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Preface

In recent years, equation of state of quark gluon plasma in the presence of
external magnetic field was investigated by many authors. Many of the phe-
nomenological models have successfully described the equation of state of quark
gluon plasma in the absence of a magnetic field. Some of these models have
shown remarkable agreement with lattice data. In these models, certain quasi-
particle phenomenological models have used coupling constants of QCD. Up to
two loop order, these coupling constants exhibit a logarithmic dependence on
temperature. When the temperature is below the critical temperature, some
models fail to explain the lattice data. In our work, we obtain the equation of
state of quark gluon plasma in the absence and presence of a magnetic field,
from temperature lower than the critical temperature, to higher temperature
range. Furthermore, our research introduces a novel method for determining
the coupling constant in ¢* theory.

The Chapters in the thesis can be classified into three. Chapter 2 to 4 is
based on Mayer’s cluster expansion. Chapter 5 is based on the quasiparticle
model of VM Bannur in the context of quark matter at zero temperature.
Chapter 6, is based on quantum field theory and thermal field theory.

In Chapter 1, we give a brief introduction to quark gluon plasma (QGP). In
Chapter 2, we provide a general overview of Mayer’s cluster expansion, which
forms the foundation for the equations utilized in Chapter 3 and Chapter 4. .

We draw inspiration from Bannur’s introduction of Mayer’s cluster expan-
sion to explain the equation of state (EoS) of the QGP. In Chapter 3, we
combined this approach with the mathematical tools from the dimensional
regularization method and developed a generalized formula for central poten-
tial of the polynomial form. Based on the famous semiempirical mass formula
of nuclear physics, we developed a modified liquid drop model. Chapter 3 has
focused on employing this modified liquid drop model to explain the equation
of state of QGP across a wide temperature range.

xii



In Chapter 4, we have extended the model to incorporate the influence of
magnetic fields. This allowed us to compare the magnetized quarks lattice
data with our model.

In Chapter 5 we use the quasiparticle model developed by VM Bannur to
determine the equation of state of a quark star in the presence of a magnetic
field at zero temperature. We compare the pressure, number and energy den-
sity ratios of quasi particles with that of free particles.

Furthermore, Chapter 6 introduces a new method, named as “Same Mass
Scale and Coupling” (SMC) method, for deriving coupling constants in ¢?
theory. In this approach, the coupling constant and mass scale in both the
imaginary time formalism (ITF) and non-thermal quantum field theory (QFT)
are considered to be identical. By employing the conventional renormalization
method and applying renormalization group equations (RGE) simultaneously
to both ITF and QFT, we obtain the running mass and running coupling
constant. The running coupling constant and running mass values obtained
through SMC are in agreement with the expected behavior.

Finally, in Chapter 7, we outline our future plans and provide a compre-
hensive summary of the thesis.
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Chapter 1

Introduction

1.1 General description of quasiparticles, plasma
and screening

1.1.1 Quasiparticles

A quasiparticle is not an actual particle, like protons or electrons, but is more
like a mathematical model that approximates a whole phenomenon as contri-
butions from quasiparticles whose behaviour is represented by simple mathe-
matical equations.

For example, in semiconductor physics, a hole is actually the absence of an
electron. It is not a particle, but from a mathematical point of view, the
hole can be considered a quasiparticle having the opposite charge of an elec-
tron. In solid state physics, the term electron-quasiparticle is widely used; it
is essentially a particle-like mathematical approximation of an electron that is
interacting with other forces within the solid. Similarly “phonon” is a quasi-
particle associated with quantum mechanical vibrations in solids.

1.1.2 Plasma, Screening and Anti-Screening

It is possible to classify plasma as a quasi-neutral gas since it is a gas of
charged and neutral particles that exhibits collective behavior. Assume that
two charged spheres are immersed in plasma. The balls start to attract oppo-
site charges around them. Assume that a layer of opposite charges accumulates
around the spheres, which reduces the influence of the effective charge of the
sphere over a finite distance. In order to understand the idea, let’s take an
exaggerated example, as shown below.



1.1.2. (a) Binary charges example (4 and - charges)

Consider a sphere, as shown in the figure below, having a centre charge of
+2 C. Assume that two layers of particles with opposite charges are formed
around the centre charge. Let the first and second layers contain the opposite
charge of -1C.

-1C

-1C

S,

As one looks from outside, one sees a zero charge. In other words, the +2C
charge at the centre is screened by the two -1C charges. After penetrating the
first layer of charge -1C, one could observe a net charge of +2C - C = 41 C.
Penetrating the next layer gives the centre charge +2C.

1.1.2. (b) Ternary charges example (red, blue, and green charges)

The notion of antiscreening can be exemplified in layman’s terms as shown be-
low. Assume a system where the charges aren’t binary but are ternary charges.
The labels red, green, and blue are taken from the analogy of primary colours.
So say green, red, and blue are the colour charges, and the combined form
gives a neutral white colour charge.

In the figure below, the left side figure is a cross section of sphere, and the
right side is the view from outside. The viewer from outside will not see blue,
green, or red, but the observer will see a white colour.



If observer penetrate the first layer of Blue, he will see a colour composite
that’s neither red nor green but yellow formed by the combination of red and
green.

\O
9,
‘ ]

Penetrating the layer of green gives red.

Req

The anti-screening effect in quantum chromo dynamics (QCD) is much more
complex. Both the quarks and gluons have colour degrees of freedom, while
the quarks additionaly have a flavour degree of freedom. The spherical dis-
tribution of colour charges as layers and the penetration of such a spherical
colour layer are not physically feasible as of now, but the above example can
be taken to understand the general notion of colour charge.

