem 2.1.3. [21] Let L be a finite lattice. L is semi-modular if and only
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2.1. Some properties of LGT (X)

if h(a) + h(b) ≥ h(a ∧ b) + h(a ∨ b) for all a and b in L, where h is the height

function.

We use the above theorem to prove that LGT (X) is not semi-modular when

X is finite with |X| ≥ 3.

Theorem 2.1.4. Let X be a finite set. Then LGT (X) is semi-modular if and

only if |X| ≤ 1.

Proof. When |X| ≤ 1, we proved that it is modular and hence is semi-modular.

Let |X| = 2. We investigate the diagram 2.1, for the height function. The

values of the height function are 1,2,3,4 on the 1-st, 2-nd, 3-rd and 4-th levels

of the diagram. The condition to be verified is in Theorem 2.1.3. This is invalid

for µ1 = {∅, {a}} and µ2 = {∅, {b}}, whose intersection and union are {∅} and

P (X). Then h(µ1)+h(µ2) = 2+2 = 4, while h(µ1∧µ2)+h(µ1∨µ2) = 1+4 = 5.

That is, for |X| = 2 we do not have semi-modularity. Then for any |X| ≥ 3 we

do not have semi-modularity either, since for X0 ⊆ X, and |X0| = 2 we have

that LGT (X0) is a sublattice of LGT (X).

The following example illustrates that LGT (X) is in general not semi-modular,

when X is infinite.

Example 2.1.1. Consider R, the set of real numbers and let a = {∅,R,Q} and

b = {∅,R, {π}} are generalized topologies on R, where Q is the set of rational

numbers. Then a and b cover a ∧ b, but a ∨ b does not cover a and b. Here

semi-modularity fails.

Theorem 2.1.5. LGT (X) is self dual if and only if |X| ≤ 1.
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2.2. Automorphisms of the lattice of generalized topologies

Proof. For X = ∅, we have that LGT (X) contains one element, namely {∅}. If

|X| = 1, LGT (X) contain only two elements, namely {∅} and {∅, X} = P (X).

Hence for |X| ≤ 1, LGT (X) is obviously self dual.

Now assume |X| = α ≥ 2. If the lattice LGT (X) is a self dual lattice,

then there exists an isomorphism which map atoms onto anti-atoms and vice

versa. But the number of atoms in LGT (X) is atleast 2α − 1 ad the number of

anti-atoms are α. Hence LGT (X) is not self dual.

In general the lattice, LGT (X), is not distributive, not modular and not even

semi modular. This reveals a complicated structure of LGT (X). Also the collec-

tion of all topological spaces on a set X is not a sublattice of LGT (X) if |X| ≥ 3,

for if a, b and c are three distinct elements in X and let τ1 = {∅, X, {a, b}} and

τ2 = {∅, X, {a, c}}, then τ1 ∨ τ2 = {∅, X, {a, b}, {a, c}, {a, b, c}} is not a topology

on X. For |X| ≤ 2 it is a sublattice, as can be seen easily from the lattice

diagrams from the proof of Theorem 2.1.2.

2.2 Automorphisms of the lattice of generalized

topologies

In this section we prove, the automorphism group of lattice of generalized

topologies on any set X is isomorphic to the symmetric group on X.

The following Lemma and Theorem are routine consequences of the isomor-

phism. We just formulate them. Throughout this section let S(X) denotes the

group of all bijections on X.
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2.2. Automorphisms of the lattice of generalized topologies

Lemma 2.2.1. For p ∈ S(X) and µ ∈ LGT (X) let p(µ) = {p(G) : G ∈ µ}

where p(G) = {p(x) : x ∈ G}. Then p(µ) is a generalized topology on X.

Proof. p(∅) = ∅ implies ∅ ∈ p(µ). Consider an arbitrary collection of sets {Gi}i∈I
in p(µ). Then for every i ∈ I, Gi = p(Ui) for some Ui ∈ µ. Also ∪

i∈I
Gi =

∪
i∈I
p(Ui) = p( ∪

i∈I
Ui) ∈ p(µ) since ∪

i∈I
Ui ∈ µ. Thus p(µ) is a generalized topology

on X.

Next we show that each bijection in X naturally induces an automorphism

in LGT (X).

Theorem 2.2.1. Let p ∈ S(X), define a map Ap on LGT (X) by Ap(µ) = p(µ)

for µ ∈ LGT (X). Then Ap is an automorphism of LGT (X).

Proof. Let µ, τ ∈ LGT (X). Ap(µ) = Ap(τ) implies p(µ) = p(τ). Now

G ∈ µ ⇔ p(G) ∈ p(µ)

⇔ p(G) ∈ p(τ)

⇔ G ∈ τ.

This proves that µ = τ . Hence Ap is one-one. Let µ ∈ LGT (X) and take

τ = {p−1(G) : G ∈ µ} where p−1(G) = {x ∈ X : p(x) ∈ G} and it is easy to see

that τ is a generalized topology. Then τ = p−1(µ) and Ap(τ) = p(p−1(µ)) = µ

proving that Ap is onto.

Let µ ⊆ τ . That is

(G ∈ µ⇒ G ∈ τ) ⇔ (p(G) ∈ p(µ)⇒ p(G) ∈ p(T ))

⇔ p(µ) ⊆ p(τ)

⇔ Ap(µ) ⊆ Ap(τ).
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2.2. Automorphisms of the lattice of generalized topologies

Hence Ap is an automorphism of LGT (X).

Note 2.2.1. An automorphism of LGT (X) maps atoms of the lattice to atoms

and dual atoms to dual atoms.

Lemma 2.2.2. An automorphism of LGT (X) maps a generalized topology con-

sisting of n elements to a generalized topology consisting of same number of

elements.

Proof. Let µ be a generalized topology consisting of n elements and A be an

automorphism of LGT (X). Then µ is larger than precisely n−1 atoms. Therefore

A(µ) must be larger than precisely n − 1 atoms. Hence A(µ) consists of n

elements.

Another application of isomorphism is the following Lemma. Before that let

us go through the definition of complement of an element in a lattice.

Definition 2.2.1. In a lattice with smallest element 0 and largest element 1, the

elements a and b are complements to each other if a ∧ b = 0 and a ∨ b = 1.

Lemma 2.2.3. Let A be an automorphism of LGT (X). Then µ, τ ∈ LGT (X)

are complements to each other if and only if A(µ) and A(τ) are compliments to

each other.

Proof. We have µ ∨ τ = P (X) and µ ∧ τ = {∅} where P (X) and {∅} being

the largest and smallest elements of LGT (X). Also A(µ) ∨ A(τ) = A(µ ∨ τ) =

A(P (X)) = P (X) and A(µ) ∧ A(τ) = A(µ ∧ τ) = A({∅}) = {∅}, since an

automorphism always preserves the largest and smallest element of a lattice.

Hence A(µ) and A(τ) are complements to each other. Similarly we can prove

the converse also.
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2.2. Automorphisms of the lattice of generalized topologies

For p ∈ S(X) recall the definition of map Ap on LGT (X): Ap(µ) = p(µ) for

µ ∈ LGT (X) and p(µ) = {p(G) : G ∈ µ} where p(G) = {p(x) : x ∈ G}. Then

we have the following theorem.

Theorem 2.2.2. The set of automorphisms of LGT (X) is precisely {Ap : p ∈

S(X)}.

Proof. In Theorem 2.2.1, it is proved that Ap is an automorphism of LGT (X)

for every p ∈ S(X). Now let A be an automorphism of LGT (X). Let N denotes

the collection of all atoms of the form Ix = {∅, {x}} where x ∈ X.

Claim : A maps N onto itself.

Let Ix ∈ N . Consider the dual atom µ = P (X) \ {{x}}. As µ and Ix are

complements to each other, A(µ) and A(Ix) are complements to each other. Since

A(µ) is also a dual atom there exists a y ∈ X such that A(µ) = P (X) \ {{y}}.

Then A(Ix) must contain {y} since A(µ)∨A(Ix) = P (X) and therefore {∅, {y}} ⊆

A(Ix). But A(Ix) is an atom implying that A(Ix) = {∅, {y}}. Thus A maps N

into itself. Now take Iz ∈ N . Consider δ = P (X) \ {{z}}. Since A is onto, there

exists a dual atom, say ξ ∈ LGT (X) such that A(ξ) = δ. Let ξ = P (X) \ {{w}}

and Iw = {∅, {w}}. As A(Iw)∨δ = A(Iw)∨A(ξ) = A(Iw∨ξ) = A(P (X)) = P (X),

{z} must belong to A(Iw). Since A(Iw) is an atom A(Iw) = Iz. Hence the claim.

Now define a map p : X → X such that p(x) = y whenever A(Ix) = Iy. Since

y is unique for a fixed x implying that p is well defined. Let x1, x2 ∈ X such

that x1 6= x2. Since A is injective, we have A(Ix) 6= A(Iy). Hence p(x1) 6= p(x2)

implies that p is injective. Let y ∈ X and consider Iy = {∅, {y}}. Since A maps

N onto itself, there exists an x ∈ X such that A(Ix) = Iy which implies p(x) = y.

Hence p is onto.
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space

Now consider the automorphism Ap on LGT (X) induced by the bijection p

on X.

Claim : A = Ap on N .

Let Ix ∈ N . Then A(Ix) = Ip(x) = {∅, {p(x)}} = p({∅, {x}}) = p(Ix) = Ap(Ix).

Hence A = Ap on N .

Let α = {∅, G}, G ⊆ X, be an atom which does not belong to N . Let

A(α) = {∅, H} where H ⊆ X. Consider Ap(α) = {∅, p(G)}. We have to prove

that Ap(α) = A(α).

Let x ∈ G and A(Ix) = Iy. Then y = p(x) ∈ p(G). Now A({∅, {x}, G})

= A({∅, {x}} ∨ {∅, G}) = A({∅, {x}}) ∨ A({∅, G}) = {∅, {y}} ∨ {∅, H} =

{∅, {y}, H,H ∪ {y}}. But A maps an n element set to n element set only, hence

H ∪ {y} = H. This implies y ∈ H. Since x ∈ G is arbitrary p(G) ⊆ H.

To prove the reverse inclusion, we apply the above result to A−1. Then

p is replaced by p−1 and A−1({∅, H}) = {∅, G}, implying p−1(H) ⊆ G, i.e.,

H ⊆ p(G).

Hence H = p(G) and consequently A({∅, G}) = {∅, H} = {∅, p(G)} =

Ap({∅, G}). Thus we proved that A = Ap on all atoms of LGT (X). Since

LGT (X) is an atomic lattice, A = Ap on LGT (X). This completes the proof.

2.3 Simple expansion of generalized topological

space

The concepts of immediate predecessor(lower neighbor) and immediate suc-

cessor(upper neighbor) in the lattice of topologies, LT (X), are studied exten-
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sively by Pushpa Agashe and Norman Levine [2] and others. Simple expansion

of topologies has been studied previously by many mathematicians and this con-

cept can be generalized to generalized topologies.

Definition 2.3.1. Let X be a non empty set, µ ∈ LGT (X) and A be a subset

of X which does not belong to µ. Then the simple expansion of µ by A, denoted

by µ(A), is defined as

µ(A) = µ ∪ {G ∪ A : G ∈ µ}

Remark 2.3.1. We can prove easily that a simple expansion of µ is a gener-

alized topology. Also it is obvious from the definition that µ(A) is the smallest

generalized topology containing µ and A. Hence we have the following theorem.

Theorem 2.3.1. Let µ ∈ LGT (X) and µ(A) is a simple expansion of µ, where

A ⊆ X and A /∈ µ. Then µ(A) ∈ LGT (X) and µ(A) = µ ∨ {∅, A}.

Let µ1, µ2 ∈ LGT (X), we say the generalized topology µ1 is finer than µ2(or

µ2 is weaker than µ1) if µ2 ⊆ µ1. It can be easily seen that µ(A) is finer than

µ whenever A ⊆ X and A /∈ µ. The following example shows that it need not

always be an upper neighbor.

Example 2.3.1. Consider the set X = {a, b, c, d} and the generalized topology

µ = {∅, X, {a, b, c}, {d}} on X. Let A = {a}. Then µ(A) = {∅, X, {a, b, c}, {d}, {a},

{a, d}}. We can see that µ(A) is not an upper neighbor of µ since if we take

τ = {∅, X, {a, b, c}, {d}, {a, d}}, τ ∈ LGT (X) and µ < τ < µ(A).

But we can prove that every upper neighbor is a simple expansion.
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Theorem 2.3.2. Let µ ∈ LGT (X). If τ is an upper neighbor of µ in LGT (X),

then there exists a subset, A ⊆ X such that τ = µ(A).

Proof. Let A ∈ τ\µ. Then µ(A) is the smallest generalized topology containing µ

and A. Thus µ < µ(A) ≤ τ . But τ is an upper neighbor of µ, hence µ(A) = τ .

Does every generalized topology possess an upper neighbor? The following

lemma shows that the answer is affirmative when X is finite. The proof of this

lemma provides a construction of an upper neighbor of a generalized topology.

Lemma 2.3.1. Let µ be a generalized topology on a finite set X and µ 6= P (X).

Then there exists a subset A of X that does not belong to µ such that µ(A) =

µ ∪ {A} and µ(A) is an upper neighbor of µ.

Proof. Let |X| = n. It is enough to show the existence of a set A ⊆ X such that

µ ∪ {A} is a generalized topology on X.

If X does not belong to µ, take A = X, so that µ ∪ {X} ∈ LGT (X). If

X ∈ µ, then consider the collection of all subsets of X with cardinality n − 1.

Let us denote the collection by Fn−1. If Fn−1 * µ then choose A ∈ Fn−1 such

that A /∈ µ.

Claim : µ ∪ {A} is a generalized topology on X.

Let U, V ∈ µ∪{A}. If U, V ∈ µ, then obviously U ∪V ∈ µ. If U ∈ µ and V =

A, then either U ∪V = X or U ∪V = A. In either case U ∪V ∈ µ∪{A}. Hence

µ ∪ {A} is closed under finite union. Note that we are considering generalized

topology on finite set only. Also ∅ ∈ µ implies that ∅ ∈ µ ∪ {A} and hence

µ ∪ {A} ∈ LGT (X).
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If Fn−1 ⊆ µ, then consider Fn−2, which is the collection of all subsets of X

with cardinality n− 2. If Fn−2 * µ then choose A ∈ Fn−2 such that A /∈ µ and

we can prove that µ∪ {A} is a generalized topology on X. Proceeding similarly

if µ contain all 2 element sets and its supersets, since µ 6= P (X), there exists

an x ∈ X such that {x} does not belong to µ, then take A = {x}. Then A will

satisfy the required property. Hence the theorem.

Thus every generalized topology on a finite set X other than P (X) has an up-

per neighbor. The following theorem actually tells the form of an upper neighbor

of a generalized topology also.

Theorem 2.3.3. Let µ be a generalized topology on a finite set X, then every

upper neighbor of µ is of the form µ ∪ {A} for some set A ⊆ X.

Proof. Let τ be an upper neighbor of µ with |τ | = |µ| + k where k ≥ 2. Let us

write τ as µ ∪ {A1, A2, . . . , Ak} where A1, A2, . . . , Ak are distinct subsets of X

which do not belong to µ. Let F = {A1, A2, . . . , Ak} and I = {1, 2, 3, . . . k}.

Case 1 : Assume Ai * Aj for every i, j ∈ I with i 6= j.

Consider µ ∪ {A1}. ∅ ∈ µ ∪ {A1} since µ is a generalized topology. Let U, V ∈

µ ∪ {A1}. If U, V ∈ µ, then U ∪ V ∈ µ since µ is a generalized topology. If

U ∈ µ and V = A1 then also U ∪ V ∈ µ ∪ {A1}, for otherwise if U ∪ V = Ak for

some k 6= 1 then A1 ⊆ Ak which is not possible. Therefore µ ∪ {A1} is closed

under finite union and hence it is a generalized topology since we are considering

generalized topology on finite set only. Then µ < µ ∪ {A1} < τ which is a

contradiction since τ is a cover of µ.

Case 2: Ai ⊆ Aj for some i, j ∈ I, where i 6= j.

Fix a j ∈ I such that Ai ⊆ Aj for some i ∈ I, i 6= j. Let Fj = {Al : l ∈ I, l 6=

j, Al ⊆ Aj}. Consider F \Fj. Assume the set F \Fj contain s+ 1 elements and
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rename the elements in F \ Fj such that F \ Fj = {Aj, Aj+1, . . . , Aj+s}. Let us

denote F \ Fj by F cj . Note that F cj 6= ∅ since Aj ∈ F cj .

Claim: µ ∪ F cj is a generalized topology.

