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Introduction

Graph theory is one of the well flourished branches of Mathematics. Orig-

inating from the modeling and negative resolution of famous Konigsberg bridge

problem by Leonard Euler[23], graph theory has entrenched as one of the best

tool to model network systems involved in complex real life problems. Beauty of

graph theory lies in its wide scope of applications in the fields ranging from net-

work theory, chemistry and operational research to architecture and linguistics.

Performing as a translator of real life problems to mathematical models, graph

theory has an astounding position amidst various branches of applied mathemat-

ics.

Among various branches of graph theory, graph polynomials is one of the

well studied concepts as they are used to unveil the structural properties of

graphs. Roughly speaking, a graph polynomial is a polynomial assigned to a

graph whose coefficients are the indicators of some graph theoretic parameters.

It can be defined as a function from the set of all finite graphs to the polynomial

ring over the set of real numbers such that isomorphic graphs are assigned to the

same polynomial.
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Introduction

In the present work, emphasizing on the structural similarity of pairs of nodes

in a network system, a new graph polynomial is introduced named as ‘Common

neighbor polynomial of graphs’. While modeling the structure of a social network

system, usually pairs of individuals with shared interests are represented by pairs

of vertices with common neighbors. The number of such common neighbors

serves as a measure of consensus and proclivities between the corresponding pair

of individuals. Moreover, it is conjectured that two persons having one or more

common acquaintances are more likely to be acquainted in future[7]. Hence the

study of common neighbors of pairs of nodes in a network system is significant

in predicting the possibility of future links as well as in clustering analysis.

An overview of the thesis

The thesis comprises an introductory chapter together with nine chapters in

which a new graph polynomial called “Common Neighbor Polynomial of graphs”

is introduced and studied in a detailed manner. In the introductory chapter, a

concise description is given detailing the motivational facts behind the intro-

duction of the new graph polynomial. Moreover, a blueprint of the upcoming

chapters is also provided.

In chapter 1, the terminology and notations that will appear in the subse-

quent chapters are detailed. Basic graph theoretic definitions are explained in

the first section. Second section of the chapter describes some important graph

operations. Section 1.3 includes an introduction to the theory of graph polyno-

mials along with some theorems on polynomials which are beneficial in the study

2



Introduction

of roots of polynomials.

In chapter 2, a new graph polynomial called ‘Common neighbor polyno-

mial’ is introduced whose coefficients are the cardinalities of i-common neighbor

sets which are defined as subsets of V (G) × V (G). The definition of i-common

neighbor set and common neighbor polynomial of graphs is introduced in sec-

tion 2.2. Let G(V,E) be a graph of order n. Then for 0 ≤ i ≤ n − 2, the

i-common-neighbor set of G is defined as N(G, i) := {(u, v) : u, v ∈ V, u 6=

v and |N(u) ∩ N(v)| = i}. The common-neighbor polynomial of G denoted by

N [G;x] is defined as N [G;x] =
∑(n−2)

i=0 |N(G, i)|xi. In section 2.3, the com-

mon neighbor polynomial of many well known graph classes are identified. The

common neighbor polynomial of strongly regular graphs and trees are studied

in section 2.4 and 2.5 respectively. The common neighbor polynomial of some

special graph constructions are discussed in section 2.6.

The common neighbor polynomial of graphs obtained by the unary graph

operations such as splitting graph, shadow graph or mycielsky graph of a given

graph are discussed in chapter 3.

Binary graph operations are used to model the action between two network

systems. Binary graph operations are usually known as graph products in which

two initial graphs are acted together according to some specific rules to produce

a new graph. Chapter 4 provides explicit formulae to find common neighbor

polynomial of some well known graph products such as join, corona, cartesian

product, rooted product and tensor product of graphs in terms of the common

neighbor polynomial of the parent graphs.

Structural equivalence of network systems is one of the prime concerns of
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network analysis. Usually in graph theory, isomorphic graphs are referred to as

equal graphs. But, the existence of isomorphism may not be a criteria for iden-

tifying two graphs as equivalent as far as structural equivalence is concerned.

From this point of view, CNP -equivalent classes of graphs are defined and

studied in chapter 5. Two graphs G and H are said to be CNP -equivalent

(G
N∼ H) if and only if N [G;x] = N [H;x]. Obviously, the relation

N∼ is an

equivalence relation on the class G of all simple finite graphs. The set of all

graphs CNP -equivalent to a graph G is denoted as [G]N and is defined as

[G]N = {H ∈ G : N [H;x] = N [G;x]}. A graph H is said to be CNP−unique

if [H]N = {H}. Some CNP -equivalent classes of graphs are identified in section

5.2. In section 5.3, it is showed that graph classes like complete graphs and

complete bipartite graphs are CNP -unique graphs.

While introducing a new graph polynomial, it is customary to verify whether

it can be the graphical model of a stable physical system. A polynomial all of

whose non zero roots lie in the open left half plane is said to be stable with

respect to the closed right half plane and such a polynomial is called a Hur-

witz polynomial. Identification of Hurwitz polynomials are beneficial in control

systems theory as they represent the characteristic equations of stable linear

systems. In chapter 6, we identify the conditions under which the common

neighbor polynomial of some graph classes becomes a Hurwitz polynomial.

Chapter 7 focuses on the real roots of common neighbor polynomial of

graphs. The roots of common neighbor polynomial of a graph G are called the

common neighbor roots of G. The number of real common neighbor roots of a

graph G where the multiplicities counted, is denoted by N (G). In chapter 7,

4
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we study the number of real common neighbor roots of some well known graph

classes.

In chapter 8 we generalize the concepts of i-common neighbor sets and com-

mon neighbor polynomial of graphs and define generalized i-common neighbor

sets and generalized common neighbor polynomial of graphs. In section 8.2. The

generalized common neighbor polynomial of some well known graph classes are

identified. Moreover, some characterizations on graphs in terms of generalized

common neighbor polynomial of graphs are also discussed. In section 8.3, we

define the simplicial complexes of graphs and introduce the concept of cluster

of a vertex in a graphs. In the light of these concepts, generalized i-common

neighbor sets of graphs is studied.

Chapter 9 spot lighted on the significance of common neighbor polynomial

of graphs in some applied areas. In section 9.1, we study common neighbor poly-

nomial of graphs incorporated with chemical graph theory. Structural analysis

of chemical molecules is a prime concern of mathematical chemistry. The com-

mon neighbor polynomial of nanostar dendrimers and PAMAM dendrimers are

studied in subsections 9.1.1 and 9.1.2 respectively. In 9.1.3, the Hosoya polyno-

mial of graphs with diameter not more than three is derived using the common

neighbor polynomial of corresponding graphs. Section 9.2 deals with the sig-

nificance of common neighbor polynomial of graphs in network data clustering.

In 9.2.1, we discuss the Shared Nearest Neighbor(SNN) clustering and explains

the way in which the common neighbor polynomial of graphs is useful in the

formation of meaningful clusters. In section 9.3, we establish a relation which

connects common neighbor polynomial of a graph with the adjacency matrix of

5
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the graphs. Making use of this relation, a C++ program is developed for gener-

ating coefficients of common neighbor polynomial of a graph and is provided as

an Appendix.

In the concluding chapter of the thesis, some directions for further research

are included. Also this chapter includes a list of publications and bibliography.
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Chapter 1
Preliminaries

The chapter explores the graph theoretic terminology and notations

that will appear in the subsequent chapters. We adopt the basic

definitions and notations as in Graph Theory [20], written by J.A.

Bondy and U.S.R. Murty. This chapter includes three sections.

The first section deals with basic definitions and notations that may

appear in the forthcoming chapters. In the second section various

graph theoretic operations are discussed. Third section incorporates

some basic results and theorems which are used in the forthcoming

chapter to study the roots of polynomials.

1.1 Basic terminology

A graph G is an ordered pair (V,E) consisting of the disjoint sets V of vertices

and E of edges, together with an incidence function ψ : E → V × V which

associates each edge of G with an unordered pair of vertices of G. A graph

having finite number of vertices and edges is called a finite graph. The number

7



1.1. Basic terminology

of vertices and number of edges of a finite graph G are called the order and

size of G respectively. Two or more edges having same end vertices are called

multiple edges and an edge with identical end vertices is called a loop. A

graph is simple if it has no multiple edges or loops.

The end vertices of an edge are said to the incident with the edge. Two

vertices are adjacent if they are incident with a common edge and two edges

are adjacent if they are incident to a common end vertex. Two adjacent vertices

are said to be neighbors of each other. The set of all neighbors of a vertex v ∈ V

is called the neighbor set of v and is denoted by N(v). The number of vertices

in N(v) is called the degree of v. Vertices of degree 1 are called pendent

vertices. A graph having all the vertices with same degree is called a regular

graph. A subset S of the set of vertices of a graph G in which any two distinct

vertices are adjacent is called a clique in G.

Let G be a graph of order n. Then the adjacency matrix of G is a n × n

matrix in which the ijth entry becomes 1 or 0 according as the pair of vertices

vi and vj are adjacent or not in G.

A complete graph is a simple graph in which all the pairs of vertices are

adjacent. A graph is bipartite if its vertex set can be partitioned into two

subsets X and Y so that any edge of G has one end vertex in X and the other

in Y . If each vertex of X is joined to every vertex of Y in a bipartite graph, it

is called a complete bipartite graph.

A complete m-partite graph Kn1,n2,...,nm is a graph whose vertex set can

be partitioned into m non empty sets Vi, i = 1, 2, . . . ,m such that every vertex

in Vi is adjacent to every vertex in Vj for every i 6= j and i, j ∈ {1, 2, . . . ,m}.

8



1.1. Basic terminology

A walk is an alternating sequence v0e1v1e2 . . . vi−1eivi . . . vn of vertices and

edges in which the vertices vi−1 and vi are the end points of the edge ei. The

length of a walk is the number of edges in the walk. A path is a walk having

all the vertices distinct. A path on n vertices is denoted by Pn. A trail is a

walk where all the edges are distinct. A closed trail in which all the vertices are

distinct is called a cycle. A cycle of length n is denoted by Cn. A graph G is

connected if for each pair of vertices u and v in V (G), there is a u-v path in G.

A disconnected graph is a graph which is not connected. A graph is acyclic

if it contains no cycles. A connected acyclic graph is called a tree.

The distance between two vertices u and v, denoted by d(u, v), is the length

of the shortest u-v path in G. The maximum distance between any pair of

vertices of G is called the diameter of G. The Hosoya polynomial[26] of G is

defined as H(G, x) =
∑l

j=1 d(G, j)xj where d(G, j) denote the number of pairs

of vertices in G having distance j apart and l denote the diameter of the graph.

A Wheel graph Wn, n > 3 is obtained by taking the join of the cycle Cn−1

and K1. A helm, Hn, n > 3 is obtained from a wheel graph Wn by adding

pendent edges to every vertices on the wheel rim. A web graph WBn, n > 3 is

obtained by joining the pendent vertices of a helm Hn to form a cycle and then

adding a single pendent edge to each vertex of this outer cycle. WBn has 3n− 2

vertices and 3(n − 1) edges. A shell graph Sn where n ≥ 3 is obtained from

the cycle graph Cn by adding the edges corresponding to the (n− 3) concurrent

chords of the cycle. The vertex at which all the chords are concurrent is called

the apex of the shell. A bow graph is a double shell with same apex in which

each shell has any order.

9



1.1. Basic terminology

A butterfly graph is a bow graph along with exactly two pendent edges

at the apex. A friendship graph Fn is the one point union of n copies of the

cycle C3. A Tadpole T(n,l) is a graph obtained by attaching a path Pl to one

of the vertices of the cycle Cn by a bridge. The n- barbell graph Bn,1 is a

graph obtained by connecting two copies of complete graph Kn by a bridge. The

Lollipop graph Lm,n is a graph obtained by joining a complete graph Km to a

path Pn with a bridge.

A bistar graph Bm,n is obtained by connecting the center vertices of two star

graphs K1,m and K1,n by a bridge. The bipartite Cocktail party graph Bn is

the graph obtained by removing a perfect matching from the complete bipartite

graph Kn,n. The Windmill graph W
(m)
n is obtained by taking m copies of Kn

with a vertex in common. An armed crown Cn
⊙

Pm is a graph obtained by

attaching a path Pm to every vertex of the cycle Cn.

A simple k-regular graph G on n vertices is said to be strongly regular of

type (n, k, λ, l) if there exists integers λ, l such that any adjacent pair of vertices

of G have exactly λ common neighbors and any non-adjacent pair of vertices of

G have exactly l common neighbors.

A rooted tree[13] is a tree in which one of the vertices is distinguished as

the root. According to the distance of other vertices from the root vertex, there

is a hierarchy on the vertices of a rooted tree. The distance of a vertex v from

the root is called the depth or level of the vertex. The height of a rooted tree is

the greatest depth of a vertex of the tree. Considering a path from the root to

a vertex w, if a vertex v immediately precedes w , then v is called the parent of

w and w is called the child of v. Vertices having same parent are called siblings.

10



1.2. Graph operations

An m-ary tree (m ≥ 2) is a rooted tree in which every vertex has m or fewer

number of children. A complete m-ary tree is an m-ary tree in which every

internal vertices has exactly m children and all leaves are of same distance from

the root.

The derivative of a graph G is a graph obtained from G by deleting all

the pendent vertices of G. A caterpillar[39] is a tree graph whose derivative

is a path graph . Consequently, a caterpillar Pn(m1,m2, . . . ,mn) is obtained by

attaching mi pendent edges to the vertex vi of a path Pn where i ∈ {1, 2, . . . , n}.

A star like tree graph S(n1, n2, . . . , nk)[24] is a graph having only one vertex

w of degree greater than 2 such that deletion of w results in a disjoint union of

the path graphs Pn1 , Pn2 , . . . , Pnk
. The star like tree graphs are used to represent

proteins which will have generally 20 branches where each branch indicates the

presence of one of the 20 natural amino acids.

Let G and H be two graphs with incidence functions ψG and ψH respectively.

Then G and H are isomorphic[33] if there exists bijections θ : V (G) → V (H)

and φ : E(G)→ E(H) such that ψG(e) = uv if and only if ψH(φ(e)) = θ(u)θ(v)

where u, v ∈ V (G) and e ∈ E(G).

1.2 Graph operations

The splitting graph [12] S(G) of a graph G is obtained by adding new vertices

v′ to G corresponding to each vertex v of G and then joining the vertex v′ to all

vertices of G adjacent to v in G. The shadow graph Sh(G) of a graph G is

obtained by taking two copies of G, say G1 and G2 and joining each vertex of

11



1.2. Graph operations

G1 to the neighbors of the corresponding vertex of G2. The Mycielski graph,

µ(G) [22] of a graph G contains G itself as an isomorphic subgraph together with

n + 1 additional vertices; a vertex vi corresponding to each vertex ui of G and

another vertex w. Each vi is connected by an edge to w and for each edge uiuj

of G, µ(G) includes two additional edges uivj and viuj.

Consider the graph G(V,E) and let w /∈ V . Then the graph G′ = G+w is a

graph obtained from G by including the vertex w in G and joining it to all other

vertices of G. If H and K are two graphs, then the join, H∨K is the graph with

vertex set V (H)∪V (K) and edge set E(H)∪E(K)∪{uv : u ∈ V (H), v ∈ V (K)}.

The corona of two graphs[13] K and H is formed from one copy of K and

|V (K)| copies of H where the ith vertex of K is adjacent to every vertex in the

ith copy of H[35]. It is denoted by K ◦H. The Cartesian product[13] of two

graphs G and H is the graph G�H with vertex set V (G)×V (H) and the vertices

(u, v) and (x, y) are adjacent if and only if u = x and vy ∈ E(H) or ux ∈ E(G)

and v = y.

A rooted graph is a graph in which one vertex is distinguished as a root.

The rooted product[3] of a graph G and a rooted graph H is obtained as

follows: Take |V (G)| copies of H and for each vertex vi of G, identify vi with the

root vertex of the ith copy of H. The tensor product[13] of two graphs K and

H is the graph K ×H with vertex set V (K)× V (H) and the vertices (u, v) and

(x, y) are adjacent if and only if ux ∈ E(K) and vy ∈ E(H).

12
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1.3 Polynomials

The following theorems can be used to study the number of real roots of poly-

nomials.

Theorem 1.3.1 (de Gua’s Theorem [42]). If the polynomial f(x) lacks 2m con-

secutive terms then it has no less than 2m imaginary roots. If 2m+1 consecutive

terms are missing then, if they are between terms of different signs, the polyno-

mial has no less than 2m imaginary roots, whereas, if the missing terms are

between terms of same sign, the polynomial has no less than 2m + 2 imaginary

roots.

Theorem 1.3.2 (S. Kakeya [40]). Let p(z) =
∑n

j=0 ajz
j be a polynomial with

real coefficients satisfying a0 < a1 ≤ a2 ≤ . . . ≤ an, then all the zeros of p(z) lie

in |z| ≤ 1.

Theorem 1.3.3. [37] Consider the cubic equation ax3 + bx2 + cx+ d = 0. Then

the discriminant of the cubic equation is given by ∆ = b2c2−4ac3−4bd+18abcd−

27a2d2. If ∆ > 0, the equation has three real distinct roots; if ∆ = 0, the equation

has three real roots in which one of them is a multiple root; if ∆ < 0, the equation

has one real root and two imaginary roots.

A polynomial f(x1, . . . , xn) is said to be stable [28] with respect to a region

Ω ∈ Cn if no root of f lies in Ω. Polynomials which are stable with respect

to the closed right half plane and with respect to the open unit disk are called

Hurwitz polynomial and Schur polynomial respectively. Hurwitz polynomials are

important in control systems theory, because they represent the characteristic

equations of stable linear systems[15].
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Let G be the set of finite graphs on n vertices and R[x] the polynomial ring

over the real numbers. Then a graph polynomial is a function P : G → R[x] such

that for any two graphs G,H ∈ G, if G is isomorphic to H, then P (G) = P (H).

A graph polynomial encodes information about the graph and enables algebraic

methods for extracting this information.

With the introduction of edge difference polynomial[21] in 1878, J.J. Sylvester

initiated the study of graph polynomials which was further studied by J. Petersen

in 1891. Since then many graph polynomials were introduced among which

matching polynomial[9], chromatic polynomial[16], Hosoya polynomial[26] and

domination polynomial[36] are well popularized.

14



Chapter 2
Common neighbor polynomial of

graphs

In social network systems, pair of nodes having same common

neighbors must have some similarity in the social sense. Also the

number of common neighbors of two nodes serves as a measure

of their similarity. Similarities of nodes in network systems were

discussed in [8]. In this chapter, emphasizing on the structural

equivalence of pairs of nodes in a network system, we introduce

the i-common neighbor set and the common neighbor polynomial of

graphs. Throughout this work G denotes a simple and finite graph

with vertex set V (G) and edge set E(G) and (u, v) denotes an un-

ordered vertex pair of distinct vertices of G.
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2.1. Common neighbor polynomial of graphs

2.1 Common neighbor polynomial of graphs

In this section we first introduce the concept of i-common neighbor set and then

define the common neighbor polynomial of a graph. Moreover, we derive the

common neighbor polynomial of some well known graph classes.

Definition 2.1.1. Let G = (V,E) be a graph of order n. Then for 0 ≤ i ≤ n−2,

the i-common neighbor set of G is defined as:

N(G, i) := {(u, v) : u, v ∈ V, u 6= v and |N(u) ∩N(v)| = i}.

Definition 2.1.2. Let G be a graph of order n. Then the common neighbor

polynomial of G denoted by N [G;x] is defined as

N [G;x] =

(n−2)∑
i=0

|N(G, i)|xi.

1 3

2
4

5

Figure 2.1: The graph G

Example 2.1.3. For i = 0, 1, 2 and 3, the i-common neighbor sets of the graph

G shown in 2.1 are

N(G, 0) = {(1, 5), (2, 5), (3, 4), (4, 5)},

N(G, 1) = {(1, 2), (2, 3), (1, 3), (1, 4), (2, 4), (3, 5)},

N(G, i) = φ for i = 2, 3.

Hence the common neighbor polynomial of G is N [G;x] = 6x+ 4.

We observe the following simple properties of N [G;x] :
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2.1. Common neighbor polynomial of graphs

(i) N [G;x] is a polynomial of degree at most (n− 2).

(ii) Isomorphic graphs have same common neighbor polynomials.

(iii) N(G, n) = φ and N(G, n− 1) = φ.

(iv) N [G; 1] =
∑n−2

i=1 |N(G, i)| =
(
n
2

)
.

(v) N [G; 0] gives the number of vertex pairs of G having no common neighbors.

(vi) N (m)[G; 0] = m!|N(G,m)|, m = 1, 2, . . . , (n− 2) where N (m)[G;x] denotes

the mth derivative of N [G;x] with respect to x.

Theorem 2.1.4. Let G be a simple graph of order n. Then N [G;x] is a non

constant polynomial if and only if there exists a path of length 2 in G.

Proof. Suppose N [G;x] is a non constant polynomial of degree m. Then there

exists a pair of vertices (u, v) which have m common neighbors. Let w be one

such neighbor. Then uwv is a path of length 2 in G. Conversely, suppose there

exists a path uwv of length 2 in G. Then the pair (u,v) has at least one common

neighbor w. Let the number of common neighbors of (u, v) = l ≥ 1. Then

N(G, l) 6= φ. Then N [G;x] is a non constant polynomial.

Theorem 2.1.5. If |N(G, i)| = m where i > 1, then G contains at least 1
2
m
(
i
2

)
cycles of length 4.

Proof. Since |N(G, i)| = m, there exist m pairs of vertices which share i common

neighbors for i > 1. Let (u, v) be one such pair. If w1 and w2 are two common

neighbors of u and v, then uw1vw2u is a cycle of length 4. Therefore, if there are

i common neighbors, there exist iC2 cycles of length 4 containing u and v. Since

17



2.2. Common neighbor polynomial of some well known graph classes

each such cycle corresponds to a maximum of 2 vertex pairs, if there are m such

pairs (u, v), there exist at least 1
2
m
(
i
2

)
cycles of length 4.

2.2 Common neighbor polynomial of some well

known graph classes

Theorem 2.2.1. For a complete graph Kn, we have

N [Kn;x] =

(
n

2

)
xn−2, n ≥ 2.

Proof. In Kn, any pair of vertices have (n− 2) common neighbors and there are(
n
2

)
such pairs of vertices.

Theorem 2.2.2. For a path graph Pn where n ≥ 2, we have

N [Pn;x] = (n− 2)x+

(
n− 1

2

)
+ 1.

Proof. Any pair (ui, ui+2) of vertices of Pn has one common neighbor for i =

1, 2, . . . , (n− 2). All other pairs of vertices have no common neighbors and there

are
(
n
2

)
− (n − 2) =

(
n−1
2

)
+ 1 such pairs. It follows that N(Pn, 1) = n − 2 and

N(Pn, 0) =
(
n−1
2

)
+ 1. Hence the result follows.

Lemma 2.2.3. Let the vertices of a cycle be u1, u2, . . . , un. Then the unordered

vertex pairs (ui, ui+2), i = 1, 2, . . . , n (where the indices i > n are taken modulo

n) are all distinct unless n = 4.

Proof. For i = 1, 2, . . . , n, the vertex pairs under consideration are (u1, u3),

(u2, u4), . . . , (un−2, un), (un−1, u1), (un, u2). Clearly, the first n − 2 pairs are all
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2.2. Common neighbor polynomial of some well known graph classes

distinct and the equality of pairs occur in the cases when n− 1 = 3 or n = 4. In

both these cases, n = 4. This completes the proof.

Theorem 2.2.4. For a cycle graph Cn, we have the following:

N [Cn;x] =


nx+ n(n−3)

2
, n > 2, n 6= 4,

2x2 + 4, n = 4.

Proof. By above lemma, if n 6= 4, the vertex pairs (ui, ui+2), i = 1, 2, . . . , n of Cn

are all distinct and each has one common neighbor ui+1 where the indices i > n

are taken over modulo n. All other pairs of vertices have no common neighbors.

Thus we have N(Cn, 1) = n and N(Cn, 0) =
(
n
2

)
− n = n(n−3)

2
. If n = 4, clearly

N [C4;x] = 2x2 + 4.

Theorem 2.2.5. For a complete bipartite graph Km,n where m,n ≥ 2, we have

N [Km,n;x] =

(
m

2

)
xn +

(
n

2

)
xm +mn.

Proof. Let M,N be the bipartite sets of vertices of Km,n and let |VM | = m and

|VN | = n. Any pair of vertices of M have n common neighbors and there are(
m
2

)
such pairs. Any pair of vertices of N have m common neighbors and there

are
(
n
2

)
such pairs. The pairs (u, v) where u ∈ Mand v ∈ N have no common

neighbors and there are mn such pairs. Hence the result follows.

Corollary 2.2.6. For a star graph K1,n, N [K1,n;x] =
(
n
2

)
x+ n.

Theorem 2.2.7. The common neighbor polynomial of bistar graph Bn,n is given

by the relation

N [Bn,n;x] = n(n+ 1)x+ (n+ 1)2.
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2.2. Common neighbor polynomial of some well known graph classes

Proof. Let Bn,n be a bistar graph which is the union of two star graphs K1,n

with centres u and v together with a new edge uv. For I = {1, 2, . . . , n}, let

{ui}i∈I and {vi}i∈I be the set of vertices of the star graphs with centers u and v

respectively. The pairs (ui, v) have one common neighbor u and the pairs (vi, u)

have one common neighbor v for i = 1, 2, . . . , n. And there are 2n such pairs.

For i, j ∈ I and i 6= j, the pairs (ui, uj) have one common neighbor u and the

pairs (vi, vj) have one common neighbor v where there are 2
(
n
2

)
such pairs. The

pairs (u, v), (ui, vj), (ui, u) and (vi, v) have no common neighbors and there are

1 + n2 + 2n such pairs. It follows that

N [Bn,n;x] =
(

2n+ 2

(
n

2

))
x+ 1 + n2 + 2n

= n(n+ 1)x+ (n+ 1)2.

This completes the proof.

Theorem 2.2.8. For ni > 1, i = 1, 2, . . . ,m, and
∑m

i=1 ni = N , the common

neighbor polynomial of complete m-partite graph Kn1,n2,...,nm is given by

N [Kn1,n2,...,nm ;x] =
m∑
i=1

(
ni
2

)
xN−ni +

∑
i 6=j;i,j∈{1,2,...,m}

ninjx
N−(ni+nj).

Proof. Let V1, V2, . . . , Vm be the m-partite sets of vertices of G = Kn1,n2,...,nm

with |Vi| = ni and
∑m

i=1 ni = N . Let (u, v) be any pair of vertices of G. We

consider the following two cases:

Case(i) Let u, v ∈ Vi; i ∈ {1, 2, . . . ,m}. Then (u, v) has N − ni common neigh-

bors and for each i, there are
(
ni

2

)
such pairs.

Case(ii) Let u ∈ Vi and v ∈ Vj where i, j ∈ {1, 2, . . . ,m} and i 6= j.
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2.2. Common neighbor polynomial of some well known graph classes

Then (u, v) has N −ni−nj common neighbors and there are ninj such pairs.

Hence the result follows.

Corollary 2.2.9. For a complete m partite graph Kn,n,...,n where n repeats m

times,

N [Kn,n,...,n;x] = m

(
n

2

)
xn(m−1) + n2

(
m

2

)
xn(m−2).

Proof. In the above theorem, put ni = n for each i = 1, 2, . . . ,m.

Theorem 2.2.10. For a lollipop graph Ln,1, we have

N [Ln,1;x] =

(
n

2

)
xn−2 + (n− 1)x+ 1.