Red74

G
%
2

1.1.3 Quark Gluon Plasma

Consider the chalk we use to write on the dark/green board, which is made
up of white limestone composed of calcium carbonate (CaCOj3). Calcium, car-
bon, and oxygen are the components of CaCOs. An isolated atom of “°Ca has
a weight of 40.078 u. 1.0073 u is the mass of a proton, and 1.0087 u is the
mass of a neutron, adding up to 40.32 u in the case of calcium (20 proton+ 20
neutron). The fact that the components are heavier than the nuclei suggests
that an atom lost some mass when it formed. All the nucleons in the nucleus
are glued together by the missing mass or mass defect, which functions as a
binding energy.



The nucleus is made up of protons and neutrons, thus protons and neutrons
are collectively known as nucleons. The proton is composed of two up quarks
and one down quark, while the neutron is composed of two down quarks and
one up quark. The nucleons have a mass of about 1000 MeV. The mass of the
quarks that made up the proton was roughly 10 MeV in total, meaning that
they only made up 1% of the proton’s mass. Through mass-less gluon interac-
tion and chromodynamic binding energy, the remaining mass is attained.

Sum of nucleons > Nucleus Mass of Proton/Neutron > Sum of Quarks

40.08u =10 MeV

~1000 MeV

‘ Mass Defect/Binding Energy QCD Vacuum/QCD Binding Energy

Both quarks and electrons belong to the class of particles known as fermions
that have a half-integer spin, but quarks are fermions with flavor degrees of
freedom and color degrees of freedom.

Up Top Strange
Down | Bottom | Charm

X ’ Red \ Green \ Blue ‘

Experimentally, isolated color has never been seen [1], but this suggests
that quarks are constantly bonded together to create the color-white compos-
ite objects known as hadrons. Nambu made the first attempt to define color
in 1966 (QCD) [1]. Quantum field theories that separately describe the elec-
tromagnetism and color fields are known as quantum electro dynamics (QED)
and quantum chromo dynamics (QCD) respectively. In QCD, gluons mediate
the strong force field, whereas in QED, photons mediate the E-M field. In
terms of the variety of mediators, QCD has eight gluon mediators while QED



only has one photon. The Quantum Chromo-Dynamical Lagrangian (QCD)
[2] is

£QCD = 'Csym + /Cm (11)
with
1 _ p
Loym = — 7 FuFa” + > vl (W“@u + 97" ASF > v
f
Lo == dlmv] (12
f

Fo, = 0,A% — 0,A% + g fuALAS

A% denotes the gluon field with a € [1,8] and ¢/ is quark field color with
a € [1,3] and f denotes the flavor with quark masses being mjy. F¢ are
the SU(3) generators satisfying the commutation relation [F*, F*] = FaF? —
FbFe = jfabe e There exist other conventions where ¢ is changed to —g in
Eq. (1.2) [3]. At temperatures 7' < T, the quarks and gluons together form
hadrons (mesons plus baryons), with quarks having masses near 300 MeV. But
as temperatures go way beyond T, i.e., T' > T., the hadrons melt and the
effective mass of quarks goes to zero.

So from Egs. (1.1) and (1.2)

T'>T = my—0 = L, >0 = L="Lyn (1.3)

i.e., at temperatures greater than the critical temperature, due to the loss
of effective quark mass, the Lagrangian becomes symmetric, known as chiral
symmetry restoration. Similarly, as temperature becomes less than critical
temperature, the Lagrangian becomes non-symmetric £ = Lgym + L,,,. This
is known as spontaneous chiral symmetry breaking [2]. Asymptotic freedom
is a distinctive property of the QCD, which involves non-abelian gauge theory
(SU3). The coupling constant [4] that represent the asymptotic freedom can
be expressed as

12
as(p) = T (One loop order)

(33 — 2N;) In (Aé%)

127 ) (1 ~ 6(153 — 19N,) <1n (XQCLD») (1.4)

(33— 2Nj)In ( p? (33—2N;)° 1 (A#Q >

2
AQCD QCD

as(p) =

(Two loop order)

in which Ny is the number of flavors.
Aqcp is the QCD scale parameter. The parameter p corresponds to energy,

>



i.e., ; can be approximated as a function of temperature or momentum trans-
fer depending on the interaction and environment. As u — oo, the coupling
constant a,(p) — 0. Similarly g — Agep, the coupling constant diverges.

In other words, quarks and gluons interact weakly at high energies at short
distances but strongly at low energies, resulting in the confinement of quarks
and gluons within the composite hadrons. Quarks cannot be observed in free
states in the natural world. Photons do, however, exist in free states in the
natural world, and QED is an Abelian gauge theory. In contrast to QCD,
which also involves potentials other than the Coulomb potential, QED heavily
relies on the Coulomb potential [1].

In case of QED screening, the vacuum becomes polarized when a charge is
present, attracting virtual particles with opposite charges and repelling virtual
particles with similar charges. Overall, the field at any fixed distance is only
partially canceled. The effect of the vacuum becomes less and less noticeable
as one gets closer to the core charge, but the effective charge rises. However,
QCD has an anti-screening nature, meaning that its force-carrying particles,
the gluons, carry color charge in their own particular way. A color charge
and an anti-color magnetic moment are both carried by each gluon. In the
vacuum, the polarization of virtual gluons has the overall effect of enhancing
and altering the field rather than screening it. This effect would contribute
to a weakening of the effective charge with decreasing distance since getting
closer to a quark reduces the antiscreening impact of the nearby virtual gluons.

Consider heating the QCD vacuum within a box. The vacuum excites hadrons.
The hadrons begin to overlap as the temperature climbs toward the critical
temperature 7., which is between 150 and 200 MeV. The hadronic system dis-
integrates into quarks and gluons (QGP) as the temperature rises further. In
comparison the temperature at the center of the sun is 1.5 x 107 kelvins, or
0.0013 MeV. Nuclear matter has a density of about 0.16 fm™®; if the density
is increased by a factor of many, the hadronic system breaks down into quarks
and gluons.