Since ∅ ∈ µ ∅ ∈ µ ∪ F cj . Let U, V ∈ µ ∪ F cj . If U, V ∈ µ, then obviously

U ∪ V ∈ µ. If U ∈ µ and V ∈ F cj , then also U ∪ V ∈ µ ∪ F cj , for otherwise let

U ∪ V ∈ Fj. Then U ∪ V = Ah for some h ∈ {1, 2, . . . , j − 1, s, s + 1, . . . , k} so

that V ⊆ Ah ⊆ Aj. Thus V ∈ Fj which is not possible since V ∈ F cj . Similarly

if U, V ∈ F cj then U ∪ V ∈ µ ∪ F cj by the same argument. Hence the claim.

Thus we get µ < µ∪F cj < τ , a contradiction since τ is an upper neighbor. Thus in

both cases we proved that an upper neighbor of µ cannot have cardinality |µ|+k

where k ≥ 2. By Lemma 2.3.1 we have that there exists an upper neighbor with

cardinality |µ| + 1. Thus every upper neighbor of µ is of the form µ ∪ {A} for

some set A ⊆ X and A /∈ µ.

The following corollary reveals a pattern in the lattice structure of LGT (X)

when X is finite.

Corollary 2.3.1. LGT (X) is a graded poset when X is finite.

Proof. Define a function

h : LGT (X)→ Z+

by h(µ) = |µ| for every µ ∈ LGT (X). That is, h maps each generalized topology

into its cardinal number. Then by the above theorem, if τ ∈ LGT (X) is an

upper neighbor of µ ∈ LGT (X), then |τ | = |µ| + 1. Thus LGT (X) is a graded

poset.

Now we give some results on expansions of generalized topologies by a col-
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lection of subsets of X.

Definition 2.3.2. Let (X,µ) be a generalized topological space and F = {Ai ⊆

X : i ∈ I} be a collection of subsets of X. Then the generalized topology on X

which is the smallest generalized topology containing µ(Ai) for each i ∈ I shall

be denoted by µ(F ).

The following theorem is a direct consequence of above definition.

Theorem 2.3.4. Let (X,µ) be a generalized topological space and A and B are

nonempty subsets of X. Then µ({A,B}) = (µ(A))(B) = (µ(B))(A).

Theorem 2.3.5. If µ1 and µ2 are generalized topologies on a set X, then µ1 ⊆ µ2

if and only if there exists a family F ⊆ P (X) such that µ2 = µ1(F ).

Proof. Let F = {A ⊆ X : A ∈ µ2 \ µ1}. Note that µ1(F ) is the smallest

generalized topology containing µ1 and F . But µ1 ⊆ µ2 and F ⊆ µ2. Therefore

µ1(F ) ⊆ µ2. Also since µ2 \ µ1 = F , we have µ2 = µ1 ∪ F ⊆ µ1(F ). Hence

µ2 = µ1(F ).

2.4 Characterization of upper neighbors

of LGT (X)

Here by comparing two simple expansions of a generalized topology, we

prove several characterization theorems for a simple expansion to be an upper

neighbor of a generalized topology. We had seen in the last section that every

upper neighbor of µ is of the form µ ∪ {A} for some set A ⊆ X. In this section
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we prove that this result holds in general, it doesn’t matter whether X is finite

or infinite.

Theorem 2.4.1. Let µ, µ
′

are generalized topologies on X. Then µ
′

is an upper

neighbor of µ if and only if µ
′
= µ(A) for every A ∈ µ′\µ.

Proof. Suppose µ
′

is an upper neighbor of µ. Let A ∈ µ′\µ. Then µ(A) is the

smallest generalized topology containing µ and A and hence µ(A) ⊆ µ
′
. Thus

µ ⊆ µ(A) ⊆ µ
′
. Since µ

′
is an upper neighbor of µ, µ(A) = µ

′
. Note that

A ∈ µ
′ \ µ is arbitrary, therefore µ(A) = µ

′
for every A ∈ µ

′\µ. Now assume

µ
′

= µ(A) for every A ∈ µ′\µ. If µ
′

is not an upper neighbor of µ, then there

exists a generalized topology µ
′′

on X such that µ ⊆ µ
′′ ⊆ µ

′
, µ 6= µ

′′
and

µ
′′ 6= µ′. Then there exists a set B ∈ µ′′ such that B /∈ µ. Consequently B ∈ µ′

and by assumption µ
′
= µ(B). Note that µ

′
is the smallest generalized topology

containing µ and B resulting µ
′′

= µ(B) = µ
′
, a contradiction to our assumption

and thus proving µ
′

is an upper neighbor of µ.

The following proposition point out some obvious covers of a generalized

topology µ on X.

Proposition 2.4.1. Let µ be a generalized topology on a set X. Then,

1. if X /∈ µ, then µ(X) = µ ∪ {X} is always an upper neighbor of µ.

2. if X is finite and if µ is a strong generalized topology on X, then for every

A ⊆ X such that |A| = |X| − 1, µ(A) is always an upper neighbor of µ, if

A /∈ µ.

3. Let A ⊆ X and A /∈ µ. Then if for every G ∈ µ suppose either A ⊆ G or

G ⊆ A, then µ(A) is an upper neighbor of µ.
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Proof. This can be easily verified by the reader.

Theorem 2.4.2. Let µ be a generalized topology on a set X and let A ⊆ X and

A /∈ µ. Then for every G ∈ µ, the simple expansion µ(A) is finer than µ(G∪A).

Proof. Let G ∈ µ, then G∪A ∈ µ(A). Also µ(G∪A) is the smallest generalized

topology containing µ and G ∪A, implying µ(G ∪A) ⊆ µ(A). Hence the result.

Theorem 2.4.3. Let (X,µ) be a generalized topological space and A,B are sub-

sets of X such that A,B /∈ µ. Then,

1. the simple expansion µ(B) is finer than the simple expansion µ(A) if and

only if A = G ∪B for some G ∈ µ.

2. the simple expansion µ(B) is equal to the simple expansion µ(A) if and

only if A = B.

Proof. 1. First assume µ(A) ⊆ µ(B), then A ∈ µ(B). Since A /∈ µ, A = G∪B

for some G ∈ µ. Conversely if A = G ∪ B for some G ∈ µ, then A ∈ µ(B)

thus getting µ(A) ⊆ µ(B).

2. This result can be easily deduced from (1).

Corollary 2.4.1. Let (X,µ) be a generalized topological space. Then for every

A ⊆ X such that A /∈ µ, the simple expansion µ(A\A0) is always finer than

µ(A).

Proof. The set A can be written as A = (A\A0) ∪ A0. Then result follows from

Theorem 2.4.3.
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Corollary 2.4.2. Let A,B are subsets of a set X such that A,B /∈ µ, where

(X,µ) is a generalized topological space. If the simple expansion of µ by B is

finer than the simple expansion of µ by A, then B is a subset of A.

Proof. Assume µ(A) ⊆ µ(B), then A ∈ µ(B). Since A /∈ µ, A = G∪B for some

G ∈ µ which implies B ⊆ A. Hence the result.

Remark 2.4.1. Converse of Corollory 2.4.2 is not true.

For example, let X = {a, b, c, d}. Consider the generalized topology µ = {∅, {a, b},

{a, c}, {a, b, c}}. Let A = {a, d} and B = {a}. Here B ⊆ A, but µ(A) =

µ ∪ {{a, d}, {a, b, d}, {a, c, d}, X} and µ(B) = µ ∪ {{a}}. Here we see that µ(B)

and µ(A) are not even comparable.

Theorem 2.4.4. Let (X,µ) be a generalized topological space. Let A ⊆ X and

A /∈ µ and G ∈ µ. Then the following are equivalent.

1. The simple expansion µ(A) is an upper neighbor of µ.

2. µ(A) = µ ∪ {A}.

3. G ∪ (A\A0) ∈ µ(A)\µ⇒ G = A0.

4. G ∩ Ac 6= ∅ ⇒ G ∪ A ∈ µ.

5. µ(A) = µ(B) for every B ∈ µ(A)\µ.

Proof. (1)⇔ (5) by Theorem 2.4.1.

(1)⇒ (2): By Theorem 2.4.3, for A,B subsets of X and A,B /∈ µ, µ(A) = µ(B)

if and only if A = B. But since µ(A) is an upper neighbor and by (5), µ(A)\µ

cannot have elements other than A. Hence µ(A) = µ ∪ {A}.

(2)⇒ (1) is obvious.
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(2)⇔ (3) is clear.

(2) ⇒ (4): Assume µ(A) = µ ∪ {A}. Now G ∩ Ac 6= ∅ ⇒ G * A ⇒ G ∪ A 6= A

and G ∪ A ∈ µ(A) = µ ∪ {A} proving G ∪ A ∈ µ.

(4) ⇒ (2): Consider µ(A) = µ ∪ {G ∪ A : G ∈ µ}. If G ∩ Ac = ∅ then G ⊆ A

and thus G ∪ A = A. Also if G ∩ Ac 6= ∅, then G ∪ A ∈ µ. Thus in either case

G ∪ A ∈ µ ∪ {A}. Hence µ(A) = µ ∪ {A}.

Norman Levine called a topology τ on a set X as a superset topology [31] if

and only if for ∅ 6= O ⊆ A ⊆ X and O ∈ τ , then A ∈ τ . We define this concept in

generalized topology also and discuss when will this possess an upper neighbor.

Definition 2.4.1. A generalized topological space (X,µ) is said to be a superset

generalized topological space if, whenever ∅ 6= G ∈ µ and G ⊆ H ⊆ X, then

H ∈ µ.

Theorem 2.4.5. Let (X,µ) be a generalized topological space. Then µ is a

superset generalized topology on X if and only if for every A ⊆ X and A /∈ µ,

µ(A) is an upper neighbor of µ.

Proof. Suppose µ is a superset generalized topology on X. Let A ⊆ X and

A /∈ µ, µ(A) = {G ∪ A : G ∈ µ} ∪ µ. Since G ∪ A is a superset of G ∈ µ,

G ∪ A ∈ µ. Then G ∪ A ∈ µ for every G ∈ µ implying µ(A) = µ ∪ {A} proving

µ(A) is an upper neighbor of µ.

Now assume µ(A) is an upper neighbor of µ for every A ⊆ X and A /∈ µ. That

is µ(A) = µ ∪ {A} for every A ⊆ X and A /∈ µ. Let G ∈ µ and G ⊆ H ⊆ X.

Suppose H /∈ µ. Take A = H\G, then A /∈ µ, otherwise, if A ∈ µ, then
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A ∪ G = H ∈ µ, which is a contradiction to our assumption. Now consider the

simple expansion of µ by A = H\G. Then A and H are elements of µ(A)\µ

implying that µ(A) 6= µ∪{A}, a contradiction to our assumption that µ(A) is a

cover for every A /∈ µ. Hence H ∈ µ. Thus µ is a superset generalized topology

on X.

We proved that every generalized topology has an upper neighbor when the

underlying set is finite in the previous section. In general this is not true (see

examples 2.4.1 and 2.4.2). Now, when does a generalized topology posses an

upper neighbor if X is infinite? We couldn’t find the answer in general. Here we

attempt to solve the problem in particular cases.

The following theorem is used to prove our next result.

Theorem 2.4.6. [46] A generalized topological space (X,µ) is µ-T1 if and only

if for each x ∈ Mµ, {x} ∪ (X\Mµ) is a closed set, where Mµ is the union of all

open sets in X.

Theorem 2.4.7. Every non µ-T1 generalized topology has an upper neighbor.

Proof. Let (X,µ) be a non µ-T1 generalized topological space. If X /∈ µ, then

µ(X) is an upper neighbor of µ. If X ∈ µ, then since µ is non µ-T1 by Theorem

2.4.6, there exists an x ∈ X such that {x} is not closed relative to µ showing

that {x}c /∈ µ.

Claim: µ({x}c) is an upper neighbor of µ.

Let G ∈ µ, G ∩ ({x}c)c = G ∩ {x}. If G ∩ {x} 6= ∅, then x ∈ G and G ∪ {x} =

G ∈ µ. Then by Theorem 2.4.4, µ({x}c) is an upper neighbor of µ.
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We denote µc for the complement of a generalized topology µ on X, i.e.,

µc = P (X) \ µ and we say µ is non trivial if µ 6= {∅}.

Theorem 2.4.8. Let X be an infinite set and µ be a generalized topology on X.

If µ or µc is finite, then µ has an upper neighbor.

Proof. If µ = {∅}, then obviously µ has an upper neighbor. In fact each atom

{∅, A}, ∅ 6= A ⊆ X is an upper neighbor of µ. Assume the case when µ is finite

and non trivial. If X /∈ µ, then µ ∪ {X} is an upper neighbor of µ. Now let

X ∈ µ. Since X is infinite, there exists an x ∈ X such that X \ {{x}} /∈ µ. Let

A = X \ {{x}}, then µ(A) = µ ∪ {A} is easily seen to be an upper neighbor of

µ.

Now let us assume µc is finite and µ is non trivial. Let µc = {K1, K2, . . . , Kp}.

Consider K1 and take one largest set, say D, in µc containing K1, i.e., there exists

no set D
′ ∈ µc such that D ( D

′
. Then for every G ∈ µ, G∪D ∈ µ or G∪D = D.

Otherwise, if G ∪D /∈ µ, then G ∪D has to be an element in µc containing D,

which is a contradiction to our assumption. Hence µ(D) = µ ∪ {D} is an upper

neighbor of µ.

The following examples show that there are generalized topologies which do

not have an upper neighbor.

Example 2.4.1. Let X be any infinite set and x ∈ X. Define µ = {G ⊆ X :

either x /∈ G or (x ∈ G and Gc is finite)}. Then µ is a topology on X and

hence a generalized topology. Let A ⊆ X and A /∈ µ, then x ∈ A and Ac is

infinite. Also {y} ∈ µ for every y ∈ Ac, then A ∪ {y} ∈ µ(A) for every y ∈ Ac

resulting µ(A) 6= µ ∪ {A}. Thus (X,µ) does not have an upper neighbor.

42



2.4. Characterization of upper neighbors
of LGT (X)

Example 2.4.2. Consider the following generalized topology on the set of real

numbers R .

µ = {∅,R} ∪ P (Q) ∪ {X ∪ Y : X = Q\F, F ⊆ Q, F is finite, Y ⊆ R\Q} where

P (Q) denotes power set of Q, where Q denotes the set of all rational numbers.

Let A ⊆ R and A /∈ µ, then A can be A = G∪H, where G ⊆ Q, Gc∩Q is infinite

and H ⊆ R\Q, H 6= ∅

then A ∪ {x} ∈ µ(A) for every x ∈ Gc ∩Q implying µ(A) 6= µ ∪ {A}.

Thus µ has no upper neighbor.

In fact we can generalize these examples and we state this as a theorem.

Theorem 2.4.9. Let X be any infinite set and A ⊆ X, is also infinite. Then

the generalized topology µ = {∅, X, P (A)} ∪ {G ⊆ X : G ∩ (Ac) 6= ∅, and Gc ∩

A is finite } does not have an upper neighbor.

Proof. Consider any subset H of X such that H /∈ µ. Then the result follows

easily from the fact that for all x ∈ Hc ∩ A, H ∪ {x} /∈ µ ∪ {H} .

Remark 2.4.2. Consider the lattice LT (X) of topologies and the lattice LGT (X)

of generalized topologies on a set X. Let τ be a topology on X. Then τ ∈ LT (X)

and τ ∈ LGT (X). Suppose τ has upper neighbors in LT (X) and LGT (X). Then

upper neighbor of τ in LT (X) and LGT (X) are same if and only if there exists

a subset A ⊆ X and A /∈ τ such that for every G ∈ τ , If G ∩ (A\A0) 6= ∅ then

A ⊆ G and If G ∩ Ac 6= ∅ then G ∪ A ∈ τ . This is clear from the fact that

immediate successor of τ in LT (X) and LGT (X) are same if and only if there

exists A ⊆ X and A /∈ τ such that τ(A) = τ ∪ {A} and we use the following

theorem.
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Theorem 2.4.10. [31] Let (X, τ) be a topological space and A is a nonempty

subset of X such that A /∈ τ . Then a necessary and sufficient condition for the

simple expansion topology τ(A) is the union of the topology τ and the set A is

that

1. O ∈ τ, O ∩ (A\Ao) 6= ∅ ⇒ A ⊆ O and

2. O ∩ Ac 6= ∅ ⇒ O ∪ A ∈ τ .

Remark 2.4.3. Let µ be a generalized topology on X, which is not a topology.

Then there exists an upper neighbor of µ, say µ
′
, which is a topology if and

only if the set {G ∩ H /∈ µ : G,H ∈ µ} is a singleton set and consequently

µ
′
= µ(G ∩H) = µ ∪ {G ∩H} where G,H ∈ µ such that G ∩H /∈ µ.

A similar concept here is the study of lower neighbors of a generalized topol-

ogy. It is easy to show that if µ is a generalized topology on X, then every lower

neighbor of µ is of the form µ \ {A} for some A ∈ µ. This follows from Theorem

2.4.4 and the fact that µ
′

is a lower neighbor of µ if and only if µ is an upper

neighbor of µ
′
.

It is then natural to ask whether the existence of upper neighbors of a gen-

eralized topology implies the existence of a lower neighbor and vice versa. We

have examples [Examples 2.4.3, 2.4.4] to show that neither of these implications

are true. The existence of upper neighbors and lower neighbors of a generalized

topology is left as an open problem.