Proof. The lollipop graph Ln,1 can be viewed as a complete graph Kn with a pen-

dent vertex attached to one of its vertices through a bridge. Let u1, u2, . . . , un, v

be the vertices of Ln,1 with the pendent vertex v joined to un with a bridge.

Then any pair of vertices (ui, uj) share (n− 2) common neighbors and there are(
n
2

)
such pairs. The pair of vertices (ui, v), i = 1, 2, . . . , (n − 1) share one com-

mon neighbor un. The pair (un, v) has no common neighbor. Hence the result

follows.

Theorem 2.2.11. For a wheel graph Wn, we have the following.

N [Wn;x] =


(n−1)(n−4)

2
x+ 2(n− 1)x2, if n 6= 5,

2x3 + 4x2 + 4x, if n = 5.

Proof. Note that Wn
∼= Cn−1 ∨K1. Let u1, u2, . . . , un−1 be the vertices of Cn−1

and let un be the vertex of K1. Let (u, v) be any pair of vertices of Wn.
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2.2. Common neighbor polynomial of some well known graph classes

Case(i) Let u, v ∈ {u1, u2, . . . , un−1}. Then the common neighbors of (u, v) in

Wn are the common neighbors of (u, v) in Cn−1 and the vertex un. Hence

the number of common neighbors of vertex pairs (u, v) under this case

equals one more than the number of common neighbors of (u, v) in Cn−1.

Case(ii) Let u ∈ {u1, u2, . . . , un−1} and v = un. Then the pairs (u, v) have 2

common neighbors ui+1 and ui−1 where all indices i are taken over modulo

(n− 1). So we have,

N [Wn;x] =xN(Cn−1;x) + (n− 1)x2

=


(n−1)(n−4)

2
x+ 2(n− 1)x2, if n 6= 5,

2x3 + 4x2 + 4x, if n = 5.

This completes the proof.

Theorem 2.2.12. For a Helm Hn, we have the following

N [Hn;x] =


2(n− 1)x2 + (n−1)(n+2)

2
x+ (n−1)(3n−8)

2
, if n 6= 5,

2x3 + 4x2 + 16x+ 14, if n = 5.

Proof. Let w be the centre vertex, u1, u2, . . . , un−1 be the vertices on the wheel

rim and v1, v2, . . . , vn−1 be the pendent vertices. Let (u, v) be any pair of vertices

of Hn. We consider the following four cases:

Case(i) Let u, v ∈ {u1, u2, . . . , un−1, w}. Then the number of vertex pairs (u, v)

with i common neighbors in Hn equals number of vertex pairs (u, v) with

i common neighbors in Wn.

Case(ii) Let u ∈ {u1, u2, . . . , un−1} and v ∈ {v1, v2, . . . , vn−1}. Then the pairs

(ui, vi+1) and (ui, vi−1) have common neighbors ui+1 and ui−1 respectively
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2.2. Common neighbor polynomial of some well known graph classes

where the indices i are taken modulo (n−1). There are 2(n−1) such pairs.

The remaining (n− 1)2 − 2(n − 1) pairs under this case have no common

neighbors.

Case(iii) Let u ∈ {v1, v2, . . . , vn−1} and v = w. Each such (n− 1) pairs (vi, w)

has exactly one common neighbor ui.

Case(iv) u, v ∈ {v1, v2, . . . , vn−1}. There are no common neighbors for any of

the
(
n−1
2

)
pairs under this case.

So we obtain,

N [Hn;x] = N [Wn;x] + 2(n− 1)x+ (n− 1)2 − 2(n− 1) + (n− 1)x+
(
n−1
2

)

=


2(n− 1)x2 + (n−1)(n+2)

2
x+ (n−1)(3n−8)

2
, if n 6= 5,

2x3 + 4x2 + 16x+ 14, if n = 5.

This completes the proof.

Theorem 2.2.13. For a web graph WBn where n > 3, we have

N [WBn;x] =


4(n− 1)x2 + (n−1)(n+6)

2
x+ (n− 1)(4n− 10), if n 6= 5,

2x3 + 14x2 + 20x+ 42, if n = 5.

Proof. Let w be the center vertex, u1, u2, . . . , un−1 be the vertices on the in-

ner wheel rim, v1, v2, . . . , vn−1 be the vertices on the outer wheel rim and let

w1, w2, . . . , wn−1 be the pendent vertices of the web graph. Let (u, v) be any pair

of vertices of the web graph WBn. We will consider the following 8 cases:
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w

u1

u2

u3u4

u5

v1

v2

v3
v4

v5

w1

w2

w3w4

w5

Figure 2.2: The web graph W6

Case(i) Let u, v ∈ {u1, u2, . . . , un−1, w}. Then number of vertex pairs (u, v)

with i common neighbors in WBn equals the number of vertex pairs with

i common neighbors in Wn.

Case(ii) Let u, v ∈ {v1, v2, . . . , vn−1}. Then number of vertex pairs (u, v) with

i common neighbors in WBn equals the number of vertex pairs with i

common neighbors in the cycle Cn−1.

Case(iii) Let u ∈ {u1, u2, . . . , un−1} and v ∈ {v1, v2, . . . , vn−1}. All the pairs

(ui, vi−1) and (ui, vi+1) have two common neighbors ui+1 and vi where the

indices i > 1 are taken modulo n and there are 2(n− 1) such pairs. All the

remaining (n− 1)2 − 2(n− 1) pairs have no common neighbors.

Case(iv) Let u ∈ {v1, v2, . . . , vn−1} and v = w. All the n − 1 pairs (vi, w), i =

1, 2, . . . , n− 1 have one common neighbor ui.

Case(v) Let u, v ∈ {w1, w2, . . . , wn−1}. Then (u, v) has no common neighbors

and there are
(
n−1
2

)
such pairs.
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Case(vi) Let u ∈ {w1, w2, . . . , wn−1} and v ∈ {v1, v2, . . . , vn−1}. The vertex

pairs (wi, vi+1) and (wi, vi−1) have one common neighbor vi where the in-

dices i > 1 are taken modulo n and there are 2(n− 1) such pairs. All the

remaining (n− 1)2 − 2(n− 1) pairs have no common neighbors.

Case(vii) Let u ∈ {w1, w2, . . . , wn−1} and v ∈ {v1, v2, . . . , vn−1}. The pairs

(wi, ui) have one common neighbor vi and there are n − 1 such pairs. All

the remaining (n− 1)2 − (n− 1) pairs have no common neighbors.

Case(viii) u ∈ {w1, w2, . . . , wn−1} and v = w.

The pairs (wi, w) have no common neighbors and there are n−1 such pairs.

So we obtain

N [WBn;x] = N [Wn;x] +N [Cn−1;x] + 2(n− 1)x2+[
(n− 1)2 − 2(n− 1)

]
+ (n− 1)x+

(
n− 1

2

)
+

2(n− 1)x+
[
(n− 1)2 − 2(n− 1)

]
+ (n− 1)x+[

(n− 1)2 − (n− 1)
]

+ (n− 1).

= 4(n− 1)x2 +
(n− 1)(n+ 6)

2
x+ (n− 1)(4n− 10), n 6= 5.

N [WB5;x] = N [W5;x] +N [C4;x] + 8x2 + 16x+ 38.

= (2x3 + 4x2 + 4x) + (2x2 + 4) + 8x2 + 16x+ 38.

= 2x3 + 14x2 + 20x+ 42.

This completes the proof.

Theorem 2.2.14. For a shell graph Sn, we have

N [Sn;x] = 2(n− 3)x2 +
[(n− 2

2

)
+ 3
]
x.
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2.2. Common neighbor polynomial of some well known graph classes

Proof. Sn can be considered as the join of Pn−1 and K1. Let u1, u2, . . . , un−1 be

the vertices of Pn−1 and let u be the vertex of K1.

Case(i) The vertex pairs (u, ui), i = 2, 3, . . . , (n− 2) have 2 common neighbors

ui−1 and ui+1. The pair (u, u1) has only one common neighbor u2 and the

pair (u, un−1) has only one common neighbor un−2.

Case(ii) The vertex pairs (ui, ui+2), i = 1, 2, . . . , (n−3) have two common neigh-

bors ui+1 and u. All other pairs (ui, uj) where i, j ∈ {1, 2, . . . , (n− 1)} and

i 6= j, j−2 have only one common neighbor u. And there are
(
n−1
2

)
−(n−3)

such pairs.

Thus we have

N [Sn;x] = (n− 3)x2 + 2x+ (n− 3)x2 +
[(n− 1

2

)
− (n− 3)

]
x

= 2(n− 3)x2 +
[(n− 2

2

)
+ 3
]
x.

This completes the proof.

Theorem 2.2.15. If BN is a bow graph with N ≥ 5 vertices, then

N [BN ;x] = 2(N − 5)x2 +

[
N(N − 5)

2
+ 10

]
x.

Proof. Let the bow graph BN includes the shells Sn and Sm with the unique

apex w. Then, N = n+m− 1. Any pair of vertices of Sn has as many common

neighbors in BN as in Sn and any pair of vertices of Sm has as many common

neighbors in BN as in Sm. Any vertex pair (u, v) where u ∈ Sn, v ∈ Sm and

u, v 6= w has only one common neighbor w and there are (n − 1)(m − 1) such

pairs.

N [BN ;x] = N [Sn;x] +N [Sm;x] + (n− 1)(m− 1)x.
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= 2(n− 3)x2 +
[(n− 2

2

)
+ 3
]
x+ 2(m− 3)x2+

[(m− 2

2

)
+ 3
]
x+ (n− 1)(m− 1)x.

= 2(n+m− 1− 5)x2 +

[
(n+m− 1)2 − 5(n+m− 1) + 20

2

]
x.

= 2(N − 5)x2 +
[N2 − 5N + 20

2

]
x.

= 2(N − 5)x2 +

[
N(N − 5)

2
+ 10

]
x.

This completes the proof.

Theorem 2.2.16. If BF is a butterfly graph with N ≥ 7 vertices, then

N [BF ;x] = 2(N − 7)x2 +

[
N(N − 5)

2
+ 12

]
x+ 2.

Proof. A butterfly graph BF with N vertices includes a bow graph BN−2 with

N − 2 vertices and two pendent vertices at the apex w. Any pair of vertices of

BN−2 has as many common neighbors in BF as in BN−2. If u, v are pendent

vertices, (u, v) has only one common neighbor w. If u is a pendent vertex and

v the apex vertex, there are no common neighbors for the vertex pair (u, v) and

there are 2 such pairs. If u is a pendent vertex and v is any of the vertices of

BN−2 other than the apex w, there is only one common neighbor for the vertex

pair (u, v) where there are 2(N − 3) such pairs. Thus we have

N [BF ;x] = N [BN−2;x] + x+ 2 + 2(N − 3)x.

= 2(N − 7)x2 +

[
(N − 2)(N − 7)

2
+ 10

]
x+ x+ 2 + 2(N − 3)x.

= 2(N − 7)x2 +
[N2 − 9N + 14 + 20 + 2 + 4N − 12

2

]
x+ 2.

= 2(N − 7)x2 +
[N2 − 5N + 24

2

]
x+ 2.

= 2(N − 7)x2 +

[
N(N − 5)

2
+ 12

]
x+ 2.
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This completes the proof.

Theorem 2.2.17. For the friendship graph Fn, we have

N [Fn;x] = n(2n+ 1)x.

Proof. A friendship graph Fn is the one point union of n copies of the cycle C3.

Let (u, v) be any pair of vertices of Fn. We consider the following 2 cases.

Case(i) Let u and v be vertices of the ith copy of C3 where i = 1, 2, . . . , n. Then

there is one common neighbor for each pair (u, v) and there are 3 such pairs

corresponding to each i.

Case(ii) Let u and v be vertices of ith copy of C3 and jth copy of C3 respectively,

other than the centre vertex where i 6= j and i, j ∈ {1, 2, . . . , n}. Then

every pair (u, v) has one common neighbor and there are 4
(
n
2

)
such pairs.

It follows that

N [Fn;x] = 3nx+ 4

(
n

2

)
x

= n(2n+ 1)x.

This completes the proof.

Theorem 2.2.18. If G is a graph having 2 components G1 and G2 with n and

m vertices respectively, then N [G;x] = N [G1;x] +N [G2;x] + nm.

Proof. For k = 1, 2 the number of vertex pairs of Gk with i common neighbors in

G equals the number of vertex pairs of Gk with i common neighbors in Gk. Now,

for a pair of vertices (u, v) in G with u ∈ G1 and v ∈ G2, there is no common

neighbor; and there are nm such pairs.
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Corollary 2.2.19. Let G be a graph having m components G1, G2, . . . , Gm where

|V (Gi)| = ni for i = 1, 2, . . . ,m. Then for I = {1, 2, . . . ,m}, we have,

N [G;x] =
∑
i∈I

N [Gi;x] +
∑
i,j∈I
i 6=j

ninj.

Proof. The proof follows from Theorem 2.2.18, using mathematical induction on

the number of components m of G.

Theorem 2.2.20. If G is a connected graph and e = uv a cutedge of G, then

N [G− e;x] = N [G;x]− [du(G− e) + dv(G− e)]x+ [du(G− e) + dv(G− e)] where

du(G) denote the degree of the vertex u in G.

Proof. Let G−e has two components G1 and G2, where u ∈ G1 and v ∈ G2. If ui

is a neighbor of u in G1, the pair (ui, v) has exactly one common neighbor u in G

for i = 1, 2, . . . , du(G1). If vi is a neighbor of v in G2, the pair (vi, u) has exactly

one common neighbor v in G for i = 1, 2, . . . , dv(G2). Therefore, deletion of the

cut edge e = uv reduces the number of vertex pairs with 1 common neighbor by

du(G− e) + dv(G− e) and increases the number of vertex pairs with no common

neighbors by du(G− e) + dv(G− e). And the deletion of a cutedge produces no

change in the number of vertex pairs with more than one common neighbors.

Corollary 2.2.21. N [Pn − e;x] = N [Pn;x] − 2x + 2 if e is not a pendent edge

of Pn and N [Pn − e;x] = N [Pn;x]− x+ 1 if e is a pendent edge of Pn.

Proof. The result follows from Theorem 2.2.20 using the fact that all the edges

of Pn are cutedges of Pn.
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Corollary 2.2.22. For a tadpole graph T(n,l) with n > 2, we have the following:

N [T(n,l);x] =


N [Cn;x] +N [Pl;x] + 3x+ nl − 3, if l > 1,

N [Cn;x] +N [Pl;x] + 2x+ nl − 2, if l = 1.

Proof. A Tadpole T(n,l) is a graph obtained by attaching a path Pl to one of the

vertices of the cycle Cn by a bridge. Let the vertex u of Pl be attached to the

vertex v of Cn through the bridge uv. Removing the bridge uv from Tn,l, the

resulting graph is the union of the path Pl and the cycle Cn. So the result follows

from Theorems 2.2.18 and 2.2.20.

Corollary 2.2.23. For a n-barbell graph Bn,1, we have

N [Bn,1;x] = 2

(
n

2

)
xn−2 + 2(n− 1)x+ (n− 1)2 + 1.

Proof. The n- barbell graph Bn,1 is a graph obtained by connecting two copies

of complete graph Kn by a bridge. Let two copies of Kn be connected by the

bridge e.

Note that Bn,1 − e = Kn +Kn, the disjoint union of two copies of Kn.

N [Bn,1;x] = N [Bn,1 − e;x] + 2(n− 1)x− 2(n− 1).

= N [Kn +Kn;x] + 2(n− 1)x− 2(n− 1)

By Theorem 2.2.18 it follows that

N [Bn,1;x] = 2

(
n

2

)
xn−2 + n2 + 2(n− 1)x− 2(n− 1)

= 2

(
n

2

)
xn−2 + 2(n− 1)x+ (n− 1)2 + 1.

This completes the proof.
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Corollary 2.2.24. For a lollipop graph Lm,n,

N [Lm,n;x] =

(
m

2

)
xm−2 + (m+ n− 2)x+

(
n− 1

2

)
+m(n− 1) + 1.

Proof. The lollipop graph Lm,n is a graph obtained by joining a complete graph

Km to a path Pn with a bridge e. Note that Lm,n − e = Km + Pn, the disjoint

union of complete graph Kn and path graph Pn. Therefore using theorems 2.2.18

and 2.2.20, it follows that,

N [Lm,n;x] = N [Lm,n − e;x] +mx−m

= N [Km + Pn;x] +mx−m

=

(
m

2

)
xm−2 + (n− 2)x+

(
n− 1

2

)
+ 1 +mn+mx−m

=

(
m

2

)
xm−2 + (m+ n− 2)x+

(
n− 1

2

)
+m(n− 1) + 1.

This completes the proof.

Corollary 2.2.25. For a bistar graph Bm,n,

N [Bm,n;x] =

[(
m

2

)
+

(
n

2

)
+m+ n

]
x+m+ n+mn+ 1.

Proof. A bistar graph Bm,n is obtained by connecting the center vertices of two

star graphs K1,m and K1,n by a bridge e. Let K1,m and K1,n be joined by the

bridge e to form Bm,n. Note that Bm,n − e = K1,m + K1,n. Applying Theorems

2.2.18 and 2.2.20 we have,

N [Bm,n;x] = N [Bm,n − e;x] + (m+ n)x− (m+ n).

= N [K1,m +K1,n;x] + (m+ n)x− (m+ n).

=

(
m

2

)
x+m+

(
n

2

)
x+ n+ (m+ 1)(n+ 1) + (m+ n)x− (m+ n).
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=

[(
m

2

)
+

(
n

2

)
+m+ n

]
x+m+ n+mn+ 1.

This completes the prof.

Theorem 2.2.26. For a bipartite Cocktail party graph Bn,

N [Bn;x] = 2

(
n

2

)
xn−2 + n2.

Proof. The bipartite Cocktail party graph Bn is the graph obtained by removing

a perfect matching from the complete bipartite graph Kn,n. Let U, V be the

bipartite sets of vertices of Bn. For i, j ∈ {1, 2, . . . , n}, every pair (ui, uj) where

ui, uj ∈ U and every pair (vi, vj) where vi, vj ∈ V have n− 2 common neighbors

each. There are 2
(
n
2

)
such pairs of vertices in Bn. A vertex pair of the form

(ui, vj) where ui ∈ U and vj ∈ V has no common neighbors and there are n2

pairs of vertices under this case. Hence the result follows.

Theorem 2.2.27. For a windmill graph W
(m)
n ,

N [W (m)
n ;x] = m

(
n

2

)
xn−2 +

(
m

2

)
(n− 1)2x.

Proof. The Windmill graph W
(m)
n is obtained by taking m copies of Kn with a

vertex in common. A vertex pair with vertices of same Kn has as many common

neighbors in W
(m)
n as in Kn. A vertex pair with vertices other than the common

vertex taken from two distinct copies of Kn has exactly one common neighbor

which is the common vertex. There are
(
m
2

)
(n− 1)2 such vertex pairs. It follows

that

N [W (m)
n ;x] = mN [Kn;x] +

(
m

2

)
(n− 1)2x

= m

(
n

2

)
xn−2 +

(
m

2

)
(n− 1)2x.

This completes the proof.
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Dutch Windmill graph D
(m)
n is a Windmill graph W

(m)
n with n = 3.

Corollary 2.2.28. N [D
(m)
n ;x] = m(2m+ 1)x.

Theorem 2.2.29. For an armed crown Cn � Pm, we have the following:

N [Cn � Pm;x] = N [Cn;x] + n N [Pm+1;x] + 2nx+

(
n

2

)
m(m+ 2)− 2n.

Proof. Let u1, u2, . . . , un be the vertices of Cn and let wi1, wi2, . . . , wim be the

vertices of the ith copy of Pm attached to the ith vertex of Cn. Let (u, v) be a

pair of vertices of Cn � Pm. Here we consider the following 4 cases.

Case(i) Let u, v ∈ {u1, u2, . . . , un}. Number of vertex pairs (u, v) with i com-

mon neighbors in Cn � Pm equals number of vertex pairs with i common

neighbors in Cn.

Case(ii) Let u ∈ {wi1, wi2, . . . , wim} and v ∈ {wj1, wj2, . . . , wjm}; i 6= j; i, j =

1, 2, . . . , n.

Then (u, v) have no common neighbors and there are
(
n
2

)
m2 such pairs.

Case(iii) Let u, v ∈ {wi1, wi2, . . . , wim, ui}, i = 1, 2, . . . , n. Then number of ver-

tex pairs (u, v) with i common neighbors in Cn�Pm equals number of vertex

pairs with i common neighbors in Pm+1. And there are n |N(Pm+1, i)| such

pairs.

Case(iv) Let u = ui and v ∈ {wj1, wj2, . . . , wjm}, i 6= j; i, j = 1, 2, . . . , n.

Then the pairs (ui, w(i−1)1) and (ui, w(i+1)1) have common neighbors ui−1

and ui+1 respectively. There are 2n such vertex pairs with 1 common

neighbor. The remaining m(n− 1)n− 2n vertex pairs under case(iv) have

no common neighbors.
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It follows that

N [Cn � Pm;x] = N [Cn;x] + n N [Pm+1;x] +

(
n

2

)
m2 + 2nx+mn(n− 1)− 2n

= N [Cn;x] + n N [Pm+1;x] + 2nx+

(
n

2

)
m(m+ 2)− 2n.

This completes the proof.

A flower graph[10] fn×m is a graph with a n-cycle and n number of m-cycles

each intersects with the n-cycle on a unique single edge .

Figure 2.3: The flower graph f4×3

Theorem 2.2.30. If fn×m is a flower graph, then, the following results hold:

1. If m 6= 4, N [fn×m;x] = N [Cn;x] + n N [Pm−2;x] + 5nx + (m − 2)n2 +(
n
2

)
(m− 2)2 − 5n.

2. If m = 4, N [fn×m;x] = N [Cn;x] + 2nx2 + 3nx+ 4n2 − 6n.

Proof. Let Cn be the inner cycle and C1
m, C

2
m, . . . , C

n
m be the m-cycles having one

of the edges common to Cn. Let v1, v2, . . . , vn be the vertices of Cn and for each

j ∈ {1, 2, . . . , n}, let Uj = {uj1, u
j
2, . . . , u

j
m−2} be the set of m − 2 vertices which

form the m-cycle Cj
m together with the edge vjvj+1 of Cn. Let (u, v) be any pair

of vertices of fn,m. We consider the following 3 cases.
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Case(i) Let u, v ∈ V (Cn).

Then the number of pairs (u, v) with i common neighbors in fn,m equals

|N(Cn, i)|.

Case(ii) Let u, v ∈ Uj where j ∈ {1, 2, . . . , n}.

Then for each j ∈ {1, 2, . . . , n} the number of pairs (u, v) with i common

neighbors in fn,m equals |N(Pm−2, i)|.

Case(iii) Let u ∈ Uj and v ∈ Uk where j, k ∈ {1, 2, . . . , n} and j 6= k. Then the

n pairs (uj−1m−2, u
j
1) has exactly one common neighbor vj where the index j

is taken modulo m. All other
(
n
2

)
(m− 2)2 − n pairs of vertices under this

case have no common neighbors.

Case(iv) Let u ∈ V (Cn) and v ∈ Uj where j ∈ {1, 2, . . . , n}.

Then the pairs of the form (uj1, vj−1) and (uj−1m−2, vj+1) has exactly one com-

mon neighbor vj . Also the pairs (uj1, vj+1) has exactly one common neigh-

bor vj if m 6= 4 and has two common neighbors ujm−2 and vj if m = 4.

Similarly, the pairs (ujm−2, vj) has one common neighbor vj+1 if m 6= 4 and

has two common neighbors uj1 and vj+1 if m = 4. All other (m− 2)n2− 4n

pairs under this case has no common neighbors.

It follows that

1. If m 6= 4, N [fn×m;x] = N [Cn;x] + n N [Pm−2;x] + 4nx+ (m− 2)n2− 4n+

nx+
(
n
2

)
(m− 2)2 − n.

=N [Cn;x] + n N [Pm−2;x] + 5nx+ (m− 2)n2 +
(
n
2

)
(m− 2)2 − 5n.

2. If m = 4, N [fn×m;x] = N [Cn;x] + n N [P2;x] + 2nx2 + 2nx + 2n2 − 4n +
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nx+ 4
(
n
2

)
− n.

=N [Cn;x] + 2nx2 + 3nx+ 4n2 − 6n.

This completes the proof.

A chaplet graph[38] Cp�Ct
q where p, q, t ≥ 3 is obtained by taking one point

union of t-copies of the cycle Cq and attaching the same to each vertex of the

cycle Cp.

Figure 2.4: The chaplet graph C4 � C3
4

Theorem 2.2.31. N [Cp�Ct
q;x] = N [Cp;x] + tpN [Cq;x] + [4tp+ 3pt(t− 1)]x+(

p
2

)
t2(q − 1)2 + p(q2 − 2q − 5)

(
t
2

)
+ [(p− 1)(q − 1)− 4]tp.

Proof. Let u1, u2, . . . , up be the vertices of the cycle Cp. For j ∈ {1, 2, . . . , t}

and k ∈ {1, 2, . . . , p}, let uk, u
j
k1, u

j
k2, . . . , u

j
k(q−1) be the vertices of jth copy of the

cycle Cq attached to the vertex uk of Cp. Let (u, v) be any pair of vertices of

Cp � Ct
q. We consider the following cases:

Case(i) Let u, v ∈ {u1, u2, . . . , up}.

In this case, the number of vertex pairs (u, v) with i common neighbors

equals |N(Cp, i)|.
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Case(ii) Let u, v ∈ {uk, ujk1, u
j
k2, . . . , u

j
k(q−1)} where j ∈ {1, 2, . . . , t} and k ∈

{1, 2, . . . , p}.

Fixing the variables j, k, the number of vertex pairs (u, v) with i common

neighbors equals |N(Cq, i)| and there are tp choices for fixing j and k.

Case(iii) Let u ∈ {ujk1, u
j
k2, . . . , u

j
k(q−1)} and v ∈ {u1, u2, . . . , uk−1, uk+1, . . . , up}

where j ∈ {1, 2, . . . , t} and k ∈ {1, 2, . . . , p}.

In this case, pairs of vertices of the form (ujk1, uk+1), (ujk1, uk−1), (ujk(q−1), uk+1)

and (ujk(q−1), uk−1) have exactly one common neighbor uk and there are 4tp

pairs of vertices of this form. All other vertices under this case have no

common neighbors and there are (p− 1)(q − 1)tp− 4tp such pairs.

Case(iv) Let u ∈ {ujk1, u
j
k2, . . . , u

j
k(q−1)}, v ∈ {ulk1, ulk2, . . . , ulk(q−1)} where j, l ∈

{1, 2, . . . , t}, k ∈ {1, 2, . . . , p} and j 6= l.

In this case, pairs of vertices of the form (ujk1, u
l
k1),(u

j
k(q−1), u

l
k(q−1)) and

(ujk1, u
l
k(q−1)) have exactly one common neighbor uk and there are 2p

(
t
2

)
+

pt(t − 1) = 4p
(
t
2

)
pairs of vertices of this form. All the remaining vertices

under this case have no common neighbors and the number of such vertices

are given by
(
t
2

)
p(q − 1)2 − 4p

(
t
2

)
which equals p(q2 − 2q − 3)

(
t
2

)
.

Case(v) Let u ∈ {ujk1, u
j
k2, . . . , u

j
k(q−1)}, v ∈ {uls1, uls2, . . . , uls(q−1)} where j, l ∈

{1, 2, . . . , t} and k, s ∈ {1, 2, . . . , p} and k 6= s.

In this case the pairs of vertices (u, v) have no common neighbors and there

are
(
p
2

)
t2(q − 1)2 such vertex pairs.