The universe was expanding and had an origin involving a high temperature
transition, according to Alpher and Gamow’s paper The Origin of Chemical
Elements [5], Hubble’s law of galaxy redshift, and Friedmann’s solution of
Einstein’s gravitational equation in 1922 [6]. The cosmic hot era period was
established by Penzias and Wilson’s discovery of the cosmic microwave back-
ground in 1965 [7].

There is a good chance that the neutrons will melt into the cold quark



matter if the center density of the neutron stars exceeds 5 —10p,. The strange
matter theory proposes that the quark matter (the strange matter), which has
almost equal amounts of up, down, and strange quarks, may represent a stable
ground state of matter. i.e., theoretically, there exists a finite probability for
the existence of strange quark stars. We must solve the Oppenheimer-Volkoff
(TOV) equation (Oppenheimer and Volkoff, 1939), which is derived from the
Einstein equation, along with the equation of states for the super-dense matter,
in order to understand the structure of these compact stars.

But as one can combine the density and temperature effects simultaneously
on a hadronic matter, QGP can be produced in the lab, which is done in the
Large Hadron Collider (LHC) and Relativistic Heavy Ion Collider (RHIC) [1].

1.2 Important phenomenological models

1.2.1 MIT Bag Model

Harald Fritzsch, Heinrich Leutwyler, and Murray Gell-Mann developed the
idea of colour into the theory of quantum chromodynamics in 1973 [8]. In the
very next year, Chodos et al. [9] of the Massachusetts Institute of Technology
(MIT) introduced a simple phenemenological model to study the equation of
state of hadrons and QGP.

The potential in the MIT bag model is defined as the the sum of the volume
term and the inverse radial term. The MIT bag model can be explained in the
following manner from a qualitative standpoint. The potential energy can be
written as

Ey =BV + % (1.5)

The vacuum energy density, which holds quarks and gluons inside the bag,
is related to the constant B. The quarks in the bag behave as free particles
(fermions), according to the concept and the number of quarks decreases to
zero (confined) outside the bag. Eq. (1.5) can be rewritten for a spherical
drop-like form as

Ey = é7m»3B + ¢ (1.6)

3 r
The kinetic energy term combined with the uncertainty principle gives rise
to the inverse radial term. In the quantum mechanics approximation, the
parameter C can be expressed as a function of the quantum number and the
quark number. Under stable conditions, the external pressure is compensated

by the confined quark pressure.



Figure 1.1: The quarks within the bag exert kinetic pressure. As long as the
bag pressure B is greater than the kinetic pressure Py, the bag holds the
quarks. When bag pressure is overwhelmed by the kinetic pressure P, of
quarks, deconfinement occurs.

By minimizing Eq. (1.6), the radius of the bag can be determined.

Oy C o\
—0) — R=[—— 1.7

Therefore, the total energy at the ground state equilibrium radius can be
obtained as

4 C 4rR*B+3C 4C
E = - 3B _—— — =
n(R) =3B+ 4 3R 3R 18)
4 4 '
=35 (4rBR*) =4 (gwR?’B) =4V B

According to the bag model [10], if the particle is a boson in a free particle
state, then the energy density and pressure relation at zero chemical potential



(when the fugacity is equal to unity) are

dBp 1 [
_ _ § —nBp

3 =1 3
= a5t 2t = g (1.9
1 C(4

If the distribution is fermionic, then the results would be

d’p p 1 < 4 - n—1_-nf
— — _ —1,=nPp
<5f> =9y / (271’)3 efr 11 = 9¢ 972 /0 p E_l( 1) e

39/ ~= (-1)"t 3
- 7T2g5f4 Z : n)4 - 7T2gﬁf477(4) (1.10)
n=1

1 4
Pf:—B {ef) d@ZQfZQ(—B%lZ%

The Riemann zeta function ¢, and the Dirichlet eta function 7, are both used,
where

((s) =) _n"*
o B (1.11)
n(s) = (1—2) (s)

Degenerative factors for fermionic and bosonic particles are gg and g;. § = 1/T
is in natural units.

Consider a scenario where a transition occurs from a hadronic phase (mass-
less pions) to a QGP phase (composed of massless quarks and gluons) as the
temperature increases beyond the critical temperature T.. From Egs. (1.9)
and (1.10), the pressure of pionic stage is

¢(4)

Pr = 37%4 (1.12)
Three degrees of freedom comes from the three charge states of pion (7 +, 7%, 7).
The kinetic pressure of the free particle of quarks and gluons are

24n(4) + 16¢ (4
Porg = @) @ (1.13)

7T2ﬁ4



The two spin and eight colour degrees of freedom of the gluons give the factor
16 (2 x 8). For quarks, the factor 24 (2 x 2 x 2 x 3) comes as a contribution of
two particle-antiparticle degrees of freedom, two spin, two flavour, and three
colour degrees of freedom.

At critical temperature T, the confinement pressure (pionic pressure -+

bag pressure) becomes equal to the deconfinement pressure (quarks and gluons
kinetic pressure). i.e.,

B+ P,

= Py (1.14)

Te Te

Using Egs. (1.11) and (1.12) and ¢(4) = 71/90, bag constant can be derived

as
B = <Pq+g_P7r)

1
Thus the critical temperature is T, = (453 ) 4.
1772
For values such as B1 = 200 MeV and T, ~ 144 MeV, this model is rather
straightforward and fits the mass spectra of light hadrons. The pion-to-QGP
transition temperature is around 144 MeV according to the bag model. How-
ever, the bag model falls short in explaining a number of crucial aspects of
strong interactions, including chiral symmetry and others [11].