Example 2.4.3. Consider the generalized topology discussed in Example 2.4.2.

We have shown that µ does not have an upper neighbor. But µ
′
= µ \ {{1}} is a

lower neighbor of µ. In fact µ has infinitely many lower neighbors.
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Example 2.4.4. Here we have an example for a generalized topology which has

infinitely many upper neighbors but does not possess a lower neighbor.

Define a generalized topology µ on R by µ = {∅,R} ∪ {(−∞, a) : a ∈ R} ∪

{(b,∞) : b ∈ R} ∪ {(−∞, a) ∪ (b,∞) : a, b ∈ R and a ≤ b}.

Note that (−∞, a) =
⋃
n∈N

(−∞, a− 1
n
) and (b,∞) =

⋃
n∈N

(b+ 1
n
,∞). Therefore we

can not remove either (−∞, a) or (b,∞) from µ inorder to get a lower neighbor.

Similarly we can not remove R since R = (−∞, 1) ∪ (−1,∞) and same is the

case for elements of the form (−∞, a) ∪ (b,∞). Thus µ can not have a lower

neighbor. But if we let A = R \ {{1, 2}}, then µ(A) is an upper neighbor of µ.

2.5 Properties of the simple expansion

Here we discuss the general question, given a generalized topology µ on X

with a property P when will a simple expansion of µ possess the same property

P . We use the following notations here.

Consider the generalized topology µ on a set X. Let A ⊆ X. Then,

1. µ(A) denotes the simple expansion of µ by A.

2. Aoµ denotes the interior of A with respect to µ.

3. Aµ denotes the closure of A with respect to µ.

4. Ac denotes the set theoretic complement of A in X.

5. µ ∩ A = {G ∩ A : G ∈ µ}.

45



2.5. Properties of the simple expansion

Theorem 2.5.1. Let (X,µ) be a generalized topological space which is µ-To, µ-T1

or µ-T2. Let A ⊆ X and A /∈ µ. Then (X,µ(A)) is µ(A)-To, µ(A)-T1 or µ(A)-T2

respectively.

The above theorem can be easily verified.

Lemma 2.5.1. Let (X,µ) be a generalized topological space and A ⊆ X and

A /∈ µ. Let B ⊆ X, then

Bo
µ(A) =

 Bo
µ ∪ A, If A ⊆ B

Bo
µ, otherwise.

Proof. The reader may easily supply the proof.

Lemma 2.5.2. Let (X,µ) be a generalized topological space and A ⊆ X and

A /∈ µ. Let B ⊆ X, then

Bµ(A) =

 Bµ ∩ Ac, If A ⊆ Bc

Bµ, otherwise.

Proof. We have Bµ(A) = [(Bc)oµ(A)]
c. By Lemma 2.5.1, (Bc)oµ(A) = (Bc)oµ ∪ A if

A ⊆ Bc and (Bc)oµ(A) = (Bc)oµ otherwise. Thus Bµ(A) = [(Bc)oµ ∪ A]c= Bµ ∩ Ac

if A ⊆ Bc and Bµ(A)= Bµ otherwise. Hence the result is proved.

Example 2.5.1. 1. Let X = {a, b, c} and µ = {∅, {a}, {b, c}, {a, b, c}} be a

generalized topology on X. Then µ is µ-regular and µ-normal generalized

topology on X but the simple expansion of µ by the set A = {a, c} is neither.

(See Theorems 2.5.2 and 2.5.5).

2. Consider the generalized topology µ = {∅,R,Q} on the set of all real num-

bers R and Q denote the set of all rational numbers. (R, µ) is a connected

46



2.5. Properties of the simple expansion

generalized topological space. But the simple expansion of µ by A = R \Q,

µ(A) = {∅,R,Q, A} is not connected. (See Theorem 2.5.7)

Theorem 2.5.2. Let (X,µ) be a µ- regular generalized topological space and let

A be a subset of X such that A /∈ µ and Ac ∈ µ. Then (X,µ(A)) is µ(A)-regular.

Proof. Let x ∈ X and x /∈ F where F is a closed set in (X,µ(A)). If F = Oc

for some O ∈ µ, then F is closed in (X,µ). Since (X,µ) is µ-regular there exist

disjoint open sets U, V ∈ µ ⊆ µ(A) such that x ∈ µ and F ⊆ V . Now let

F = (O ∪ A)c for some O ∈ µ. Then x /∈ F implies x /∈ (O ∪ A)c = Oc ∩ Ac.

Thus x does not belong to Oc or Ac.

Case 1: (x /∈ Oc and x /∈ Ac) or (x ∈ Oc and x /∈ Ac)

Here x ∈ A and F = Oc ∩ Ac ⊆ Ac. Since A and Ac are open in (X,µ(A)) and

A ∩ Ac = ∅, x and F can be separated by A and Ac in (X,µ(A)).

Case 2: x /∈ Oc and x ∈ Ac

We have F = Oc ∩ Ac ⊆ Oc and since (X,µ) is µ-regular there exist disjoint

open sets U, V in (X,µ) such that x ∈ U and Oc ⊆ V . Thus x ∈ U and

F = Oc ∩ Ac ⊆ V . Hence (X,µ(A)) is µ(A)-regular.

Theorem 2.5.3. Let (X,µ) be a strong generalized topological space and A /∈ µ.

If A is dense in (X,µ), then (X,µ(A)) is not µ(A)-regular.

Proof. Assume (X,µ(A)) is µ(A)-regular. Since A /∈ µ, A\Aoµ is non empty. Let

x ∈ A \Aoµ. Consider Ac, which is closed in (X,µ(A)). Then by regularity, there

exists disjoint open sets G,G
′ ∈ µ(A) such that x ∈ G and Ac ⊆ G

′
. Then G

must be contained in A, i.e., x ∈ G ⊆ A, then x ∈ Aoµ, which is a contradiction.

Hence the result.

Definition 2.5.1. [43] Let (X,µ) be a generalized topological space. A collection

F of subsets of X is said to be a µ-cover of X if the union of the elements of F
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is equal to X. If every element in F are open in (X,µ), then F is called µ-open

cover of X. A µ-sub cover of a µ-cover F is a sub collection G of F which itself

is a µ-cover. The generalized topological space (X,µ) is said to be µ-compact

space if each µ-open cover of X has a finite µ-open sub cover.

Lemma 2.5.3. [43] Every µ-closed subset of a µ-compact generalized topological

space (X,µ) is µ-compact.

Theorem 2.5.4. Let (X,µ) be a µ-compact generalized topological space and

let A ⊆ X and A /∈ µ. Then (X,µ(A)) is µ(A)-compact if and only if Ac is

µ-compact in (X,µ).

Proof. Necessity. Suppose (X,µ(A)) is µ(A)-compact. Since Ac is closed in

(X,µ(A)), by Lemma 2.5.3 Ac is µ(A)-compact in (X,µ(A)). Hence it is µ-

compact in (X,µ), since µ ⊆ µ(A).

Sufficiency. Assume that Ac is µ-compact in (X,µ). Consider a µ(A)-open cover

S for X, let S = {Gi ∈ µ(A) : i ∈ I} such that X =
⋃
i∈I
Gi. Then since every

Gi ∈ µ(A), either Gi ∈ µ or Gi is of the form Fi ∪ A for some open set Fi in

µ. Since Ac is µ-compact, there exists a finite set J ⊆ I and Ac ⊆
⋃
j∈J
Gj, where

Gj ∈ µ for all j ∈ J . Now take any open set of the form Gk∪A from the collection

S. Then it will form an µ(A)-open cover for A and X =
⋃
j∈J
Gj ∪ Gk ∪ A. Thus

we get a finite µ(A)-sub cover for X from the collection S. Hence (X,µ(A)) is

µ(A)-compact.

Lemma 2.5.4. Let (X,µ) be a generalized topological space and A be a subset

of X such that A /∈ µ. Then the generalized topological space (A, µ ∩ A) =

(A, µ(A) ∩ A) and (Ac, µ ∩ Ac) = (Ac, µ(A) ∩ Ac).

Lemma 2.5.5. Every closed subspace (A, µ∩A) of a µ-normal generalized topo-

logical space (X,µ) is µ ∩ A-normal.
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Proof. Proof is easy.

Theorem 2.5.5. Let (X,µ) be a µ-normal generalized topological space. Let

A ⊆ X be such that A /∈ µ, Ac ∈ µ and A ∩ G ∈ µ(A) for every G ∈ µ. Then

(X,µ(A)) is µ(A)-normal if and only if (Ac, µ ∩ Ac) is µ ∩ Ac-normal.

Proof. Assume (X,µ(A)) is µ(A)-normal. Ac is closed in (X,µ(A)). We have by

Lemma 2.5.5 that closed subspace of a normal space is normal. Thus (Ac, µ(A)∩

Ac) is normal. By Lemma 2.5.4, (Ac, µ(A)∩Ac) = (Ac, µ∩Ac). Hence (Ac, µ∩Ac)

is µ ∩ Ac-normal.

Now assume the converse. Let F,G are closed and disjoint subsets of (X,µ(A)).

Then F ∩A and G∩A are closed and disjoint in (X,µ(A)∩A) = (X,µ∩A). Since

A is closed in (X,µ), F∩A andG∩A are closed in (X,µ), which is µ-normal. Thus

there exist disjoint open sets U and V in µ such that F ∩A ⊆ U and G∩A ⊆ V .

Also F ∩Ac and G∩Ac are disjoint and closed in (Ac, µ(A)∩Ac) = (Ac, µ∩Ac),

which is µ ∩Ac-normal. Then there exist disjoint open sets U
′

and V
′

in µ ∩Ac

such that F∩Ac ⊆ U
′
and G∩Ac ⊆ V

′
. Now F = (F∩A)∪(F∩Ac) ⊆ (U∩A)∪U ′

which is open in µ(A) since A∩U and U
′

are open in µ(A) and hence the union.

Similarly G = (G ∩ A) ∪ (G ∩ Ac) ⊆ (V ∩ A) ∪ V ′ which is also open by the

same reason. Also (U ∩A)∪U ′ and (V ∩A)∪ V ′ are disjoint since (U ∩A) and

(V ∩A) are disjoint subsets of A and U
′

and V
′

are disjoint subsets of Ac. Hence

(X,µ(A)) is µ(A)-normal.

Theorem 2.5.6. Let (X,µ) be a generalized topological space and A ⊆ X and

A /∈ µ. Then

1. (X,µ) is µ-second countable if and only if (X,µ(A)) is µ(A)-second count-

able.
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2. (X,µ) is µ-separable if and only if (X,µ(A)) is µ(A)-separable.

Proof. 1 . Assume (X,µ(A)) is µ(A)-second countable. But µ(A) = µ∪ {G∪A :

G ∈ µ}. If S is a countable base for (X,µ(A)), then S ∩ µ is a countable base

for (X,µ). Now assume the converse and let {Gn}n∈N , where N is the set of all

Natural numbers, is a countable collection of open sets in (X,µ) which forms a

base for (X,µ). Then clearly {Gn}n∈N ∪ {A} forms a base for the generalized

topological space (X,µ(A)). Hence the result.

2 . Assume the generalized topological space (X,µ(A)) is µ(A)-separable. Then

(X,µ) is µ-separable since µ ⊆ µ(A). Now if (X,µ) is µ-separable, then (X,µ)

has a countable dense subset say H, implying H ∪ {x}, where x ∈ A, is a

countable dense subset of (X,µ(A)) proving (X,µ(A)) is µ(A)-separable.

Theorem 2.5.7. Let (X,µ) be a connected generalized topological space and if

A /∈ µ, is a dense subset of (X,µ), then (X,µ(A)) is a connected generalized

topological space.

Proof. If (X,µ(A)) is not connected, let U, V ∈ µ(A) constitute a separation

for (X,µ(A)). Then U and V both cannot be open in (X,µ) since (X,µ) is

connected and also both cannot belong to the set {O ∪ A : O ∈ µ}, since

U ∩ V = ∅. Therefore let U ∈ µ and V = O ∪ A where O ∈ µ. U ∩ V =

U ∩ (O ∪ A) = (U ∩ O) ∪ (U ∩ A) 6= ∅ because U ∩ A 6= ∅ since A is dense in

(X,µ), a contradiction. Hence the result.
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Chapter 3
Automorphism group of the lattice of

fuzzy generalized topologies

3.1 Introduction

We have discussed the automorphism group of the lattice of generalized topolo-

gies in the previous chapter. Madhavan Namboothiri determined the automor-

phism group of lattice of fuzzy topologies when L is a finite chain and when L

is the diamond-type lattice [37].

In this chapter we consider the similar problem in the lattice LFGT (X,L), of

fuzzy generalized topologies, on a set X and when L is a finite chain in the first

part and when L is the diamond-type lattice in the second part of this chapter.
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3.2 Preliminaries

First let us recall the definition of fuzzy generalized topology.

Definition 3.2.1. [23] Let X be a nonempty ordinary set, L an F -lattice,

µ ⊆ LX . Then µ is called an L-fuzzy generalized topology or fuzzy generalized

topology on X, and (LX , µ) is called an L-fuzzy generalized topological space or

fuzzy generalized topological space, if µ satisfies the following conditions:

1. 0 ∈ µ;

2. ∀A ⊆ µ,
∨
A ∈ µ.

Consider the collection of all L-fuzzy generalized topologies on a nonempty

set X, LFGT (X,L) and let µ1, µ2 ∈ LFGT (X,L), then µ1 is said to be coarser

than µ2 (µ2 is finer than µ1) if µ1 ⊆ µ2. Let us denote the relation ‘coarser

than’ by ≤ and with this partial order, ≤ on LFGT (X,L), it form a complete

lattice, where for a collection of L-fuzzy generalized topologies on X, say {µi}i∈I ,∨
i∈I
µi is the L-fuzzy generalized topology generated by ∪

i∈I
µi and

∧
i∈I
µi = ∩

i∈I
µi.

The smallest element of LFGT (X,L) is {0} and the largest element is LX . The

atoms of LFGT (X,L) are L-fuzzy generalized topologies of the form {0, A}

where A ∈ LX . Recall the following definition of lattice isomorphism and its

equivalent form given in chapter 1.

Definition 3.2.2. [21] The lattices (L0,≤) and (L1,≤
′
) are isomorphic and the

map φ : L0 → L1 is an isomorphism if and only if φ is one-to-one and onto and

a ≤ b in L0 if and only if φ(a) ≤′ φ(b) in L1
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Proposition 3.2.1. [21] The lattices (L0,∧,∨) and (L1,∧,∨) are isomorphic

and the map φ : L0 → L1 is an isomorphism if and only if φ is one-to-one and

onto and

φ(a ∨ b) = φ(a) ∨ φ(b)

φ(a ∧ b) = φ(a) ∧ φ(b)

An isomorphism of a lattice with itself is called an automorphism.

It can be shown that if the lattices are complete lattices, then an isomorphism

between them preserves arbitrary join and arbitrary meet.

Remark 3.2.1. Note that an automorphism of LFGT (X,L) map an L-fuzzy

generalized topology containing n elements onto an L-fuzzy generalized topology

containing same number of elements if n is finite.

3.3 Automorphism group of LFGT (X,L) when

L is a finite chain

Before proceeding to the main results, let us introduce some notations which

will be using throughout this section. Let us denote the set {0, l1, l2, . . . , ln, 1} by

L and let the order in L be 0 < l1 < l2 < . . . < ln < 1. We define an involution

′ in L as 0
′

= 1, 1
′

= 0 and l
′
i = ln−i+1 for every i ∈ {1, 2, . . . , n}. Then L is

an F -Lattice. Let us designate an atom of LFGT (X,L) by JC = {0, C} where

C ∈ LX and C 6= 0.
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For l ∈ L, l 6= 0 and x ∈ X,

xl(t) =

 l when t = x

0 otherwise

and for l ∈ L, l 6= 1 and x ∈ X,

xl(t) =

 l when t = x

1 otherwise.

For i = 1, 2, . . . , n,

Ki = {Jxli : x ∈ X},

Mi = {Jxli : x ∈ X},

Kn+1 = {{0, x1} : x ∈ X} and Mn+1 = {{0, x0} : x ∈ X}.

If A is an automorphism of LFGT (X,L), let A−1 denote the inverse function

of A which is again an automorphism of LFGT (X,L). Let us first prove some

preliminary results which will be using in our main theorem.

Lemma 3.3.1. Let X be a set with more than one point. If A is an automor-

phism of LFGT (X,L), then A({0, 1}) = {0, 1}.

Proof. Let JC be an atom of LFGT (X,L) and C 6= 1, 0.

Claim: There exists an L-fuzzy set D ∈ LX such that JC∨JD contain 4 elements.

Case 1: C(y) = 0 for some y ∈ X.