Hence it follows that

N [Cp � Ct
q;x] = N [Cp;x] + tpN [Cq;x] + 4tp x+ [(p− 1)(q − 1)− 4]tp+
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4p

(
t

2

)
x+ p(q2 − 2q − 3)

(
t

2

)
+

(
p

2

)
t2(q − 1)2

= N [Cp;x] + tpN [Cq;x] + [4tp+ 2pt(t− 1)]x+

(
p

2

)
t2(q − 1)2

+ p(q2 − 2q − 3)

(
t

2

)
+ [(p− 1)(q − 1)− 4]tp.

This completes the proof.

A snake graph[19] Sn,m is obtained from a path graph Pn by replacing each

edge of Pn by the cycle graph Cm . Sn,3 is known as the triangular snake graph

and Sn,4 the rectangular snake graph.

w1
1 w3

1 = w1
2 w3

2 = w1
3 w3

3

w2
1

w2
2 w2

3

Figure 2.5: The snake graph S3,3

Theorem 2.2.32. For a snake graph Sn,m we have,

N [Sn,m;x] = nN [Cm;x] + 4(n− 1)x+ [(m− 1)2 − 4](n− 1) + (m− 1)2
(
n− 1

2

)
.

Proof. Let the vertices of the ith cycle of Sn,m be represented by w1
i , w

2
i , . . . , w

m
i

respectively. Let (u, v) be any pair of vertices of Sn,m. We will consider 3 cases:

Case(i) Let u, v ∈ {w1
i , w

2
i , . . . , w

m
i }; i ∈ {1, 2, . . . , n}.

Then for each i, the number of vertex pairs (u, v) with k common neighbors

equals |N(Cm, k)|.
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Case(ii) Let u ∈ {w1
i , w

2
i , . . . , w

m−1
i } and v ∈ {w2

i+1, w
3
i+1, . . . , w

m
i+1} where

i ∈ {1, 2, . . . , n− 1}.

Then the pairs (w1
i , w

2
i+1), (w1

i , w
m
i+1), (wm−1i , w2

i+1), (wm−1i , wmi+1) have ex-

actly one common neighbor wmi and there are 4(n − 1) such pairs. The

remaining [(m − 1)2 − 4](n − 1) pairs under this case have no common

neighbors.

Case(iii) Let u ∈ {w1
i , w

2
i , . . . , w

m−1
i } and v ∈ {w2

j , w
3
j , . . . , w

m
j }; i ∈ {1, 2, . . . , n−

2} and j ∈ {i+ 2, i+ 3, . . . , n}.

The vertex pairs under this case have no common neighbors and there are

(m− 1)2
∑n−2

i=1 (n− i− 1) = (m− 1)2
(
n−1
2

)
such pairs.

It follows that N [Sn,m;x] = nN [Cm;x] + 4(n−1)x+ [(m−1)2−4](n−1) + (m−

1)2
(
n−1
2

)
.

Corollary 2.2.33. For a triangular snake graph Sn,3, we have the following:

N [Sn,3;x] = nN [C3;x] + 4(n− 1)x+ 4

(
n− 1

2

)
.

2.3 Strongly regular graphs

The concept of strongly regular graphs was introduced by R C Bose[34] as follows:

A simple k-regular graph G on n vertices is said to be strongly regular of type

(n, k, λ, l) if there exists integers λ, l such that any adjacent pair of vertices of

G have exactly λ common neighbors and any non-adjacent pair of vertices of G

have exactly l common neighbors. From the definition itself, it follows that if G
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is a strongly regular graph of type (n, k, λ, l),

N [G;x] = mxλ +
[(n

2

)
−m

]
xl

where m is the number of edges of G.

Many interesting graphs like Petersen graph, Clebsch graph, Shrikhande

graph etc. are known to be strongly regular. Hence their common neighbor

polynomial can be easily evaluated. Some of the results are as follows:

1. For a cycle graph C5 which is strongly regular of type (5, 2, 0, 1), we have

N [C5;x] = 5 + [
(
5
2

)
− 5]x = 5x+ 5.

2. The Petersen graph P which is strongly regular of type (10, 3, 0, 1) contains

15 edges and hence N [P ;x] = 30x+ 15.

3. Srikhande graph S is a named graph with 48 edges which is discovered by

renowned Indian Mathematician S.S. Srikhande. It has many interesting

properties including the one that it is strongly regular of type (16, 6, 2, 2).

So its common neighbor polynomial is given by N [S;x] = 120x2.

4. A n × n square rook’s graph RKn×n which is the line graph of complete

bipartite graph Kn,n represents all legal moves of ’rook’ on a chessboard.

It is known to be strongly regular of type (n2, 2n − 2, n − 2, 2). RKn×n

contains n3 − n2 edges. It follows that

N [RKn×n;x] = (n3 − n2)xn−2 + [

(
n2

2

)
− (n3 − n2)]x2

= n2(n− 1)xn−2 + 2

(
n

2

)2

x2.

5. Chang graphs are named after Chang Li-Chien who revealed[5] some inter-

esting properties of the graphs. These are a set of three 12-regular graphs
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with 28 vertices and 168 edges which are obtained by graph switching of the

line graph of K8. Chang graphs are strongly regular of type (28, 12, 6, 4)

and so has the common neighbor polynomial 168x6 + 210x4.

6. Paley graphs have vertices from a finite field and two vertices are connected

if their difference is a square in the field. Godsil and Royle[4] proved that

paley graphs are strongly regular of type (q, 1
2
(q − 1), 1

4
(q − 5), 1

4
(q − 1)).

If m is the number of edges of a paley graph P (q) on q vertices, then

N [P (q);x] = mx
1
4
(q−5) + [

(
q
2

)
−m]x

1
4
(q−1).

2.4 Common neighbor polynomial of trees

In this section we study common neighbor polynomial of tree graphs, in particular

the rooted trees and caterpillar trees.

Theorem 2.4.1. Let T be a tree on n vertices. Let v be a vertex of T with degree

k. If T ′ is a tree obtained from T by attaching p pendent edges at the vertex v,

we have the following:

N [T ′;x] = N [T ;x] +
p

2
(2k + p− 1)x+ p(n− k).

Proof. Let {v1, v2, . . . , vk} be the neighbors of v in T . When we attach a pendent

edge vw to v, n number of new pairs of vertices are introduced in which the pairs

(vi, w) where i ∈ {1, 2, . . . , k} have one common neighbor v and the remaining

n − k new pairs have no common neighbors. There will be no change in the

number of common neighbors of pairs of vertices of T by the introduction of the

pendent edge vw. Hence the common neighbor polynomial becomes N [T ;x] +
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2.4. Common neighbor polynomial of trees

kx + (n − k). Repeating the process p times, after attaching the p-th pendent

edge to v, the common neighbor polynomial of resulting graph becomes,

N [T ′;x] = N [T ;x] + kx+ (n− k) + (k + 1)x+ (n− k) + . . .

+ (k + p− 1)x+ (n− k)

= N [T ;x] + [k + (k + 1) + (k + 2) + . . .+ (k + p− 1)]x+ p(n− k)

= N [T ;x] +
p

2
(2k + p− 1)x+ p(n− k).

This completes the proof.

Theorem 2.4.2. Let T be a complete m-ary tree with p levels where the root

vertex is considered to be in the 0-th level. Then we have the following:

N [T ;x] =
m2(mp−1 − 1)

m− 1
x+

(
m

2

)
mp − 1

m− 1
x+

m[m2p−2 −mp +m− 1]

m− 1
+m2p−1

+

p−3∑
i=0

[m2i+3 −mp+i+1

1−m

]
+
m2[m2p −mp+1 −mp +m]

2(m2 − 1)
.

Level 1

Level 2

Level 3

Figure 2.6: Complete binary tree of level 3

Proof. Let (u, v) be any pair of vertices of T . Here we consider 4 different cases

according to the levels in which the vertices u and v lie in T .

Case(i) For i ∈ {0, 1, 2, . . . , p − 2} let u be a vertex in the i-th level and v a

vertex in the (i+ 1)th or (i+ 2)th level.

If v is an (i + 1)th level vertex, the vertex pair (u, v) have no common
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2.4. Common neighbor polynomial of trees

neighbors and there are mimi+1 such pairs of vertices in T . If v is in

the (i + 2)th level, then there are mimi+2 pairs of vertices (u, v) in which

mi[mi+2−m2] pairs of vertices have no common neighbors and mim2 pairs

have exactly one common neighbor.

Case(ii) Let u be a vertex in the (p−1)-th level and v a vertex in the p-th level.

In this case the pairs of vertices (u, v) have no common neighbors and there

are mp−1mp such pairs of vertices.

Case(iii) For i ∈ {0, 1, 2, . . . , p − 3} let u be a vertex in the i-th level and v a

vertex in the j-th level where j = i+ 3, i+ 4, . . . , p.

All the pairs of vertices under this case have no common neighbors and

there are mi[mi+3 +mi+4 + . . .+mp] such pairs of vertices.

Case(iv) For i ∈ {1, 2, . . . , p} let u and v be vertices of same level.

In this case 1
2
mi[mi − m] distinct pairs of vertices which are not siblings

have no common neighbors and
(
m
2

)
mi−1 pairs of vertices which are siblings

have exactly one common neighbor.

From the above cases, it follows that

N [T ;x] =

p−2∑
i=0

mim2x+

(
m

2

) p∑
i=1

mi−1x+

p−2∑
i=0

mi[mi+1 +mi+2 −m2] +m2p−1

+

p−3∑
i=0

mi[mi+3 +mi+4 + . . .+mp] +

p∑
i=1

1

2
mi(mi −m).

=
m2(mp−1 − 1)

m− 1
x+

(
m

2

)
mp − 1

m− 1
x+

m[m2p−2 −mp +m− 1]

m− 1
+m2p−1

+

p−3∑
i=0

[mp+i+1 −m2i+3

m− 1

]
+
m2[m2p −mp+1 −mp +m]

2(m2 − 1)
.

This completes the proof.
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2.4. Common neighbor polynomial of trees

Theorem 2.4.3. The common neighbor polynomial of a caterpillar tree

Pn(m1,m2, . . . ,mn) is given by the following:

N [Pn(m1,m2, . . . ,mn);x] = N [Pn;x] +
n∑
j=1

N [K1,mj;x] +
∑
l,k
l 6=k

mlmk

+
[
m1 +mn + 2

n−1∑
j=2

mj

]
x+ (n− 2)(m1 +mn) + (n− 3)

n−1∑
j=2

mj.

Proof. Let Pn(m1,m2, . . . ,mn) be a caterpillar tree and let v1, v2, . . . , vn be the

vertices of its derived graph which is a path. Also let v
(j)
1 , v

(j)
2 , . . . , v

(j)
mj be the

pendent vertices of the caterpillar tree attached to the vertex vj where j ∈

{1, 2, . . . , n}.

v
(1)
1 v

(1)
2

v1

v2

v3

v4

v
(2)
1

v
(2)
2 v

(2)
3

v
(3)
1

v
(4)
1 v

(4)
2 v

(4)
3

Figure 2.7: The caterpillar P4(2, 3, 1, 3)

Let (u, v) be any pair of vertices of the caterpillar. We consider the following

cases to build up its common neighbor polynomial.

Case(i) Let u, v ∈ {v1, v2, . . . , vn}. Here the number of pairs of vertices (u, v)

with i common neighbors equals |N(Pn, i)|. So the pairs of vertices under

this case contribute the term N [Pn;x] to the common neighbor polynomial

of the caterpillar.

Case(ii) Let u, v ∈ {vj, v(j)1 , v
(j)
2 , . . . , v

(j)
mj}. Here the vertices of the set under
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2.4. Common neighbor polynomial of trees

consideration spans a star graph K1,mj and hence the number of pairs of

vertices (u, v) with i common neighbors equals |N(K1,mj, i)|.

Case(iii) Let u ∈ {v(l)1 , v
(l)
2 , . . . , v

(l)
ml} and v ∈ {v(k)1 , v

(k)
2 , . . . , v

(k)
mk} where l 6= k

and l, k ∈ {1, 2, . . . , n}.

Here u and v are the pendent vertices attached to the vertices vl and vk

respectively where l 6= k. No pair of vertices under this case have common

neighbors and there are
∑

l,k
l 6=k

mlmk such pairs.

Case(iv) Let u ∈ {v1, vn}, a pendent vertex of the derived graph Pn and let v

be any vertex attached to the vertices of Pn such that uv is not an edge of

the caterpillar.

In this case pairs of vertices of the form (v1, v
(2)
l ) and (vn, v

(n−1)
k ) where l ∈

{1, 2, . . . ,m2} and k ∈ {1, 2, . . . ,mn−1} have exactly one common neighbor

each and there are m2 +mn−1 such pairs of vertices. There remains m1 +

m2 +mn−1 +mn + 2
∑n−2

j=3 mj pairs of vertices under this case which have

no common neighbors.

Case(v) Let u ∈ {v2, v3 . . . , vn−1} and let v be any vertex selected in a way

same as in Case(iv).

For i ∈ {2, 3, . . . , n− 1}, the pairs of vertices of the form (vi, v
(i−1)
l ) where

l ∈ {1, 2, . . . ,mi−1} have exactly one common neighbor vi−1 and pairs of

vertices of the form (vi, v
(i+1)
k ) where k ∈ {1, 2, . . . ,mi+1} have exactly one

common neighbor vi+1. There are m1 +m2 +mn−1 +mn + 2
∑n−2

j=3 mj such

pairs of vertices.

The remaining pairs of vertices under this case have no common neighbors

and there are (n− 3)(m1 +mn) + (n− 4)(m2 +mn−1) + (n− 5)
∑n−2

j=3 mj
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2.4. Common neighbor polynomial of trees

such pairs of vertices.

From the above cases, it follows that

N [Pn(m1,m2, . . . ,mn);x] = N [Pn;x] +
n∑
j=1

N [K1,mj;x] +
∑
l,k
l 6=k

mlmk

+ [m2 +mn−1]x+m1 +m2 +mn−1 +mn + 2
n−2∑
j=3

mj

+
[
m1 +m2 +mn−1 +mn + 2

n−2∑
j=3

mj

]
x+ (n− 3)(m1 +mn)

+ (n− 4)(m2 +mn−1) + (n− 5)
n−2∑
j=3

mj.

Now the result follows after some rearrangement of the terms.

Corollary 2.4.4. For a caterpillar tree Pn(m,m, . . . ,m) where same number of

vertices are attached to each vertex of the derived graph Pn, we have,

N [Pn(m,m, . . . ,m);x] = N [Pn;x] + nN [K1,m;x] +

(
n

2

)
m2 + 2m(n− 1)x

+m(n− 1)(n− 2).

Theorem 2.4.5. The common neighbor polynomial of a star like tree graph

S(n1, n2, . . . , nk) with N + 1 vertices is given by

N [S(n1, n2, . . . , nk);x] =
k∑
r=1

N [Pnr+1;x] +

(
k

2

)
x+

(
N

2

)
−

k∑
r=1

(
nr
2

)
−
(
k

2

)
where N = n1 + n2 + . . .+ nk.

Proof. Let S(n1, n2, . . . , nk) be a star like tree graph with a vertex w such that

S(n1, n2, . . . , nk)−w = Pn1∪Pn2∪. . .∪Pnk
. Any pair of vertices (u, v) ∈ Pnr∪{w}

where r ∈ {1, 2, . . . , k}, has as many common neighbors in S(n1, n2, . . . , nk) as

it has in Pnr+1.
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2.4. Common neighbor polynomial of trees

Let (u, v) be a pair of vertices in S(n1, n2, . . . , nk) such that u ∈ Pnr and

v ∈ Pns where r 6= s, r, s ∈ {1, 2, . . . , k}. Then the vertex pair (u, v) has a single

common neighbor w if both u and v are adjacent to w and there are no common

neighbors otherwise. Hence there are
(
k
2

)
pairs of vertices with one common

neighbor and
(
N
2

)
−
∑k

r=1

(
nr

2

)
−
(
k
2

)
pairs of vertices with no common neighbors.

Hence the result follows.

The strand A of human insulin has 21 amino acids of 11 kinds is usually

represented by a star like tree graph with 11 branches as shown in Figure 2.8.

Figure 2.8: Strand A of human insulin

Corollary 2.4.6. The common neighbor polynomial of the graphical representa-

tion of Strand A of human insulin is given by

N [G;x] = 65x+ 166.

Proof. The proof follows from the fact that Strand A of human insulin can be

graphically represented as a star like tree graph S(1, 2, 4, 2, 2, 1, 2, 2, 1, 2, 2).

The (n, k) firecracker graph[11] is obtained by identifying each vertex of a

path Pn with one of the pendent vertices of the star graph K1,k. In particular,

the (n, 2) firecracker graph is known as the centipede graph.

47



2.4. Common neighbor polynomial of trees

u2

v2

v
(2)
2 v

(2)
3v

(2)
1

Figure 2.9: The (4, 4)- firecracker graph

Theorem 2.4.7. The common neighbor polynomial of (n, k) firecracker graph G

is given by the following:

N [G;x] =
[
n
(
k
2

)
+3n−4

]
x+nk+

(
n−1
2

)
+1+

(
n
2

)
k2+(n−1)(n−2)+n(n−1)(k−1).

Proof. For j ∈ {1, 2, . . . , n}, let vj1, v
j
2, . . . , v

j
k be the pendent vertices of the jth

star where the vertex vjk is identified with the vertex uj of the path Pn. Let vj

be the center vertex of the jth star attached to the vertex uj of Pn. Let (u, v) be

any pair of vertices of G. Here we consider 5 cases:

Case(i) Let u, v ∈ {vj, vj1, v
j
2, . . . , v

j
k} where j ∈ {1, 2, . . . , n}.

In this case, the pair (u, v) has as many common neighbors in G as in K1,k.

Case(ii) Let u, v ∈ {u1, u2, . . . , un}.

Here the vertex pair (u, v) has as many common neighbors in G as in Pn.

Case(iii) For j ∈ {1, 2, . . . , n}, let u = vj and v ∈ {u1, u2, . . . , uj−1, uj+1, . . . , un}.

In this case, for each j, the pairs (vj, uj−1) and (vj, uj+1) has exactly one

common neighbor. Also the pairs (v1, u2) and (vn, un−1) have one common

neighbor each. Hence there are 2(n − 1) pairs of vertices (u, v) with one

common neighbor and all other (n − 1)(n − 2) pairs of vertices have no

common neighbors.
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2.4. Common neighbor polynomial of trees

Case(iv) Let u ∈ {vr, vr1, vr2, . . . , vrk−1} and v ∈ {vs, vs1, vs2, . . . , vsk−1} where r, s ∈

{1, 2, . . . , n}.

In this case, there are
(
n
2

)
k2 pairs of vertices which have no common neigh-

bors.

Case(v) For j ∈ {1, 2, . . . , n}, let u ∈ {vj1, v
j
2, . . . , v

j
k−1} and v ∈ {u1, u2, . . . , uj−1,

uj+1, . . . , un}.

In this case, there are n(n − 1)(k − 1) pairs of vertices which have no

common neighbors.

Using theorems 2.2.2 and 2.2.5, it follows that,

N [G;x] = nN [K1,k;x] +N [Pn;x] + 2(n− 1)x+ (n− 1)(n− 2) +

(
n

2

)
k2

+ n(n− 1)(k − 1)

= n
[(k

2

)
x+ k

]
+ (n− 2)x+

(
n− 1

2

)
+ 1 + 2(n− 1)x+

(
n

2

)
k2

+ (n− 1)(n− 2) + n(n− 1)(k − 1)

=
[
n

(
k

2

)
+ 3n− 4

]
x+ nk +

(
n− 1

2

)
+ 1 +

(
n

2

)
k2

+ (n− 1)(n− 2) + n(n− 1)(k − 1).

This completes the proof.

Corollary 2.4.8. The common neighbor polynomial of the centipede graph G is

given by

N [G;x] = 4(n− 1)x+ 2n+
3(n− 1)(3n− 2)

2
+ 1.

Proof. The proof follows from the fact that the centipede graph is a special case

of (n, k)- firecracker graph when k = 2.
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2.5. Common neighbor polynomial of some graph constructions

2.5 Common neighbor polynomial of some graph

constructions

In this section we study common neighbor polynomial of some graph construc-

tions.

Let v0 be a specific vertex of a graph G. Let Gv0(m) be a graph obtained

from G by identifying the vertex V0 of G with an end vertex of the path Pm+1

with m+ 1 vertices [36].

G -y2y0 y1 - ym−1 ym

Figure 2.10: The graph Gv0(m)

Theorem 2.5.1. Let G be a graph with n vertices and let v0 ∈ V (G). If

deg(v0) = d, we have N [Gv0(m);x] = N [G;x] + (m+ d− 1)x+mn− d+
(
m−1
2

)
.

Proof. Let y0, y1, . . . , ym be the vertices of the path Pm+1. Let the vertex v0 of G

be identified with the end vertex y0 of Pm+1. Let (u, v) be any pair of vertices of

Gv0(m). We consider 3 cases:

Case(i) Let u, v ∈ V (G).

Then the number of vertex pairs (u, v) with i common neighbors in Gv0(m)

equals |N(G, i)|.

Case(ii) Let u, v ∈ {y1, y2, . . . , ym}.

Then the number of vertex pairs (u, v) with i common neighbors in Gv0(m)

equals |N(Pm, i)|.
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2.5. Common neighbor polynomial of some graph constructions

Case(iii) Let u ∈ V (G) and v ∈ {y1, y2, . . . , ym}.

If u = y0, then (u, y2) has one common neighbor and if u is a neighbor

of y0, then (u, y1) has one common neighbor. Thus d + 1 pairs of vertices

under this case have exactly one common neighbor. All other (mn−d− 1)

vertices under this case have no common neighbors.

It follows that

N [Gv0(m);x] = N [G;x] +N [Pm;x] + (d+ 1)x+ (mn− d− 1)

= N [G;x] + (m− 2)x+

(
m− 1

2

)
+ 1 + (d+ 1)x+ (mn− d− 1)

= N [G;x] + (m+ d− 1)x+mn− d+

(
m− 1

2

)
.

This completes the proof.

Let a and b be two specific vertices of a graph G. Let G′a,b(m) or simply,

G′(m) be a graph obtained from G by identifying the vertices a and b of G with

the two end vertices of a path Pm [36].

y1 y2 y3 - -

-

--ym−2ym−1ym

G

Figure 2.11: The graph G′(m)

Theorem 2.5.2. Let G be a graph with n vertices. Let a, b be two specific vertices

of G. Then for m > 2, we have N [G′(m);x] = N [G;x]+(m+d−2)x+

(
m− 3

2

)
+

n(m− 2)− (d+ 1) where d denotes the sum of degrees of vertices a and b in G.
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Proof. Let y1, y2, . . . , ym be the vertices of a path Pm. Let the vertices a, b of G

be identified with the end vertices y1 and ym of Pm respectively. Let (u, v) be

any pair of vertices of G′(m).

Here we consider the following 3 cases:

Case (i) Let u, v ∈ V (G).

Then the number of vertex pairs (u, v) with i common neighbors in G′(m)

equals |N(G, i)|.

Case(ii) Let u, v ∈ {y2, y3, . . . , ym−1}.

Then the number of vertex pairs (u, v) with i common neighbors in G′(m)

equals |N(Pm−2, i)|.

Case(iii) Let u ∈ V (G) and v ∈ {y2, y3, . . . , ym−1}.

If u = y1, then (u, y3) has one common neighbor and if u = ym, then

(u, ym−2) has one common neighbor. If uy1 ∈ E(G) then (u, y2) has one

common neighbor in G′(m) and if uym ∈ E(G) then (u, ym−1) has one

common neighbor in G′(m). Thus d + 2 pairs of vertices (u, v) have 1

common neighbor in G′(m). All other n(m−2)−(d+2) vertex pairs under

this case have no common neighbors. It follows that

N [G′(m);x] = N [G;x] +N [Pm−2;x] + (d+ 2)x+ n(m− 2)− (d+ 2)

= N [G;x] + (m+ d− 2)x+

(
m− 3

2

)
+ n(m− 2)− (d+ 1).

This completes the proof.

Let G1 and G2 be two disjoint graphs. Let (G1, G2)u,v(m) be a graph obtained
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by identifying the vertices u of G1 and v of G2 with the end vertices y1 and ym

respectively, of a path Pm.

G1 G2
y1 y2 - - - ym

Figure 2.12: The graph (G1, G2)u,v(m)

Theorem 2.5.3. Let G1 and G2 be two disjoint graphs with n1 and n2 vertices

respectively. Let u ∈ V (G1) is of degree d1 and v ∈ V (G2) is of degree d2. Then

N [(G1, G2)u,v(m);x] = N [G1;x] +N [G2;x] +N [Pm−2;x] + (d1 + d2 + 2)x+ (n1 +

n2)(m− 2)− (d1 + d2) + n1n2 − 2 where m > 3.

Proof. Let y1, y2, . . . , ym be the vertices of the path Pm. Let the vertex u of G1

be identified with the end vertex y1 of Pm and let the vertex v of G2 be identified

with the vertex ym. Let (x, y) be any pair of vertices of (G1, G2)u,v(m). We

consider the following 6 cases:

Case(i) Let x, y ∈ V (G1).

Then the number of vertex pairs (x, y) with i common neighbors in (G1, G2)u,v(m)

equals |N(G1, i)|.

Case(ii) Let x, y ∈ V (G2).

Then the number of vertex pairs (x, y) with i common neighbors in (G1, G2)u,v(m)

equals |N(G2, i)|.

Case(iii) Let x ∈ V (G1) and y ∈ {y2, y3, . . . , ym−1}.

In this case, in x = u, the vertex pair (u, y3) has exactly one common
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neighbor y2 and if x is a neighbor of u in G1, then there are d1 pairs of

vertices of the form (x, y2) which have exactly one common neighbor y1.

The remaining n1(m−2)−(1+d1) vertex pairs have no common neighbors.

Case(iv) Let x ∈ V (G2) and y ∈ {y2, y3, . . . , ym−1}.

As in Case(iii), the vertex pair (ym, ym−2) has exactly one common neighbor

ym−1 and d2 pairs of vertices has exactly one common neighbor ym. The

remaining n2(m− 2)− (1 + d2) vertex pairs have no common neighbors.

Case(v) Let x, y ∈ {y2, y3, . . . , ym−2}.

Then the number of pairs of vertices having i common neighbors equals

|N(Pm−2, i)|.

Case(vi) Let x ∈ V (G1) and y ∈ V (G2).

Since m > 3, all the n1n2 pairs of vertices (x, y) under this case have no

common neighbors.

N [(G1, G2)(m);x] = N [G1;x] +N [G2;x] +N [Pm−2;x] + (1 + d1)x

+ n1(m− 2)− (d1 + 1) + (1 + d2)x+ n2(m− 2)

− (d2 + 1) + n1n2

= N [G1;x] +N [G2;x] +N [Pm−2;x] + (d1 + d2 + 2)x+

(n1 + n2)(m− 2)− (d1 + d2) + n1n2 − 2.

This completes the proof.
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Chapter 3
Common neighbor polynomial of

some unary graph operations

The vertex and edge modification problems are very common in

graph theory in the context of constructing graphs with some in-

tended properties. For example, when graphs are used to represent

an experimental data, vertex or edge modifications are useful for

correcting errors in the data. Usually the positive and negative er-

rors in the data are corrected by deleting an edge(or vertex) and

adding an edge(or vertex) respectively in the modelled graph. In this

chapter we study the common neighbor polynomial of some modifi-

cations of graphs.

3.1 Splitting graph of a given graph

The splitting graph S(G) of a graph G is obtained by adding new vertices v′ to G

corresponding to each vertex v of G and then joining the vertex v′ to all vertices
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of G adjacent to v in G.The vertex v′ corresponding to v is called the tag vertex

of v [12].