37-3 17
T::£}2§24M>225”%? (1.15)

1.2.2 Relativistic Harmonic Oscillator (RHO) Models

The Hamiltonian of confined quarks and gluons is taken to be

Hy = /9 + M2 + Q21 (quarks)

Hy = /p? + Cir? (gluons)

in the RHO model, which was first set forth by Khadkikar and Gupta [12] and
later expanded by Khadkikar and Vinodkumar [13]; with C,, 2, and M, being
the frequency of gluon fields, quark fields and mass of quark respectively. The
Hamiltonians are replaced by the eigenvalues of the corresponding quantum
mechanical operators. i.e., a harmonic oscillator of the form

(1.16)

I = 0,8 + agi® = (2N +3) haya, (1.17)
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has an energy eigenvalue of (2n + 1) ha,a, with n € W. If one moves the range
of n from whole number to natural number N, then the Hamiltonian becomes
(2n + 1)hayoy. Thus the result of Eq. (1.16) in natural units can be written
as

Hy = /(204 1) Q, + M -
Hy=./(2n+1)C?

The RHO model became successful in explaining various hadron spectroscopy
results and various experimental values such as mesonic mass having open
flavours, baryon magnetic moment, nucleon polarizability experimental values,
and leptonic decay width [12, 13, 14]. Even though the model failed to fit the
equation of state lattice data, especially near the critical temperature region.

1.2.3 Quasiparticle Model of QGP

The quasiparticle model proposed by VM Bannur [15, 16, 17] consistently ex-
plains the lattice data obtained. According to this model, the number density
of fermionic quarks and bosonic gluons at zero chemical potential (fugacity =
1) can be derived by integrating the appropriate distribution function in the
relativistic limit, as shown below.

d3p 1
(M)pp = 8D

(2m)? exp (ﬂ\/m) +1

(n)pr = gB-E/ (27)% oxp (5\/m) -1

with [ being inverse of temperature in natural units.
The model is thermodynamically consistent in such a way that the integration
of the distribution function over energy gives the energy density value

e s [ 7 N
€/BE ~ 8BE (27)3 exp (ﬁ\/fm> 1
R B

FD = 8FD (27)3 exp (5\/m) 1

(1.19)

(1.20)
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Both Egs. (1.19) and (1.20), can be simplified by substituting p = msinh(z),
which leads to

(n) 1 /°° m? sinh?(z) cosh(z) 4
p—t A/I/‘

")p.D/BE T BF.D/BE 272 exp (fmcosh(x)) £ 1 (121)
(@ B 1 [ m*sinh?®(x) cosh?(z) & '
/F.D/BE T BFD/BEY 5 o exp(Bmcosh(x))£1

using the results

h — cosh
sinh?(z) cosh(z) = o8 (3:70)4 cosh(z)
h(4z) — 1
sinh?(z) cosh?(z) = %
1 - .
= "y m forY > 1 (1.22)
VIl ; (F) , for Y >
Ko (8) = / cosh(nz) exp (B cosh(z)) dz
0
where K, (z) is the modified Bessel function of second kind.
Eq. (1.21) becomes
m3 S n—1
<n>F.D/B.E — 8FD/BEZ 3 Z (F) Ks(npm) — Ki(nfm)
n=1
m3 = n— KZ(nﬁm)
= 8F.D/BES 5 Z ()" Tnhm (1.23)

n=1
4 [o.¢]

(E)rpmr = gF.D/B.E% Z ()" {Kz;(nﬁm) — Ko(nﬁm)]
n=1

Pressure as a function of temperature can be derived using the thermodynamic
relation

P PR /T e(T)

T T 2
m, T

B
= dT" = — d 1.24
- | etas (1.24)
The model proposed by VM Bannur [15, 16, 17], has m?*(T) = ¢*(T)T?, where

g*(T) = 4mwag(T) is the coupling constant in QCD. This QPM model fits well
with lattice data[18] and is one of the successful models in QGP.

1.3 Present study

There are several quasiparticle models [19, 20, 15, 16, 17] that involve quasipar-
ticle mass as a function of coupling constants. There are studies that extend

12



these models to the magnetic field regime [21, 22]. But these models approxi-
mate the coupling constant as a function of In (T'/T,), with T, being the critical
temperature. As T'/T. > 1, many of theses model fits with lattice data. But
when T/T. ~ 1 and 0 < T/T. < 1, In(T/T.) becomes negative. This af-
fects the coupling constant, which causes a deviation between lattice data and
quasiparticle model predictions. So the quasiparticle model involving coupling
constants is successful only in the regime T'/T, > 1. In some extended quasipar-
ticle models involving magnetic fields, the same problem persists due to their

dependence on the coupling constant having a dependence on In (T / TC)

So we developed a model that is independent of the coupling constant but
still able to fit the lattice data for T'/T. < 1 and T'/T, > 1. Bannur [23] intro-
duced the idea of using Mayer’s cluster expansion (MCE) to explain equation
of state (EoS) of QGP. We borrow the same idea and combine it with the
idea of the dimensional regularization method, and the modified liquid drop
model enables us to successfully explain the EoS of QGP for a wide range
of temperatures. We extended the model to the magnetic field regime to ex-
plain and fit the QCD lattice data in the presence of an external magnetic field.

In addition to this, we have developed a new method for deriving coupling
constants known as the same mass scale and coupling (SMC) method. In
which, the coupling constant and mass scale for both imaginary time formalism
and non-thermal quantum field theory are considered to be the same. Then,
using the usual renormalization method and applying RGE equations to both
ITF and QFT simultaneously, we get the running mass and running coupling
constant. This running mass and coupling constant fit with the expected
behaviour of the equation of state of ¢* theory.