Since C 6= 0, there exists an x ∈ X such that C(x) 6= 0. Now let D = y1, then
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3.3. Automorphism group of LFGT (X,L) when L is a finite chain

JC ∨JD = {0, C}∨{0, y1} = {0, C, y1, C∨y1}. Since (C∨y1)(y) = 1, C∨y1 6= C

and since (C∨y1)(x) 6= 0, C∨y1 6= y1. Hence JC∨JD contain exactly 4 elements.

Case 2: C(y) 6= 0 for every y ∈ X.

Since C 6= 1, there exists an element x ∈ X such that C(x) 6= 1. Now considering

D = x1 we can prove as above that JC ∨ JD contain 4 elements.

Now join of {0, 1} with any atom of LFGT (X,L) contain exactly 3 elements

since 1 is comparable with every element of LX . Thus if A({0, 1}) = {0, C} and

C 6= 1, 0, then by claim, there exists an L-fuzzy set D ∈ LX such that {0, C} ∨

{0, D} contain 4 elements. Let A−1(JD) = JH . We have |{0, 1} ∨ {0, H}| = 3.

By Remark 3.2.1, |A({0, 1}) ∨ A({0, H})| = |{0, C} ∨ {0, D}| = 3 which is a

contradiction. Hence the proof.

Lemma 3.3.2. Let X be a set with more than one point. Then every automor-

phism of LFGT (X,L) maps strong L-fuzzy generalized topologies onto strong

L-fuzzy generalized topologies of LFGT (X,L).

Proof. Let A be an automorphism of LFGT (X,L) and µ be a strong L-fuzzy

generalized topology on X. Then µ =
∨
C∈µ
{0, C} and A(µ) = A(

∨
C∈µ
{0, C}) =∨

C∈µ
A({0, C}). Since 1 ∈ µ and A({0, 1}) = {0, 1} by Lemma 3.3.1,

∨
C∈µ

A({0, C})

is a strong L-fuzzy generalized topology on X. Similarly the inverse image of a

strong L-fuzzy generalized topology is a strong L-fuzzy generalized topology.

Lemma 3.3.3. Let X be a set with more than one point and let A be an auto-

morphism of LFGT (X,L). Then A maps Mn onto Mn.

Proof. Consider the strong L-fuzzy generalized topologies of the form {0, xln , 1}

and let us denote this by Ixln for x ∈ X. Note that join of Ixln with any L-fuzzy

generalized topology IC = {0, C, 1}, where C 6= 0, 1, contain exactly 4 elements.
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Now we claim that for C ∈ LX , C 6= 0, 1, such that IC /∈ {Ixln}x∈X , there

exists an L-fuzzy set D ∈ LX such that IC ∨ ID contains 5 elements. Consider

IC /∈ {Ixln}x∈X , C 6= 0, 1.

Case 1: Suppose for some x ∈ X, C(x) = 0. Since C 6= 0, there exists an

element y ∈ X such that C(y) 6= 0. Let us define D ∈ LX such that D(x) = l1

and D(y) = 0. Since (C ∨ D)(x) = l1, C ∨ D 6= C. Since (C ∨ D)(y) 6= 0, we

have C ∨D 6= D. Then IC ∨ ID = {0, C,D,C ∨D, 1} contains 5 elements.

Case 2: Suppose C(x) 6= 0 for every x ∈ X. Note that IC /∈ {Ixln}x∈X . Then

there exist elements x, y ∈ X such that C(x) = li where i < n and C(y) 6= 0.

Define D ∈ LX such that D(x) = li+1 and D(y) = 0. Then C ∨ D 6= C and

C ∨D 6= D. Thus IC ∨ ID contains exactly 5 elements.

So the claim holds.

Now if A(Ixln ) = IC for some IC /∈ {Ixln}x∈X , then by above claim, there

exists an L-fuzzy set D ∈ LX such that IC ∨ ID contains 5 elements. Since A

is bijective, there exists an L-fuzzy set E such that A(IE) = ID. Thus Ixln ∨ IE
contains 4 elements. But A(Ixln ∨ IE) = A(Ixln ) ∨ A(IE) = IC ∨ ID contains

5 elements, which is not possible. Thus A map {Ixln}x∈X onto itself. Now

Ixln = {0, xln , 1} = {0, xln} ∨ {0, 1}. Let A(Ixln ) = Iyln for some y ∈ X. Then

A(Ixln ) = A({0, xln} ∨ {0, 1}) = A({0, xln}) ∨ A({0, 1})

= Iyln = {0, yln} ∨ {0, 1}.

Thus A({0, xln}) = {0, yln}, since A({0, 1}) = {0, 1} by Lemma 3.3.1. Since

x ∈ X is arbitrary, A maps Mn onto itself.

Lemma 3.3.4. Let X be a set with more than one point. Then every automor-

phism of LFGT (X,L) maps
n+1⋃
i=1

Ki onto itself.
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Proof. Let A be an automorphism of LFGT (X,L) and C ∈ LX . Then we can

write C as C =
∨
{xl : x ∈ X and l ∈ L such that C(x) = l}, which implies

JC ≤
∨
{Jxl : x ∈ X and l ∈ L such that C(x) = l}. (3.1)

Now let Jym ∈
n+1⋃
i=1

Ki for y ∈ X and m ∈ L and m 6= 0. Suppose A(Jym) = JD

for some D ∈ LX , D 6= 0.

Then by Equation 3.1,

JD ≤
∨
{Jxl : x ∈ X, l ∈ L such that D(x) = l}

Since A−1 preserve order and arbitrary join,

A−1(JD) ≤
∨
{A−1(Jxl) : x ∈ X, l ∈ L such that D(x) = l}

ie., Jym ≤
∨
{A−1(Jxl) : x ∈ X, l ∈ L such that D(x) = l}. This is true only

when A−1(Jxl) = Jym for some x ∈ X, l ∈ L, l 6= 0, such that D(x) = l and

hence A(Jym) = Jxl . Thus we get D = xl and JD ∈
n+1⋃
i=1

Ki. Since Jym ∈
n+1⋃
i=1

Ki is

arbitrary we have A(Jym) ∈
n+1⋃
i=1

Ki for every y ∈ X and m ∈ L,m 6= 0. Hence A

map
n+1⋃
i=1

Ki into itself.

Now let Jzt ∈
n+1⋃
i=1

Ki for some z ∈ X and t ∈ L, t 6= 0 and assume A(JE) = Jzt

for some E ∈ LX , E 6= 0. If we replace C by E in equation 3.1 and since A

preserve order and arbitrary join, we have,

A(JE) ≤
∨
{A(Jxl) : x ∈ X, l ∈ L such that E(x) = l}
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ie., Jzt ≤
∨
{A(Jxl) : x ∈ X, l ∈ L such that E(x) = l} implying A(Jxl) = Jzt for

some x ∈ X, l ∈ L and l 6= 0 and E(x) = l. Thus we get E = xl and JE ∈
n+1⋃
i=1

Ki.

Thus given Jzt ∈
n+1⋃
i=1

Ki there exists Jxl ∈
n+1⋃
i=1

Ki such that A(Jxl) = Jzt , hence A

is onto.

Thus A map
n+1⋃
i=1

Ki onto
n+1⋃
i=1

Ki.

Lemma 3.3.5. Let X be a set with more than one point and let A be an au-

tomorphism of the lattice LFGT (X,L). If C ∈ LX and A(JC) = JD for some

D ∈ LX , then for x ∈ X, C(x) = 1 if and only if there exists an element y ∈ X

such that D(y) = 1.

Proof. Let C(x) = 1 for some x ∈ X, then JC ∨ Jxln is a strong L-fuzzy gener-

alized topology. By Lemma 3.3.2, A(JC ∨ Jxln ) = A(JC) ∨ A(Jxln ) is a strong

L-fuzzy generalized topology. Since A map Mn onto itself by Lemma 3.3.3,

A(Jxln ) = Jyln for some y ∈ X and let A(JC) = JD for some D ∈ LX . Then

JD ∨ Jyln is a strong L-fuzzy generalized topology implying D(y) = 1. Similarly

we can prove that if A(JC)(y) = 1 for some y ∈ X, then C(x) = 1 for some

x ∈ X.

Lemma 3.3.6. Let X be a set with more than one point. Then every automor-

phism of LFGT (X,L) maps K1 onto itself.

Proof. Let A be an automorphism of LFGT (X,L). By Lemma 3.3.4, A maps
n+1⋃
i=1

Ki onto itself. Let x ∈ X and let A(Jxl1 ) = Jzli , i ≥ 2 and z ∈ X. Let

C = {C ∈ LX : C(t) 6= 0 for every t ∈ X} and D = {D ∈ LX : A(JC) =

JD, C ∈ C}. Note that JC ∨ Jxl1 contain 3 elements for every C ∈ C, then
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A(JC ∨Jxl1 ) = A(JC)∨A(Jxl1 ) = JD ∨Jzli contains 3 elements for every D ∈ D.

Hence for every D ∈ D, {0, D} ∨ {0, zli} = {0, D, zli} and D ∨ zli = D or zli . If

for some D ∨ zli = zli , then D = zlj for some j < i, then there exists an element

H ∈ C such that A(JH) = Jzlj which is not possible by Lemma 3.3.4. Thus

D ∨ zli = D for every D ∈ D which implies that D(z) ≥ li for every D ∈ D and

i ≥ 2. Then zl1 /∈ D and hence A−1(Jzl1 ) /∈ {JC}C∈C. Let A−1(Jzl1 ) = JH for

some H ∈ LX . Since H /∈ C, there exists t ∈ X such that H(t) = 0.

Define F ∈ LX such that

F (x) =

 lk whenever H(x) = 0, k ∈ {1, 2, . . . n}

H(x) otherwise.

Then F ∈ C and consequently A(JF ) = JE for some E ∈ D. In fact we can

choose k ∈ {1, 2, . . . , n} such that E /∈ {zl2 , zl3 , . . . , zln}. This is possible since

A is a bijection and k has n choices and the set {zl2 , zl3 , . . . , zln} has n − 1

elements. Now |JH ∨ JF | = 3, since H ≤ f , which implies |A(JH) ∨ A(JF )| =

|Jzl1 ∨ JE| = 3. But Jzl1 ∨ JE = {0, zl1} ∨ {0, E} = {0, zl1 , E, zE(z)}. Since

E(z) ≥ li and i ≥ 2 implying zE(z) ∈ {zl2 , zl3 , . . . , zln}. But we have chosen F

such that E /∈ {zl2 , zl3 , . . . , zln}, thus |Jzl1 ∨ JE| = 4, which is a contradiction.

Hence A(Jxl1 ) cannot be Jzli for any i ≥ 2 and by Lemma 3.3.4, A maps K1 onto

itself.

Definition 3.3.1. [6] Let X be a nonempty set and L be any F -Lattice. If

p : X → X is a bijection, then Hp : LX → LX defined by Hp(C)(x) = C(p−1(x))

for all C ∈ LX and x ∈ X is an automorphism of LX .

Theorem 3.3.1. Let X be a nonempty set and L be any F -Lattice. If µ is an L-

fuzzy generalized topology on X, then the collection H∗p (µ) = {Hp(C) : C ∈ µ} is

also an L-fuzzy generalized topology and H∗p is an automorphism of LFGT (X,L)
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where Hp is as in the Definition 3.3.1.

Proof. Let µ be an L-fuzzy generalized topology on X. Then 0 ∈ H∗p (µ) because

Hp(0)(x) = 0(p−1(x)) = 0 for every x ∈ X. Now {Ci}i∈I be a collection of

L-fuzzy sets in H∗p (µ). Then for i ∈ I,

Ci = Hp(Ki) for some Ki ∈ µ

(
∨
i∈I
Ci)(x) = (

∨
Hp(Ki))(x)

= (
∨
Ki)(p

−1)(x)

= Hp(
∨
Ki)(x)

Thus H∗p (µ) is an L-fuzzy generalized topology on X and H∗p map L-fuzzy gen-

eralized topologies into L-fuzzy generalized topologies. Also note that H∗p is

bijective. If µ, τ ∈ LFGT (X) and µ ≤ τ if and only if H∗p (µ) ≤ H∗p (τ) by

definition itself. Thus H∗p is an automorphism of LFGT (X).

Finally we are in a position to prove our main results. First we consider here

the case when X is a singleton set.

Theorem 3.3.2. Let X be a singleton set. Then the group of all automorphisms

of the lattice LFGT (X,L) is isomorphic to S(L \ {0}), the group of all permu-

tations on L \ {0}.

Proof. Let X = {x} and L be as defined in the notation. Then the atoms of

LFGT (X,L) are {Ki}i=1,2,...,n,n+1 where Ki = {0, xli} for i = 1, 2, . . . , n, n + 1

where ln+1 = 1. In fact these are the only elements of LFGT (X,L) other than

0 since X = {x}. Let p be a permutation on {1, 2, . . . , n+ 1}. Define a function
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Ap on LX , Ap : LX → LX , for i = 1, 2, . . . , n, n+ 1

Ap(xli) = xlj if and only if , p(i) = j

and Ap(0) = 0. For an L-fuzzy generalized topology µ ∈ LFGT (X,L), we define

A∗p(µ) = {Ap(xli) : xli ∈ µ} ∪ {0}. Then A∗p is a bijection on LFGT (X,L). Now

for µ, τ ∈ LFGT (X,L),

µ ≤ τ ⇔ µ ⊆ τ ⇔ A∗p(µ) ⊆ A∗p(τ).

Hence A∗p is an automorphism on LFGT (X,L). Conversely if M is an auto-

morphism on LFGT (X,L), M must map atoms onto atoms of LFGT (X,L).

Then it will induce a bijection on {xli : i = 1, 2, . . . , n + 1} and hence on

{1, 2, . . . , n + 1}. Thus it defines a bijection between the group of all automor-

phisms of LFGT (X,L) and the group of all permutations on {1, 2, . . . , n + 1}.

Also if p and k are two permutations on {1, 2, . . . , n + 1}, then A∗p◦k = A∗p ◦

A∗k. This defines an isomorphism between the group of all automorphisms of

LFGT (X,L) and the group of all permutations on L \ {0}.

Theorem 3.3.3. Let X be a set with more than one point. Then the group of all

automorphisms of LFGT (X,L) is precisely the collection {H∗p : p is a bijection

on X} where H∗p is as in the Theorem 3.3.1.

Proof. We have already proved in Theorem 3.3.1 that H∗p is an automorphism

on LFGT (X,L).

Now let A be an automorphism on LFGT (X,L). We need to prove that

A = H∗p for some bijection p on X. By Lemma 3.3.6, A maps K1 onto itself. Let

x ∈ X, consider Jxl1 and let A(Jxl1 ) = Jyl1 for some y ∈ X. This y is unique.

61



3.3. Automorphism group of LFGT (X,L) when L is a finite chain

Define p : X → X as p(x) = y if and only if A(Jxl1 ) = Jyl1 . For t ∈ X,

Hp(xl1)(t) = xl1(p
−1(t))

=

 l1 if p−1(t) = x,

0 otherwise.

=

 l1 if t = y,

0 otherwise.

= yl1(t).

Also Hp(0) = 0. Thus H∗p (Jxl1 ) = {Hp(0), Hp(xl1)} = {0, yl1} = Jyl1 . Since

x ∈ X is arbitrary, A = H∗p on K1.

Claim: If A(Jxl1 ) = Jyl1 , then A(Jx1) = Jy1 .

Suppose A(Jx1) = JC = {0, C}, for some L-fuzzy set C ∈ LX , 1 6= C 6= 0.

Then,

|{0, C} ∨ {0, zl1}| = 3, for every z ∈ X such that C(z) 6= 0.

Thus |JC ∨ Jzl1 | = 3, for every z ∈ X such that C(z) 6= 0.

So |A−1(JC) ∨ A−1(Jzl1 )| = 3, for every z ∈ X such that C(z) 6= 0.

Hence |Jx1 ∨ A−1(Jzl1 )| = 3, for every z ∈ X such that C(z) 6= 0.

But A−1(Jzl1 ) ∈ K1 and also A−1(Jzl1 ) and Jx1 must be comparable for every

z ∈ X such that C(z) 6= 0. Then A−1(Jzl1 ) = Jxl1 and thus z = y. But by

Lemma 3.3.5, there exists an element t ∈ X such that C(t) = 1. Hence C = y1.

Claim: If A(Jxl1 ) = Jyl1 and A(Jx1) = Jy1 , then

1. A(Jxli ) = Jyli , where i ∈ {2, 3, . . . , n},

2. A(Jx0) = Jy0 .
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Proof of Claim (1): By Lemma 3.3.4, A maps
n+1⋃
i=1

Ki onto itself. Let i ∈

{2, 3, . . . , n} and Suppose A(Jxli ) = Jzlj for some z ∈ X and j ∈ {2, 3, . . . , n}.

We know that |Jxli ∨ Jxl1 | = 3. Then |A(Jxli ∨ Jxl1 )| = |A(Jxli ) ∨ A(Jxl1 )| =

|Jzlj ∨ Jyl1 | = 3. This happens only if z = y. Thus A(Jxli ) = Jylj for some

j ∈ {2, 3, . . . n}.