Figure 3.1: The path graph P4 and its splitting graph

Theorem 3.1.1. If G is a graph with n vertices, then the common neighbor

polynomial of splitting graph of G is given by,

N [S(G);x] = N [G;x2] + 3N [G;x] +
n∑
i=0

n(G, i)xi

where n(G, i) represents the number of vertices of G with degree i.

Proof. Let V ′(G) be the set of tag vertices of G and let (u, v) be any pair of

vertices of S(G).

Case(i) Let u, v ∈ V (G).

If w is a common neighbor of (u, v) in G, the common neighbors of (u, v)

in S(G) are exactly w and its tag vertex w′. Therefore, number of pairs

(u, v) with i common neighbors in S(G) equals the number of pairs (u, v)

with i
2

common neighbors in G which equals |N(G, i
2
)|. Since the number

of common neighbors of any pair of vertices of S(G) under this case is even,

it is enough to consider the cases when i is even.

Case(ii) Let u, v ∈ V ′(G).

Then the common neighbors of (u, v) in S(G) are exactly the common
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3.1. Splitting graph of a given graph

neighbors of corresponding vertices in G. Hence number of vertex pairs

(u, v) with i common neighbors in S(G) equals |N(G, i)|.

Case(iii) Let u ∈ V (G) and v = u′, the tag vertex of u ∈ G.

Then the common neighbors of (u, v) in S(G) are exactly the neighbors of

u in G. Hence number of vertex pairs (u, v) with i common neighbors in

S(G) equals n(G, i).

Case(iv) Let u ∈ V (G) and v = w′, the tag vertex of w ∈ G where w ∈ V (G)

and w 6= u.

In this case, the common neighbors of (u,w′) in S(G) are exactly the com-

mon neighbors of (u,w) in G. Note that, each common neighbor z of the

vertex pair (x, y) of G is a common neighbor for the pairs (x′, y) and (x, y′)

where x′, y′ are the tag vertices of x, y respectively. Using this fact we

can conclude that the number of vertex pairs (u, v) under this case with i

common neighbors in S(G) equals 2|N(G, i)|.

From the above cases, it follows that

N(S(G);x) =
n∑
i=0
i even

|N(G,
i

2
)|xi + 3

n∑
i=0

|N(G, i)|xi +
n∑
i=0

n(G, i)xi

N [S(G);x] = N [G;x2] + 3N [G;x] +
n∑
i=0

n(G, i)xi.

This completes the proof.
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3.2 Shadow graph of a given graph

The shadow graph Sh(G) of a graph G is obtained by taking two copies of G, say

G1 and G2 and joining each vertex of G1 to the neighbors of the corresponding

vertex of G2.

Figure 3.2: The path graph P4 and its shadow graph

Theorem 3.2.1. If G is a graph with n vertices, the common neighbor polynomial

of the shadow graph of G is given by

N [Sh(G);x] = 4N [G;x2] +

|V (G)|∑
i=1
i even

n(G,
i

2
)xi

where n(G, i) represents the number of vertices of the graph G with degree i.

Proof. Let (u, v) be any pair of vertices of Sh(G). Here we consider 4 cases.

Case(i) Let u, v ∈ V (G1).

If the vertex pair (u, v) has i common neighbors in G1, it has 2i common

neighbors in Sh(G) which are the neighbors in G1 and the vertices corre-

sponding to these neighbors in G2. Hence number of pairs (u, v) with i

common neighbors in Sh(G) equals |N(G, i
2
)|.

Case(ii) Let u, v ∈ V (G2).

As in Case(i), number of pairs (u, v) with i common neighbors in Sh(G)

equals |N(G, i
2
)|.
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3.2. Shadow graph of a given graph

Case(iii) Let u ∈ V (G1) and v ∈ V (G2) such that v = u′, the vertex of G2

corresponding to the vertex u of G1.

The common neighbors of (u, u′) are the neighbors of u in G1 and the

neighbors of u′ in G2. Since u and u′ are corresponding vertices, if u

has i neighbors in G, then (u, u′) has 2i common neighbors in Sh(G).

Thus, number of pairs (u, u′) with i common neighbors in Sh(G) equals

the number of vertices in G with degree i
2

where it is enough to consider

only even integers i.

Case(iv) Let u ∈ V (G1) and v ∈ V (G2) where v = w′, the vertex of G2

corresponding to the vertex w of G1 such that w 6= u.

Note that, if the vertex pair (x, y) of G has i common neighbors in G, then

the pairs (x, y′) and (y, x′) of Sh(G) have 2i common neighbors; viz,the

neighbors of (x, y) in G and the vertices corresponding to that neighbors in

Sh(G). Using this fact, we can conclude that the number of pairs (u,w′)

under this case with i common neighbors in Sh(G) equals 2|N(G, i
2
)| where

it is enough to consider only even integers i.

It follows that

|N(Sh(G), i)| = 4|N(G,
i

2
)|+ n(G,

i

2
)

N [Sh(G);x] = 4N [G;x2] +
n∑
i=1
i even

n(G,
i

2
)xi.

This completes the proof.
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3.3 Mycielski graph of a given graph

The Mycielski graph [22], µ(G) of a graph G contains G itself as an isomorphic

subgraph together with n + 1 additional vertices; a vertex vi corresponding to

each vertex ui of G and another vertex w. Each vi is connected by an edge to w

and for each edge uiuj of G, µ(G) includes two additional edges uivj and viuj.

Figure 3.3: The cycle graph C3 and its mycielski graph

Theorem 3.3.1. If G is a graph with n vertices and if n(G, i) denote the number

of vertices of G with degree i, then we have

N [µ(G);x] = N [G;x2] + (x+ 2)N [G;x] + 2
n∑
i=0

n(G, i)xi +m.

Proof. Let vi be the vertices of µ(G) corresponding to the vertices ui of G where

i = 1, 2, . . . , n and let w be the vertex of µ(G) which is connected to each vi by

edges. Let (u, v) be any pair of vertices of µ(G).

Case(i) Let u, v ∈ {u1, u2, . . . , un}.

If (u, v) has i common neighbors in G, then those neighbors and the vertices

corresponding to those neighbors become the neighbors of (u, v) in µ(G).

Thus (u, v) has 2i common neighbors in µ(G). Hence number of vertex
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3.3. Mycielski graph of a given graph

pairs (u, v) with i common neighbors in µ(G) equals |N(G, i
2
)| where i is

always even.

Case(ii) Let u, v ∈ {v1, v2, . . . , vn}.

For i, j ∈ {1, 2, . . . , n}, the common neighbors of (vi, vj) in µ(G) are the

common neighbors of (ui, uj) in G and the vertex w. Hence number of

vertex pairs (u, v) with i common neighbors in µ(G) equals |N(G, i − 1)|

where i is always greater than or equal to 1.

Case(iii) Let u = uk and v = vk where k ∈ {1, 2, . . . , n}.

Here we are considering the pair (u, v) where v is the vertex in µ(G) cor-

responding to the vertex u in G. Then the common neighbors of (u, v)

are the neighbors of u in G. Hence number of vertex pairs (u, v) with i

common neighbors in µ(G) equals n(G, i).

Case(iv) Let u = uk and v = vj where j 6= k and k, j ∈ {1, 2, . . . , n}.

Here we are considering the pair (u, v) where v is the vertex in µ(G) cor-

responding to some vertex of G other than u. Each common neighbor of

(ui, uj) in G are common neighbors of the pairs (ui, vj) and (uj, vi). Hence

number of pairs (u, v) with i common neighbors in µ(G) equals 2|N(G, i)|.

Case(v) Let u ∈ {u1, u2, . . . , un} and v = w.

The common neighbors of (u, v) are the vertices in µ(G) corresponding

to the neighbors of u in G. Hence number of pairs (u, v) with i common

neighbors in µ(G) equals n(G, i).

Case(vi) Let u ∈ {v1, v2, . . . , vm} and v = w.

There are no common neighbors for the n pairs of vertices under this case.
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From the above cases, we can conclude that

|N(µ(G), i)| = |N(G,
i

2
)|+ |N(G, i− 1)|+ 2|N(G, i)|+ 2n(G, i) + nδi0

N [µ(G);x] = N [G;x2] + (x+ 2)N [G;x] + 2
n∑
i=0

n(G, i)xi + n.

This completes the proof.

3.4 Duplication of a vertex

Duplication of a vertex v of a graph G is the graph G′ obtained by adding a

vertex v′ in G with N(v′) = N(v).

v vv′

Figure 3.4: Duplication of the vertex v in C3

Theorem 3.4.1. The common neighbor polynomial of the graph K ′n obtained by

the duplication of one of the vertices of the complete graph Kn is given by

N [K ′n;x] = 2(n− 1)xn−2 +
[(n− 1

2

)
+ 1
]
xn−1.

Proof. Let x be a vertex of Kn duplication of which produces the graph K ′n and

let x′ be the corresponding duplicate vertex. Let (u, v) be any pair of vertices of

K ′n. We consider two cases :
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Case(i) Let u, v ∈ V (Kn). Then the pairs (u, v) has exactly n − 1 common

neighbors except the case when u or v equals x. The vertex pairs of the

form (x, v) has exactly n − 2 common neighbors. Thus under this case,

there are
(
n−1
2

)
pairs with n − 1 common neighbors and n − 1 pairs with

n− 2 common neighbors.

Case(ii) Let u = x′ and v ∈ Kn. Then the vertex pairs (u, v) has n−1 common

neighbors if v = x and has n− 2 common neighbors if v 6= x. Thus under

this case, there is exactly one pair (x′, x) with n−1 common neighbors and

there are n− 1 pairs with n− 2 common neighbors.

It follows that

N [K ′n;x] =

(
n− 1

2

)
xn−1 + (n− 1)xn−2 + xn−1 + (n− 1)xn−2

= 2(n− 1)xn−2 +
[(n− 1

2

)
+ 1
]
xn−1.

This completes the proof.

Theorem 3.4.2. If K ′m,n is a graph obtained by duplication of a vertex of Km,n

having degree m, then the common neighbor polynomial of K ′m,n is given by

N [K ′m,n;x] =

(
m

2

)
xn+1 +

(
n+ 1

2

)
xm +m(n+ 1).

Proof. Note that (see Theorem 2.2.5) N [Km,n;x] =
(
m
2

)
xn +

(
n
2

)
xm +mn. Then

the result follows from the fact that K ′m,n = Km,n+1.

Theorem 3.4.3. If C ′n is a graph obtained by duplication of a vertex of Cn, then

N [C ′n;x] =


2x2 + (n+ 1)x+ (n−3)(n+2)

2
, n 6= 4,

4x2 + 6, n = 4.
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Proof. For n = 4, it is easy to note that N [C ′4;x] = 4x2 + 6. So we consider

the case when n 6= 4. Let the vertices of Cn be u1, u2, . . . , un and let u′n be the

additional vertex of C ′n which is the duplication of the vertex un. Let (u, v) be

any pair of vertices of C ′n. We consider two cases:

Case(i) Let u, v ∈ V (Cn).

Then all the pairs of vertices (u, v) have as many common neighbors in

C ′n as in Cn except the pair (u1, un−1) which has two common neighbors

instead of the one common neighbor in Cn.

Case(ii) Let u ∈ Cn and v = u′n.

Then the vertex pair (un, u
′
n) has 2 common neighbors u1 and un−1, the

pair (u2, u
′
n) has 1 common neighbor u1, the pair (un−2, un) has 1 common

neighbor un−1 and all other n − 3 pairs under this case have no common

neighbors.

Using Theorem 2.2.4, it follows that

N [C ′n;x] =
[
N [Cn;x]− x+ x2

]
+
[
x2 + 2x+ n− 3

]
= 2x2 + (n+ 1)x+

(n− 3)(n+ 2)

2
.

This completes the proof.

Theorem 3.4.4. If P ′n is a graph obtained by the duplication of the vertex ui

which is not a pendent vertex of Pn, then

N [P ′n;x] =


2x2 + (n− 1)x+ (n−2)(n+1)

2
, if n 6= 3,

2x2 + 4, if n = 3.
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Proof. If n = 3, the result follows from the fact that the duplication of the

unique non-pendent vertex of Pn produces the graph C4. So consider the case

when n 6= 3. Let the vertices of Pn be u1, u2, . . . , un and let u′i be the additional

vertex of P ′n which is the duplication of the vertex ui where i ∈ {2, 3, . . . , n− 1}

which is a non pendent vertex of Pn. Let (u, v) be any pair of vertices of P ′n. We

consider two cases:

Case(i) Let u, v ∈ V (Pn).

Then all the pairs of vertices (u, v) have as many common neighbors in P ′n

as in Pn except the pair (ui−1, ui+1) which has two common neighbors ui

and u′i instead of the one common neighbor ui in Pn.

Case(ii) Let u ∈ V (Pn) and v = u′i.

Then the vertex pair (ui, u
′
i) has 2 common neighbors ui−1 and ui+1, the

pair (ui−2, u
′
i) has 1 common neighbor ui−1 and the pair (ui+2, u

′
i) has 1

common neighbor ui+1. All other n − 3 pairs of vertices under this case

have no common neighbors.

Then using Theorem 2.2.2, if follows that

N [P ′n;x] =
[
N [Pn;x]− x+ x2

]
+
[
x2 + 2x+ n− 3

]
= 2x2 + (n− 1)x+

(n− 2)(n+ 1)

2
.

This completes the proof.

Theorem 3.4.5. If P ′n is a graph obtained by the duplication of the pendent

vertex un of Pn, then N [P ′n;x] = nx+ n(n− 1).

Proof. Let (u, v) be any pair of vertices of P ′n. We consider two cases:
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Case(i) Let u, v ∈ V (Pn). Then all the pairs of vertices (u, v) has as many

common neighbors in P ′n as in Pn.

Case(ii) Let u = u′n and v ∈ V (Pn). Then the vertex pairs (u′n, un) and

(u′n, un−2) have one common neighbor un−1 and all other n−2 pairs (u′n, v)

have no common neighbors.

Hence using Theorem 2.2.2, it follows that

N [P ′n;x] =N [Pn;x] + 2x+ (n− 2)

− (n− 2)x+

(
n− 1

2

)
+ 1 + 2x+ n− 2

= nx+

(
n

2

)
.

This completes the proof.
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Chapter 4
Common neighbor polynomial of

some binary graph operations

Binary graph operations are used to produce new graphs by applying

some binary operations on two underlying graphs. Using binary op-

erations, highly complicated graphs may produce using parent graphs

with comparatively simpler structures. In this chapter, we discuss

common neighbor polynomial of some binary graph operations.

4.1 Main results

Theorem 4.1.1. If H and K are any two graphs with h and k vertices, then the

common neighbor polynomial of the join of H and K is given by

N [H ∨ K;x] = xkN [H;x] + xhN [K;x] +
h+k−2∑
i=0

[ ∑
m+l=i

n(H,m)n(K, l)
]
xi where

n(G, i) represents the number of vertices of a graph G with degree i.

Proof. Let (u, v) be any pair of vertices of H ∨ K. We consider the following
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cases:

Case(i) Let u, v ∈ V (H).

Since all the vertices in V (K) are common neighbors of (u, v) in H ∨ K,

the number of vertex pairs (u, v) with i common neighbors in H∨K equals

the number of pairs (u, v) with (i− k) common neighbors in H.

Case(ii) Let u, v ∈ V (K).

Since all the vertices in V (H) are common neighbors of (u, v) in H ∨ K,

the number of vertex pairs (u, v) with i common neighbors in H∨K equals

the number of pairs (u, v) with (i− h) common neighbors in K.

Case(iii) Let u ∈ H and v ∈ K.

In this case all the neighbors of u inH are neighbors of v inH∨K and all the

neighbors of v in K are neighbors of u in H∨K. Hence the number of pairs

(u, v) with i common neighbors in H ∨K equals
∑

i=m+l n(H,m).n(K, l).

Thus we have

|N(H ∨K, i)| = |N(H, i− k)|+ |N(K, i− h)|+
∑
i=m+l

n(H,m).n(K, l).

This completes the proof.

Corollary 4.1.2. N [G+w;x] = xN [G;x]+
n−1∑
i=0

n(G, i)xi where n(G, i) represents

the number of vertices of G with degree i.

Proof. The result follows from the fact that G+w is isomorphic to G∨K1 where

V (K1) = {w}.

Corollary 4.1.3. If Wn is a wheel graph with n vertices, then

N [Wn;x] = 2(n− 1)x2 +
(n− 1)(n− 4)

2
x, for n > 5.
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Proof. Observe that Wn = Cn−1 ∨ K1. Therefore, using Theorems 2.2.4 and

4.1.1,

N [Cn−1 ∨K1;x] = x[(n− 1)x+
(n− 1)(n− 4)

2
] + xn−1 × 0 + (n− 1)x2

= 2(n− 1)x2 +
(n− 1)(n− 4)

2
x.

This completes the proof.

Corollary 4.1.4. If Sn is the shell graph with n > 3 vertices, then

N(Sn;x) = 2(n− 3)x2 +
[(n− 2

2

)
+ 3
]
x.

Proof. Note that Sn = Pn−1 ∨K1. Then the result follows from theorems 2.2.2

and 4.1.1.

Theorem 4.1.5. If K is a graph having k vertices and l edges and H is a graph

having h vertices, then the common neighbor polynomial of corona of K and H

is given by

N [K ◦H;x] = N [K;x] + kxN [H;x] + 2lhx

+ hk(k − 1)

(
1 +

h

2

)
− 2hl + k

h∑
i=0

n(H, i)xi,

where n(H, i) represents the number of vertices of H with degree i.

Proof. Let (u, v) be any pair of vertices of K ◦H. We consider the following 5

cases:

Case(i) Let u, v ∈ V (K).

Then the number of vertex pairs (u, v) with i common neighbors in K ◦H

equals the number of pairs (u, v) with i common neighbors in K which

equals |N(K, i)|.
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Case(ii) Let u, v ∈ V (H).

Let u, v be vertices of the copy of H attached to a vertex w of K. If

(u, v) has i common neighbors in H, say, w1, w2, . . . , wi then, the common

neighbors of (u, v) in K ◦ H are w1, w2, . . . , wi and w. Hence there are

|N(H, i − 1)| pairs of vertices of H with i common neighbors in K ◦ H.

Note that there are k such copies of H.

Case(iii) Let u ∈ V (K) and v ∈ V (Hi) where Hi denote the copy of H corre-

sponding to the vertex u.

Then the number of common neighbors of (u, v) in K ◦H equals the degree

of v in H. Hence the number of vertex pairs (u, v) with i common neighbors

in K ◦H equals n(H, i) and there are k such copies of H in K ◦H.

Case(iv) Let u ∈ V (K) and v ∈ V (Hi) where Hi denote the copy of H corre-

sponding to the vertex w of K such that w 6= u.

Such pair of vertices have a common neighbor if and only if u is a neigh-

bor of w and in such case, the only common neighbor is w. Hence the

number of pairs (u, v) under this case with 1 common neighbor equals

h
∑

w∈V (K) d(w) = 2lh. All the remaining pairs under this case have no

common neighbors and there are (hk2 − hk) − 2lh = h(k2 − k − 2l) such

pairs.

Case(v) Let u ∈ Hi and v ∈ Hj where Hi and Hj are two distinct copies of H.

Then the pairs (u, v) have no common neighbors and there are
(
k
2

)
h2 such

pairs. Thus if

70



4.1. Main results

δij =


1 ; i = j,

0 ; i 6= j,

we have,

|N(K ◦H, i)| = |N(K, i)|+ k|N(H, i− 1)|+ kn(H, i) + 2lhδi1

+ [h(k2 − k − 2l)]δi0 +

(
k

2

)
h2δi0.

It follows that

N [K ◦H;x] = N [K;x] + kxN [H;x] + 2lhx+ hk(k − 1)(1 +
h

2
)

− 2hl + k
h∑
i=0

n(H, i)xi.

This completes the proof.

The graph Q(m,n) is obtained by identifying each vertex of the complete

graph Km with a vertex of a unique Kn where there are m copies of Kn[26].

Corollary 4.1.6. We have the following:

N [Q(m,n);x] =
(
m
2

)
xm−2 +m

(
n
2

)
xn−2 +m(m− 1)(n− 1)x+

(
m
2

)
(n− 1)2.

Proof. The result follows from the fact that Q(m,n) and Km ◦Kn−1 are isomor-

phic.

Theorem 4.1.7. If K is a graph with k vertices and e1 edges and H is a graph

with h vertices and e2 edges, then the common neighbor polynomial of Cartesian

product of G and H is given by

N [K�H;x] = kN [H;x] + hN [K;x] + 2e1e2x
2 + 2

[(k
2

)(
h

2

)
− e1e2

]
.

Proof. Let V (K) = {u1, u2, . . . , uk} and V (H) = {v1, v2, . . . , vh}.

Let the vertices of K�H be denoted by uivj where i ∈ {1, 2, . . . , k} and j ∈
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{1, 2, . . . , h}; k, h ≥ 2. The pairs of vertices of k�H can be categorized as in the

following cases:

Case(i) Consider the vertex pairs of K�H of the form (urvs, urvt) where s 6= t,

r ∈ {1, 2, . . . , k}, and s, t ∈ {1, 2, . . . , h}.

For each r = 1, 2, . . . , k, the common neighbors of (urvs, urvt) in K�H are

the common neighbors of vs and vt in H. Thus the number of vertex pairs

under case(i) with i common neighbors equals k|N(H, i)|.

Case(ii) Consider the vertex pairs of K�H of the form (usvr, utvr) where s 6= t,

s, t ∈ {1, 2, . . . , k} and r ∈ {1, 2, . . . , h}.

For each r = 1, 2, . . . , h, the common neighbors of (usvr, utvr) in K�H are

the common neighbors of us and ut in K. Thus the number of vertex pairs

under case(ii) with i common neighbors equals h|N(K, i)|.

Case(iii) Consider the vertex pairs of K�H of the form (usvr, utvl); s 6= t, r 6= l

where usut ∈ E(K) and vrvl ∈ E(H).

Corresponding to any pair of edges usut of K and vrvl of H, the vertices

usvl and utvr are common neighbors of (usvr, utvl) in K�H and the vertices

usvr and utvl are common neighbors of (usvl, utvr) in K�H. So there are

2e1e2 pairs in K�H with 2 common neighbors.

Case(iv) Consider the vertex pairs of K�H of the form (usvr, utvl); s 6= t, r 6= l

where either usut /∈ E(K) or vrvl /∈ E(H) or both.

Since s 6= t and r 6= l there cannot be any common neighbors for (usvr, utvl).

Corresponding to each vertex pair (us, ut) of K and (vr, vl) of H, there can

be two vertex pairs (usvr, utvl) and (usvl, utvl) in K�H. So there are
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2
(
k
2

)(
h
2

)
−2e1e2 pairs of vertices under case(iv) where there are no common

neighbors.

It follows that,

N [K�H;x] = kN [H;x] + hN [K;x] + 2e1e2x
2 + 2

[(
k
2

)(
h
2

)
− e1e2

]
.

A Ladder graph Ln is obtained as the cartesian product of two paths one of

which has only one edge.

Corollary 4.1.8. N [Ln;x] = 2(n− 1)x2 + 2(n− 2)x+ 4
(
n−1
2

)
+ n+ 2.

Proof. Since Ln is isomorphic to Pn�P2, N [Ln;x] = N [Pn�P2;x].

Note that(see Theorem 2.2.2) N [Pn;x] = (n− 2)x+
(
n−1
2

)
+ 1. So we obtain

N [Ln;x] = n+ 2
[
(n− 2)x+

(
n− 1

2

)
+ 1
]

+ 2(n− 1)x2 + 2
[(n

2

)(
2

2

)
− (n− 1)

]
= 2(n− 1)x2 + 2(n− 2)x+ 4

(
n− 1

2

)
+ n+ 2.

This complete the proof.

A circular ladder graph CLn is obtained as the cartesian product of the cycle

graph Cn and the path P2.

Corollary 4.1.9. We have the following.

N [CLn;x] =


2nx2 + 2nx+ n(2n− 5), if n 6= 4,

12x2 + 16, if n = 4.

Proof. Using the theorem 2.2.4 and using the fact that CLn is isomorphic to

Cn�P2, it follows that
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Case(i) Let n 6= 4. Then,

N [CLn;x] = n+ 2
[
nx+

n(n− 3)

2

]
+ 2nx2 + 2

[(n
2

)(
2

2

)
− n

]
= 2nx2 + 2nx+ n(2n− 5).

Case(ii) Let n = 4. Then,

N [CLn;x] = 4 + 2[2x2 + 4] + 8x2 + 2
[(4

2

)(
2

2

)
− 4
]

= 12x2 + 16.

This completes the proof.

A m−book graph[43] is obtained as the cartesian product of the star graph

K1,m and the path graph P2.

Corollary 4.1.10. If Bm is a m−book graph, then we have the following:

N [Bm;x] = 2mx2 +m(m− 1)x+ (m+ 1)2.

Proof. Since Bm is isomorphic to K1,m�P2, N [Bm;x] = N [K1,m�P2;x].

Note that (see Corollary 2.2.6), N [K1,m;x] =
(
m
2

)
x+m and N [P2;x] = 1.

Thus we obtain,

N [Bm;x] = (m+ 1) + 2
[(m

2

)
x+m

]
+ 2mx2 + 2

[(m+ 1

2

)(
2

2

)
−m

]
= 2mx2 +m(m− 1)x+ (m+ 1)2.

This completes the proof.
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Theorem 4.1.11. Let G be a graph with n vertices and l edges. Let H be a

rooted graph with m vertices having a root vertex v1 with degree d. If G′ is the

rooted product of G and H, then,

N [G′;x] = N [G;x] + nN [H;x] + 2ldx+

(
n

2

)
(m2 − 1)− 2ld.

Proof. Let V (G) = {u1, u2, . . . , un} and let V (H) = {v1, v2, . . . , vm} where v1

is the root vertex. Then a vertex of G′ can be represented by uivj where i ∈

{1, 2, . . . , n} and j ∈ {1, 2, . . . ,m}. Let (u, v) be any pair of vertices of G′.We

consider the following 4 cases:

Case(i) Let u, v ∈ {uiv1; i = 1, 2, . . . , n}.

Then the common neighbors of (u, v) in G′ are exactly the common neigh-

bors of (ui, uj) in G where i, j ∈ {1, 2, . . . , n}.

Case(ii) For i = 1, 2, . . . , n, let u, v ∈ {uivj; j = 1, 2, . . . ,m} where ui is a

particular vertex of G.

Then for each i, the common neighbors of (u, v) in G′ are exactly the

common neighbors of (u, v) in H.

Case(iii) Let u = uiv1 and v = urvj where i, r ∈ {1, 2, . . . , n}; i 6= r and

j ∈ {2, 3, . . . ,m}.

Then if d is the degree of the root vertex v1, corresponding to each edge

of G, there are 2d vertex pairs under this case having exactly one common

neighbor. And there are 2ld such pairs. All other n(n − 1)(m − 1) − 2ld

vertex pairs under this case have no common neighbors.

Case(iv) Let u = uivj and v = urvs where i, r ∈ {1, 2, . . . , n}; i 6= r and

j, s ∈ {2, 3, . . . ,m}.
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Then the vertex pairs (u, v) have no common neighbors and there are(
n
2

)
(m− 1)2 such pairs.

If follows that

N [G′;x] = N [G;x] + nN [H;x] + 2ldx+ [n(n− 1)(m− 1)− 2ld] +

(
n

2

)
(m− 1)2

= N [G;x] + nN [H;x] + 2ldx+ 2

(
n

2

)
(m− 1)− 2ld+

(
n

2

)
(m− 1)2

= N [G;x] + nN [H;x] + 2ldx+

(
n

2

)
(m2 − 1)− 2ld.