1.4 Plan of the thesis

In Chapter 2, we introduce the Mayer’s cluster expansion formulation step by
step. We also give an idea of the correction factor that needs to be multiplied
to make the distribution of distinguishable particles to the distribution of in-
distinguishable particles of different kinds. Finally, we show the equation of
state of pressure and energy density for neutral systems having an arbitrary
potential that is proportional to the product of the charges of particles in the
system. This Chapter is mainly based on the works of Mayer [24, 25] and
Balescu [26].

13



In Chapter 3, we introduce the core part of the thesis, i.e., the modified
liquid drop model in QGP. The Fourier transforms of central potentials are
discussed. Examples are given to understand the cluster expansion idea and
are compared with the related published works. Various integrals and their
results are derived using the contour integration method. Methods to avoid
poles in an integral by introducing an infinitesimal complex term to the inte-
grand are discussed.

In Chapter 4, the modified liquid drop potential is extended to the magnetic
field regime. The idea of a harmonic oscillator is used with a magnetic vector
potential, giving rise to modifications in the integral equation. A new integral
table with the modified integrating technique in the presence of a magnetic
field is also derived.

In Chapter 5, we have taken the idea of Bannur’s deconfined quark matter
quasiparticle model [27] and extended it to the magnetic field regime. The
results are compared with the EoS of free particles. The formulas are derived
in a systematic way.

In Chapter 6, the quasiparticle model in thermal ¢* theory is discussed. A
temperature-dependent coupling constant is derived for that purpose. Running
mass, mass scale, and constant temperature relations are found using both
imaginary time formalism and non-thermal quantum field theory. For that, a
new approach, named as Same Mass Scale and Coupling (SMC), is introduced.
Applying this result to the quasiparticle model provides us with the equation
of state of the system. In Chapter 7, summary and future plans are discussed.
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Chapter 2

Mayer’s Cluster Expansion

2.1 Cluster expansion for Distinguishable par-

ticles
© N ‘
© © ©
©
¢ © ¢ ¢ ¢

Consider a closed system containing particles. Consider a particle in such a
system, say B. Either the particle B can interact with no other particles or it
can interact with at least some of the particles in the system. The former is
known as an ideal gas case, while the latter is known as a non-ideal gas case. In
the non-ideal gas case, the total interaction can be divided into several clusters
of interactions[1, 2, 3] .

Consider a monoatomic gas system having a volume V' and containing N
identical particles, each with mass m at equilibrium temperature. Then we
can express the Hamiltonian as

N
H= ZEkin(ﬁiami) + Z U(’f‘ij) (21)
i=1 1<i<j<N

with EY(p;, m;) representing the kinetic energy contribution of i particle
and U(r;;) is the pair potential of particles i and j having relative separation
rij = |t; —T;|. The partition function of the gas including the Gibb’s correction
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factor [1] is

1
Qn(V,T) = R / exp(=BH) d*Np d*Nex = Z,,Z. (2.2)

with 8 = (kgT)™!, h is the Planck’s constant. Z, and Z,, are the integrals in
radial coordinate and momentum coordinate respectively.

. 2
At the non-relativistic limit F¥» = Lo

2m;
N
1 p?
NR __ 7 3
D = th} Uexp (—62—%_) dp}
9 3NN (2.3)
T 3
= hT) [Im:
=1
At the relativistic limit E¥" = /p? + m2,
1 N
I = H V exp (—ﬁ b} + m?) dgpi}
= (2.4)

= (,f;—”ﬂ)]v ﬂ [m3 Ky (Bm)]

i=1

with K5 being modified Bessel function of the second kind and m; being the
mass of 7" particle in the system.
When all the particles have the same mass;

3N

<—2ﬂrghz> ’ , Non-Relativistic limit

T = (2.5)

N
<%K 2 (ﬁm)) , Relativistic limit.

Now the remaining part of integral in Eq. (2.2) involving the potential part is
1
L. = m / Hexp [_BUU] N (26)
i<j

The evaluation of above integral is difficult in the present form. One could use
the cluster expansion method to simplify the integral. In cluster expansion
method we define 7;; = exp [—-fU;;] — 1.
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2.1.1 Distinguishable particles

Let us assume that all the particles are distinguishable, then let us remove the
N! (We will consider the indistinguishability factor later). Then

. = /H (1 + 77”) d37'1 d3’1"2 d37”3 ce d37"N (27)

i<j
where the expansion of the function is

TTO+m) =14 mi+ D mgma+ - (2.8)
i<j 1<j 1<j
k<l
ij 7kl
Consider a subsystem with j particles within the N particle system. The
N
integral in Eq. (2.10) involves 1(1,2, 3, ..., j) as an integrand and H d3r; as in-
i=1

J
tegrating variables. Only the H d®r; variable interacts with the n(1,2,3, ..., 5)

=1
N

integrand. The remaining Hd3ri radial coordinates provide the volume con-
i=j
tribution of V=7 when integrated. In addition to that, the multiplicity factor

N
will be ( , ) which corresponds to choosing j particles from N particles. Since

we use the small letter ¢ to denote the concentration of particles in general and
the capital letter C' to denote concentration in the context of the MLDM model

N

of Chapter 3, we will be using ( , ) to represent the combination representa-
J

tion of NCj. ie.,

(]]V) = Ngy = L’ (2.9)

N
L= (j) X /n(l,Q,...,j)d3r1 dPry Py dPry

N ,
= (]) X VN—J/n(1,2,3...,j) dPry dPry. .. dPrj

(2.10)

As the volume goes to infinity

I N\1  N/(N 1 N j-1\1
AN = VLJOO(j)W =My (V - v) (v - T) 5 (@1
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N
At fixed number density ¢ = A at infinite volume

I, c ,
V%V—JN =% wf/n(1,2,3, o) &Py dPry L Py, (2.12)

2.1.2 Integrals and Diagrammatic representation
2.1.2. (a) Two Particle cluster of the same kind

Writing down the integral as a diagram will ease the calculation. We represent,
the two particle cluster integral as

N
1 1
TN DO @D=y X Z/%‘df (2.13)
i<j i<j
with dr = d3r; d®ry. .. ry.