Now let A(Jxli ) = {0, H} for some H ∈ LX , H 6= 0. Then we have Jxli∨Jx1 =

{0, xli , x1, 1} is a strong fuzzy generalized topology. Thus A(Jxli∨Jx1) = A(Jxli )∨

A(Jx1) = JH∨Jy1 is a strong L-fuzzy generalized topology. So H∨y1 = 1. Hence

H(t) = 1 for every t 6= y.

Let H = ylk for some k ∈ {1, 2, . . . , n}. Now we have A(Jxli ) = Jylj and

A(Jxli ) = Jylk . Consider Jxli ∨ Jxli = {0, xli , xli}. Then

A(Jxli ∨ Jxli ) = A(Jxli ) ∨ A(Jxli ) = Jylj ∨ Jylk = {0, ylj , ylk},

since |Jxli ∨ Jxli | = |A(Jxli ∨ Jxli )|. But {0, ylj , ylk} is an L-fuzzy generalized

topology. Thus j ≤ k, otherwise Jylj ∨ Jylk contain 4 elements. Also we have

Jxli ∨ Jxli+1 contain 3 elements. So

A(Jxli ∨ Jxli+1 ) = A(Jxli ) ∨ A(Jxli+1 ) = Jylj ∨ Jylk1

also contain 3 elements, where A(Jxli+1 ) = J
y
lk1

for some k1 ∈ {1, 2, . . . , n}.

Hence k1 must be greater than or equal to j. This is true for Jxli+2 , Jxli+3 , . . . , Jxln .

Therefore for example,
we have A(Jxl1 ) = Jyl1 , let A(Jxl2 ) = Jylj , where j ≥ 2. Then,

A(Jxl2 ) = J
y
lk2
, k2 ≥ j

63



3.3. Automorphism group of LFGT (X,L) when L is a finite chain

A(Jxl3 ) = J
y
lk3
, k3 ≥ j

A(Jxl4 ) = J
y
lk4
, k4 ≥ j

...

A(Jxln ) = Jylkn , kn ≥ j.

Since A is a bijection j must be equal to 2. Then A(Jxl2 ) = Jyl2 .

Similarly, A(Jxli ) = Jyli for every i ∈ {1, 2, . . . , n}.

Proof of Claim (2): Suppose A(Jx0) = {0, D} for some L-fuzzy set D ∈ LX ,

D 6= 0. We know that Jx0 ∨ Jx1 = {0, x0, x1, 1} is a strong L-fuzzy generalized

topology. Then by Lemma 3.3.2, A(Jx0)∨A(Jx1) is a strong L-fuzzy generalized

topology on X. Thus {0, D} ∨ A(Jy1) is a strong L-fuzzy generalized topology

implying D(t) = 1 for every t 6= y. If D = yli for some i ∈ {1, 2, . . . , n}, then

JD ∨ Jyli = Jyli ∨ Jyli contain 3 elements, implying Jx0 ∨ Jxli contain 3 elements,

which is a contradiction. Hence D must be equal to y0.

Claim: If A(Jxli ) = Jyli for every i ∈ {1, 2, . . . , n}, then A(Jxli ) = Jyli for

every i ∈ {1, 2, . . . , n}.

Suppose A(Jxli ) = {0, E} for some L-fuzzy subset E ∈ LX , E 6= 0. Then

Jxli ∨ Jx1 is a strong L-fuzzy generalized topology and thus JE ∨ Jy1 is a strong

L-fuzzy generalized topology, which implies that E(t) = 1 for every t 6= y. Let

E(y) = lj for some j = 1, 2, . . . , n. Then E = ylj . Also |Jxli ∨ Jxli | = 3. Thus

|Jyli ∨ JE| = |Jyli ∨ Jylj | = 3 implying j ≥ i. So if A(Jxli ) = Jylj , then j ≥ i.

But A map Mn onto itself. Thus A(Jxln−1 ) = Jyln−1 , A(Jxln−2 ) = Jyln−2 and so

on. Hence A(Jxli ) = Jyli for every i ∈ {1, 2, . . . , n}.
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Now

H∗p (Jxli ) = {Hp(0), Hp(xli)}

= {0, yli}

= Jyli

= A(Jxli ).

Then A = H∗p on Ki, where i ∈ {1, 2, . . . , n}, since x and y are arbitrary elements

of X.

H∗p (Jx1) = {Hp(0), Hp(x1)}

= {0, y1}

= Jy1

= A(Jx1).

Thus A = H∗p on Kn+1.

H∗p (Jx0) = {Hp(0), Hp(x
0)}

= {0, y0}

= Jy0

= A(Jx0).

So A = H∗p on Mn+1.

H∗p (Jxli ) = {Hp(0), Hp(x
li)}

= {0, yli}

= Jyli

= A(Jxli ).

Hence A = H∗p on Mi, where i ∈ {1, 2, . . . , n}. Therefore A = H∗p on
n+1⋃
i=1

(Ki∪Mi).

Now let V /∈
n+1⋃
i=1

(Ki ∪Mi) be an L-fuzzy set. Suppose A({0, V }) = {0,W}
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for some L-fuzzy set W /∈
n+1⋃
i=1

(Ki ∪Mi) and H∗p ({0, V }) = {0, Hp(V )}. To prove

that Hp(V ) = W , it is enough to prove the following results:

(a) V (p−1(y)) = 0 if and only if W (y) = 0.

(b) V (p−1(y)) = li if and only if W (y) = li where i = 1, 2, . . . , n.

(c) V (p−1(y)) = 1 if and only if W (y) = 1.

Proof of (a): We have Hp(V )(t) = V (p−1)(t). Then V (p−1(y)) = 0⇔ V (x) =

0 ⇔ V ≤ x0 ⇔ |{0, V } ∨ {0, x0}| = 3 ⇔ |A({0, V }) ∨ A({0, x0})| = 3 ⇔

|{0,W} ∨ {0, y0}| = 3, then W (y) can not be greater than 0. Thus W (y) = 0.

Proof of (b): Assume V (p−1(y)) = li for some i ∈ {1, 2, . . . , n}. But p−1(y) =

x, implying V (x) = li. Then |{0, V } ∨ {0, xli}| = 3. By Remark 3.2.1, |{0,W} ∨

{0, yli}| = 3 which implies W (y) ≤ li, since W /∈Mj for every j ∈ {1, 2, . . . , n}.

Also if V (x) = li, then |{0, V } ∨ {0, xli}| = 3. By Remark 3.2.1, |{0,W} ∨

{0, yli}| = 3 implying W (y) ≥ li, since W /∈ Kj for every j ∈ {1, 2, . . . , n}.

Thus we get W (y) = li. So if V (p−1(y)) = li, then W (y) = li.

Similarly, it is also easy to show that, if W (y) = li, then V (p−1(y)) = li for

every i = 1, 2, . . . , n.

Proof of (c): Consider V (p−1(y)) = 1 ⇔ V (x) = 1 ⇔ |{0, V } ∨ {0, x1}| =

3⇔ |{0,W} ∨ {0, y1}| = 3⇔ W ≥ y1(since W /∈ Kn+1)⇔ W (y) = 1.

Since x and y are arbitrary A = H∗p on all atoms in LFGT (X,L). Also

LFGT (X,L) is an atomic lattice, hence A = H∗p on LFGT (X,L). Thus the

proof is complete.
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3.4 Automorphism group of LFGT (X,L) when

L is the diamond-type lattice

Here we determine the automorphism group of lattice of fuzzy generalized

topologies, LFGT (X,L), when X is an arbitrary nonempty set and L is the

diamond-type lattice.

First we look at the structure of diamond-type lattice L = {0, a, b, 1} (see

Figure 3.1 ). In L, 0 is the smallest element and 1 is the largest element, also

0 < a < 1 and 0 < b < 1 is the order relation in L. Here a and b are not

comparable. Define order reversing involution on L as 0
′

= 1, 1
′

= 0, a
′

= b and

b
′
= a. Then L is a complemented F -lattice.

0

a b

1

Figure 3.1: Diamond-type lattice

Throughout this section X will be an arbitrary non empty set and L will be

the diamond-type lattice described above.

Definition 3.4.1. Let X be a nonempty set and L be the diamond-type lattice
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L = {0, a, b, 1}. Let P be a bijection on X × {a, b} defined as, for x ∈ X and

l ∈ {a, b}, P (x, l) = (P1(x), P2(l)) where P1 and P2 are bijections on X and {a, b}

respectively. Now let us define a bijection P ∗ on set of all L-fuzzy points of the

lattice LX by P ∗(xl) = ym if and only if P (x, l) = (y,m) for every l,m ∈ {a, b}

and P ∗(x1) = P ∗(xa) ∨ P ∗(xb) where x, y ∈ X.

By P = (P1, P2) on X × {a, b}, we simply mean P (x, l) = (P1(x), P2(l)) for

x ∈ X and l ∈ {a, b}.

Note that we are not considering all bijections on X × {a, b}. The essence

of this definition of bijection is that we have freedom in the choice of L-fuzzy

points {xa}x∈X only. For x, y ∈ X, if we map xa onto ya, then xb has no other

chance than yb, in fact every zl map onto (h(z))l where h is a bijection on X.

On the other hand if xa maps onto yb, then every zl maps onto h(z)l′ where h is

a bijection on X and l
′

is the pseudo-complement of l.

We explain the reason behind this in the following remark.

Remark 3.4.1. Let A be an automorphism of LX . We know that every au-

tomorphism of LX map atoms onto atoms. Here atoms are L-fuzzy points. If

we let A(xa) = zl1 and A(xb) = wl2 for x, z, w ∈ X and l1, l2 ∈ {a, b, 1}, Then

A(x1) = A(xa ∨ xb) = A(xa) ∨ A(xb) = zl1 ∨ wl2. But since xa < x1 we have

A(xa) = zl1 < A(x1). The value of A(x1) at the point z must be greater than l1,

thus getting (A(x1))(z) = 1. Also zl1 ∨ wl2 must be an atom. So z must be equal

to w and l1 = l
′
2. Hence A(x1) = z1.

Before considering the main problem of this section we would like to find out

the automorphism group of LX . Before that let us prove the following Lemma.
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Lemma 3.4.1. For every bijection P = (P1, P2) on X × {a, b} where P1 ∈

S(X) and P2 ∈ S({a, b}) and P ∗ on Pt(LX) defined as in Definition 3.4.1,

P ∗(x( ∨
i∈I

Hi)(x)) =
∨
i∈I
P ∗(xHi(x)) for Hi ∈ LX for all i ∈ I and x ∈ X with Hi(x) 6=

0 for every i ∈ I.

Proof. Let x ∈ X and let {Hi}i∈I be a collection of L-fuzzy sets of X with

Hi(x) 6= 0 for all i ∈ I. If Hi(x) = Hj(x) ∀i, j ∈ I, then (
∨
i∈I
Hi)(x) = Hk(x) for

some k ∈ I and P ∗(x( ∨
i∈I

Hi)(x)) = P ∗(xHk(x)) =
∨
i∈I
P ∗(xHi(x)). If Hi(x) 6= Hj(x) for

some i, j ∈ I, then (
∨
i∈I
Hi)(x) = 1 and P ∗(x( ∨

i∈I
Hi)(x)) = P ∗(x1) =

∨
i∈I
P ∗(xHi(x)).

Hence the result.

Theorem 3.4.1. Let X be a nonempty set. Then automorphisms of LX are

{AP : P = (P1, P2), P1 ∈ S(X) and P2 ∈ S({a, b})} where AP (C) =
∨
x∈X

C(x)6=0

P ∗(xC(x)),

for C ∈ LX .

Proof. Let C,D ∈ LX . If C orD is equal to 0, it follows at once that AP (C∨D) =

AP (C) ∨ AP (D). So let us focus upon the case when C 6= 0 and D 6= 0.

By Lemma 3.4.1, we get

AP (C ∨D) =
∨
x∈X

(C∨D)(x)6=0

P ∗(x(C∨D)(x))

=
∨
x∈X

C(x)6=0
D(x) 6=0

[P ∗(xC(x)) ∨ P ∗(xD(x))] ∨
∨
x∈X

C(x)6=0
D(x)=0

P ∗(xC(x)) ∨
∨
x∈X

D(x)6=0
C(x)=0

P ∗(xD(x))

=
∨
x∈X

C(x)6=0

P ∗(xC(x)) ∨
∨
x∈X

D(x)6=0

P ∗(xD(x))

= AP (C) ∨ AP (D).

Thus AP (C ∨D) = AP (C) ∨ AP (D).

Claim: AP is injective.
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Let C,D ∈ LX and assume AP (C) = AP (D). Now if x ∈ X and C(x) 6= 0, then

there exists an element y ∈ X and D(y) 6= 0 such that P ∗(xC(x)) = P ∗(yD(y)).

Since P ∗ is bijective on Pt(LX), we have xC(x) = yD(y), consequently x = y and

C(x) = D(y). This is true for every x ∈ X such that C(x) 6= 0. Thus for every

x ∈ X, C(x) 6= 0, C(x) = D(x). Similarly for every x ∈ X such that D(x) 6= 0,

we have D(x) = C(x) and therefore C = D.

Claim: AP is surjective

Let us start with an element C ∈ LX . If C = 0, then AP (0) = C. Suppose

C 6= 0. We define D =
∨
x∈X

C(x)6=0

(P ∗)−1(xC(x)). Then AP (D) =
∨
x∈X

C(x)6=0

xC(x) = C.

Hence AP is surjective. Thus AP is an automorphism of LX .

Now let A be an automorphism of LX . Then A map atoms of LX onto itself

and by Remark 3.4.1, for x ∈ X A must map
⋃
x∈X
{x1} onto itself. We define

bijections P1, P2 on X and {a, b} respectively as P1(x) = y and P2(l1) = l2 if and

only if A(xl1) = yl2 , for x, y ∈ X and l1, l2 ∈ {a, b}. This map is well defined by

Remark 3.4.1. Now define P ∗ on X × {a, b} as P ∗ = (P1, P2). Then A = P ∗ on

all atoms of LX . Since LX is an atomic lattice, A = P ∗ on LX .

Define A∗P on LFGT (X,L) as A∗P (µ) = {AP (C) : C ∈ µ} where AP as defined

in Theorem 3.4.1. Then A∗P is an automorphism of LFGT (X,L) which we prove

here as a theorem.

Theorem 3.4.2. For every bijection P = (P1, P2) on X × {a, b}, where P1 ∈

S(X) and P2 ∈ S({a, b}), A∗P is an automorphism of LFGT (X,L).

Proof. Let µ be an L-fuzzy generalized topology on X and P = (P1, P2) be a

bijection on X × {a, b} where P1 ∈ S(X) and P2 ∈ S({a, b}).

Claim 1: A∗P (µ) is an L-fuzzy generalized topology on LX .
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By definition, A∗P (µ) = {AP (C) : C ∈ µ}. Since 0 ∈ µ and AP (0) = 0,

we have 0 ∈ A∗p(µ). Now let {C ′i}i∈I ⊆ A∗P (µ) , then there exists a collec-

tion {Ci}i∈I ⊆ µ such that AP (Ci) = C
′
i for every i ∈ I. Consider

∨
i∈I
C
′
i =∨

i∈I
AP (Ci) = AP (

∨
i∈I
Ci) ∈ µ, by Lemma 3.4.1. Thus A∗P is closed under arbitrary

join. Hence the claim.

Claim 2: A∗P is a bijection on LFGT (X,L).

Let µ1, µ2 ∈ LFGT (X,L) and assume A∗P (µ1) = A∗P (µ2). In other words

{AP (C) : C ∈ µ1} = {AP (D) : D ∈ µ2}. But since AP is a bijection, we

have µ1 = µ2. Now to see the map A∗P is onto, let τ
′ ∈ LFGT (X,L). Consider

τ = {A−1P (C) : C ∈ τ ′}. Then A∗P (τ) = {AP (A−1P (C)) : C ∈ τ ′} = {C : C ∈ µ′},

since AP is a bijection. Thus A∗P (τ) = τ
′
. Hence A∗P is surjective and concluding

that A∗P is a bijection on LFGT (X,L).

Now for µ1, µ2 ∈ LFGT (X,L), if µ1 ⊆ µ2, then by definition of A∗P , A
∗
P (µ1) ⊆

A∗P (µ2). Thus A∗P is order preserving. Hence the theorem is proved.

Definition 3.4.2. Let X be a nonempty set. Then the atoms of LFGT (X,L)

are sets of the form {0, C} where C ∈ LX , C 6= 0. Let us designate this by JC

and also we use the following notations for special types of atoms.

K = {Jxl : x ∈ X, l ∈ {a, b}}, K ′ = {Jx1 : x ∈ X}

M = {Jxl : x ∈ X, l ∈ {a, b}} and M ′
= {Jx0 : x ∈ X}.

where, for l ∈ {a, b, 1},

xl(t) =

 l when t = x

0 otherwise

and for l ∈ {0, a, b},
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xl(t) =

 l when t = x

1 otherwise.