This completes the proof.

Theorem 4.1.12. If K and H are any two graphs with k and h vertices respec-

tively and if n(H, a) denote the number of vertices of the graph H with degree a,

then the common neighbor polynomial of tensor product of K and H is

N [K ×H;x] =
kh−2∑
i=0

|N(K ×H, i)|xi,

where |N(K ×H, i)| is given by∑
ab=i

{∣∣N(K, b)
∣∣n(H, a) +

∣∣N(H, b)
∣∣n(K, a) +

∣∣N(K, a)
∣∣∣∣N(H, b)

∣∣}; a, b integers;

k, h ≥ 2 and i ∈ {0, 1, 2, . . . , (kh− 2)}.

Proof. Let V (K) = {u1, u2, . . . , uk} and V (H) = {v1, v2, . . . , vh}.

Let the vertices of K × H be denoted by urvs where r ∈ {1, 2, . . . , k} and s ∈

{1, 2, . . . , h}; k, h ≥ 2. The pairs of vertices of K�H can be categorized as in

the following cases:

Case(i) Consider the vertex pairs of K×H of the form (urvs, urvt) where s 6= t,

r ∈ {1, 2, . . . , k} and s, t ∈ {1, 2, . . . , h}.

For each r = 1, 2, . . . , k, the number of common neighbors of (urvs, urvt)
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equals degree of ur in K multiplied by the number of common neigh-

bors of (vs, vt) in H. Hence for i = 1, 2, . . . , (kh − 2), the number of

vertex pairs under this case with i common neighbors in K × H equals∑
ab=i n(K, a)|N(H, b)| where the summation is taken over all integers a, b

such that ab = i.

Case(ii) Consider the vertex pairs of K×H of the form (usvr, utvr) where s 6= t,

s, t ∈ {1, 2, . . . , k} and r ∈ {1, 2, . . . , h}.

For each r = 1, 2, . . . , h, the number of common neighbors of (usvr, utvr)

equals degree of vr in H multiplied by the number of common neighbors of

(us, ut) in K. It follows that the number of pairs with i common neighbors

equals
∑

ab=i n(H, a)|N(K, b)|.

Case(iii) Consider the vertex pairs of K×H of the form (urvs, utvl) where r 6= t

and s 6= l, r, t ∈ {1, 2, . . . , k} and s, l ∈ {1, 2, . . . , h}.

The common neighbors of (urvs, utvl) are of the form (x, y) where x is a

common neighbor of (ur, ut) in K and y is a common neighbor of (vs, vl)

in H. It follows that the number of pairs with i common neighbors equals∑
ab=i [|N(K, a)||N(H, b)|].

This completes the proof.
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Chapter 5
CNP equivalent classes of graphs

It is obvious that isomorphic graphs have same common neighbor

polynomial. But the existence of isomorphism may not be a cri-

teria for identifying two graphs as equivalent as far as structural

equivalence is concerned. From this point of view, CNP -equivalent

classes of graphs are defined and studied in the present chapter.

5.1 Main results

We say that two graphs G and H are CNP -equivalent (G
N∼ H) if and only if

N [G;x] = N [H;x]. For example, the non isomorphic graphs shown in figure 5.1

are CNP-equivalent graphs. In figure 5.1, N [G;x] = N [H;x] = 3x+ 6.

Obviously, the relation
N∼ is an equivalence relation on the class G of all simple

finite graphs. The set of all graphs CNP -equivalent to a graph G is denoted as

[G]N and is defined as

[G]N = {H ∈ G : N [H;x] = N [G;x]}.
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G
H

Figure 5.1: Two CNP -equivalent graphs G and H

A graph H is said to be CNP−unique if [H]N = {H}.

In this chapter we identify some CNP− unique graphs and also some CNP -

equivalent graph classes. Through out this chapter, p(G) denotes disjoint union

of p copies of the graph G.

Theorem 5.1.1. Let G be a graph with n vertices and let G denotes the com-

plement of G. Then G ∈ [G]N if and only if there are |N(G, i)| vertex pairs of

G which dominate n− i vertices of G.

Proof. Let G ∈ [G]N . Then |N(G, i)| = |N(G, i)| for i = 1, 2, . . . , n − 2. Let

(u, v) ∈ N(G, i). Then (u, v) has i common neighbors in G. All the vertices of

G−{u, v} other than these i vertices are adjacent to either u or v in G. So {u, v}

dominates n − i vertices of G. Since |N(G, i)| = |N(G, i)|, there are |N(G, i)|

vertex pairs of G which dominate n− i vertices of G.

Conversely assume that there are |N(G, i)| vertex pairs of G which dominate

n− i vertices of G. For each vertex pair (u, v) of G which dominate n− i vertices

of G the remaining i vertices of G are not adjacent to either u or v in G. Thus

those i vertices are common neighbors of (u, v) in G. So |N(G, i)| equals the

number of vertex pairs of G which dominate n − i vertices of G which equals

|N(G, i)| by assumption. Thus N [G;x] = N [G;x]. It follows that G ∈ [G]N .
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Corollary 5.1.2. Let G be a graph with n vertices. If G ∈ [G]N then |N(G, 0)|

gives the number of dominating sets of G of order 2.

Theorem 5.1.3. If H ∈ [G]N and N(G, 2) > 0, then H has a cycle of length 4

if and only if G has a cycle of length 4.

Proof. If H ∈ [G]N , then N [H;x] = N [G;x] so that N(H, i) = N(G, i), ∀i ≥ 0.

In particular, N(H, 2) = N(G, 2). Now the proof follows from the fact that, for

any graph G, if N(G, 2) > 0 then G has a cycle of length 4.

5.2 Some CNP -unique graph classes

In this section, we identify some CNP -unique graph classes.

Theorem 5.2.1. For n > 2, the complete graph Kn is CNP−unique.

Proof. Let H be any graph such that H ∈ [Kn]N . Then from Theorem 2.2.1,

it follows that N [H;x] =
(
n
2

)
xn−2. Let u, v ∈ V (H) such that uv /∈ E(H). Let

w be any vertex in H other than u and v. Then u is not a common neighbor

of (v, w) since u is not a neighbor of v. So the number of common neighbors of

(v, w) is at most n − 3. Since N [H;x] =
(
n
2

)
xn−2, there are no pairs of vertices

in H with number of common neighbors less than n − 2. Thus we arrive at a

contradiction. Thus uv ∈ E(H), ∀u, v ∈ V (H). Then H is isomorphic to Kn.

This completes the proof.

Theorem 5.2.2. The complete bipartite graph Km,n is CNP−unique, for every

n,m > 2.
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Proof. Let G be any graph such that G ∈ [Km,n]N where m,n > 2. Then

|V (G)| = m + n and from Theorem 2.2.5, N [G;x] =
(
m
2

)
xn +

(
n
2

)
xm + mn.

Therefore G has mn pairs of vertices having no common neighbors. Since G has

m + n vertices, the set of vertices of G can be partitioned into two, viz, U =

{u1, u2, . . . , um} and V = {v1, v2, . . . , vn} where (ui, vj); i ∈ {1, 2, . . . ,m}; j ∈

{1, 2, . . . , n} have no common neighbors in G and the pairs (ui, uj) where i, j ∈

{1, 2, . . . ,m} and (vi, vj) where i, j ∈ {1, 2, . . . , n} have at least one common

neighbor in G.

Without loss of generality assume that m < n. If possible, assume that

all the common neighbors of (ui, uj) where i, j ∈ {1, 2, . . . ,m} are in U itself.

Since U has only m vertices, (ui, uj) can have at most m− 2 common neighbors.

Then the expression for N [G;x] shows that (ui, uj) has no common neighbors

in G which is a contradiction to the construction of U . Therefore every pairs of

vertices (ui, uj) of U has some common neighbors in V .

Now suppose that (ui, uj) has a common neighbor u in U and another com-

mon neighbor v in V . Then ui and uj are common neighbors of (u, v) in G, a

contradiction to the construction of U and V . Thus all the common neighbors

of (ui, uj) are in V .

We will prove that there is no edge in G connecting two vertices in U . Let

e = uiuj ∈ E(G) and let v ∈ V be a common neighbor of (ui, uj) in V . Then uj

is a common neighbor of (ui, v), a contradiction to the construction of U and V .

Hence there is no edge in G connecting two vertices in U .

Now we will show that ∀u ∈ U and ∀v ∈ V , ∃ an edge uv ∈ E(G). Let

e = uv /∈ E(G). Then v is not a common neighbor of (u, ui); i = 1, 2, . . . ,m
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in G. Since all the common neighbors of (u, ui) lies in V , (u, ui) can have at

most n − 1 common neighbors in G. Then only possible cases are that either

(u, ui) has no common neighbors or number of common neighbors of (u, ui) equals

m. First case is a contradiction to the construction of U . Therefore number of

common neighbors of (u, ui) equals m for i = 1, 2, . . . ,m − 1. Then at most(
m
2

)
− (m − 1) =

(
m−1
2

)
vertex pairs in U can have n common neighbors in

G. Since there are
(
m
2

)
vertex pairs in G with n common neighbors, at least(

m
2

)
−
(
m−1
2

)
vertex pairs in V must have n common neighbors. Let (vr, vs) be

a vertex pair in V with n common neighbors in G. Since V has only n vertices

and since m < n, (vr, vs) must have one common neighbor, say ul ∈ U and other

common neighbor, say vl ∈ V . Then vr and vs are common neighbors of (ul, vl)

where ul ∈ U and vl ∈ V which is a contradiction to the construction of U and

V . Therefore e = uv ∈ E(G).

Finally we will prove that there is no edge in G connecting two vertices of V .

Let e = vivj ∈ E(G) where vi, vj ∈ V . Let u ∈ U . Then there exists an edge uvi

in G. Then vi is a common neighbor of (u, vj) where u ∈ U and vj ∈ V which

is a contradiction to the construction of U and V . Hence there is no edge in G

connecting two vertices of V . Then G is isomorphic to Km,n and hence Km,n is

CNP−unique.

Lemma 5.2.3 (Friendship theorem [31]). If Gn is a graph in which any two

points are connected by a path of length 2 and which does not contain any cycle

of length 4, then n = 2k + 1 and Gn consists of k triangles which have one

common vertex.

Theorem 5.2.4. Let Fn be a friendship graph with P vertices. Then the friend-
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ship graph Fn is CNP− unique.

Proof. LetG ∈ [Fn]N . ThenG has P vertices and from Theorem 2.2.17, N [G;x] =

n(2n+ 1)x. Since Fn is the friendship graph, number of vertices, P = 2n+ 1. It

follows that N [G;x] =
(
P
2

)
x. Thus all the

(
P
2

)
pairs of vertices of G has exactly

one common neighbor. Then by lemma 5.2.3, G is a friendship graph.

5.3 CNP -equivalent graph classes

In this section, we prove that well known graph classes like cycle graphs, path

graphs, star graphs etc. are not CNP -unique. Here we identify some specific

graphs which are CNP -equivalent to these graph classes.

Theorem 5.3.1. For n ≥ 5, the cycle graph Cn is not CNP−unique. In par-

ticular,

N [Cn;x] =


N [T(n−2,1) +K1; x], if n 6= 6,

N [K1,4 +K1; x], if n = 6.

where T(n,l) is a tadpole graph with n + l vertices and K1,n is a star graph with

n+ 1 vertices.

Proof. Here we consider two cases:

Case(1) Let n = 6. We will show that N [K1,4 +K1;x] = N [C6;x].

From Corollary 2.2.6 and Theorem 2.2.18, it follows that,

N [K1,4 +K1;x] = N [K1,4;x] +N [K1;x] + 5 = 6x+ 9.

Hence K1,4 +K1 ∈ [C6]N .
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Case(2) Let n ≥ 5 and n 6= 6. We will show that N [T(n−2,1)+K1;x] = N [Cn;x].

From Corollary 2.2.22, we have

N [T(n,l);x] = N [Cn;x] +N [Pl;x] + 2x+ nl − 2.

Hence by Theorem 2.2.18, it follows that

N [T(n−2,1) +K1;x] = N [T(n−2,1);x] +N [K1;x] + (n− 1)

= N [Cn−2;x] +N [P1;x] + 2x+ 1(n− 2)− 2 + (n− 1)

= (n− 2)x+
(n− 2)(n− 5)

2
+ 2x+ 2n− 5

= nx+
n(n− 3)

2

= N [Cn;x].

It follows that T(n−2,1) +K1 ∈ [Cn]N and thus Cn is not CNP−unique.

Theorem 5.3.2. For n > 3, the path Pn is not CNP−unique. In particular,

N [Pn;x] = N [C3 + Pn−3;x].

Proof. We will show that N [C3 +Pn−3;x] = N [Pn;x] for n > 3. From Theorems

2.2.2 and 2.2.18, we have

N [C3 + Pn−3;x] = N [C3] +N [Pn−3;x] + 3(n− 3)

= 3x+
[
(n− 5)x+

(
n− 4

2

)
+ 1
]

+ 3(n− 3)

= (n− 2)x+

(
n− 1

2

)
+ 1 = N [Pn;x].

Since C3 + Pn−3 is not isomorphic to Pn and C3 + Pn−3 ∈ [Pn]N , Pn is not

CNP−unique.

85



5.3. CNP -equivalent graph classes

Theorem 5.3.3. If |N(G, 1)| = n − 2 with |V (G)| = n and N(G, i) = 0 for

i > 1, then G ∈ [Pn]N .

Proof. Since
n−2∑
i=1

|N(G, i)| =
(
n

2

)
, N(G, 0) =

(
n
2

)
− (n− 2) =

(
n−1
2

)
+ 1.

So it follows that N [G;x] = (n− 2)x+
(
n−1
2

)
+ 1 and thus G ∈ [Pn]N .

Theorem 5.3.4. If G ∈ [Pn]N , G has no cycles of length 4.

Proof. Note that G ∈ [Pn]N . Hence N [G;x] = (n − 2)x +
(
n−1
2

)
+ 1. So G has

no vertex pairs with 2 or more common neighbors. If G has a cycle of length 4,

say uvwxu, then the number of common neighbors of (u,w) is at least 2, which

is a contradiction. Therefore G has no cycles of length 4.

Theorem 5.3.5. Let G be a graph of order n = 3l + r + 2; r = 0, 1, 2 and if

G = l(C3) + Pr+2, then G ∈ [Pn]N .

Proof. Here G is a graph with l + 1 components. We consider 3 cases each of

which uses Corollary 2.2.19 to evaluate the common neighbor polynomial of G.

Case(1) Let n = 3l + 2. Then G = l(C3) + P2.

N [G;x] = lN [C3;x] +N [P2;x] + 6l +

(
l

2

)
(9)

= 3lx+
3l(3l + 1)

2
+ 1

= (n− 2)x+

(
n− 1

2

)
+ 1 = N [Pn;x].

Case(2) Let n = 3l + 3. Then G = l(C3) + P3.

N [G;x] = lN [C3;x] +N [P3;x] + 9l +

(
l

2

)
(9)
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= (3l + 1)x+
(3l + 2)(3l + 1)

2
+ 1

= (n− 2)x+

(
n− 1

2

)
+ 1 = N [Pn;x].

Case(3) Let n = 3l + 4. Then G = l(C3) + P4.

N [G;x] = lN [C3;x] +N [P4;x] + 12l +

(
l

2

)
(9)

= (3l + 1)x+
(3l + 3)(3l + 2)

2
+ 1

= (n− 2)x+

(
n− 1

2

)
+ 1 = N [Pn;x].

This completes the proof.

Theorem 5.3.6. If G = K1,r + K1,s + p(K1) where rC2 + sC2 = n − 2 and

p = n− r − s− 2, then G ∈ [Pn]N .

Proof. Let G = K1,r +K1,s + p(K1). From Corollary 2.2.6 and Corollary 2.2.19,

it follows that

N [G;x] = N [K1,r;x] +N [K1,s;x] + pN [K1;x] + (r + 1)(s+ 1)

+ p(r + 1) + p(s+ 1) +

(
p

2

)
=

(
r

2

)
x+ r +

(
s

2

)
x+ s+ (r + 1)(s+ 1) + p(r + s+ 2) +

(
p

2

)
= (n− 2)x+

1

2

[
(

(
r

2

)
+

(
s

2

)
)2 +

(
r

2

)
+

(
s

2

)
+ 2
]

= (n− 2)x+
1

2
[(n− 2)2 + n]

= (n− 2)x+
(n− 1)(n− 2)

2
+ 1 = N [Pn;x].

This completes the proof.

Theorem 5.3.7. If n = 2k+ 1, k = 1, 2, . . . and if G = Fk +K1 where Fk is the

friendship graph with k 3-cycles, then G ∈ [K1,n]N .
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Proof. Let G = Fk +K1. Then from Theorems 2.2.17 and 2.2.18, we have,

N [G;x] = N [Fk +K1;x]

= N [Fk;x] +N [K1;x] + |V (Fk)||V (K1)|

= [3k + 4

(
k

2

)
]x+ (2k + 1)(1)

=
2k(2k + 1)

2
x+ (2k + 1)

=

(
n

2

)
x+ n = N [K1,n;x].

This completes the proof.

Theorem 5.3.8. If n = 2k, k = 1, 2, . . . then G ∈ [K1,n]N where G is the

friendship graph Fk−1 with (k − 1) 3-cycles whose center vertex is attached to a

path P2 through a bridge.

Proof. Let G be the friendship graph Fk−1 with center vertex u to which a path

P2 is attached through a bridge e = uv. Then e = uv is a cutedge of G. From

Theorem 2.2.20, it follows that N [G;x] = N [Fk−1 + P2;x] + [2(k − 1) + 1]x −

[2(k − 1) + 1]. Then from Theorems 2.2.17 and 2.2.18, we have,

N [Fk−1 + P2;x] = N [Fk−1;x] +N [P2;x] + |V (Fk−1)||V (P2)|

=(k − 1)(2k − 1)x+ 1 + 2(2k − 1).

It follows that N [G;x] = N [K1,n;x].

This completes the proof.

Theorem 5.3.9. If G1 and G2 are two components of a graph G, then G is

CNP−unique if and only if both G1 and G2 are CNP−unique.

Proof. The result follows from Theorem 2.2.18.
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Theorem 5.3.10. If G is a connected graph and e = uv a cutedge of G, then

G− e is CNP−unique if and only if G is CNP−unique.

Proof. The result follows from Theorem 2.2.20.

Corollary 5.3.11. The tadpole T(n,l) is not CNP−unique for l > 3 and n ≥ 5.

Proof. Removing the bridge e from Tn,l, the resulting graph is the union of the

path Pl and the cycle Cn. Hence from Theorems 5.3.1, 5.3.2 and 5.3.9, T(n,l) − e

is not CNP−unique for l > 3 and n ≥ 5. Now the result follows from Theorem

5.3.10.

The n- barbell graph Bn,1 is a graph obtained by connecting two copies of

complete graph Kn by a bridge e.

Corollary 5.3.12. The n−barbell graph Bn,1 is CNP−unique for n > 2.

Proof. Note that Bn,1 − e = Kn +Kn. From Theorems 5.2.1 and 5.3.9, Bn,1 − e

is CNP−unique. Hence from Theorem 5.3.10, Bn,1 is CNP−unique.

The lollipop graph Lm,n is a graph obtained by joining a complete graph Km

to a path Pn with a bridge.

Corollary 5.3.13. The lollipop graph Lm,n is not CNP−unique for n > 3.

Proof. Note that Lm,n − e = Km + Pn. Hence from Theorems 5.3.2 and 5.3.9,

Lm,n − e is not CNP−unique for n > 3. Hence the result follows from Theorem

5.3.10.
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5.3. CNP -equivalent graph classes

A bistar graph Bm,n is obtained by connecting the center vertices of two star

graphs K1,m and K1,n by a bridge e.

Corollary 5.3.14. The bistar graph Bm,n is not CNP−unique.

Proof. Note that Bm,n − e = K1,m + K1,n. Hence from Theorems 5.3.7, 5.3.8

and 5.3.9, Bm,n − e is not CNP−unique. Then the result follows from Theorem

5.3.10.
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Chapter 6
Stability of common neighbor

polynomial of graphs

A polynomial f(x1, . . . , xn) is said to be stable [28] with respect to a

region Ω ∈ Cn if no root of f lies in Ω. Polynomials which are sta-

ble with respect to the closed right half plane and with respect to the

open unit disk are called Hurwitz polynomial and Schur polynomial

respectively. Hurwitz polynomials are important in control systems

theory, because they represent the characteristic equations of stable

linear systems[15]. A graph polynomial is worthwhile to study only

if it models some stable physical systems. In this chapter we study

the stability of common neighbor polynomial of graphs with respect

to the closed right half plane and thus identify the conditions un-

der which the common neighbor polynomial of certain graph classes

become a Hurwitz polynomial.
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6.1. Main results

6.1 Main results

Definition 6.1.1. A polynomial f(x1, x2, . . . , xn) is said to be stable with respect

to the closed right half plane if and only if all of its non zero roots lie in the open

left half plane.

Theorem 6.1.2. Let Pn be a path with n > 2 vertices. Then N [Pn;x] is stable.

Proof. From Theorem 2.2.2, it follows that N [Pn;x] has a single root

x =
−(n− 1)(n− 2)− 2

2(n− 2)

which lie in the open left half plane since n > 2. Hence the result follows.

Theorem 6.1.3. For a cycle Cn, N [Cn;x] is stable unless n = 4.

Proof. From Theorem 2.2.4, we have

N [Cn;x] =


nx+ n(n−3)

2
, n > 2, n 6= 4.

2x2 + 4, n = 4.

If n = 3, N [C3;x] = 3x. In this case, zero is the only root of N [C3;x]. If

n > 4, then N [Cn;x] has a single root x = −(n−3)
2

which lie in the left half plane.

If n = 4, the roots of N [C4;x] are given by x = ±
√

2i. Hence N [C4;x] is not

stable as it has non zero roots in the closed right half plane.

Theorem 6.1.4. Let G be a graph with common neighbor polynomial N [G;x] of

degree 2. Then the following hold:

1. If N(G, 0) = φ and N(G, 1) 6= φ, then N [G;x] is a stable polynomial.
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2. If N(G, 0) 6= φ and N(G, 1) = φ, then N [G;x] is not a stable polynomial.

Proof. Since N [G;x] is of degree 2, |N(G, 2)| 6= 0. We consider the two cases:

1. Let N(G, 0) = φ and N(G, 1) 6= φ. In this case, the roots of N [G;x] are

given by x = 0 and x = −|N(G, 1)|
|N(G, 2)|

. It follows that N [G;x] is stable.

2. Let N(G, 0) 6= φ and N(G, 1) = φ. Then the roots of N [G;x] are given by

x = ±

√
|N(G, 0)|
|N(G, 2)|

i. Since N [G;x] has non zero roots in the closed right

half plane, N [G;x] is not stable.

This completes the proof.

Corollary 6.1.5. If Wn is a wheel graph having n vertices, N [Wn;x] is stable

for n ≥ 4.

Proof. We have (see 2.2.11),

N [Wn;x] =


(n−1)(n−4)

2
x+ 2(n− 1)x2, if n 6= 5,

2x3 + 4x2 + 4x, if n = 5.

When n = 4, N [W4;x] = 6x2 which has only one root namely zero. When

n = 5, the common neighbor roots of Wn are x = 0,−1± i which lie in the open

left half plane. When n > 5, N [Wn;x] is of degree 2 with |N(Wn, 0)| = 0 and

|N(Wn, 1)| 6= 0. So the result follows from Theorem 6.1.4.

Corollary 6.1.6. If Sn is a shell graph with n ≥ 3 vertices, then N [Sn;x] is

stable.
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6.1. Main results

Proof. We have (see Theorem 2.2.14), N [Sn;x] = 2(n− 3)x2 +
((
n−2
2

)
+ 3
)
x.

Since n ≥ 3, N [Sn;x] satisfies the conditions of first part of Theorem 6.1.4.

Hence it is stable.

Corollary 6.1.7. If BN is a bow graph with N > 5 vertices, then N [BN ;x] is

stable.

Proof. From Theorem 2.2.15 we have, N [BN ;x] = 2(N−5)x2 +
[
N(N−5)

2
+ 10

]
x.

Since n > 5, N [Bn;x] satisfies the conditions of first part of Theorem 6.1.4.

Hence it is stable.

Here we need the following:

Theorem 6.1.8. (Routh-Hurwitz Criteria [30]) Given a polynomial, P (x) =

xn + a1x
n−1 + . . . + an−1x + a0, where the coefficients ai are real constants, i =

1, 2, . . . , n define the n Hurwitz matrices using the coefficients ai of the above

polynomial as

H1 = [a1] H2 =

a1 1

a3 a2



H3 =


a1 1 0

a3 a2 a1

a5 a4 a3

 · · · Hn =



a1 1 0 0 · · · 0

a3 a2 a1 1 · · · 0

a5 a4 a3 a2 · · · 0

...
...

...
... · · · ...

a2n−1 a2n−2 a2n−3 a2n−4 · · · an


where aj = 0 if j > n. All the roots of the polynomial P (x) are negative or have

negative real part if and only if the determinants of all Hurwitz matrices are

positive: det Hj > 0, j = 1, 2, . . . , n.
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Corollary 6.1.9. If Ln,1 is the lollipop graph with n+ 1 vertices, then N [Ln,1;x]

is stable if and only if n ≤ 4.

Proof. We have (see Theorem 2.2.10), N [Ln,1;x] =
(
n
2

)
xn−2 + (n− 1)x+ 1.

For n = 1, 2, 3, the result follows from simple calculations. When n = 4,

N [L4,1;x] = 6x2 + 3x + 1. So considering the polynomial x2 + 1
2
x + 1

6
, the

determinants of Hurwitz matrices are given by, |H1| = 1
2

and |H2| =

∣∣∣∣∣∣∣
1
2

1

0 1
6

∣∣∣∣∣∣∣ = 1
12

.

Since all the determinants are positive, it follows that N [L4,1;x] is stable. When

n > 4, the result follows from the fact that the determinant of first Hurwitz

matrix of N [Ln,1;x] is zero.

Corollary 6.1.10. If Bn,1 is the n-Barbell graph with 2n vertices, then N [Bn,1;x]

is stable if and only if n ≤ 4.

Proof. From Corollary 2.2.23 we have, N [Bn,1;x] = 2
(
n
2

)
xn−2 + 2(n− 1)x+ (n−

1)2 + 1. For n = 1, 2, 3, the result follows from simple calculations. When n = 4,

N [B4,1;x] = 12x2 + 6x + 10. So considering the polynomial x2 + 1
2
x + 5

6
, the

determinants of Hurwitz matrices are given by, |H1| = 1
2

and |H2| =

∣∣∣∣∣∣∣
1
2

1

0 5
6

∣∣∣∣∣∣∣ = 5
12

.

Since all the determinants are positive, it follows that N [B4,1;x] is stable. When

n > 4, the result follows from the fact that the determinant of first Hurwitz

matrix of N [Bn,1;x] is zero.

Corollary 6.1.11. If Bn, n ≥ 3 is the bipartite cocktail party graph, then

N [Bn;x] is stable if and only if n = 3.

Proof. We have (see Theorem 2.2.26), N [Bn;x] = 2
(
n
2

)
xn−2 + n2. When n = 3,

N [Bn;x] = 6x+9, having root x = −3/2 lying in the open left half plane. When
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n > 3, the determinant of the first Hurwitz matrix becomes zero and hence the

result follows.

Corollary 6.1.12. If W
(m)
n , n ≥ 3 is the windmill graph, then N [W

(m)
n ;x] is

stable if and only if n = 3, 4.