This cluster integral of two particle is also known as an irreducible cluster
N

integral, because it cannot be broken down further. The factor Z ni;dT 1S

1,j=0
1<j

equivalent to [N(N — 1)/2] n;;dr in the integral. So,

1 Choosing two particles 1
W E — from N distinguishable X W X nide

e particle
1<)

N 1
= (2) X W X VN_2 X /nideTidg’l"j

N\ (N 1\ 1 s (2.14)
_(V)(V—V)X§/T]Wd’f’ld’l“]

1
=~ 02 X 5/’/’]” dSTZ'j d37"

=~ C2BQ = C2b2v

with ¢ = N/V where N is total number of particles and by is a finite term that
doesn’t go to infinity as V' — oo. The variables dr; and dr; can be rearranged
using a Jacobian determinant to produce new variables dr;; and dr.

2.1.2. (b) Three Particle cluster of the same kind

Each integral equation is associated with certain probability factors. We are
given N particles, so the probability factor is proportional to the number of
ways we can choose the three particles from the given N particles that form
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the three particle cluster. The next two important diagrams, formed by three
particles, are depicted below. As mentioned previously, all these diagrams
correspond to some integral equation. Here we have to evaluate mainly two
diagrams

@—) @ @
and 2.15
Pt =

The result can be written as

Choosmg three particles 1 d
— from N distinguishable X —— X Y or AT
V—>oo VN particle V Mgk ki

1
= Lt (3) X v x VN3 % /nijnjknki d3r; d3rj d3ry,

V—oo
C3 3 3
3| /nunjknkz d T d T d Tk

= 6353 ~ 03b3V
(2.16)

N
Similarly in this cluster of three particles, (3) is multiplied by the multi-

3
plicative factor (2) , which corresponds to the number of ways the two bonds

are chosen from the three-particle cluster.

1 @ 0 (%hoosingdthree paﬁtiglles Choosing two bonds 1 d
_— — from N distinguishable X from 3 X —= X T
VN & particle particle VN ikt

N> (3) 1 N— / 3 3 3

= X X — XV nijnjkd'rid Tjd Tk

<3 2) V¥ (2.17)
(N /3 25

() ()

c* 453

2V
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2.1.2. (c¢) The cluster ratio

Consider the next simple cluster having four particles with two bonds, i.e.,

1 Choosing four particles  Choosing two bonds 1 1
T D Do = o N b x et T 5o e o [ mmuadr
1<j k<l
N 4 1 1 3. 13 2
- <4> X (2) ngﬁ ijd mdrj]
¢t =12 c* 2
- g [252} ==

(2.18)

4
The 1/2 factor comes to remove the repeatability. i.e., (2) will have 6 two

particle sets. But two cluster pair will be half.
On comparing Eqgs. (2.17) and (2.18), the ratio becomes

1 6 o
W 41 (2.19)
o _og 41 2.19
Ratio = VI_{GOQ—L 3 ol Vgtmc v — 0
VN ®&—QO

Since the ratio denotes that Eq. (2.18) contribution is greater as compared
to Eq. (2.17) at an infinite volume limit; so let us ignore the contribution of
Eq. (2.17).

On summing up the relevant diagram results in Tables 2.1 and 2.2, one can
rearrange them in such a way that

(026_2 + 036_3 + 6464 + .. )2
2!

Ze

Voo VIV e

(2.20)

=1+ (PPo+ B+ Bat..)+

So

Z, .
Vgtooﬁ A exp (Z;c Bn) (2.21)

2.1.3 Free Energy Perturbation

Consider a system that goes from state A to state B. The free energy difference
can be calculated by using the Zwanzig equation [4].

AFyp=Fp—Fy

(9 (2.22)
= el (QA)
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ks Diagram Intogral .
None None 1 1
2 ® . (Z)ig/nw d37"i dg’f’j 626_2
oy .
3 Q@ @ NY (3 LV 2_52 455 (neg.)
(k) 3)\2)V3 Vv 5
@—Q N 1 N
’ (3)_3/77ij77jk77ki d’r; d®r; dry, 3By
(&)
1 ,-
N\ 1 , - L
3 4 )35 (202) S5
j 33
¢ e 04%(116%)
D AME V2
@
g @ ® N\ 12 1260 04%(116%.)
X X
O—O pove v v
O—® M 3 -
O—®
O—® M 6 |
4 l <4>W24/ Mgt 4°r: &°r; dre dry
G—
N N 24
4 o
6’:‘0 (4>W /nijnjknkmlmiknjl d’r; d°r; dPry %

Table 2.1: The list of different clusters made up of 2, 3, and 4 particles.
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pﬂ‘t’i&fes Diagram Integral At infinite Volume

O—) N 30 833 26533
5 o—0 (5)%72 — (neg)
(k)
@ - 245
N\ 60 1632 83y¢
5 @) ® <5)%V—32 oz (neg.)
O—@)
O - 24 5
N\ 60 1654 805¢
s o p (s S
O—)
@—D N 10 - - o
g ! <5 ) W1252ﬁ3 055253
N 15 - c*p3
6 O—O (6)ﬁ85§’ 62

Table 2.2: (In continuation of Table 2.1). The diagrams shown in the Tables 2.1
and 2.2 with (neg.) denotes that such diagram contributions are negligible
compared to those of other diagrams involving the integral [2]. An example
can be seen in Eq. (2.19).
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If A is an ideal gas state, then AF =Free energy of real gas (with potential) -
Free energy of ideal gas (zero potential).