First we would like to see where these special types of atoms go under an

arbitrary automorphism of LFGT(X,L). Once we know this, then since the lattice

is atomic, result is easy to conclude.

Note 3.4.1. Let X be a set with more than one point. Every automorphism A

of LFGT (X,L) map {0, 1} onto itself because join of any L-fuzzy generalized

generalized topology of the type {0, C} ∈ LFGT (X,L) and C 6= 0, 1 with {0, 1}

contain exactly 3 elements, otherwise we can find out an L-fuzzy set D ∈ LX

and D 6= 0, 1 such that {0, C} ∨ {0, D} contain 4 elements. This characterizes

{0, 1} and therefore A must map {0, 1} onto itself and as a result A map strong

L-fuzzy generalized topologies onto strong L-fuzzy generalized topologies only.

Lemma 3.4.2. Let X be a set with more than one point and let A be an auto-

morphism of LFGT (X,L). Then A maps M ∪M ′
onto itself.

Proof. Let Ixl = {0, xl, 1} for x ∈ X and l ∈ {0, a, b} and consider the collection,

η = {Ixl : x ∈ X, l ∈ {0, a, b}}. Note that the join of any element in η with

any L-fuzzy generalized topology of the form IC = {0, C, 1}, where C ∈ LX and

C 6= 0, 1, contain exactly 4 elements. Also recall that every automorphism, A of

LFGT (X,L), maps an n element set onto an n element set and by Note 3.4.1,

A map strong L-fuzzy generalized topologies onto strong L-fuzzy generalized

topologies. So A must map Ixl ∈ η onto IC for some C ∈ LX ,C 6= 0 and C 6= 1.

If IC doesn’t belong to η, then we have a claim.

Claim: There exists an L-fuzzy set D ∈ LX such that IC∨ID contain 5 elements.

If IC doesn’t belong to η, then either of the following cases arises
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(1) there exist x, y ∈ X, such that C(x) = 0 and C(y) 6= 0

(2) there exist x, y ∈ X such that C(x) = m and C(y) = k where m, k ∈ {a, b}.

If C is as in case(1), take D = xa. Then, since (C ∨D)(x) = a, C ∨D 6= C and

since (C ∨D)(y) 6= 0, we have C ∨D 6= D. Thus IC ∨ ID = {0, C,D,C ∨D, 1}

contain 5 elements.

If C is as in case(2), then take D = xm′ , where m
′

is the pseudo-complement of

m. Then C ∨D /∈ {C,D, 1} and hence IC ∨ ID contain exactly 5 elements.

This characterizes elements in η and A must map η onto itself. Since A({0, 1}) =

{0, 1}, A maps M ∪M ′
onto itself.

Lemma 3.4.3. Let X be a non empty set and let A be an automorphism of

LFGT (X,L), then A maps K onto itself.

Proof. Let A be an automorphism of LFGT (X,L) and C ∈ LX . The proof

is similar to the proof of Theorem 3.3.4. C can be written as C =
∨
{xl :

x ∈ X and C(x) = l ∈ {a, b}}
∨
{xa ∨ xb : x ∈ X,C(x) = 1}. Then as a

consequence, we have JC ≤
∨
{Jxl : x ∈ X and C(x) = l ∈ {a, b}}

∨
{Jxa ∨

Jxb : x ∈ X,C(x) = 1}. Since A preserves order and arbitrary join, A(JC) ≤∨
{A(Jxl) : x ∈ X and C(x) = l ∈ {a, b}}

∨
{A(Jxa)∨A(Jxb) : x ∈ X,C(x) = 1}.

The last inequality implies that for l ∈ {a, b}, Jxl is less than or equal to join of a

collection of L-fuzzy generalized topologies if and only if Jxl is already a member

of that collection of L-fuzzy generalized topologies. This characterizes atoms of

the form Jxl for all x ∈ X and l ∈ {a, b}. Thus A maps K onto itself.

Remark 3.4.2. Let A be an automorphism of LFGT (X,L). By Lemma 3.4.2,

A maps M ∪M ′
onto itself. Now let x ∈ X and Jxa ∈M . Suppose A(Jxa) = Jy0

for some y ∈ X. Let A(Jxb) = Jzm for some z ∈ X and m ∈ {0, a, b}. Consider

Jxa∨Jxb, it is a strong L-fuzzy generalized topology, then A(Jxa∨Jxb) = A(Jxa)∨
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A(Jxb) = Jy0∨Jzm must be a strong L-fuzzy generalized topology. But this is true

only if y0 ∨ zm = 1, which is not possible. Therefore, A(Jxa) can not be Jy0 for

any y ∈ X. Similarly A(Jxb) can not be Jw0 for any w ∈ X. Thus A map M

onto itself and M
′

onto itself.

Theorem 3.4.3. Let X be a non empty set. Then every automorphism maps

K
′

onto itself.

Proof. Let A be an automorphism of LFGT (X,L). By Lemma 3.4.3, A map K

onto itself. Let x ∈ X and let A(Jxa) = Jym for some y ∈ X and m ∈ {a, b}

and A(Jxb) = Jzt for some z ∈ X and t ∈ {a, b}. Let A(Jx1) = JD for some

D ∈ LX , D 6= 0. We know that {0, x1} ≤ {0, xa} ∨ {0, xb} implying {0, D} ≤

{0, ym} ∨ {0, zt}. Since D /∈ M ∪M ′ ∪ K, D must be equal to ym ∨ zt which

implies that at atmost two points y, z ∈ X, D take non zero value.

Also note that {0, x1} ∨ {0, x0} is a strong L-fuzzy generalized topology.

Let A({0, x0}) = {0, w0} for some w ∈ X. Hence A({0, x1}) ∨ A({0, x0}) =

{0, D}∨{0, w0} is a strong L-fuzzy generalized topology implying that D(w) = 1.

Hence D takes the value 1 at one point.

But we have D = ym ∨ zt. If y 6= z, then D can not take the value 1 at

any point of X because m, t ∈ {a, b}. Hence y must be equal to z. Now if

m = t, then D = ym ∨ zt = ym, which is not possible. So m 6= t and note that

m, t ∈ {a, b}. Therefore m = t
′
, where t

′
is the pseudo-complement of t. Hence

D = ym ∨ zt = yt′ ∨ yt = y1. Thus A({0, x1}) ∈ K
′

for all x ∈ X.

We know that A−1 is also an automorphism on LFGT (X,L), proceeding as

above, we get A−1({0, x1}) ∈ K
′

for all x ∈ X. Hence A map K
′

onto itself.

Having proved all these preliminary results, now we prove the main result of
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this section.

Theorem 3.4.4. Let X be a nonempty set and L be the diamond-type lattice.

Then the automorphisms of LFGT (X,L) are precisely {A∗P : P = (P1, P2), where

P1 ∈ S(X) and P2 ∈ S({a, b})}.

Proof. For any bijection P = (P1, P2), where P1 ∈ S(X) and P2 ∈ S({a, b}), we

have already proved in Theorem 3.4.2 thatA∗P is an automorphism of LFGT (X,L).

Now let A be any automorphism of LFGT (X,L) and we need to prove that

A = A∗P for some P = (P1, P2), where P1 ∈ S(X) and P2 ∈ S({a, b}).

If X is a singleton set, say {x}, then the elements of LX are 0, xa, xb, and x1

and atoms of LFGT (X,L) are Jxa , Jxb and Jx1 . By Lemma 3.4.3, A must map

{Jxa , Jxb} onto itself. If A maps Jxa onto Jxb , then A must map Jxb onto Jxa and

Jx1 onto itself. Then A = A∗P for P = (P1, P2) where P1 is the identity function

on X and P2 on {a, b} is defined as P2(a) = b and P2(b) = a. Now if A is identity

on LFGT (X,L), then A = A∗P , where P = (P1, P2), and P1, and P2 are identity

functions on X and {a, b} respectively.

Now suppose X contain more than one point. Let x ∈ X and A(Jxa) = Jym

for some y ∈ X and m ∈ {a, b}. Suppose A(Jxb) = Jwp for some w ∈ X

and p ∈ {a, b}, A(Jxa) = JD ∈ M , where 0 6= D ∈ LX and A(Jx1) = Jz1

for some z ∈ X. Consider Jxa ∨ Jx1 = {0, xa, x1, 1}. Then A({0, xa, x1, 1}) =

A({0, xa}) ∨ A({0, x1}) = {0, D} ∨ {0, z1} = {0, D, z1, D ∨ z1}. Since A map

strong L-fuzzy generalized topologies onto strong L-fuzzy generalized topologies,

D ∨ z1 must be 1 and by Remark 3.4.2, D must be zl for some l ∈ {a, b}.

Thus A(Jxa) = Jzl . Now consider Jxa ∨ Jxb ∨ Jx1 = {0, xa, xb, x1} and hence

A({0, xa, xb, x1}) = A(Jxa)∨A(Jxb)∨A(Jx1) = Jym ∨ Jwp ∨ Jz1 . Since A map an

n element set onto an n element set, the last term must be equal to {0, ym, wp, z1}.
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So ym, wp and z1 must be comparable and ym ∨ wp = z1, hence y = w = z and

p = m
′
.

Thus If A(Jxa) = Jym , then

1. A(Jxb) = Jy
m
′

2. A(Jx1) = Jy1 and

3. A(Jxa) = Jyl for some l ∈ {a, b}.

Arguing similarly we can prove that A(Jxb) = Jyp for some p ∈ {a, b}. Consider

Jxa ∨ Jxb = {0, xa, xb, 1} and A({0, xa, xb, 1}) = A(Jxa) ∨ A(Jxb) = Jyl ∨ Jyp =

{0, yl, yp, yl ∨ yp}. Since A map strong L-fuzzy generalized topologies onto itself,

yl ∨ yp must be 1 resulting p = l
′
. But A(Jxa) = Jym , so Jxa ∨ Jxa = {0, xa, xa},

and A({0, xa, xa}) = A(Jxa) ∨ A(Jxa) = Jym ∨ Jyl . Since A is an automorphism

and A map an n element set onto an n element set ym and yl must be comparable.

But l,m ∈ {a, b}, since a and b are not comparable, l must be equal to m. Thus

A(Jxa) = Jym and p = l
′

= m
′

resulting A(Jxb) = J
ym
′ . Thus if A(Jxa) = Jym ,

m ∈ {a, b}, then we have A(Jxb) = Jy
m
′ , A(Jxa) = Jym , A(Jxb) = J

ym
′ and

A(Jx1) = Jy1 .

Let us define P = (P1, P2) on X × {a, b} by P1(x) = y and P2(l) = m if

and only if A(Jxl) = Jym where x, y ∈ X and l,m ∈ {a, b}. The function P is a

bijection on X×{a, b} since A map K onto itself. Also note that P (x, l) = (y,m)

for x, y ∈ X and l,m ∈ {a, b} if and only if P ∗(xl) = ym. Now we need to prove

that A = A∗P . First our aim is to show that A = A∗P on all atoms of LFGT (X,L)
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Let A(Jxl) = Jym for x, y ∈ X and l,m ∈ {a, b}.

A∗P ({0, xl}) = {AP (0), AP (xl)}

= {0,
∨
y∈X

xl(y)6=0

P ∗(yxl(y))}

= {0, P ∗(xl)}

= {0, ym}

= A({0, xl})

Thus A = A∗P on K.

Since A(Jxl) = Jym , we have A(Jxl) = Jym and A(Jx
l
′ ) = Jy

m
′ .

Now xl can be written as xl =
∨
w∈X
w 6=x

(wa ∨ wb) ∨ xl, then

AP (xl) =
∨
w∈X
w 6=x

(P ∗(wa) ∨ P ∗(wb)) ∨ P ∗(xl).

Since P ∗(xl) = ym, we have ym ≤ AP (xl). Also P ∗(wt) ≤ AP (xl) for every t ∈

{a, b} implying zn ≤ AP (xl) for every z 6= y and n ∈ {a, b}. Since P ∗(xl′ ) = ym′

and P ∗(xl′ ) � AP (xl), we have ym′ � AP (xl). Therefore AP (xl) must be ym.

A(Jxl) = A({0, xl}) = {0, ym}

= {AP (0), AP (xl)}

= A∗P (Jxl).

Hence A = A∗P on M .
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Now let C ∈ LX , C /∈ K ∪M and let A(JC) = JD, then C can be written as

C =
∨
x∈X

C(x)=1

(xa ∨ xb) ∨
∨
x∈X

C(x)6=0
C(x)6=1

xC(x).

AP (C) =
∨
x∈X

C(x)=1

(P ∗(xa) ∨ P ∗(xb)) ∨
∨
x∈X

C(x)6=0
C(x)6=1

P ∗(xC(x)).

=
∨
x∈X

C(x)6=0

P ∗(xC(x)) =
∨
x∈X

D(x)6=0

xD(x), since A(JC) = JD.

Now to show that A∗P (JC) = A(JC),
A∗P (JC) = A∗P ({0, C})

= {AP (0), AP (C)}

= {0,
∨
x∈X

C(x)6=0

P ∗(xC(x))}

= {0,
∨
x∈X

D(x)6=0

(xD(x))}

Thus,

A∗P (JC) = {0,
∨
x∈X

D(x)6=0

(xD(x))}

= {0, D} = JD

= A(JC).

Hence A = A∗P on {JC}C∈LX , where C does not belong to K ∪M and we proved

that A = A∗P on all atoms of LFGT (X,L). Since LFGT (X,L) is an atomic

lattice, it is clear that A = A∗P on LFGT (X,L) and our proof is complete.
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Chapter 4
Homogeneous generalized topological

spaces

4.1 Introduction

Homogeneity in topological spaces is studied by many mathematicians. John

Ginsburg in his paper [19] proved a simple representation theorem for finite topo-

logical spaces which are homogeneous. In the first section we characterize com-

pletely homogeneous generalized topological spaces. In the following sections we

deal with homogeneous generalized topological spaces in a cyclic ordered set. We

try to find out new homogeneous generalized topological spaces by considering

the join of homogeneous generalized topologies and discuss the properties.

Let X be a nonempty set and µ be a generalized topology on X. We de-

note the union of all open sets in (X,µ) by Mµ. Let us recall the definition of
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homogeneous generalized topological space.

Definition 4.1.1. [18] A generalized topological space (X,µ) is said to be ho-

mogeneous if for any two points x, y ∈Mµ there exists a (µ, µ)-homeomorphism

f : (X,µ) → (X,µ) such that f(x) = y and (X,µ) is called completely homoge-

neous if every bijection on X is a homeomorphism on (X,µ).

4.2 Completely homogeneous generalized topo-

logical spaces

In this section we try to characterize completely homogeneous generalized

topologies and here we prove results without loss of generality for completely

homogeneous strong generalized topologies only. If µ is a generalized topology

on X which is not strong, then the results we prove here still hold if we replace

X by Mµ.

We use some set theoretic results throughout this section. Consider a nonempty

set X and A and B are subsets of X. Then there exists a bijection on X, which

maps A onto B if and only if |A| = |B| and |X \A| = |X \B|. If X is an infinite

set, it is possible to choose subsets A and B of X such that A∪B = X,A∩B = ∅,

and |A| = |X| = |B| since α + α = α for any infinite cardinal α [27].

Throughout this chapter X will denote a nonempty ordinary set unless oth-

erwise stated.

Examples of completely homogeneous generalized topologies.
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1. {∅} , {∅, X} and P (X) on any set X.

2. µ = {∅, {a, b}, {b, c}, {c, a}, {a, b, c}} on X = {a, b, c}.

3. τ = {G ⊆ X : G is infinite}∪{∅} is a completely homogeneous generalized

topology on an infinite set X.

Lemma 4.2.1. Let (X,µ) be a completely homogeneous generalized topological

space and C be a subset of X such that |C| < |X|. If C is open in (X,µ), then

every subset B of X such that |B| = |C| is also open in (X,µ).

Proof. Let B ⊆ X and |B| = |C|. Since |C| < |X|, we have |X \ C| = |X \ B|.

Then there exists a bijection f on X, which map C onto B, consequently f is an

open map since every bijection is a homeomorphism in a completely homogeneous

generalized topological space and hence f(C) = B is open in (X,µ).

Lemma 4.2.2. Let (X,µ) be a completely homogeneous generalized topological

space and let C ⊆ X, C 6= ∅, is open in (X,µ). Then supersets of C are also

open in (X,µ).

Proof. Let C ( D ⊆ X, then there exists an element y ∈ D and y /∈ C.

Let x ∈ C. Consider the bijection f on X which map x onto y and y onto

x and f is the identity map on all other elements. But every bijection is a

homeomorphism on X and hence f is a homeomorphism on X. Since f is an

open map, f(C) = (C \ {x})∪{y} is open in (X,µ). Then C ∪{y} is open since

it is the union of two open sets, C ∪ {y} = C ∪ (C \ {x} ∪ {y}). Thus D is open

since D can be written as D =
⋃
y∈D
y/∈C

(C ∪ {y}). Hence the result.
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Clearly the converse of previous lemma is not true. For example consider the

generalized topology µ = {∅, {a, b}, {b, c}, {a, b, d}, {b, c, d}, {a, b, c}, X} on the

set X = {a, b, c, d}. It can be easily verified that the supersets of nonempty open

sets are again open in (X,µ), but is not completely homogeneous generalized

topological space.