Proof. From Theorem 2.2.27, we have, N [W
(m)
n ;x] = m

(
n
2

)
xn−2 +

(
m
2

)
(n− 1)2x.

When n = 3, N [W
(m)
n ;x] = m(2m + 1)x having root x = 0 only. When x = 4,

N [W
(m)
n ;x] = 6mx2 + 9

(
m
2

)
x having roots x = 0 and x = (−9/12)(m−1). Hence

for n = 3, 4, N [W
(m)
n ;x] is stable.

For n > 4, N [W
(m)
n ;x] is not stable as the determinant of the first Hurwitz

matrix becomes zero.

Theorem 6.1.13. Let G be a graph with common neighbor polynomial N [G;x]

of degree 2 where |N(G, i)| > 0 for i = 0, 1, 2. Then N [G;x] is stable. More-

over, N [G;x] has two negative real roots if |N(G, 1)|2 ≥ 4|N(G, 2)||N(G, 0)| and

N [G;x] has two complex roots with negative real parts otherwise.

Proof. Since N [G;x] is a polynomial of degree 2, N [G;x] can be represented in

the form N [G;x] = |N(G, 2)|x2 + |N(G, 1)|x + |N(G, 0)|. The Hurwitz matri-

ces of N [G;x] are given by H1 =

[
|N(G,1)|
|N(G,2)|

]
and H2 =

 |N(G,1)|
|N(G,2)| 1

0 |N(G,0)|
|N(G,2)|

. Since

|N(G, i)| > 0 for i = 0, 1, 2; it follows that detH1 > 0 and detH2 > 0.

Hence by Theorem 6.1.4, N [G;x] is stable so that all the roots of N [G;x] lie

in the open left half plane. Moreover, the discriminant of N [G;x] is given by

∆ = |N(G, 1)|2 − 4|N(G, 2)||N(G, 0)|. It follows that N [G;x] has 2 real roots if

∆ ≥ 0 and has two complex roots if ∆ < 0. This completes the proof.
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Corollary 6.1.14. If Hn, n > 3 is a helm with 2n − 1 vertices, then N [Hn;x]

is stable. Moreover, N [Hn;x] has two negative real distinct roots if n > 40 and

has two complex roots with negative real parts if n ≤ 40.

Proof. From Theorem 2.2.12 we have,

N [Hn;x] =


2(n− 1)x2 + (n−1)(n+2)

2
x+ (n−1)(3n−8)

2
, if n 6= 5,

2x3 + 4x2 + 16x+ 14, if n = 5.

We consider two cases.

1. Let n = 5. In this case, N [H5;x] = 2x3 + 4x2 + 16x + 14. So considering

the equation, x3 + 2x2 + 8x + 7 = 0, the values of the determinants of

corresponding Hurwitz matrices are given by, |H1| = 2, |H2| = 9 and

|H3| = 63. Since determinants of all Hurwitz matrices are positive, by

Theorem 6.1.8, N [H5;x] is stable.

2. Let n 6= 5. Since n > 3, N [Hn;x] satisfies the conditions of Theorem 6.1.13

and hence it is stable. Moreover, the discriminant of N [Hn;x] is given by,

∆ =
(n− 1)2

4

[
n2 − 44n+ 132

]
.

Since n > 3, ∆ ≥ 0 implies that (n− a)(n− b) ≥ 0 where a, b are the roots

of the equation n2 − 44n + 132 = 0. Here a ' 40.76 and b ' 3.24. Since

n > 3 and n is an integer, the case when n ≤ a and n ≤ b becomes ruled

out. Hence the only possible case is n > a and n > b and then n > 40.

Hence the result follows from Theorem 6.1.13.

This completes the proof.
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Corollary 6.1.15. If WBn, n > 3 is a web graph with 3(n − 1) vertices,

N [WBn;x] is stable. Moreover, N [WBn;x] have two real distinct roots if n > 241

and have two complex roots with negative real parts if n ≤ 241.

Proof. From Theorem 2.2.13 we have,

N [WBn;x] =


4(n− 1)x2 + (n−1)(n+6)

2
x+ (n− 1)(4n− 10), if n 6= 5,

2x3 + 14x2 + 20x+ 42, if n = 5.

We consider two cases.

1. Let n = 5. In this case, N [WBn;x] = 2x3 +14x2 +20x+42. So considering

the equation, x3 + 7x2 + 10x + 21 = 0, the values of the determinants of

corresponding Hurwitz matrices are given by, |H1| = 7, |H2| = 49 and

|H3| = 1029. Since determinants of all Hurwitz matrices are positive, by

Theorem 6.1.4, N [WB5;x] is stable.

2. Let n 6= 5. Since n > 3, N [WBn;x] satisfies the conditions of Theorem

6.1.8 and hence it is stable. Moreover, the discriminant of N [WBn;x] is

given by,

∆ = (n−1)2
4

[
n2 − 244n+ 676

]
.

Now from a similar proof as in Corollary 6.1.14, it follows that n > 241

when n > 3 and ∆ ≥ 0. Hence the result follows from Theorem 6.1.13.

This completes the proof.

Corollary 6.1.16. If BF is a butterfly grpah with N > 7 vertices, then N [BF ;x]

is stable.
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Proof. From Theorem 2.2.16 it follows that N [BF ;x] N > 7, satisfies the con-

ditions of Theorem 6.1.13 and hence it is stable.

Theorem 6.1.17. If Km,n is a complete bipartite graph with m + n vertices,

where n > m then N [Km,n;x] is stable if and only if n = 2 and m = 1.

Proof. We have, N [Km,n;x] =
(
m
2

)
xn +

(
n
2

)
xm +mn where n,m ≥ 2.

Clearly, the condition is sufficient since, N [K1,2;x] = x + 2 which has only one

root x = −2 lying in the open left half plane.

To prove the necessary part, we consider two cases.

Case(i) Let n−m = 1

In this case N [Km,n;x] can be expressed as,

N [Km,n;x] =
(
m
2

)
[xn + a1x

n−1 + an], where a1 =
(n
2)

(m
2 )

and an = mn

(m
2 )

. Now,

considering the polynomial xn + a1x
n−1 + an, the determinants of first two

Hurwitz matrices are given by |H1| = a1 > 0 and

|H2| =

∣∣∣∣∣∣∣
a1 1

a3 a2

∣∣∣∣∣∣∣ =



a1a2 > 0 if n = 2

−a3 < 0 if n = 3

0 if n ≥ 4

Hence determinants of all the Hurwitz matrices are positive only if n = 2.

Then by the assumption of Case(i), m = 1.

Case(ii) Let n−m > 1

Then the determinant of first Hurwitz matrix of N [Km,n;x] itself is zero

for all m,n.

Hence from Theorem 6.1.8, it follows that N [Km,n;x] is stable only if n = 2 and

m = 1.
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Chapter 7
Real roots of common neighbor

polynomial of graphs

In this chapter we study the real roots of common neighbor polyno-

mial of graphs. In particular, some characterizations on graphs are

done based on the roots of common neighbor polynomial of graphs.

7.1 Main results

The roots of common neighbor polynomial of a graph G are called the common

neighbor roots of G. The number of real common neighbor roots of a graph G

where the multiplicities counted, is denoted by N (G).

Theorem 7.1.1. Zero is a common neighbor root of a graph G if and only if

any pair of vertices of G has at least one common neighbor.

Proof. Let G be a graph with n vertices. Let zero be a root of N [G;x]. Then

N [G;x] = x g(x) where g(x) is a polynomial of degree one less than that of
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7.1. Main results

N [G;x]. Then the constant term of N [G;x] is zero and hence the result fol-

lows. Conversely, assume that any pair of vertices of G has at least one com-

mon neighbor. Then |N(G, 0)| = 0. It follows that x is a factor of N [G;x] =∑n−2
i=0 |N(G, i)|xi.

Theorem 7.1.2. Zero is the only common neighbor root of a graph G if and

only if any two pairs of vertices of G has same number of common neighbors.

Proof. First assume that zero is the only common neighbor root of a graph G

with multiplicity k. Then N [G;x] is of the form Kxk for some constant K. Since,∑n−2
i=0 |N(G, i)| =

(
n
2

)
, it follows that K =

(
n
2

)
. Thus, N [G;x] =

(
n
2

)
xk and so

all the pairs of vertices of G has k common neighbors. Conversely assume that

all the pairs of vertices of G has exactly k common neighbors. Then the result

follows from the fact that N [G;x] =
(
n
2

)
xk.

Example 7.1.3. Zero is the only common neighbor root of the complete graph

Kn with multiplicity n− 2.

Theorem 7.1.4. (0,∞) is a zero-free interval of the common neighbor polyno-

mial N [G;x] of any graph G.

Proof. The result follows from the fact that all the coefficients of N [G;x] are

non-negative.

Theorem 7.1.5. Let G be a graph of order n ≥ 3. If zero is a common neighbor

root of G, then diameter of G ≤ 2 and G has a spanning subgraph which is a

union of triangles.

Proof. Let G be a graph with n ≥ 3 vertices which has zero as a common

neighbor root. Then N(G, 0) = φ which means that, every pair of vertices (u, v)
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has at least one common neighbor. Therefore, any pair of vertices of G are at a

distance less than or equal to 2. So it follows that diam(G) ≤ 2.

Now we will prove that any vertex v ∈ V (G) is a common neighbor of some

vertex pair (vi, vj). Assume the contrary. Then v is not a common neighbor of

any pair of vertices of G. Let v1 ∈ V (G) such that v1 6= v. Then by assumption,

(v, v1) has at at least one common neighbor, say v2 in G. Then the common

neighbor of (v, v2) cannot be v1, since then v is a common neighbor of (v1, v2),

a contradiction. Therefore, (v, v2) has a common neighbor, say, v3 such that

v3 6= v1, v2. Then v is a common neighbor of (v2, v3), a contradiction. Thus,

every vertex v is a common neighbor of some pair (vi, vj).

Now we will prove that G has a spanning subgraph which is a union of

triangles. It is enough to show that every vertex of G is a vertex of some triangle

in G. Let v ∈ V (G). Then there exists a vertex pair (v1, v2) such that v is a

common neighbor of (v1, v2). The common neighbor of (v, v1) may be v2 or some

other vertex v3. If it is v2, then v is a vertex of the triangle vv1v2v. If it is v3,

then v is a vertex of the triangle vv1v3v. Thus every vertex of G is the vertex

of some triangle in G. The union of all such triangles in G forms the required

spanning subgraph of G.

Theorem 7.1.6. Let G be a graph of order n ≥ 3. Then zero is a common

neighbor root of G if and only if diameter of G ≤ 2 and every edge of G is a part

of some triangle in G.

Proof. Let G be a graph with n ≥ 3 vertices which has zero as a common

neighbor root. Then by Theorem 7.1.5, diam(G) ≤ 2. Let e = uv be any edge

of G. Since zero is a common neighbor root of G, N(G, 0) = φ. Then the vertex
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pair (u, v) has at least one common neighbor w in G. Then the edge e is a part

of the triangle uvwu which proves the necessary part of the theorem.

To prove the sufficient part, assume that diam(G) ≤ 2 and every edge of G

is a part of some triangle in G. It is enough to show that any pair of vertices in

G has at least one common neighbor in G. Let (u, v) be a pair of vertices of G.

Here we consider 2 cases.

Case(i) u is adjacent to v by an edge e.

By assumption, there exist a vertex w in G such that e is the part of some

triangle uvwu in G. Then w is a common neighbor of the vertex pair (u, v)

in G.

Case(ii) u is not adjacent to v in G.

Since each edge of G is a part of some triangle in G and since G has no

isolated vertices, each vertex must also be a part of some triangle in G.

Then u and v are vertices of some triangles say, uu1u2 and vv1v2 in G.

Since diam(G) ≤ 2, there is a u, v−path of length 2 in G. Since u is not

adjacent to v, one of the following holds for i, j ∈ {1, 2}. (i) ui and vj

coincides, (ii) ui and v coincides, (iii) u and vj coincides, (iv) ui is adjacent

to v, (v) u is adjacent to vj or (vi)there exists a vertex w in G such that

uwvis a path in G. All these cases ensures a common neighbor for (u, v).

It follows that (u, v) /∈ N(G, 0). Since the vertex pair (u, v) is chosen arbitrary,

N(G, 0) = φ. Then zero is a common neighbor root of G. Hence the proof.

Theorem 7.1.7. Let G1 and G2 be two disjoint graphs with n and m vertices

respectively and let G = G1 +G2. If a is a common neighbor root of both G1 and
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G2, then a is a root of N [G;x]− nm. The converse is not true.

Proof. The result follows from the fact that N [G;x] = N [G1;x] +N [G2;x] +nm

(See Theorem 2.2.18). The converse is not true. For example, let G1 be the

path P2 and G2 be the cycle C3. Then N [G1;x] = 1, N [G2;x] = 3x and N [G1 +

G2;x] = 3x + 7. Here x = −1
3

is a root of N [G1 + G2;x] − nm, but it is not a

root of N [G1;x] or N [G2;x].

Theorem 7.1.8. Let G be a graph and let e ∈ E(G). Then the common neighbor

roots of N [G− e;x] are the roots of N [G;x]−mx+m where m is the number of

edges adjacent to e in G.

Proof. The result follows from the fact that N [G − e;x] = N [G;x] − mx + m

(See Theorem 2.2.20).

Theorem 7.1.9. For a complete graph Kn, N (Kn) = n− 2 for n > 2.

Proof. Since (see Theorem 2.2.1) N [Kn;x] =
(
n
2

)
xn−2, Kn has zero as a real

common neighbor root with multiplicity n− 2. Hence the result follows.

Theorem 7.1.10. For a path graph Pn, N (Pn) = 1 for n > 2.

Proof. From Theorem 2.2.2, we have N [Pn;x] = (n− 2)x+
(
n−1
2

)
+ 1 for n ≥ 2.

It follows that Pn has only one common neighbor root x = −(n−1
2 )+1

n−2 which is

real. Thus N (Pn) = 1.

Theorem 7.1.11. For the cycle graph Cn, n > 2, we have the following:

N (Cn) =


1 if n 6= 4,

0 if n = 4.
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Proof. The result follows from the fact that (see Theorem 2.2.4)

N [Cn;x] =


nx+ n(n−3)

2
, n > 2, n 6= 4,

2x2 + 4, n = 4.

Theorem 7.1.12. For the complete bipartite graph K2m−1,2n−1, where m,n ≥ 1,

we have the following:

N (K(2m−1,2n−1)) <


2n− 1 if m ≥ 2n− 1,

2m− 2n+ 1 if m ≤ 2n− 1.

Proof. For m = 1 and n = 1, the result trivially follows from the fact that

N [K1,1;x] = 1 which has no zeros. Now let m,n ≥ 2 where m > n.

Then from Theorem 2.2.5,

N [Km,n;x] =

(
m

2

)
xn +

(
n

2

)
xm +mn.

It follows that

N [K(2m−1,2n−1);x] =

(
2n− 1

2

)
x2m−1 +

(
2m− 1

2

)
x2n−1 + (2m− 1)(2n− 1).

This polynomial lacks 2m−2n terms between the first two terms and lacks 2n−2

terms between the last two terms. Hence by Theorem 1.3.1, N [K(2m−1,2n−1);x] =

0 has no less than 2m − 2n imaginary roots if 2m − 2n ≥ 2n − 2 and has no

less than 2n − 2 imaginary roots if 2m − 2n ≤ 2n − 2. Since the polynomial

has 2m − 1 zeros, if follows that the number of real roots is less than 2n − 1 if

m ≥ 2n− 1 and is less than 2m− 2n+ 1 if m ≤ 2n− 1.

Theorem 7.1.13. For a complete m-partite graph K2n,2n,...,2n where 2n repeats

m times, we have N (K2n,2n,...,2n) < 2n(m− 2).
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Proof. For a complete m partite graph Kn,n,...,n where n repeats m times,we have

(see Corollary 2.2.9)

N [Kn,n,...,n;x] = m

(
n

2

)
xn(m−1) + n2

(
m

2

)
xn(m−2).

It follows that

N [K2n,2n,...,2n;x] = m

(
2n

2

)
x2n(m−1) + 4n2

(
m

2

)
x2n(m−2).

This polynomial lacks 2n consecutive terms in between the two terms. Hence by

Theorem 1.3.1, it has no less than 2n imaginary zeros. Since the polynomial has

2n(m − 1) zeros, the number of real roots of the polynomial equation become

less than 2n(m− 2). This completes the proof.

Theorem 7.1.14. The lollipop graph L2n−1,1, n ≥ 2 has only one real common

neighbor root and it lies in the disc |z| ≤ 1.

Proof. From Theorem 2.2.10, we have, N [Ln,1;x] =
(
n
2

)
xn−2 + (n− 1)x+ 1.

It follows that

N [L2n−1,1;x] =

(
2n− 1

2

)
x2n−3 + (2n− 2)x+ 1.

As this polynomial lacks 2n − 4 terms between first two terms, by Theorem

1.3.1, it has no less than 2n− 4 imaginary roots. It follows that N (L2n−1,1) ≤ 1.

Since the complex roots of a real polynomial always occurs in conjugate pairs,

N [L2n−1,1;x] = 0 has exactly one real root. Since N [L2n−1,1;x] satisfies the

hypothesis of Theorem 1.3.2, the root lies in |z| ≤ 1.

Theorem 7.1.15. For the wheel graph Wn, we have the following:

N (Wn) =


2 if n 6= 5,

1 if n = 5.
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Proof. For a wheel graph Wn, we have, (see Theorem 2.2.11),

N [Wn;x] =


(n−1)(n−4)

2
x+ 2(n− 1)x2, if n 6= 5,

2x3 + 4x2 + 4x, if n = 5.

Here we consider two cases:

Case (i) n 6= 5.

Then the polynomial equation N [Wn;x] = 0 has two real roots given by

x = 0 and x = −n−4
4

.

Case (ii) n = 5.

Then the polynomial equation N [Wn;x] = 2x3 + 4x2 + 4x = 0 has only one

real root x = 0 and has two imaginary roots x = −1± i.

Hence the result follows.

Theorem 7.1.16. For the helm Hn, n > 3, we have the following:

N (Hn) =



2 if n ≥ 41,

1 if n = 5,

0 otherwise.

Proof. For a helm graph Hn we have (see Theorem 2.2.12),

N [Hn;x] =


2(n− 1)x2 + (n−1)(n+2)

2
x+ (n−1)(3n−8)

2
, if n 6= 5,

2x3 + 4x2 + 16x+ 14, if n = 5.

Here we consider two cases:
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Case(i) n = 5.

Then the polynomial equation N [H5;x] = 2x3 + 4x2 + 16x + 14 = 0 has

only one real root x = −1 and has two imaginary roots x = −1±
√
27i

2
.

Case(ii) n 6= 5.

It is enough to consider the equation

4x2 + (n+ 2)x+ (3n− 8) = 0

which has either two real roots or has no real roots according as the dis-

criminant ∆ = n2− 44n+ 132 is non negative or non positive respectively.

Let the roots of ∆ = 0 be x and y. Then x ' 40.76 and y ' 3.24. Then

∆ = (n − x)(n − y) is positive if either n ≥ x and n ≥ y or n ≤ x and

n ≤ y. Since n is an integer, it follows that, ∆ ≥ 0 if n ≥ 41 or n ≤ 3.

It follows that if n 6= 5, Hn has two real common neighbor roots if n ≥ 41

and has no real common neighbor root otherwise.

This completes the proof.

Theorem 7.1.17. For a web graph WBn, n > 3, we have the following:

N (WBn) =



2 if n ≥ 242,

1 if n = 5,

0 otherwise.

Proof. From Theorem 2.2.13, for a web graph WBn, n > 3,

N [WBn;x] =


4(n− 1)x2 + (n−1)(n+6)

2
x+ (n− 1)(4n− 10), if n 6= 5,

2x3 + 14x2 + 20x+ 42, if n = 5.

Here we consider two cases:
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Case(i) n = 5.

Considering the equation f(x) = x3+7x2+10x+21 = 0, we have f(−5) = 0

and f(−6) = 0. Hence by intermediate value theorem, f(x) = 0 has a real

root between -5 and -6. Now, using Theorem 1.3.3 the discriminant of the

cubic equation f(x) = 0 is given by ∆ = −13359 < 0 which implies that

the cubic equation has only one real root.

Case(ii) n 6= 5.

Since n > 1, consider the equation 8x2 + (n + 6)x + 2(4n − 10) = 0.

This equation has either two real roots or has no real roots according as

the discriminant ∆ = n2 − 244n + 676 is non negative or non positive

respectively. Let the roots of ∆ = 0 be x and y. Then x ' 241.2 and

y ' 2.8. Then ∆ = (n−x)(n−y) is non negative if either n ≥ x and n ≥ y

or n ≤ x and n ≤ y. Since n is an integer, it follows that, ∆ ≥ 0 if n ≥ 242

or n ≤ 2. It follows that if n 6= 5, WBn has two real common neighbor

roots if n ≥ 242 and has no real common neighbor root otherwise.

This completes the proof.

Theorem 7.1.18. For the (2n+ 1)-barbell graph B2n+1,1, N (B2n+1) = 1.

Proof. For the n-barbell graph Bn,1 we have (see Corollary 2.2.23),

N [Bn,1;x] = 2

(
n

2

)
xn−2 + 2(n− 1)x+ (n− 1)2 + 1.

It follows that, for the (2n+ 1)-barbell graph B2n+1,1,

N [B2n+1,1;x] = 2

(
2n+ 1

2

)
x2n−1 + 2(2n)x+ 4n2 + 1.
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This polynomial lacks 2n− 2 terms between the first two terms. Thus it has no

less than 2n − 2 imaginary roots. It follows that N [B2n+1,1;x] = 0 has at most

one real root.

Now, considering the equation f(x) = N [B2n+1,1;x] = 0, we have, f(0) = 4n2 +

1 > 0 and f(−1) = −6n + 1 < 0. Then by intermediate value theorem, there is

a real root for f(x) = 0 between 0 and -1. This completes the proof.
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Chapter 8
Generalized common neighbor

polynomial of graphs

In this chapter we generalize the concepts of common neighbor sets

and common neighbor polynomial of graphs. In the previous chap-

ters, focus was laid on the pairs of vertices of a graph with com-

mon neighbors. In this chapter r-tuple of vertices of a graph hav-

ing a common neighbor is considered and thereby generalizes the

concept. The definition of generalized i-common-neighbor set is

introduced and the generalized common neighbor polynomial of a

graph is defined. Moreover, we discuss some properties of general-

ized i-common neighbor sets and also derive the generalized com-

mon neighbor polynomial of some well known graph classes. Also

we express generalized common neighbor sets using the theory of

simplicial complexes in order to deduce some interesting properties

of the generalized common neighbor sets.
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8.1 Generalized common neighbor sets and com-

mon neighbor polynomial of graphs

Definition 8.1.1. Let G(V,E) be a graph of order n. Let Lr denotes the set

of all unordered r-tuples of distinct elements of V . For 0 ≤ i ≤ n − r, the

generalized i-common neighbor set of G is defined as follows:

Nr(G, i) = {(u1, u2, . . . , ur) ∈ Lr : | ∩rk=1 N(uk)| = i}.

Definition 8.1.2. Let G be a graph of order n. For 0 < r ≤ n the generalized

common neighbor polynomial , Nr[G;x], of G is defined as

Nr[G;x] =

(n−r)∑
i=0

|Nr(G, i)|xi.

Figure 8.1: The graph G

Example 8.1.3. For the graph G shown in figure 8.1, we have the following:

N1[G;x] = x4 + x2 + 4x.

N2[G;x] = 7x+ 8.

N3[G;x] = 4x+ 16.

Nr[G;x] =
(
6
r

)
for r ≥ 4.

Throughout this chapter, r denotes an integer such that 1 ≤ r ≤ n. We

observe the following simple properties of Nr[G;x] :
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(i) N2[G;x] = N [G;x], the common neighbor polynomial of the graph G.

(ii) Nr[G;x] is a polynomial of degree at most (n− r).

(iii) Isomorphic graphs have same generalized common neighbor polynomials.

(iv) Nr(G, i) = φ for n− r + 1 ≤ i ≤ n.

(v) Nr[G; 1] =
∑n−r

i=1 |Nr(G, i)| =
(
n
r

)
.

(vi) Nr[G; 0] gives the number of elements in Lr having no common neighbors.

Theorem 8.1.4. For any graph G, we have |Nr(G, 0)| ≤ |Ns(G, 0)| if r ≤ s ≤ n.

Proof. It is enough to show that corresponding to each r-tuple of vertices in

Nr(G, 0), there are one or more s-tuples of vertices inNs(G, 0). Let (u1, u2, . . . , ur)

∈ Nr(G, 0). Let ur+1, ur+2, . . . , us be any s−r vertices in V (G)−{u1, u2, . . . , ur}.

Then the s-tuple of vertices (u1, u2, . . . , ur, ur+1, . . . , us) have no common neigh-

bors in G since the first r vertices have no common neighbors in G. Then

(u1, u2, . . . , ur, ur+1, . . . , us) ∈ Ns(G, 0). This completes the proof.

Theorem 8.1.5. For any graph G, we have the following:

If (u1, u2, . . . , ur) ∈ Nr(G, i), then (u1, u2, . . . , ur, ur+1, . . . , us) /∈ Ns(G, j) where

r < s and 0 < i < j.

Proof. Let (u1, u2, . . . , ur) ∈ Nr(G, i). Let ur+1, ur+2, . . . , us be any s−r vertices

in V (G)−{u1, u2, . . . , ur} such that (u1, u2, . . . , ur, ur+1, . . . , us) ∈ Ns(G, j) where

r < s and 0 < i < j. Then the vertices u1, u2, . . . , ur, . . . , us have j common

neighbors in G where j > i. In particular, the vertices u1, u2, . . . , ur have at

least j common neighbors in G, a contradiction since j > i and (u1, u2, . . . , ur) ∈

Nr(G, i).
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Theorem 8.1.6. For a complete graph Kn (n ≥ r), we have

Nr[Kn;x] =

(
n

r

)
xn−r.

Proof. The proof follows from the fact that any r-tuple of vertices of Kn have

(n− r) common neighbors and there are
(
n
r

)
such r-tuples of vertices.

Theorem 8.1.7. For a path graph Pn, we have Nr[Pn;x] =
(
n
r

)
, r ≥ 3.

Proof. The result follows from the fact that no r-tuple of vertices in Pn where

r ≥ 3, having common neighbors in Pn.

Theorem 8.1.8. For a cycle graph Cn, we have Nr[Cn;x] =
(
n
r

)
, r ≥ 3.

Proof. The result follows from the fact that no r-tuple of vertices in Cn where

r ≥ 3 have common neighbors in Cn.

Theorem 8.1.9. For a complete bipartite graph Km,n, we have the following:

Nr[Km,n;x] =

(
m

r

)
xn +

(
n

r

)
xm +

r−1∑
j=1

(
m

j

)(
n

r − j

)
.

Proof. Let M,N be the bipartite sets of vertices of Km,n where |M | = m and

|N | = n. Let (u1, u2, . . . , ur) be any r-tuple of vertices of Km,n. We con-

sider the following 3 cases according to the selection of vertices in the r−tuple

(u1, u2, . . . , ur).

Case(i) Let uk ∈M for 1 ≤ k ≤ r.

In this case, each of the r−tuple of vertices (u1, u2, . . . , ur) have n common

neighbors contributing the term
(
m
r

)
xn in the generalized common neighbor

polynomial of Km,n.
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Case(ii) Let uk ∈ N for 1 ≤ k ≤ r.

In this case, each of the r−tuple of vertices (u1, u2, . . . , ur) have m common

neighbors contributing the term
(
n
r

)
xm in the generalized common neighbor

polynomial of Km,n.