VAV
AF1deal—+reat = —kpT In ( VNZ )

= —kgTln (V"2Z.)

From Eq. (2.21) (2.23)

As V — oo , one can see that AF goes to infinity. One can define a finite
quantity,

—AF ﬁ_n
_§ ( n _E " 2.24
S TV >20 % c"by, ( )

For example, let’s take the first term;

2

— C
0252 = 5 /77,] d3’l”i d37’j

¢ / &Br;; d®
- i Tiq T
g J M (2.25)

2
= V% /nrd?’r

= Vb,

So As V — 00, B3 — 0o but

1
by = E/nrdi)’r

Let us define an arbitrary n(r) = exp (—ﬁ [g + br])

- % / {oxp (=0 |7 +0r]) s (2.26)
ol e

=7 (S) ’ K3 [2,3\/@}

goes to a finite result.
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2.1.4 Pressure relation

Imagine a closed system that expands at constant temperature (reversible) and
goes from state S; to S, changing the Helmholz energy in the process. The
change in Helmholz energy,

So Sa Sa
F—F:—/ PdV:—/ PdV—/ (P —P)dV
2 s, 5 s, ! (2.27)

N J/ N J/

TV Vv
Ideal gas Real gas - Ideal gas

where P is the pressure for real gas, P, is the pressure for ideal gas, V is the
volume and N is the number of particle in the system. With

52 NkgT
—/ PdV = —/ bl gy (2.28)
S 4

The free energy expansion integral representing the ideal gas in Eq. (2.28) goes
through the same states (¢, T’) as that of the real gas. ¢ denotes the concen-
tration of particles. i.e., N/ V.

Subtracting Eq. (2.28) from Eq. (2.27) will give us the free energy that cor-
responds to the interactions among the molecules. Since the ideal gas contribu-
tion from the momentum integral part is subtracted from integral in Eq. (2.27);
the integral in equation Eq. (2.29) is known as the free excess energy.

52 S2
FExcess — _/ (P . Pl) dv = _/ <P o Nk’BT) dv
S S1 14

! S . (2.29)
=—N (P —ckgT)d {—}
Sy c
Let us relate cluster to this as
FExcess c c 1
= — = P —ckgT]d |-
i vl /c:o[ chT] H
N 6 /C P g 1
— — —C —
c e—o0 \ kT c
() kTS
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2.1.5 Virial Coefficient

o(s p
Combining & =}, -, ¢"by, with 8((2)) =T will give us the n'® virial
coefficient. i.e.,
9(%) P
[4 — n 1 _ — _
a(h) &M T 2:31)

The factor [1 — n]b, = B, is the n'™ Virial coefficient. So

P
— —c= "B, 2.32
T nzz; (2.32)

Counsider the term

1
b2 = W//nwdgmd?)rj
1
— W // (eXp [—BU(T’”)} — 1) d37"id3’f’j

substituting r =7, —r; and R = (r; +r;)/2 leads to
by = 3 / (exp [-BU(r)] — 1) d®r
L [EBUO)N
-3/ 2o

Similar to the by term, when examining terms in the expansion of b,,, an infinite
number of terms analogous to by emerge inside the integral with appropriate
changes. As the upper limit of the integral tends towards infinity (i.e., infinite
volume), not all the terms contribute with the same weight. Mayer’s cluster
summation becomes relevant at this moment, where we select the appropriate
terms of various orders and arrange them in a way that underscores the lowest
relevant order.

G = Zc”bn

n

~ Z %(n 5 ) / [H (_BUi,i+1d3ri)] + 6,
n=2 """ i=1 nti=i
o dist.

R~ S — 1+ 6
—~ nl
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S, is a term proportional to [ (—AU(r))d*r, and this term disappears
when the system is neutral. This will be explained in detail in the upcom-
ing sections. Despite arising from the selection of specific terms, the (n!)~!
can also be interpreted as making the remaining part &%s* indistinguishable
when multiplied with it. The selection of such factors through diagrammatic
representation will be discussed in the upcoming sections.

2.1.6 Fourier Integral in Three dimension

Here we define the coordinate and momentum Fourier transform as follows:

(f) :/f(r,e, ¢) exp (—ip.F) d*r
f(r.0,¢) = /<f> exp (ip.T) (;f;g (2.33)

5(F) = / exp (iF-B) %

If function f(r) is a central potential function that depends only on the radial
coordinate and is independent of angles 6 and ¢, then

(f) Z/f('r’) exp (£ip.F) d*r

d3 (234)
1) = [(Presn (55 55
The reason behind this is
/f(r) exp {ip.F} d’r = 47?/f(7’) X sinp(fr) x r2dr (2.35)

As p — —p doesn’t change the integrand because the integrand is even w.r.t
p.

2.1.7 Evaluation of Bn/ Vv

Consider an integral as shown below (it is a part of Z.V =V ~shown in the
Eq. (2.23)). Then, one can calculate a specific component of f,/V, denoted

as (3,/V, by ignoring the permutations of particles, under the approximation
nij ~ gi; = —BUy; as,

Po _ 1 p
vV OV a3 ... Mn1 AT

- d*k; iR (Fi—T
:/H {/ (271')33 <77kj>e A ’T‘n+1=r1d7'
j=1
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with dr = d®ry d3ry d®r3...d3r, In Eq. (2.36) we ignore the contribution
of permutations of particles within the cluster. It will be considered in the
Section 2.1.8. (a).