Larson determined the completely homogeneous topologies in his paper [30].

He proved the following theorem.

Theorem 4.2.1. [30] The only completely homogeneous topologies on a set X

are:

1. The indiscrete topology

2. The discrete topology

3. Topologies of the form {G ⊆ X : |X \G| < m}∪{∅}, where ℵ0 ≤ m ≤ |X|.

Next is a characterization theorem for completely homogeneous generalized

topological spaces with a nonempty open subset of cardinality strictly less than

that of X.

Theorem 4.2.2. Let (X,µ) be a generalized topological space and C be a nonempty

open subset of X such that |C| < |X|. Then µ is completely homogeneous gen-

eralized topology if and only if µ = {G ⊆ X : |G| ≥ m} ∪ {∅} where m < |X|.

Proof. Assume (X,µ) is completely homogeneous. If (X,µ) is a topological

space, then we may use the preceding theorem by Larson. We observe that the

only completely homogeneous topologies on a finite set are indiscrete and dis-

crete topologies and if X is infinite, then µ is either discrete or every nonempty
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open set has cardinality the same as that of X. Therefore, since µ contain

C and by Theorem 4.2.1, µ is completely homogeneous if and only if µ is

P (X) = {G ⊆ X : |G| ≥ 1} ∪ {∅}, if (X,µ) is a topological space.

Let (X,µ) be a completely homogeneous generalized topological space and not

a topological space. Now consider the set S = {|G| : ∅ 6= G ∈ µ and |G| < |X|}.

The set S is nonempty since |C| ∈ S. Let m be the smallest element in S. Then

there exists a set D ( X such that |D| = m < |X| and D is open in (X,µ). By

Lemma 4.2.1, if B ⊆ X and |B| = |D|, then B is also open in (X,µ). Also by

Lemma 4.2.2, supersets of B is also open for every B ⊆ X such that |B| = |D|.

On the other hand, nonempty subsets of cardinality less than m are not open.

Thus µ is of the form {G ⊆ X : |G| ≥ m} ∪ {∅}, where m < |X|. Conversely, if

µ = {G ⊆ X : |G| ≥ m} ∪ {∅} for some m < |X|, then it can be easily verified

that µ is a completely homogeneous generalized topology on X.

Now consider the generalized topological space in which every non empty open

set has cardinality same as that of whole set. Next we enquire when does this

generalized topology completely homogeneous. First we prove some Lemmas.

Lemma 4.2.3. Let µ be a completely homogeneous generalized topology on an

infinite set X. Let G be an open subset of X with |G| = |X| and |Gc| = |X|.

Then every H ⊆ X such that |H| = |G| is open in (X,µ).

Proof. Let H ⊆ X and |H| = |G|. Since H is an infinite set, there exist disjoint

subsets A,B ⊆ H such that |A| = |B| = |H| and A∪B = H. Then B ⊆ Ac and

|H| = |B| ≤ |Ac| ≤ |X| = |H|. Hence |Ac| = |H|. But |H| = |G| = |X| = |Gc|

getting |Ac| = |Gc|. Also |A| = |H| = |G| getting |A| = |G|. Then there exists a

bijection f on X, which map A onto G. Since (X,µ) is a completely homogeneous
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generalized topological space, f is a homeomorphism. Consequently A is an open

set since A = f−1(G) and G is open. But H is a superset of A. Hence by Lemma

4.2.2, H is open in (X,µ).

Lemma 4.2.4. Let µ be a completely homogeneous generalized topology on an

infinite set X. Let G be a subset of X with |G| = |X| and |Gc| < |X|. If G is

open in (X,µ), then for every H ⊆ X such that |H| = |G| and |Hc| ≤ |Gc| are

open in (X,µ).

Proof. Let H be a subset of X such that |H| = |G| and |Hc| ≤ |Gc|. If |Hc| =

|Gc|, then there exists a bijection, say f , on X mapping G onto H. Since every

bijection is a homeomorphism, f(G) = H is open in (X,µ).

Now assume |Hc| < |Gc|. Consider a subset A ⊆ H such that |A ∪Hc| = |Gc|.

But A ∪Hc = (H \ A)c. Therefore |(H \ A)c| = |Gc|.

Case 1: Gc is a finite set.

Then Hc is finite and consequently A has to be finite and since |H\A|+|A| = |H|,

we have |H \A| = |H| = |G|. Thus we obtain |H \A| = |G| and |(H \A)c| = |Gc|.

Then there exists a bijection on X mapping G onto H \ A and by proceeding

as earlier we get H \ A is open in (X,µ). But H \ A ⊆ H, therefore by Lemma

4.2.2, H is also open in (X,µ).

Case 2: Gc is an infinite set.

Note that |(H \ A)c| = |Gc|, i.e., |Hc ∪ A| = |Gc| implying |Hc| + |A| = |Gc|.

Since |Gc| is infinite and |Hc| < |Gc|, we have |A| = |Gc|. But |Gc| < |X| = |H|,

resulting |A| < |H|. Consider |H \ A| + |A| = |H|, consequently |H \ A| = |H|

since |H| is infinite. Thus we have |H \ A| = |G| and |(H \ A)c| = |Gc| and by

similar arguments as in Case 1, we can prove that H is an open subset of X.

Hence the proof is complete.
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The previous lemmas enable us to prove the following characterization theo-

rem.

The following definition is adopted from [14].

Definition 4.2.1. The successor of a cardinal m is the least cardinal greater

than m. A cardinal is said to be a limit cardinal if it is not the successor of a

cardinal.

Theorem 4.2.3. Let µ be a generalized topology on an infinite set X and every

∅ 6= G ∈ µ has cardinality as that of X. Then µ is a completely homogeneous

generalized topology if and only if µ is of one of the following form.

1. {G ⊆ X : |G| = |X|} ∪ {∅}.

2. {G ⊆ X : |Gc| ≤ m} ∪ {∅}, where m < |X|.

3. {G ⊆ X : |Gc| < m} ∪ {∅}, where m ≤ |X| and m is a limit cardinal,

m 6= 0.

Proof. Let (X,µ) be a completely homogeneous generalized topological space in

which every ∅ 6= G ∈ µ has |G| = |X|.

By Lemma 4.2.3, if for some G ∈ µ has |Gc| = |X|, then every H ⊆ X such

that |H| = |G| is open in (X,µ). In other words, {H ⊆ X : |H| = |X|} ⊆ µ.

Moreover by the assumption every nonempty open set has cardinality the same

as that of X. Therefore µ = {G ⊆ X : |G| = |X|} ∪ {∅}.

Now suppose for every ∅ 6= G ∈ µ, |G| = |X| and |Gc| < |X|. Consider the

set F = {|Gc| : G ∈ µ,G 6= ∅}. Since F is bounded by |X|, supremum of F

exists and let m = supF .

Case 1: There exists ∅ 6= K ∈ µ such that |Kc| = m
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Then for every ∅ 6= G ∈ µ, |Gc| ≤ m, i.e., µ ⊆ {G ⊆ X : |Gc| ≤ m} ∪ {∅}.

Now by Lemma 4.2.4, every G ⊆ X such that |Gc| ≤ |Kc|, is also open in

(X,µ). Hence {G ⊆ X : |Gc| ≤ m} ⊆ µ. Also note that here m 6= |X|. Hence

µ = {G ⊆ X : |Gc| ≤ m} ∪ {∅}, where m < |X|.

Case 2: For every open set ∅ 6= G ∈ µ, |Gc| 6= m and m 6= 0.

For every ∅ 6= G ∈ µ, |Gc| < m, i.e., µ ⊆ {G ⊆ X : |Gc| < m} ∪ {∅}. Now since

m = supF , given any α < m, there exists H ∈ µ such that |Hc| = α. Then

every set M ⊆ X, with |M c| = α, is open in (X,µ). Moreover by Lemma 4.2.4,

every set U ⊆ X with |U c| < α is also open in (X,µ). This is true for every

cardinal number α < m. Hence {G ⊆ X : |Gc| < m} ∪ {∅} ⊆ µ and thus we get

µ = {G ⊆ X : |Gc| < m} ∪ {∅}, where m ≤ |X|.

If m is not a limit cardinal then there exists a cardinal n such that m is the

successor of n. Therefore µ can be written as µ = {G ⊆ X : |Gc| ≤ n} ∪ {∅}.

Hence if m is a limit cardinal and m 6= 0, then µ takes the form {G ⊆ X : |Gc| <

m} ∪ {∅}.

Now the converse part of the theorem, we can easily verify that the generalized

topologies listed in the theorem are completely homogeneous. Hence the proof.

To conclude this section, the competely homogeneous strong generalized

topologies on an arbitrary nonempty set X are listed in the following theorem.

Theorem 4.2.4. The competely homogeneous strong generalized topologies on

an arbitrary nonempty set X are

1. {G ⊆ X : |G| ≥ m} ∪ {∅}, where m ≤ |X|.
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2. {G ⊆ X : |Gc| < m} ∪ {∅}, where m ≤ |X| and m is a limit cardinal,

m 6= 0.

3. {G ⊆ X : |Gc| ≤ m} ∪ {∅}, where m < |X|.

Note that P (X) and {∅, X} can be obtained from (1) and (3) of the above

list for m = 1 and m = 0 respectively. Also we may obtain generalized topologies

of the form (3) from (2) if m is a limit cardinal and m has a successor.

4.3 On homogeneous generalized topological

spaces

Here we consider a large collection of homogeneous generalized topologies on

cyclically ordered set and we study the properties of the same. First let us go

through the following examples.

Example 4.3.1. Let X = {a, b, c, d}. Some homogeneous generalized topologies

on X are,

1. {∅}

2. {∅, {a, b}, {b, c}, {c, d}, {a, d}, {a, b, c}, {b, c, d}, {a, d, c}, {a, b, d}, X}

3. {∅, {a, b, c}, {b, c, d}, {c, d, a}, {d, a, b}, X}

4. {∅, {a, b}, {c, d}, {a, b, c}, {b, c, d}, {a, d, c}, {a, b, d}, X}
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Note that in examples 2 and 3, there is a cyclicity in the sets and many

homogeneous generalized topologies are obtained in this way. A cyclically ordered

set is defined as follows.

Definition 4.3.1. [44]A set X is said to be cyclically ordered if there is a ternary

relation [a < b < c] on X which satisfies

1. For any distinct a, b, c ∈ X we have either [a < b < c] or [b < a < c], but

not both.

2. [a < b < c], if and only if [b < c < a], if and only if [c < a < b], for any

a, b, c ∈ X.

3. If [a < b < c] and [a < c < d], then [a < b < d].

A cyclic interval of length n is an n-tuple (x1, x2, . . . , xn) in which every three

tuple (xi, xj, xk) satisfies above three axioms, for every i < j < k where i, j, k ∈

{1, 2, . . . , n} and also there exists no element x ∈ X such that (xi−1, x, xi), i =

1, 2, . . . , n, are in cyclic order. Let C denotes a cyclic interval of length n, C =

[x1 < x2 < . . . < xn], let us denote the set {x1, x2, . . . , xn} also by C if there

is no confusion. A cyclic subinterval C
′

is a subset of C which itself is a cyclic

interval.

Let X be a cyclically ordered set. Then two intervals C1 and C2 of X are

said to be k connected if |C1 ∩C2| = k considering C1 and C2 as underlying sets

and the intervals C1 and C2 are said to be disjoint if they are disjoint as subsets

of X or if they are 0 connected.
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Lemma 4.3.1. [18]Let (X,µ) be a generalized topological space and let Mµ

denotes the union of open sets in (X,µ). Then the following are equivalent.

1. (X,µ) is homogeneous.

2. (Mµ, µ) is homogeneous.

Definition 4.3.2. Consider a finite cyclically ordered set X and A be a cyclic

interval of X. Let A = [x1 < x2 < . . . < xn]. For an integer k such that

1 ≤ k ≤ |A|, we define cyclic subintervals C ′is of A, where Ci = [xi < xi⊕1 <

. . . < xi⊕(k−1)] for i = 1, 2, . . . , n and ⊕ denotes the addition modulo n. Consider

the generalized topology generated by the sets C1, C2, . . . , Cn. Note that C ′is are

subintervals of length k, with k ≥ 1 and Ci and Ci⊕1 are k − 1 connected for

every i = 1, 2, . . . , n and let us denote this generalized topology by µk(A).

We discuss the properties of the generalized topology (X,µk(A)) in this sec-

tion. We use the cycles in group theory in the proofs of some of the theorems

and these cycles are different from the cyclic interval we discussed in this section.

Theorem 4.3.1. Let X be a finite cyclically ordered set and A ⊆ X be a cyclic

interval of X. Then µk(A), for 1 ≤ k ≤ |A|, is a homogeneous generalized

topology on X.

Proof. Let A = {x1, x2, . . . , xn} and by the definition of µk(A), there exist inter-

vals C1, C2 . . . , Cn, where each Ci, for i = 1, 2, . . . , n, is of length k and each Ci

and Ci⊕1 are k − 1 connected, such that the sets B = {C1, C2, . . . , Cn} generate

the generalized topology µk(A). Now let xi, xj ∈ A and we need a homeoemor-

phism h on (A, µk(A)) which map xi onto xj. Let S(X) denotes the group of all

permutations on X. Consider the subgroup G of S(X) generated by the cycle
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g = (x1 x2 . . . xn) ∈ S(X). Then it is easy to verify that g and all of its powers

are homeomorphisms on A. Define h as h = gj−i if i < j and gn−(i−j) if i > j.

Then h ∈ G and h is a homeomorphism on A which map xi onto xj. Thus µk(A)

is a homogeneous generalized topology on X.

Given a nonempty set X, we can give several cyclic order for X to obtain

homogeneous generalized topologies. Considering the collection of all generalized

topologies on X, we saw that it form a complete lattice. Thus we can talk about

the join of two generalized topologies. See the following examples.

Example 4.3.2. Let X = {1, 2, 3, 4, 5} with cyclic order [1 < 2 < 3] and [4 < 5].

Then A = {1, 2, 3} ⊆ X is a cyclic interval of X. Let k = 2. Then µ2(A) =

{∅, {1, 2}, {2, 3}, {3, 1}, {1, 2, 3}} is a homogeneous generalized topology on A, in

fact it is completely homogeneous.

Example 4.3.3. Let X = {1, 2, 3, 4, 5, 6, 7} and A = [1 < 2 < 3] and B = [3 <

4 < 5] are cyclic intervals with respect to two different cyclic orders on X. Then

µ2(A) = {∅, {1, 2}, {2, 3}, {3, 1}, {1, 2, 3}} and µ2(B) = {∅, {3, 4}, {4, 5}, {5, 3},

{3, 4, 5}}. Even though µ2(A) and µ2(B) are homogeneous it can be easily seen

that µ2(A)∨µ2(B) is not a homogenous generalized topology on X. See Theorem

4.3.2.

Example 4.3.4. Let X = {1, 2, 3, 4, 5} and A = [1 < 2 < 3 < 4 < 5] and

B = [3 < 2 < 4 < 1 < 5] are cyclic intervals with respect to two different

cyclic orders on X. Then µk(A) and µk(B) are homogeneous for any k such that

1 ≤ k ≤ 5. See Note 4.3.1.

Remark 4.3.1. Minimal open sets of µk(A) are the cyclic intervals in the base,

namely C1, C2, . . . , Cn. Also if k = |A| − 1. then µk(A) is a completely homoge-

neous generalized topology on A.
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Note that given any finite set X, we obtain several homogeneous generalized

topologies on X by giving some cyclic order to elements of X.

Remark 4.3.2. Homeomorphism preserves cyclic order.

Let X be a cyclically ordered set and A = [x1 < x2 < . . . < xn] is a cyclic

interval of X with generalized topology µk(A). Let h be a homeomorphism on

(A, µk(A)). Let C1, C2, . . . , Cn are cyclic intervals which generate µk(A). By

Remark 4.3.1, {C1, C2, . . . , Cn} is a collection of minimal open sets [18]. Then

{h(C1), h(C2), . . . , h(Cn)} is again a collection of minimal open sets. Also Ci

and Cj are k − 1 connected implies h(Ci) and h(Cj) are k − 1 connected. Hence

[h(x1) < h(x2) < . . . < h(xn)] is a cyclic interval, in fact h map a cyclic interval

of length n onto a cyclic interval of same length.

Note 4.3.1. Thus for each cyclic interval A ⊆ X and each integer k such that

1 ≤ k ≤ |A|, µk(A) is a homogeneous generalized topology on A or X. Now

fix k and change the cyclic order on A. Let A and B are cyclic intervals of X

such that |A| = |B|. Then it is easy to verify that (X,µk(A)) is homeomorphic

to (X,µk(B)). Thus varying cyclic order on A can no longer make non homeo-

morphic homogeneous generalized topologies. But varying k in µk(A) gives non

homeomorphic homogeneous generalized topologies on A or X. Here we try to

find out new homogeneous generalized topologies.