Case(iii) After a sufficient rearrangement of terms, let uk ∈ M for 1 ≤ k ≤ j

and uk ∈ N for j + 1 ≤ k ≤ r.

For each j where 1 ≤ j ≤ r− 1, the r−tuple of vertices (u1, u2, . . . , ur) has

no common neighbor in Km,n and there are
(
m
j

)(
n
r−j

)
such r- tuples.

This completes the proof.

Corollary 8.1.10. For a star graph K1,n, we have Nr[K1,n;x] =
(
n
r

)
x +

(
n
r−1

)
for r ≥ 2.

Theorem 8.1.11. For a bistar graph Bn,n we have the following:

Nr[Bn,n;x] = 2

(
n+ 1

r

)
x+ 2

(
n

r − 1

)
+

r−1∑
m=1

(
n

m

)(
n

r −m

)
+ δr2,

where δrj =


1 ; r = j,

0 ; r 6= j.

Proof. Let S = {s1, s2, . . . , sn} and T = {t1, t2, . . . , tn} be the pendent vertices

of the star graphs with center vertices u and v respectively, which together with

the edge uv constitute the bistar graph Bn,n. Let (u1, u2, . . . , ur) be any r-tuple

of vertices of Bn,n. We consider the following cases according to the selection of

vertices in the r-tuple where r > 2.
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Case(i) Let ui ∈ S or ui ∈ T for all i ∈ {1, 2, . . . , r}.

All the r-tuple of vertices under this case have exactly one common neigh-

bor u or v according as ui ∈ S or ui ∈ T . Hence this case contribute the

term 2
(
n
r

)
x to the generalized common neighbor polynomial of Bn,n.

Case(ii) For i ∈ {1, 2, . . . , r}, ui = v for exactly one i and all other ui ∈ S.

The r-tuple of vertices under this case have exactly one common neighbor

u and there are
(
n
r−1

)
such r-tuples thereby contributing the term

(
n
r−1

)
x

to Nr[Bn,n;x].

Case(iii) For i ∈ {1, 2, . . . , r}, ui = u for exactly one i and all other ui ∈ T .

By a similar argument as in Case(ii), the r-tuples in this case also con-

tributes the term
(
n
r−1

)
x to Nr[Bn,n;x].

Case(iv) For i ∈ {1, 2, . . . , r}, ui = u or ui = v for exactly one i where all other

ui belongs to S or T respectively.

All the r-tuple of vertices under this case have no common neighbors and

there are 2
(
n
r−1

)
such r-tuples.

Case(v) After an appropriate rearrangement of terms of the r-tuple of vertices,

let u1, u2, . . . , um ∈ S and um+1, um+2, . . . , ur ∈ T where 1 ≤ m ≤ r − 1.

All the r-tuple of vertices under this case have no common neighbors and

this case contribute the term
∑r−1

m=1

(
n
m

)(
n

r−m

)
to Nr[Bn,n;x].

It follows that

Nr[Bn,n;x] = 2

(
n

r

)
x+ 2

(
n

r − 1

)
x+ 2

(
n

r − 1

)
+

r−1∑
m=1

(
n

m

)(
n

r −m

)

= 2

(
n+ 1

r

)
x+ 2

(
n

r − 1

)
+

r−1∑
m=1

(
n

m

)(
n

r −m

)
.
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This completes the proof with a sufficient remark that when r = 2, the pair of

vertices (u, v) have no common neighbors.

Theorem 8.1.12. Every graph G contains |Nr(G, i)| number of complete bipar-

tite subgraphs Ki,r where 1 ≤ i ≤ n− r.

Proof. Note that corresponding to each r−tuples of vertices (u1, u2, . . . , ur) ∈

Nr(G, i), the vertices u1, u2, . . . , ur together with their i common neighbors con-

stitute a complete bipartite subgraph Ki,r. Hence the result follows.

Theorem 8.1.13. The generalized common neighbor polynomial of a graph G is

non constant if and only if there exists a star K1,r in G where 1 ≤ r ≤ n.

Proof. Let Nr[G;x] be a non constant polynomial of degree m ≥ 1. Then there

exists an r-tuple of vertices (u1, u2, . . . , ur) in G which has at least one common

neighbor, say w in G. Then w together with the vertices u1, u2, . . . , ur produces

a star K1,r in G.

Conversely let there exists a star K1,r in G where 1 ≤ r ≤ n. Let u1, u2, . . . , ur

be the pendent vertices of K1,r. Then the center of the star graph K1,r is a

common neighbor of the r-tuple (u1, u2, . . . , ur). Now the result follows from the

fact that Nr(G, i) 6= φ for some i ≥ 1.

Corollary 8.1.14. If a graph G doesn’t contain any star graph K1,r as a subgraph

where 1 ≤ r ≤ n, then the generalized common neighbor polynomial Nr[G;x] =(
n
r

)
.

Theorem 8.1.15. The generalized common neighbor polynomial Nr[G;x] of a

graph G is of degree k ≥ 1 if and only if k is the largest integer such that G has

a complete bipartite subgraph Kr,k.
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Proof. Assume that Nr[G;x] of a graph G is of degree k ≥ 1. Then, |Nr(G, k)| 6=

φ. Take (u1, u2, . . . , ur) ∈ Nr(G, k). Then the vertices u1, u2, . . . , ur together

with their k common neighbors constitute a complete bipartite subgraph Kr,k

of G. Now let j be the largest integer such that G contains Kr,j as a bipartite

subgraph. If possible, let j ≥ k+1. Then G contains an r-tuple of vertices having

j common neighbors where j ≥ k + 1 which is a contradiction since Nr[G;x] is

of degree k. This proves the necessary part of the theorem.

Conversely, we assume that k is the largest integer such that G has a complete

bipartite subgraph Kr,k. If possible, let Nr[G;x] is of degree j ≥ k + 1. Then G

contains an r-tuple of vertices having at least k + 1 common neighbors. These

r vertices together with their k + 1 common neighbors constitute a complete

bipartite subgraph Kr,k+1 of G which is a contradiction to the assumption.

Definition 8.1.16. Two graphs G and H are said to be CNPr equivalent if

Nr[G;x] = Nr[H;x]. The set of all graphs which are CNPr equivalent to G is

denoted by [G]Nr .

Theorem 8.1.17. For any graph G, G ∈ [G]Nr if and only if there are |Nr(G, i)|

number of r−tuple of vertices in G which dominate n− i vertices of G.

Proof. First suppose that G ∈ [G]Nr . Then |Nr(G, i)| = |Nr(G, i)| for 0 ≤ i ≤

n− r. Let (u1, u2, . . . , ur) ∈ Nr(G, i). Since the vertices u1, u2, . . . , ur have only

i common neighbors in G, all the remaining n − i vertices in G are adjacent to

at least one of the vertices in {u1, u2, . . . , ur}. Then {u1, u2, . . . , ur} dominate

exactly n − i vertices of G. Since |Nr(G, i)| = |Nr(G, i)|, it follows that G has

|Nr(G, i)| number of r−tuples of vertices which dominate n− i vertices of G.
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Conversely assume that there are |Nr(G, i)| number of r−tuple of vertices in

G which dominate n−i vertices of G. Let {u1, u2, . . . , ur} be a set of r vertices of

G which dominate exactly n− i vertices of G. Then the remaining i vertices in G

are not equal or adjacent to any of the vertices in {u1, u2, . . . , ur}. Hence these i

vertices becomes the common neighbor of the r-tuple (u1, u2, . . . , ur) in G. So the

set of r vertices {u1, u2, . . . , ur} in G which dominate exactly n− i vertices of G

forms an r-tuple of vertices (u1, u2, . . . , ur) which belongs to Nr(G, i). It follows

that |Nr(G, i)| = |Nr(G, i)| and hence Nr[G;x] = Nr[G;x]. This completes the

proof.

Corollary 8.1.18. Let G be a graph of order n. If G ∈ [G]Nr , then |Nr(G, 0)|

gives the number of dominating sets in G of order r.

Lemma 8.1.19. Let G be a connected graph with n > 3 vertices. If all the pairs

of edges of G have a common end vertex, then G is a star graph.

Proof. Since n > 3 and G is connected, the number of edges m should be greater

than or equal to 3. We will prove the result by using method of induction on the

number of edges m of G. Clearly the result is true for m = 3. Let the result be

true for all graphs G with less than m edges. And let G be a graph with m edges

such that all the pairs of edges have a common end vertex. By deleting any edge

e from G, we have a graph with m−1 edges. Clearly all the pairs of edges of G−e

are incident to a common vertex. Hence by induction assumption, G−e is a star.

Let v be the center vertex of the star so that the edges of G− e be represented

by ei = vvi where i = 1, 2, . . . ,m− 1. Since the edges e and e1 of G are incident

to a common vertex, either e = vw or e = v1w for some vertex w ∈ V (G). In

the first case G is a star and the proof is complete. And in the second case,
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there are two possibilities according as w belongs to {v1, v2, . . . , vm−1} or not. If

w belongs to the set, let w = vi where i ∈ {2, 3, . . . ,m − 1}. Then the edges

v1w and and vvi+1 have no common end vertex which ruled out the possibility

of w ∈ {u1, u2, . . . , um−1}. If w doesn’t belong to the set, then the edges v1w

and vv3 have no common end vertex. Hence by the induction assumption, the

second possibility is also ruled out. Hence the result follows.

-

- -

-

v

vm−1

v1

v2vi

vi+1

w

-

- -

-

v

vm−1

v1

v2vi
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-
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v1

v2vi

vi+1 w

Figure 8.2: Figure showing different cases of lemma 8.1.19

The line graph L(G) of a graph G is the graph with vertex set the set of all

edges of G and two vertices of L(G) are adjacent if the corresponding edges of

G are incident to a common vertex.

Theorem 8.1.20. Let G be a connected graph of order n > 3. The number k of

cliques of size r > 1 in the line graph of G is given by k =
n−r∑
i=1

i|Nr(G, i)|.

Proof. Let S be the collection of all r-tuples of vertices (u1, u2, . . . , ur) of G which

have at least one common neighbor in G. Also let the r-tuple (u1, u2, . . . , ur)

repeat as many times in S as its number of common neighbors. Then, |S| =∑n−2
i=1 i|Nr(G, i)|. Let P be the collection of all cliques of size r in the line graph

L(G) of G. Let the vertices of L(G) be denoted by uv where u, v are adjacent

vertices of G. Define φ : S → P as follows.

Let u = (u1, u2, . . . , ur) ∈ S which repeats i-times in S. Let these i mem-

bers be represented by uk = (u1, u2, . . . , ur)
(k) where k = 1, 2, . . . , i. Then
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8.1. Generalized common neighbor sets and CNP of Graphs

each (u1, u2, . . . , ur)
(k) can be assigned to exactly one common neighbor wk of

(u1, u2, . . . , ur) in G. It follows that all the pairs of vertices ulwk and umwk where

l,m ∈ {1, 2, . . . , r} and l 6= m are adjacent vertices of L(G) which forms a clique

Cuk of size r in L(G).

Now define φ : S → P as φ((u1, u2, . . . , ur)
(k) = Cuk. Clearly φ is one-one.

we claim that φ : S → P is onto. Let C be a clique of size r in the line graph

L(G) of G. Since any pair of vertices of C are adjacent in L(G), all the pairs of

edges in G which constitute the vertex set of C, have a common end vertex in

G. Hence by lemma 8.1.19, those edges form a star in G whose pendent vertices

forms an r-tuple (u1, u2, . . . , ur) ∈ S such that φ(u1, u2, . . . , ur) = C. Thus φ is

onto.

It follows that φ is a bijection from S to P and |S| = |P |. This completes

the proof.

Corollary 8.1.21. Let G be a graph of order n. Then the number of edges of

the line graph L(G) of G equals
n−2∑
i=1

i|N(G, i)|.

Proof. The result follows from the fact that the 2-cliques of any graph are the

edges of the graph.

Theorem 8.1.22. (Schwartz 1969 and Ghirlanda 1963) A graph is isomorphic

to its line graph if and only if it is regular of degree two.

Corollary 8.1.23. If a graph G is regular of degree two, then the number of

edges of G equals
n−2∑
i=1

i|N(G, i)|.
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8.2 Simplicial complexes of graphs and common

neighbor sets

A family ∆ of finite subsets of a set V is an (abstract) simplicial complex[41]

if it satisfy the condition that whenever σ ∈ ∆ and τ ⊂ σ then, τ ∈ ∆. If σ ∈ ∆

is of cardinality k + 1, then σ is called a k-simplex and every τ ⊂ σ is a face

of the simplex. The dimension of a simplex is one less than its cardinality.

Thus a k-simplex has dimension k. If a simplex is not a proper subset of any

other simplexes in the complex, then it is a facet of the complex.

As we represent an abstract simplicial complex geometrically, a k-simplex is

the convex hull of k + 1 points which constitute the simplex. In the graphical

representation, 0-simplexes are vertices, 1-simplexes are edges, 2-simplexes are

triangles and so on. A face of the simplex is identified as the convex hull of a

subset of the vertices in the simplex.

In this section, we first define the simplicial complex of a graph G and in-

troduce the cluster of a vertex v ∈ G as a simplicial complex of G. Then we

incorporate the concept of generalized i-common neighbor set of a graph with

the cluster of vertices in it, to deduce some interesting properties of generalized

i-common neighbor sets.

Definition 8.2.1. Let G(V,E) be a graph and let ∆ be a collection of subsets

of V . The elements of ∆ are called simplexes. A simplex of cardinality k + 1 is

called a k-simplex. Let τ be an element in ∆. Then the subsets of τ are called

its faces. We say that ∆ is a simplicial complex of G if for every τ in ∆, all its

faces are in ∆.
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Let G be a simple finite graph with vertex set V = {v1, v2, . . . , vn}. For each

vertex vi, the cluster of vi is defined as

clr(vi) =: {W ⊂ V : vi ∈ ∩v∈WN(v)}.

Then each clr(vi) where i ∈ {1, 2, . . . , n} is a simplicial complex of G. We may

consider clr(vi) as a simplicial complex of G generated by the vertex vi. Note

that each simplex W of clr(vi) spans a subgraph of G which is a star graph with

center vertex vi. So these simplexes are called the stars of vi denoted by str(vi).

The facets of clr(vi) are the maximal stars in clr(vi).

Lemma 8.2.2. Let v be a vertex of the graph G having degree d. Then the cluster

of v contains
(
d
r

)
number of (r − 1)-simplexes.

Proof. Let S be the set of all neighbors of the vertex v such that |S| = d. Any

subset S1 of S with cardinality r ≤ d will act as a r-tuple of vertices with v as

a common neighbor. There are exactly
(
d
r

)
distinct subsets of S with cardinality

r and these subsets are exactly the (r − 1)-simplexes of the cluster of v. Hence

the result follows.

Theorem 8.2.3. Let G(V,E) be a simple graph and let v ∈ V . Let fi, i =

1, 2, . . . ,m be the facets of the simplicial complex clr(v). If the facet fi is of

cardinality di, then clr(v) contains
m∑
i=1

di∑
r=1

(
di
r

)
distinct simplexes.

Proof. According to the definition of a simplicial complex, all the subsets of its

facets must also be simplexes of the complex. If the facet fi of clr(v) is of cardi-

nality di, there are
(
di
r

)
simplexes of dimension r in clr(v). Thus corresponding

to each facet fi, there are

di∑
r=1

(
di
r

)
distinct simplexes in clr(v). As there are m

facets, the result follows.
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Theorem 8.2.4. If G is a graph having degree sequence (d1, d2, . . . , dn), then we

have the following:
n−r∑
i=1

i|Nr(G, i)| =
n∑
i=1

(
di
r

)
.

Proof. Let clr(vi), i = 1, 2, . . . , n be the simplicial complexes generated by the

vertices v1, v2, . . . , vn of the graph G. We will show that the expression on both

sides of the equation equates the total number of (r−1) simplexes of the clusters

clr(vi), i = 1, 2, . . . , n.

By lemma 8.2.2, the number of (r − 1)-simplexes in clr(vi) is given by
(
di
r

)
where di is the degree of the vertex vi which generates clr(vi). Hence if all the

simplicial complexes clr(vi), i ∈ {1, 2, . . . , n} are taken into account, there are

altogether
∑n

i=1

(
di
r

)
number of (r − 1)-simplexes.

Now, for a fixed i ∈ {1, 2, . . . , n}, the (r − 1)-simplexes of clr(vi) are exactly

r-tuples of vertices with vi as a common neighbor. Hence the total number of

(r−1)-simplexes of clr(vi), i = 1, 2, . . . , n equals the number of r-tuples of vertices

with at least one common neighbor where the r-tuple with i common neighbors

has to be counted i times. From the definition of generalized i-common neighbor

set of G, the number of such r-tuple of vertices is given by
∑n−r

i=1 i|Nr(G, i)|. This

completes the proof.

Theorem 8.2.5. The generalized i-common neighbor set Nr(G, i) is the set of

all (r− 1)-simplexes which belongs to the intersection of exactly i of the clusters

of vertices of G.

Proof. Let W be a (r−1)-simplex which belongs to a simplicial complex clr(vj),

for some j ∈ {1, 2, . . . , n}. From the definition of clr(vj), it is clear that the
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members of W constitute a r-tuple of vertices of G having vj as a common

neighbor. Now fix an integer i such that 1 ≤ i ≤ n − 2. W belongs to exactly

i of the clr(vj), if and only if the corresponding r-tuple of vertices has exactly i

common neighbors. It follows that W ∈ Nr(G, i).

Remark 8.2.6. We observe the following properties of the simplicial complexes

clr(vi) generated by the vertices vi of a simple graph G.

For i, j, k ∈ {1, 2, . . . , n},

1. If a simplicial complex clr(vi) is generated by a vertex vi, then, {vi} /∈

clr(vi).

2. clr(vi) contains all possible unions of the 0-simplexes containing in it.

3. If {vi} ∈ clr(vj), then {vj} ∈ clr(vi).

The first statement follows from the fact that a vertex cannot be adjacent to

itself as we are considering only simple graphs. The second and third statements

directly follows from the definition of clr(vi).

The following theorem shows that these are the sufficient conditions for a

collection of simplicial complexes {clr(vi)}, i ∈ {1, 2, . . . , n} on a set of cardinality

n to be generated by a set of vertices V = {v1, v2, . . . , vn} of a simple graph G.

Theorem 8.2.7. Let V = {v1, v2, . . . , vn} be any set of n elements. If clr(vi), i ∈

{1, 2, . . . , n} are simplicial complexes on the set V satisfying the conditions (1),(2)

and (3) stated in above remark, then there exists a simple graph G with vertex

set V where clr(vi) is the simplicial complex generated by the vertex vi of G.
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Proof. Given a set of elements V = {v1, v2, . . . , vn} and a collection of simplicial

complexes {clr(vi)}, i ∈ {1, 2, . . . , n} on the set V which satisfies the conditions

(1),(2) and (3) stated in remark 8.2.6. Construct a graph with vertex set V and

edge set E where an edge vivj ∈ E if and only if {vj} ∈ clr(vi).

By condition (1), {vi} /∈ clr(vi) which implies that G has no loops. Also

by condition (3), if {vi} ∈ clr(vj), then {vj} ∈ clr(vi) which implies that the

adjacency of vertices of the graph is well defined in the sense that whenever vi

is adjacent to vj, vj is also adjacent to vi.

Now we will prove that {clr(vi)} are the simplicial complexes generated by

the vertices {vi} of the graph G. Let V1 be a subset of V which belongs to

clr(vi). Then V1 = {vj1 , vj2 , . . . , vjm} where each of the vertices in the set are

adjacent to a vertex vi ∈ V in G. Then vivjk ∈ E and {vjk} ∈ clr(vi) for all

k ∈ {1, 2, . . . ,m}. Hence by condition(3), all the subsets of V1 are in clr(vi). It

follows that clr(vi) is a simplicial complex on V . And by definition of edge set

of G, it is generated by vi. This completes the proof.
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Chapter 9
Significance of common neighbor

polynomial of graphs

Graph polynomials serves as a tool to unveil the structural properties

of graphs. Starting from the edge difference polynomial introduced

by J.J. Sylvester in 1878, many graph polynomials were introduced

each of which has its own significance in the applied areas of graph

theory such as network theory and chemical graph theory. In the

present work, the common neighbor polynomial of graphs is intro-

duced by emphasizing on the structural similarity of pair of nodes

in a graph. In this chapter we discuss the relevance of the common

neighbor polynomial of graphs in the fields of chemical graph theory

and network theory.

129



9.1. Chemical graph theory

9.1 Chemical graph theory

A dendrimer is a branched nano structure comprising of three major components

the core, the branches and the end groups. In each stage of its growth, new

branches are attached to the core. Dendrimers are considered as one of the

major building blocks of nanotechnology. Because of its wide range of uses in

industrial and pharmaceutical fields, dendrimers has attracted the interest of

both Chemists and Mathematicians and many works has done to explore the

topological properties of these structures [For example see [27, 45]].

In the first two subsections, we study the common neighbor polynomial of

some dendrimer structures. In the third subsection, we establish a relation be-

tween the common neighbor polynomial and hosoya polynomial of triangle free

graphs of diameter not more than three.

9.1.1 Common neighbor polynomial of Nanostar

Dendrimers

The nanostar dendrimer of third generation D3[n] has a core(leaf) whose molecu-

lar graph is as shown in figure 9.1. Graphically, it is a cycle C6 with two pendent

edges attached to diagonally opposite vertices of C6. The primary structure D3[0]

of nanostar dendrimer is depicted in figure 9.1. During the synthesis of D3[n],

for n = 1, 2, . . . two leaf graphs are attached to each branch of D3[n− 1].

The number of leafs in a nanostar dendrimer grown upto n levels is given by

Zeinab Foruzanfar [45] as k = 3(2n+1− 1). Also the number of copies of primary

structures in D3[n] is given by l = 1 + 3(2n − 1). Figure 9.2 shows the nanostar
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Figure 9.1: The core(leaf) and primary structure of nanostar dendrimer D3[n]

dendrimer D3[n] for n = 3.

Figure 9.2: Nanostar dendrimer D3[n] for n = 3

In this subsection we study the common neighbor polynomial of nanostar

dendrimer D3[n] with nth level growth.

Theorem 9.1.1. The common neighbor polynomial of nanostar dendrimer grown

upto n levels is given by

N [D3[n];x] = k(10x+ 18) + 3l x+ 49

(
k

2

)
− 3l,

where k = 3(2n+1 − 1) and l = 1 + 3(2n − 1) .

Proof. At the nth level of growth of D3[n], let the core structure appears k times

and let the primary structure appears l times in the molecular graph. In each
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core structure, there are 10 pairs of vertices having one common neighbor and

18 pairs of vertices having no common neighbor. Hence the pairs of vertices in a

particular core structure contribute the term (10x+18) to the common neighbor

polynomial of D3[n] and there are k number of such core structures.

Let (u, v) be an unordered pair of vertices of D3[n] where u and v belong to

distinct copies of core structures. There are 49
(
k
2

)
distinct choices for the pair

(u, v). None of these pairs have a common neighbor unless both u and v are

adjacent to the central vertex of the same primary structure in which case they

have exactly one common neighbor. Since there are l copies of primary structure,

each of which has a central vertex adjacent to 3 vertices from distinct copies of

core structures, there are
(
3
2

)
l pairs (u, v) having exactly one common neighbor.

Hence the common neighbor polynomial of D3[n] is given by

N [D3[n];x] = k(10x+ 18) + 3l x+ 49

(
k

2

)
− 3l,

where k = 3(2n+1 − 1) and l = 1 + 3(2n − 1).

9.1.2 Common neighbor polynomial of PAMAM dendrimers

Polyamidoamine(PAMAM) dendrimers, sometimes referred as Starburst are hy-

per branched molecules with repeated branches of amide and amine functionality.

Here we discuss the common neighbor polynomial of PAMAM dendrimer Dk of

kth generation whose core(leaf) and primary structures are depicted in figure 9.3.

The primary structure may be considered as zero-generation of the dendrimer.

During the synthesis of PAMAM dendrimer Dk, for k = 1, 2, . . . leaf structures

are attached at each of the pendent vertices of Dk−1. Ethylenediamine (EDA)
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Figure 9.3: The core and primary structures of PAMAM dendrimer.

molecule contributes towards the primary structure which have 4 possible pen-

dent vertices to bind with the amidoamine repeating units of core structure [29].

Figure 9.4 shows the PAMAM dendrimer grown upto 3rd generation.

Figure 9.4: PAMAM dendrimer of kth generation Dk for k = 3.

Theorem 9.1.2. The common neighbor polynomial of PAMAM dendrimer Dk

of kth generation is given as follows:

N [Dk;x] = N [Dk−1;x] + 2k+1[4x+ 3fk−1 − 1] + 9

(
2k+1

2

)
,

where fk denote the number of vertices of Dk given by fk = 3(2k+2)− 6.

Proof. The primary structure of PAMAM dendrimer Dk consists of two star

graphs K1,2 with the center vertices attached through a bridge. Whenever the
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dendrimer grows to the next generation, all the pendent vertices of the preceding

generation are identified with one of the pendent vertices of the star graph K1,3.

Since the primary structure contains 6 vertices, the number of vertices in the kth

generation is given by

fk = 6 + 3[22 + 23 + . . .+ 2k+1] = 3[2k+2]− 6.

The common neighbor polynomial of the primary structure of PAMAM den-

drimer is 6x + 9. Let N [Dk−1;x] be the common neighbor polynomial of the

dendrimer grown upto (k − 1)th generation. Then the common neighbor poly-

nomial of the kth generation dendrimer can be constructed by considering the

number of common neighbors of newly formed pairs of vertices (u, v) under the

following cases:

Case(i) Let u, v be the vertices of one of the newly attached stars. Such pairs

of vertices (u, v) contribute the term 3x+ 3 to the common neighbor poly-

nomial of Dk and there are 2k+1 number of such new stars.

Case(ii) Let u be the center vertex of one of the newly attached stars and let

v be a vertex of the (k − 1)th generation other than the vertex to which u

is adjacent. (The excluded pair has already considered in Case(i)). For a

particular star, only one pair (u, v) of such vertices has a common neighbor

and all other 3(2k+1)− 8 pairs of vertices have no common neighbors.

Case(iii) Let u be one of the pendent vertices of kth generation dendrimer and

let v be a vertex defined as in Case(ii). Here the pair of vertices (u, v) have

no common neighbors where there are 2k+2 choices for the vertex u and

3(2k+1)− 7 choices for v.

134



9.1. Chemical graph theory

Case(iv) Let u and v be vertices of two distinct stars which are newly attached

during the growth of kth generation, except those which are identified with

the pendent vertices of (k − 1)th generation. There are 9
(
2k+1

2

)
such pairs

of vertices (u, v) each having no common neighbors.

From the above cases, it follows that,

N [Dk;x] = N [Dk−1;x] + 2k+1[3x+ 3] + 2k+1[x+ 3(2k+1)− 8]

+ 2k+2[3(2k+1)− 7] + 9

(
2k+1

2

)
= N [Dk−1;x] + 2k+1[4x+ fk−1 + 1] + 2k+2[fk−1 − 1] + 9

(
2k+1

2

)
= N [Dk−1;x] + 2k+1[4x+ 3fk−1 − 1] + 9

(
2k+1

2

)
.

This completes the proof.

9.1.3 Hosoya Polynomial of graphs with diameter not

more than three

The hosoya polynomial of graphs introduced by H.Hosoya[26] as early in 1988

received wide attention due to its association with the famous Wiener Index and

Hyper Wiener Index of molecules in chemical graph theory. The Wiener Index

and Hyper Wiener Index of of a graph G are defined as follows:

W (G) =
∑

u,v∈V (G)

d(u, v) and WW (G) =
1

2

∑
u,v∈V (G)

[d(u, v) + d(u, v)2]. (9.1)

Only some elementary calculations are enough to show that the Wiener Index

W (G) of a graphG is equal toH ′(G, 1) whereH ′(G, x) denotes the first derivative

of Hosoya polynomial of G. The relation between Hosoya polynomial H(G) and
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Hyper Wiener Index WW (G) of a graph G was established by G. G. Cash [17]

as follows:

WW (G) = H ′(G, 1) +
1

2
H ′′(G, 1). (9.2)

For connected graphs of diameter 1, the hosoya polynomial is given byH(G, x) =(
n
2

)
x since all the pairs of vertices are at a distance 1 from each other. Similarly

for connected graphs of diameter 2, it is given by H(G, x) = mx + [
(
n
2

)
−m]x2

where m is the number of edges of G.

Some of the consequences of this result are given as follows:

1. The well known Petersen graph P has 10 vertices and 15 edges. Since it is

of diameter 2, its Hosoya polynomial is given by H(P , x) = 30x2 + 15x.

2. A windmill graph W
(m)
n is obtained by taking m copies of Kn with a vertex

in common. It is of diameter 2 with mn−m+1 vertices and mn edges. The

hosoya polynomial of the windmill graph W
(m)
n is given by H(W

(m)
n , x) =[(

mn−m+1
2

)
−mn

]
x2 +mn x.

3. Hoffman-Singleton graph H was constructed by A.J. Hoffman and R.R.

Singleton [1] which is a 7-regular graph of diameter 2 with 50 vertices and

175 edges. The hosoya polynomial of Hoffman-Singleton graph is given by

H(H, x) = 1050x2 + 175x.

For graphs with diameters 3 or more, no general formulae are available to find

their hosoya polynomial. Theorem 9.1.3 shows that, for connected triangle free

graphs of diameter 3, the hosoya polynomial can be derived from their common

neighbor polynomial.
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Theorem 9.1.3. Let G be a connected triangle free graph with n vertices and

m edges. If G has diameter not more than three, the hosoya polynomial of G is

given by

H(G, x) =
[
N [G; 0]−m

]
x3 +

[(n
2

)
−N [G; 0]

]
x2 +mx. (9.3)

where N [G; 0] is the common neighbor polynomial of G equated at x = 0.

Proof. Let G be a connected triangle free graph with n vertices and m edges

having diameter less than or equal to 3. The Hosoya polynomial of G is defined

as[26]

H(G, x) =
l∑

j=1

d(G, j)xj (9.4)

where d(G, j) denote the number of pairs of vertices in G having distance j apart

and l denote the diameter of the graph. Clearly d(G, 1) is the number of edges

of G. From the definition of i-common neighbor set of G, all the pairs of vertices

in G which are at a distance 2 apart have at least one common neighbor and

hence lie in N(G, i) where 1 ≤ i ≤ (n − 2). Since G is triangle free, pairs of

vertices having a common neighbor cannot have an edge connecting them. It

follows that d(G, 2) =
∑n−2

i=1 |N(G, i)| which equals
(
n
2

)
− N [G; 0]. Now among

the remaining pairs of vertices which lie in N(G, 0), the pairs of vertices which

are end points of edges are at a distance 1 apart and hence d(G, 1) = m and

d(G, 3) = |N(G, 0)| − m=N [G; 0] − m. Now the result follows from equation

9.4.

Corollary 9.1.4. If G is a connected triangle free graph having diameter not

more than 3, the Wiener index and and the Hyper Wiener index of G are given
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by the following:

W (G) = N [G; 0] + 2

(
n

2

)
− 2m,

WW (G) = 3N [G; 0] + 3

(
n

2

)
− 5m,

where n and m are the order and size of the graph G respectively.

Proof. The result follows from theorem 9.1.3 and the fact that W (G) = H ′(G, 1)

and WW (G) = H ′(G, 1) + 1
2
H ′′(G, 1).

The bipartite Cocktail party graph Bn is the graph obtained by removing a

perfect matching from the complete bipartite graph Kn,n.

Corollary 9.1.5. The Hosoya polynomial of bipartite cocktail party graph Bn is

given by

H(Bn, x) = n(n− 1)x+ n(n− 1)x2 + nx3.

Proof. Bipartite cocktail party graph is a triangle free graph with diameter 3

having 2n vertices and n2 − n edges. Its common neighbor polynomial is given

by (see 2.2.26),

N [Bn;x] = 2

(
n

2

)
xn−2 + n2

so that N [G; 0] = n2. In the light of theorem 9.1.3, it follows that

H(Bn, x) = [n2 − (n2 − n)]x3 +
[(2n

2

)
− n2

]
x2 + (n2 − n)x

= n(n− 1)x+ n(n− 1)x2 + nx3.

This completes the proof.

A bistar graph Bm,n is obtained by connecting the center vertices of two star

graphs K1,m and K1,n by a bridge.
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Corollary 9.1.6. The hosoya polynomial of bistar graph Bm,n is given by

H(Bm,n, x) = (m+ n+ 1)x+
1

2
[m(m+ 1) + n(n+ 1)]x2 +mnx3.

Proof. Bistar graph Bm,n is a triangle free graph with diameter 3 having m+n+2

vertices and m+ n+ 1 edges. Its common neighbor polynomial is given by (see

2.2.25)

N [Bm,n;x] =
[(m

2

)
+

(
n

2

)
+m+ n

]
x+m+ n+mn+ 1

so that N [Bm,n; 0] = m + n + mn + 1. Hence the result follows from theorem

9.1.3.

9.2 Network theory

In network data analysis, clustering of data is widely used as a tool to group

the data in such a way that items in the same group share some similarity. For

example, in document clustering, documents which are most similar to each other

are clustered even though they belong to different classes or subjects.

Shared Nearest Neighbor(SNN) clustering is one of the most common cluster-

ing technique which produces clusters of data within a huge network according

to their structural similarity. The concept of Shared Nearest Neighbor approach

was first introduced by R. A. Jarvis and E. A. Patrick [32] in which two nodes are

placed in the same cluster by examining the number of nearest neighbors shared

by both of them. During the clustering process, a Shared Nearest Neighbor(SNN)

graph is constructed whose formal definition is given in [44] as follows:
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“The SNN graph of a graph G is derived from G in such a way that the

neighbors of the node vi are the nodes vj, j 6= i if vi and vj have at least k

neighbors in common, or equivalently, if there exist at least k distinct paths of

length two between vi and vj in G.”

Observe that the value of k is called the threshold value of similarity. As

the threshold value varies, the resulting SNN graph also varies and as a result,

final clusters differ in their size, shape and density. So it is important to fix the

threshold value in such a way that the resulting clusters are suitable for further

analysis. If the threshold value is set too high, then the resulting clustering

patterns with very few links may be very poor in its significance. In such a

situation, a significant cluster may split into small groups of clusters. In turn,

if the threshold value is set too low, unnecessary links(noises) are appeared in

the final clusters. These discussion pointed towards the importance of fixing

the appropriate threshold value in order to produce a SNN graph worthwhile to

generate meaningful clusters.

The common neighbor polynomial of graphs provides a clear idea about the

density of SNN graphs by providing the number of links in the SNN graphs

for various threshold values. In first subsection, we discuss the significance of

common neighbor polynomial of a graph in the area of network data clustering.

In the second subsection, we establish a relation between adjacency matrix of

a graph and its common neighbor polynomial. Using this we produce graphs

which are CNP - equivalent.
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9.2.1 Significance of Common neighbor polynomial in

network data clustering

Theorem 9.2.1. The number of edges in a SNN graph with threshold value k

is given by
∑
i≥k

|N(G, i)| where N(G, i) is the i-common neighbor set of G. In

particular, the SNN graph of G is empty if the threshold value exceeds the degree

of common neighbor polynomial of G.

Proof. In the SNN graph of G with threshold value k, two nodes vi and vj are

adjacent if and only if they share at least k neighbors in common. Since |N(G, i)|

gives the number of pairs of vertices in G with exactly i common neighbors, the

result follows. If the threshold value k exceeds the degree of common neighbor

polynomial of G, N(G, i) = φ for i ≥ k and the corresponding SNN graph contain

no edges.

The following observations are straight forward from the above theorem.

1. The Windmill graph W
(m)
n is obtained by taking m copies of Kn with a

vertex in common. The common neighbor polynomial of Wm
n is given by

(see 2.2.27) N [W
(m)
n ;x] = m

(
n
2

)
xn−2 +

(
m
2

)
(n− 1)2x. By theorem 9.2.1, the

SNN graph of Wm
n contains m

(
n
2

)
edges if the threshold value k is chosen

in such a way that 3 ≤ k ≤ (n− 2).

2. A web graph WBn, n > 3 is obtained by joining the pendent vertices of a

helm Hn to form a cycle and then adding a single pendent edge to each

vertex of this outer cycle. For n ≥ 6, the common neighbor polynomial of

web graph is given by (see 2.2.13), N [WBn;x] = 4(n−1)x2 + (n−1)(n+6)
2

x+
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9.2. Network theory

(n − 1)(4n − 10). From theorem 9.2.1, it follows that the SNN graph of

web graph WBn where n ≥ 6 is empty for the threshold value k ≥ 3.

Remark 9.2.2. The congraph[2] C(G) of a given graph G has the same vertex

set as that of G in which two vertices are adjacent if they share at least one

common neighbor in the graph G. The SNN graph of a graph G with threshold

value k = 1 becomes the congraph of the graph G.

Theorem 9.2.3. Let i be the degree of the common neighbor polynomial of a

graph G which has only zero as the common neighbor root. Then the SNN graph

of G with threshold value k is either a complete graph or an empty graph according

as k ≤ i or k > i respectively.

Proof. Let G be a graph on n vertices. If zero is the only common neighbor root

of G, then the common neighbor polynomial of G is of the form N [G;x] =
(
n
2

)
xi.

It follows that any pair of vertices of G has exactly i common neighbors. Hence

if the threshold value k is less than or equal to i, all the pairs of vertices are

adjacent in SNN(G) and it becomes a complete graph. If k > i, the result

follows from theorem 9.2.1.

Theorem 9.2.4. If the SNN graph of a graph G with threshold value k contains

a clique of size n, then the graph G contains at least k(k− 1)(n−1) (n−1)!
2

distinct

2n- circuits which share the n alternate vertices of the circuits in common.

Proof. Assume that the SNN graph of a graph G contains a clique C of size

n. Let {v1, v2, . . . , vn} be the vertices of the clique C. There are (n−1)!
2

distinct

ways for the cyclic arrangement of the vertices v1, v2, . . . , vn. We will consider

the cycles in G produced by concatenating the 2-paths from vi to vi+1 where
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i = 1, 2, . . . , n − 1 and the 2-paths from vn to v1 ensuring the non repetition

of edges. Now, due to the construction of SNN graph, each pair of vertices

(vi, vj) of C has at least k common neighbors in G. Hence there are at least k

distinct 2-paths in G from v1 to v2. Ensuring the non repetition of edges, there

are at least (k − 1) paths of length 2 from vi to vi+1 where i = 2, 3, . . . , n − 1

and also from vn to v1. Note that distinct pairs of vertices in G may have same

common neighbors and hence concatenating the 2-paths between the vertex pairs

(vi−1, vi) and (vi, vi+1) results in repetition of vertices. It follows that G contains

at least k(k−1)(n−1) (n−1)!
2

circuits of length 2n which share the alternate vertices

v1, v2, . . . , vn in common. This completes the proof.

Theorem 9.2.5. If the SNN graph of a graph G with threshold value k contains

a uv- path of length m then the graph G contain at least k(k−1)m−2 distinct uv-

trials which share exactly the alternate vertices of the trials.

Proof. Assume that SNN graph of a graph G with threshold value k contains a

uv-path u u1 u2 . . . um−2 v of length m. By the definition of SNN(G), there are

at least k common neighbors in G for each pair of adjacent vertices of this path.

In particular, there are at least k distinct 2-paths from u to u1 and avoiding

the possibility of repetition of edges, there are at least (k − 1) distinct 2-paths

between each pair of vertices (ui, ui+1) where i = 1, 2, . . . , (m − 1) and between

(um−2, v). Concatenating these 2-paths results in required number of uv-trials

which may contain repeated vertices. This completes the proof.
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9.3. The common neighbor polynomial and adjacency matrix of a graph

9.3 The common neighbor polynomial and ad-

jacency matrix of a graph

The adjacency matrix of a graph is a well celebrated concept in graph theory due

to its connection with the characteristic polynomial of the graph and its spectra

which have wide range of applications. This section derive a relation between

adjacency matrix of a graph and its common neighbor polynomial.

Theorem 9.3.1. Let A be the adjacency matrix of a simple graph G of order n

and let A2 = B. Then the common neighbor polynomial of G is given by

N [G;x] =
n∑
i=1

n∑
j=i+1

xBij ,

where Bij denote the ijth entry of the matrix B.

Proof. If A is the adjacency matrix of a graph G, the ijth entry of A2 is the

number of walks of length 2 from the vertex vi to vj in G which is equal to the

number of common neighbors of vi and vj. Hence for i, j ∈ {1, 2, . . . , n}, the

matrix B = [Bij] is given by

Bij =


nij if i 6= j,

d(vi) if i = j.

where nij denote the number of common neighbors of the vertices vi and vj

and d(vi) denote the degree of the vertex vi. Any pair of distinct vertices in

G can be uniquely represented in the form (vi, vj) where i ∈ {1, 2, . . . , n} and

j ∈ {i+ 1, i+ 2, . . . , n} which has exactly Bij common neighbors. It follows that

each vertex pair (vi, vj) in G contribute the term xBij to the common neighbor

polynomial of G. Hence the result follows.
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The bipartite double cover or kronecker double cover of a graph G is con-

structed as the tensor product of G and K2. Corresponding to each vertex ui

of G, there are two vertices vi and wi in the kronecker double cover K(G) of G.

Two vertices vi and wj are adjacent in K(G) if and only if the vertices ui and uj

are adjacent in G.

Theorem 9.3.3 explore the existence of plenty of non isomorphic CNP - equiv-

alent graphs. To prove the theorem, we use the following result from [6].

Theorem 9.3.2. (see[6]) A graph G with adjacency matrix A is bipartite if and

only if the matrices

A O

O A

 and

O A

A O

 are similar.

Theorem 9.3.3. The disjoint union of two copies of a non bipartite graph G and

the Kronecker cover of G are non isomorphic CNP - equivalent graphs. Moreover,

the common neighbor polynomial of the kronecker double cover K(G) of G is

N [K(G);x] = 2N [G;x] + n2,

where n is the order of G.

Proof. Let G be a graph with adjacency matrix A. The adjacency matrices of

the disjoint union G ∪ G and the kronecker double cover K(G) of G are given

by

A O

O A

 and

O A

A O

 respectively. From Theorem 9.3.1, it follows that

G∪G and K(G) have same common neighbor polynomial as the square of their

adjacency matrices are equal. Since G is non bipartite, Theorem 9.3.2 guarantees

that

A O

O A

 6∼
O A

A O

. It follows that G ∪ G and K(G) are non isomorphic
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9.3. The common neighbor polynomial and adjacency matrix of a graph

CNP -equivalent graphs. Now, using Lemma 2.2.18,

N [K(G);x] = N [G ∪G;x] = 2N [G;x] + n2.

This completes the proof.

A crown graph is obtained by deleting a perfect matching from the complete

bipartite graph Kn,n. It is the kronecker double cover of the complete graph Kn.

Corollary 9.3.4. The disjoint union of two copies of Kn and the crown graph

of order 2n are CNP -equivalent graphs.
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Chapter 10
Conclusion and further scope of

research

This chapter includes a summary of the thesis and some guidelines

which helps to explore the topic further.

10.1 Summary of the thesis

In the thesis, a new graph polynomial called “Common Neighbor Polynomial of

graphs” is introduced and studied in a detailed manner. The common neigh-

bor polynomial of many well known graph classes are identified. Moreover, the

common neighbor polynomial of some tree structures and some special graph

constructions are also discussed. The thesis provides explicit formulae to find

common neighbor polynomial of some well known graph products such as join,

corona, cartesian product, rooted product and tensor product of graphs in terms

of the common neighbor polynomial of the parent graphs. The common neigh-

bor polynomial of graphs obtained by graph operations such as splitting graph,
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shadow graph or mycielsky graph of a given graph are also studied.

The concept of CNP -equivalent classes of graphs and CNP−unique graphs

are introduced and some CNP -equivalent classes of graphs and CNP -unique

graphs are identified. A study on the roots of common neighbor polynomial are

conducted. The stability of common neighbor polynomial of graphs are studied

and the number of real common neighbor roots of some well known graph classes

are found.

The generalized i-common neighbor sets and generalized common neighbor

polynomial of graphs are defined and the generalized common neighbor polyno-

mial of some well known graph classes are identified. Moreover, some characteri-

zations on graphs in terms of generalized common neighbor polynomial of graphs

are also discussed. The concept of simplicial complexes of graphs and cluster of a

vertex in a graphs are introduced and in the light of these concepts, generalized

i-common neighbor sets of graphs is studied.

Common neighbor polynomial of graphs are studied incorporated with chem-

ical graph theory. The common neighbor polynomial of nanostar dendrimers

and PAMAM dendrimers are studied. The hosoya polynomial of graphs with

diameter not more than three is derived using the common neighbor polynomial

of corresponding graphs. In order to establish the significance of common neigh-

bor polynomial of graphs in network theory, the Shared Nearest Neighbor(SNN)

clustering is discussed and explains the way in which the common neighbor poly-

nomial of graphs is useful in the formation of meaningful clusters. A relation

which connects common neighbor polynomial of a graph with its adjacency ma-

trix is identified. Making use of this relation, a C++ program is developed for
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10.2. Further scope of research

generating coefficients of common neighbor polynomial of a graph.

10.2 Further scope of research

1. Identify CNP -unique graph classes.

2. Identify CNP -equivalent graphs.

3. Characterize the properties of CNP -equivalent and CNP -unique graphs.

4. Identify CNPr-equivalent graphs.

5. Identify CNPr-unique graph classes.

6. Characterize the properties of CNPr-equivalent graphs.

7. Characterize the properties of CNPr-unique graphs.

8. Explore the formulae for generalized common neighbor polynomial of graphs

obtained from various graph operations.

9. Characterize the polynomials over the set of integers which may be the

common neighbor polynomial of some simple finite graphs.

10. Characterize the polynomials over the set of integers which may be the

generalized common neighbor polynomial of some simple finite graphs.

149



10.2. Further scope of research

150



Bibliography

[1] A.J. Hoffman and R.R. Singleton, On Moore graphs with diameters 2 and

3, IBM J. Res. Develop. 4, 1960, pages 497-504.

[2] Anwar Alwardi, Branko Arsic et al., The Common Neighborhood Graph and

Its Energy, Iranian Journal of Mathematical Sciences and Informatics, Vol.

7, No. 2, 2012, pages 1-8.

[3] C.D. Godsil and B.D. Mc Kay, A new graph product and its spectrum, Bul-

letin of Australian Mathematical Society, Vol.18, 1978.

[4] C. Godsil and G.Royle, Algebraic Graph Theory, New York: Springer-

Verlag, 2001, pages 221-222.

[5] Chang Li-Chien,The uniqueness and non-uniqueness of the triangular asso-

ciation schemes, Science Record (Peking), New. Ser.,3, 1959, pages 604–613.

[6] Daniel Joseph Kranda, The square of adjacency matrix, arXiv:1207.3122v1

[math.CO], 2012.

[7] D. J. Watts, Small Worlds, Princeton University Press, Princeton, NJ, 1999.

151



Bibliography

[8] E.A. Leicht, Petter Holme and M.E.J.Newman, Vertex Similarity in Net-

works, Physical Review E,73(2), 2006.

[9] E.J. Farrell, An introduction to matching polynomials, Journal of combina-

torial theory, series B-27, 1979, pages 75-86.

[10] Ennice Mphako-Banda, Some polynomials on flower graphs, International

Mathematical Forum 2, 51, 2007, pages 2511-2518.

[11] Eric W. Weisstein, Firecracker Graph, http://mathworld.wolfram.com

/FirecrackerGraph.html.

[12] E. Sampathkumar and H.B. Walikar, On Splitting graph of a graph, Kar-

nataka University Journal-Vol.XXV, 1980, pages 13-16.

[13] F. Harary, Graph Theory, Adison-Wesley, 1969.

[14] Fred H.Croom, Basic concepts of algebraic topology, Springer-Verlag, New

York, 1941.

[15] Gajender, Gaurav and Himanshu Sharma, Hurwitz polynomial, Interna-

tional journal of innovative research in technology, Vol.1(7), 2014.

[16] George D. Birkhoff, A determinant formula for the number of ways of col-

oring a map, Ann. of Math. (2) 14, 1912, pages 42–46.

[17] G.G.Cash, Relationship between the Hosoya polynomial and the Hyper

Wiener Index, Applied Mathematical letters, 15, 2002, pages 893-895.

[18] H. Hosoya, On some counting polynomials in chemistry, Discrete Applied

Mathematics, 1988, pages 239–257.

152



Bibliography

[19] I. I. Jadav and G.V. Ghodasara, Snakes related strongly graphs, International

Journal of Advanced Engineering Research and Science, Volume 3, Issue 9,

2016, pages 240-245.

[20] J.A. Bondy and U.S.R. Murty, Graph theory, Springer, 2008.

[21] J.J. Sylvester, On application of the new atomic theory to the graphical

presentation of the invariants and covariants of binary quantics, American

Journal of Mathematics, Volume 1,1878, pages 161-228.

[22] J. Mycielski, Sur le coloriage des graphes, Colloq. Math. 3, 1955, pages

161-162.

[23] Leonhard Euler, Solutio problematis ad geometriam situs pertinentis, Com-

ment. Acad. Sci. U. Petrop 8, 1736, 128–140.

[24] M. Lepovic, I. Gutman, Some spectral properties of starlike trees, Bulletin

T.CXXII de l Academie Serbe des Sciences et des Arts, 2001.

[25] M.P. Shyama and V. Anilkumar, Total domination polynomials of complete

partite graphs, Advances and Applications in Discrete Mathematics, Volume

13, 2014, pages 23-28.

[26] M.P. Shyama and V. Anilkumar, On the roots of Hosoya polynomials, Jour-

nal of Discrete Mathematical Sciences and Criptography, Volume 19, 2016,

pages 199-219.

[27] Najmeh Soleimani et. al., Theoretical Study of Nanostar Dendrimers, Studia

UBB Chemia, LXI,1, 2016, pages 127-140.

153



Bibliography

[28] N.K. Vishnoi, Zeros of polynomials and their applications to theory: A

primer, Preprint, Microsoft Research, Bangalore, India, 2013.

[29] P. Janek, E. Arkadi et al., Sythesis and CZE synthesis of PAMAM den-

drimers with an ethylenediamine core, Proc. Estonian Acad. Sci. Chem.,

50,3, 2001, pages 156–166.

[30] P. A. Fuhrmann, A polynomial approach to linear algebra, Springer-Berlin

Heidelberg, New York, 1996.

[31] Paul Erdos, Alfred Renyi and Vera Sos, On a problem of graph theory, Studia

Sci. Math. Hunger, Volume 1, 1966, pages 215-235.

[32] R. A. Jarvis and E. A. Patrick,Clustering Using a Similarity Measure Based

on Shared Nearest Neighbors, IEEE Transactions on Computers, Vol. C-22,

NO.11, 1973.

[33] R. Balakrishnan and K. Ranganathan, A Textbook of Graph Theory,

Springer, 2000.

[34] R. C. Bose, Strongly regular graphs, partial geometries and partially balanced

designs, Pacific J. Math. Vol.13, No.2, 1963, pages 389–419.

[35] R. Frucht and F. Harary, On the corona of two graphs, Aequationes Math-

ematicae, vol. 4, 1970, pages 322–325.

[36] S. Alikhani, Dominating sets and domination polynomials of graphs, Ph.D.

Thesis, University Putra Malaysia, 2009.

[37] S. Borofsky, Elementary theory of equations, Macmillan, 1950.

154



Bibliography

[38] S. C. Shee and Y. S. Ho, The cordiality of on point union of n-copies of a

graph, Discrete Mathematics, 117, 1993, pages 225-243.

[39] Sherif El- Basil, Applications of caterpillar trees in Chemistry and Physics,

Journal of Mathematical Chemistry, 1987, pages 153-174.

[40] S. Kakeya, On the limits of the roots of an algebraic equation with positive

coefficients, Tohoku Mathematical Journal, 2, 1912, 140-142.

[41] T. J. Moore, R. J. Drost, P. Basu, R. Ramanathan and A. Swami, Analyzing

collaboration networks using simplicial complexes: A case study, Proceedings

IEEE INFOCOM Workshops, Orlando, FL, 2012, pages 238-243.

[42] Victor V. Prasolov, Poynomials, Springer Science and Business Media, 2009.

[43] Weisstein, Eric W., Book Graph, MathWorld- A Wolfram Web Resource,

http://mathworld.wolfram.com/BookGraph.html.

[44] Wilson, Kevin A. et al., 6 Graph-based Proximity Measures, 2013.

[45] Zeinab Foruzanfar, The First Eccentric Zagreb Index of the N th Growth

of Nanostar Dendrimer D3[N ],International Journal of Pure and Applied

Mathematics, Volume 117, No. 1 2017, pages 99-106.

155



Bibliography

156



APPENDIX I

A C++ program for generating coefficients of Com-

mon Neighbor Polynomial of a graph

The following C + + program generates the coefficients |N(G, i)| of the common

neighbor polynomial of a graph of order n, for i = n−2, n−3, . . . , 2, 1, 0. In this

program, the cardinality of i-common neighbor set |N(G, i)| is denoted simply

as N [i].

#include <iostream>

using namespace std;

int main()

{

int a[10][10], N [10];

int i, j, n, k,m, s;

cout <<“Enter the order of the adjacency matrix of the graph”;

cin >>n;
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cout<<“Enter the elements of the adjacency matrix row wise”;

for(i = 1; i <= n; i+ +)

{for(j = 1; j <= n; j + +)

{cin >> a[i][j]; }

}

for(k = 1; k <= n− 2; k + +)

{N [k] = 0; }

for(i = 1; i <= n− 1; i+ +)

{for(m = i+ 1;m <= n;m+ +)

{k = 0;

for(j = 1; j <= n; j + +)

{if(a[i][j] ∗ a[m][j] == 1)

k = k + 1; }

N [k] = N [k] + 1; }

}

s = 0;

for(k = 1; k <= n− 2; k + +)

{s = s+N [k]; }

N [0] = n ∗ (n− 1)/2− s;

for(k = 0; k <= n− 2; k + +)

{cout << N [k] << ”\t”; }

}
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Paper Presentation

Presented a paper on ‘Common neighbor polynomial of some graph construc-

tions’ in the international Conference on Discrete Mathematics and its Applica-

tions to Network Science held at the Department of Mathematics, Birla Institute

of Technology and Science(BITS) Pilani, Goa.
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Routh-Hurwitz criteria, 94

schur polynomial, 13, 91

shadow graph, 11, 59

shared nearest neighbor graph, 139

simple graph, 8

simplicial complex, 123

SNN clustering, 139

splitting graph, 11, 57

stable, 13, 91, 92

strongly regular, 10, 39

tensor product, 12, 77

threshold value of similarity, 140

tree, 9

caterpillar, 11, 44

centipede graph, 48, 50

firecracker graph, 48

m-ary tree, 10, 42

rooted tree, 10

star like tree, 11

trial, 9

walk, 9

Wiener index, 135
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