Theorem 4.3.2. Let F and G be two disjoint cyclic intervals of a finite cyclically

ordered set X and consider the generalized topologies µk(F ) and µk′ (G) on X

where k and k
′

are integers vary in the range 1 ≤ k ≤ |F | and 1 ≤ k
′ ≤ |G|.

Then the join of µk(F ) and µk′ (G) is a homogeneous generalized topology on X

if and only if

1. Cardinality of F and G are same and
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2. k = k
′
.

Proof. Let F = {x1, x2, . . . , xm} and G = {y1, y2, . . . , yn}. Let B = {C1, C2 . . . ,

Cm} and B
′
= {D1, D2 . . . , Dn} are collections of cyclic sub intervals of F and G

respectively which satisfy properties in Definition 4.3.2, where C
′
is are of length

k and D
′
js are of length k

′
and each Ci and Ci⊕1 are k − 1 connected for i =

1, 2, . . . ,m. Also each Dj and Dj⊕1 are k
′ − 1 connected for j = 1, 2, . . . , n.

Assume µ = µk(F ) ∨ µk′ (G) is a homogeneous generalized topology on X.

Let x ∈ F and y ∈ G. Then there exist a homeomorphism h on (X,µ) such

that h(x) = y. Since x ∈ F , x ∈ Ci for some i ∈ {1, 2, . . . ,m}. Note that

here min(X,µ) = B ∪ B′ . Then h(Ci) is a minimal open set containing y,

since homeomorphism maps minimal open sets onto minimal open sets. Thus

h(Ci) ∈ B
′

implies h(Ci) = Dl for some l ∈ {1, 2, . . . , n}. Since h is a bijection

|Ci| = |h(Ci)| = |Dl|. But |Dl| = |Dj| for every j ∈ {1, 2, . . . , n}. Hence k = k
′

and also h(
m⋃
i=1

Ci) =
n⋃
j=1

Dj. Also by Remark 4.3.2, h preserves cyclic order. Thus

h(F ) is a cyclic interval and h(F ) = G, since F ∩G = ∅, we have |F | = |G|.

Next assume the converse. Then n = m and k = k
′
. Let a, b ∈ F ∪G.

Case 1: a, b ∈ F . Let a = xi and b = xj for some i, j ∈ {1, 2 . . .m}. Define

h = gj−i if i < j and h = gm−(i−j) if i > j where g = (x1 x2 . . . xn) ∈ S(X)

where S(X) is the group of all permutations on X. Then h is a homeomorphism

on F ∪G and hence h is a homeomorphism on X.

Case 2: a, b ∈ G. Similar to Case 1.

Case 3: a ∈ F and b ∈ G. Let a = xi and b = yj for some i, j ∈ {1, 2, . . . ,m}.

Define h by h(xi⊕n) = yj⊕n where n is a natural number. Then it is easy to check

that h is a homeomorphism on X. Hence the proof is complete.

Remark 4.3.3. Above theorem can be extended to a finite number of disjoint
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subintervals of X.

Lemma 4.3.2. Let (X,µ) be a homogeneous generalized topological space. Then

the number of minimal open sets containing x is same for every x ∈ X.

Proof. Let {Ui}i∈I , where I is an indexing set, be the collection of all minimal

open sets containing x. Let y ∈ X be arbitrary and y 6= x. Then there exists

a homeomorphism h on X such that h(x) = y. Then h(Ui) is a minimal open

set containing y for every i ∈ I. Also these are the only minimal open set

containing y. If not, suppose G is a minimal open set containing y such that

G is not of the form h(Ui). Now consider h−1(G), this is a minimal open set

containing x so h−1(G) = Ui for some i implies G = h(Ui), a contradiction to

our assumption.

Thus if elements of min(X,µ) has finite cardinality, say m, and the number

of minimal open sets containing x is k, then we obtain the following result.

Proposition 4.3.1. Let µ be a homogeneous generalized topology on a finite set

X and for each U ∈ min(X,µ) has cardinality m. Let k denote the number of

minimal open sets cotainining x. Then m.|min(X,µ)| = n.k, where n = |X|.

Remark 4.3.4. Let A be a cyclic interval of a finite set X and consider the

generalized topology µk(A) where 1 ≤ k ≤ |A|. Then the number of minimal

open set containing x ∈ A is k.

Theorem 4.3.3. Let F and G be cyclic subintervals of a finite cyclically ordered

set X such that F ∩ G is nonempty. Consider the generalized topologies µk(F )

and µk′ (G) on X where 1 ≤ k ≤ |F | and 1 ≤ k
′ ≤ |G|. If the join of µk(F ) and

µk′ (G) is a homogeneous generalized topology on X then F = G.
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Proof. Let B = {C1, C2 . . . , Cm} andB
′

= {D1, D2 . . . , Dn} are collections of

cyclic intervals of F and G respectively which satisfy properties in 4.3.2, where

C
′
is are of length k and D

′
js are of length k

′
and each Ci and Ci⊕1 are k − 1

connected for i = 1, 2, . . . ,m. And each Dj and Dj⊕1 are k
′ − 1 connected for

j = 1, 2, . . . , n.

Assume that the join of µk(F ) and µk′ (G), say µ, is a homogeneous general-

ized topology on X. Then B∪B′∪{∅} form a base for a homogeneous generalized

topology µ on X. Suppose F 6= G. Let a ∈ F . Without loss of generality let us

assume that there exist an element b ∈ G such that b /∈ F . ie., G * F .

Case 1: k 6= k
′

Let h be a homeomorphism on (X,µ) mapping a onto b. If Ci is a minimal

open set containing a for some i ∈ {1, 2, . . . ,m}, then h(Ci) = Dj for some

j = {1, 2, . . . , n}, is a minimal open set containing b. Since h is a bijection

|Ci| = |Dj| and hence k = k
′
, which is a contradiction. Similar is the case if we

assume F * G. Thus F = G.

Case 2: k = k
′

Given F ∩G 6= ∅, choose c ∈ F ∩G. Then By Lemma 4.3.2, number of minimal

open set containing every x ∈ F ∪ G is constant. Then the minimal open set

containing c in B and B
′

are same, otherwise the number of minimal open set

containing c is strictly greater than the number of minimal open set containing

b ∈ G, since b /∈ F . Thus for each element x ∈ F ∩ G, minimal open set con-

taining x in the collection B is same as that in B
′
. Since c ∈ F there exists

a p ∈ {1, 2, . . . ,m} such that c ∈ Cp ∈ B ⇒ Cp ∈ B
′
. But by Remark 4.3.4,

there are exactly k minimal open sets containing c in the collection B, without

loss of generality let C1, C2, . . . , Ck are the minimal open sets containing c which

implies C1, C2, . . . , Ck ∈ B
′

consequently, Ci ⊆ F ∩G for every i ∈ {1, 2, . . . , k}.
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But Ck and Ck+1 are k − 1 connected implies Ck+1 is a minimal open set for

all elements in Ck ∩ Ck+1 ⊆ Ck ⊆ F ∩ G, consequently, Ck+1 ∈ B
′
. Proceeding

like this we get Ci ∈ B
′

for every i ∈ {1, 2, . . . ,m}. That is B ⊆ B
′

and hence

F ⊆ G. Similarly we can prove that B
′ ⊆ B implying G ⊆ F . Hence F = G.

Remark 4.3.5. Converse of above theorem is not true. For example, let X =

{a, b, c, d, e, f}, F = {a, b, c, d, e} with order [a < b < c < d < e] and k = 2

and G = {a, b, c, d, e} with order [a < c < b < d < e] and k
′

= 2. Con-

sider µ2(F ) and µ2(G) with base B = {{a, b}, {b, c}, {c, d}, {d, e}, {e, a}, ∅} and

B
′
= {∅, {a, c}, {c, b}, {b, d}, {d, e}, {e, a}} respectively. Consider the generalized

topology µ2(F )∨ µ2(G), then we can not find a homeomorphism mapping a onto

b. Therefore µ2(F ) ∨ µ2(G) is not homogeneous.

Remark 4.3.6. In Theorem 4.3.3, F = G does not imply that cyclic orders

on F and G are same. That is there are generalized topologies µk(F ) and

µk′ (G), with F = G, cyclic orders on F and G are different and general-

ized topology µk(F ) ∨ µk′ (G) is homogeneous. Let X = {a, b, c, d, e} and F =

G = {a, b, c, d}. [a < b < c < d] is the cyclic order in F and [a < c <

b < d] is the cyclic order in G. Let k = 2 and k
′

= 3. Then µk(F ) =

{∅, {a, b}, {b, c}, {c, d}, {d, a}, {a, b, c}, {b, c, d}, {c, d, a}, {a, d, b}, F} and µk′ (G) =

{∅, {a, c, b}, {c, b, d}, {b, d, a}, {a, d, c}, G}. Then µk(F )∨µk′ (G) is homogeneous.
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4.4 Completely homogeneous fuzzy generalized

topologies

In this section we introduce the concept of homogeneous spaces and completely

homogeneous spaces in fuzzy generalized topologies and discuss few properties

of level generalized topologies.

Throughout this section L will denote an F -lattice.

Definition 4.4.1. [23] Let µ1, µ2 be L-fuzzy generalized topologies on X and

Y respectively. Let f : X → Y . Then the function f is called continuous if for

every A ∈ µ2, f
−1(A) ∈ µ1, where f−1 is the L-fuzzy reverse mapping from LY

to LX induced from f : X → Y . Also f is called homeomorphism if it is bijective

and the induced L-fuzzy map, f and L-fuzzy reverse map, f−1 are continuous.

We introduce the concept of homogeneity in L-fuzzy generalized topological

spaces.

Definition 4.4.2. Let X be a nonempty set and L be an F -lattice. Then the

L-fuzzy generalized topological space (LX , µ) is called homogeneous if for every

pair x, y ∈ X, there exists a bijection on X mapping x onto y, which induces

a homeomorphism on (LX , µ) and (LX , µ) is called completely homogeneous if

every bijection on X induces a homeomorphism on (LX , µ).

Note that a necessary and sufficient condition for a permutation h of a set X

to be an L-fuzzy homeomorphism of (LX , µ) onto itself is that f ∈ µ if and only

if f ◦ h ∈ µ.
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Definition 4.4.3. [47] Let X be a nonempty set and L be a complete lattice.

Consider the L-fuzzy space LX , for A ∈ LX and a ∈ L, we define a−level(or

a−stratification) of A as the ordinary set {x ∈ X : A(x) ≥ a} denoted by A[a].

Proposition 4.4.1. Let LX be an L-fuzzy space and µ be an L-fuzzy generalized

topology on X. Then the set G[a](µ) = {f[a] : f ∈ µ}, where a ∈ L and a 6= 0, is

a generalized topology on X.

Proof. The level set corresponds to 0 ∈ µ is ∅, therefore ∅ ∈ G[a](µ). Let {fi[a]}i∈I
be an arbitrary collection of elements in G[a](µ). Then,

⋃
i∈I
fi[a] =

⋃
i∈I
{x ∈ X :

fi(x) ≥ a} = {x ∈ X :
∨
i∈I
fi(x) ≥ a}. Since

∨
i∈I
fi ∈ µ, we have

⋃
i∈I
fi[a] ∈ G[a](µ).

Thus G[a](µ) is a generalized topology on X.

Let µ be an L-fuzzy generalized topology on X. Then the collection G[a](µ) =

{f[a] : f ∈ µ} for a ∈ L and a 6= 0, is called level generalized topology with respect

to a.

Theorem 4.4.1. Let LX be an L-fuzzy space and µ be a completely homogeneous

L-fuzzy generalized topology on X. Then all the level generalized topologies are

also completely homogeneous.

Proof. Let h be a bijection on X, since (LX , µ) is completely homogeneous, h

will induce a homeomorphism on (LX , µ). Note that h is a homeomorphism of

(LX , µ), for f ∈ LX , h(f) and h−1(f) are in µ, where h(f)(y) =
∨
{f(x) : x ∈

X, h(x) = y} for all y ∈ X and h−1(f)(x) = f(h(x)). Let a ∈ L and G[a](µ) be

a level generalized topology on X and let U ∈ G[a](µ). Then U = f[a] for some

f ∈ µ. It is enough to show that h(U) ∈ G[a](µ) and h−1(U) ∈ G[a](µ). Consider

h(U) = h(f[a]) = {h(x) : f(x) ≥ a} = {x ∈ X : f(h−1(x)) ≥ a} = {x ∈ X :
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f ◦ h−1(x) ≥ a} = {x ∈ X : h(f)(x) ≥ a} = h(f)[a]. But h(f) ∈ µ and thus

h(U) ∈ G[a](µ).

Similarly h−1(U) = h−1(f[a]) = {h−1(x) : f(x) ≥ a} = {x ∈ X : f(h(x)) ≥

a} = {x ∈ X : h−1(f)(x) ≥ a} = (h−1(f))[a](µ). Since h−1(f) ∈ µ, we have

h−1(U) ∈ Ga(µ). Thus h is a homeomorphism on (X,G[a](µ)). Since h and G[a]

are arbitrary, all level generalized topologies are completely homogeneous.

Remark 4.4.1. Converse of Theorem 4.4.1 is not true. For example, consider

the set X = {a, b, c} and L = {0, 1
2
, 1} with usual order and 0

′
= 1, 1

′
= 0 and

(1
2
)
′
= 1

2
. Then LX is an L-fuzzy space and consider the L-fuzzy generalized topol-

ogy µ having base B = {0, a1, b1, c1, f} where f(a) = 1
2
, f(b) = 1

2
and f(c) = 1.

Then G[ 1
2
](µ) and G[1](µ) are P (X) which is obviously completely homogeneous.

But as you see here µ is not completely homogeneous.
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Chapter 5
Conclusion

In this thesis we had investigated some properties of the lattice of generalized

topological spaces and introduced simple expansion of a generalized topology

and characterized the same. Using simple expansion we studied the properties

of adjacent topologies and compared the lattice of generalized topologies and

lattice of topologies on same set.

We determined the automorphism group of lattice of generalized topologies,

so that we could obtain the generalized topologies possessing a property simply

from the lattice structure of LGT (X). Also, we determined the automorphism

group of the lattice LFGT (X,L) of L-fuzzy generalized topologies on X when

L is a finite chain and when L is the diamond-type lattice. Homogeneity in

generalized topological spaces and L-fuzzy generalized topological spaces have

been discussed and characterized completely homogeneous generalized topologi-

cal spaces.
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In this dissertation we had investigated the properties of generalized topolo-

gies and fuzzy generalized topologies with special reference to the lattice theoretic

properties.

Scope for further research

Many results in this thesis open up new areas of research.

We had given several equivalent conditions for the simple expansion of a

generalized topology to be an upper neighbor of the same but the characterization

of simple expansion of T1 generalized topologies is yet to be obtained. Also we

had examples that some generalized topologies do not possess an upper neighbor

in the lattice of generalized topologies on an infinite set. We proved that when

the generalized topology µ is non µ-T1 or when µ or µc is finite then µ has an

upper neighbor in LGT (X). But we couldn’t tackle the problem in general and

is left open.

Similarly the study of lower neighbors of generalized topologies can also be

attempted and existence of lower neighbors in LGT (X) is also an open problem.

In Chapter 3, we determined the automorphism group of LFGT (X,L) when

L is a finite chain and when L is the diamond-type lattice only. For the general

lattice L or for an infinite chain, the determination of automorphism group of

LFGT (X,L) is still open.

In the last chapter we couldn’t completely characterize homogeneous gener-
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alized topologies and homogeneous fuzzy generalized topologies on an arbitrary

set. Also the related problems are characterization of hereditarily homogeneous

generalized topologies, rigid and antirigid properties of generalized topologies.

101



Bibliography

[1] Abd El-Monsef M. E., El-Deep S. N. and Mahmoud R. A. : β-Open Sets

and β-Continuous Mappings, Bull. Fac. Sci. Assiut Univ., 12, 77-90(1966).

[2] Agashe P. and Levine N. : Adjacent Topologies, J. Math. Tokushima Univ.,

7, 21-35(1973).

[3] Ayawan J. B. T. and Canoy S. R. : Axioms of Countability in Generalized

Topological Spaces, International Mathematical Forum, 8, No. 31, 1523 -

1530(2013).

[4] Baskaran R., Murugalingam M. and Sivaraj D. : Lattice of Generalized

Topologies, Acta Math. Hung., 133, No.4(2011).

[5] Birkhoff G. : Lattice Theory, American Mathematical Soc., Second Edition

(1984).

[6] Chacko B. : Some Lattice Theoretic Problems Related to General and Fuzzy

Topology, Thesis for Ph.D Degree, University of Calicut, India (2008).

102



Bibliography

[7] Chang C. L. : Fuzzy Topological Spaces, J. Math. Anal. Appl. 24, 182-

190(1968).
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[10] Császár Á. : Products of Generalized Topologies, Acta Math. Hung. 123

127-132(2009).
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