B, 1 /H @
I 1 d kj <77k]>] X
VoV ;
1 - 3/ L 3
=7 1T [(%) 6°(k; — kj-1)d ’fj]
j=1
1 - 3/ L \S3 (L L 3/ L 3 3
= [T, | 6° (ki — k)% (kz — k) ... 0% (kg — Kn) Aky ... APy,
j=1
1 S o S o
= V /<77kn><77k1>n_153(k1 - kn)ég(kl - kn) d3kn dgkl
1
— & [arso e

By (20)36%(0)
- [ Gt

n L 3,.
i =K 1) d°r;
- (2m)3

1

(2.37)

This approximation is done by omitting the permutation within each cluster.
Using the asymptotic formula

Bn / d3p
L - n_~ P 2.38
V—>too V <77p> (27’(’)3 ( )
where
Np = /nreiﬁfd?’r (2.39)

is the momentum representation of 7.

2.1.8 Evaluation at the lowest order

The evaluation of Eq. (2.21) can be simplified using diagrams. So far we have
not considered the number of ways the particles can get arranged within the
same cluster. Doing that using algebra is a bit hard. But using some diagram
representation will ease the task.
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o0

. "
The expansion of exp(z) — 1 = 2:1 R
9% o
Somig =exp(gi) — 1= gij + 73 (2" Order)
oo oo gz g 2 gnZ .
NigNikTMki = Z Z Z nJ' n] ' nk ~ gijgikgri  (1°* Order)
ni=1ngo=1n3=1 1 2 3 (240)

Nk = Gijgikgragu  (1°° Order)

2723 - - - NIn—1n"n1 =~ 912923 - - - In—1,nGnl (15t Order)

2.1.8. (a) Total ways of arranging the particles within a diagram

Let us write 6,, = an? b, ~ anz 'S, where S, is the diagrammatic
representation of b,. We use the diagram with the alphabets as a template,

but the actual diagram is the one with the points marked by numbers. The
first few terms are

1
= / d3ry d®ry [gu + 9122?21} (2”d Order approximation)

Z—/d712{912+—} O—®@+ @:>@
—oo+ ]

Z—/dﬁz:s 912 923 931 = ; ; !

1 1
Sy % dTi234 912 G23 934 a1 + v 71034 g14 a2 G23 G

(2.41)

1
+ V/dTl’Q’BA d12 924 943 931

1 2 H O—®
@D—0©
@—®
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1
Ss = V/ d71,2,3,4,5 912 923 934 945 951 + 912 923 935 G54 g1
V/ T1,2,3,4,5 912 925 954 943 931 + G12 925 953 G34 Ga1
+ V/ T1,2,34,5 912 924 945 953 931 + G12 goa 943 935 951
(2.43)
+ V/ T1,2,34,5 913 932 924 945 951 + 913 932 925 G54 Ga1
1
+ V/ d7'1,2,3,4,5 914 943 932 925 951 T 14 945 G52 923 931
1
+ V/ d7'1,2,3,4,5 915 954 942 923 931 T 915 953 932 G24 Ga1
(2.44)
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(2.45)

(n—=1)!
Sp = 5

Here (n —1)! is the contribution of permutations and factor 1/2 to cancel the
same order (cycle) values (i.e., to eliminate terms like 1234 and 4321).

0 @—p @O0
an=+%+ v +3+12
n=2 © @ 6

|

X [n sided polygon]

— 1!
ot (n—1) (n sided polygon) (2.46)
(n—1)! ,
- + Z (n sided polygon)
n>2 2
(n—1)1 /
— — e On-1nGn1 d n
+ ; 5 v | 912923 Gn-1ngn1 OT1234..,
Now using Eq. (2.38) we get
= (n—1)! / d3p
s L [ ) (2.47
n=2 n>2
where
(9) = / g(r)e’®* dr (2.48)

We have from Eq. (2.24)

6 = E Cn% = E CnSn (Here we have considered the permutations.) (249)

n>2 n>2
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The difference between Eq. (2.38) and Eq. (2.49) is that in the former we have
not considered the permutations within the cluster, but in the latter we have
taken care of the permutations. We have used the unbarred (3, to represent
the permutations involved in calculations, and barred 3, to represent the per-
mutations ignored calculations.

2.1.8. (b) Distinguishable particles
Now & is

, — —1)! d?
Gdlst _ chsn _ 02. ® + Z (n 5 ) Cn/<g>n p (250)

n=2 n>2

2.2 Partition functions, Probability and Physics

2.2.1 Permutation Rule

Consider n objects taken all at once; with
p1 objects are of 15 kind
po objects are of 2"¢ kind

pi objects are of k™ kind
Then

n!
P! X Pyl X - X py!

Total number of permutations = (2.51)

2.2.2 N same particles vs. N different particles

In statistical physics, the number of states is evaluated by the integration of
the corresponding distribution function in phase space. i.e.,

dSN
/f q,p) N P, For N different particle arrangements (2.52)

This integral consider N different particles, say {A1, Ag, Az, ..., A,}. So it will
give the result for the maximum permutations of the system i.e N! ways. Now
if the N particles are same kind such as A; = Ay, = --- = A, = A. Now the
number of permutations possible for the system is 1. So one has to multiply
the integral by a factor of 1/N!

d3N
N /f N P . For N same particle arrangements (2.53)
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In a nutshell, the total number of ways we can arrange N different particles
are N!. So we can say that

dBquSNp

N! ways of arrangement — /f(q’p)hg—N (2.54)
1 d3N d3N

1 way of arrangement — N / f(q,p)% (2.55)

This N! comes in the statistical physics in the name of Gibb’s correction factor.

2.2.2. (a) Example 1

Consider a system with three particles A;, A, A3 i.e., the sample space accord-
ing to the integral is like
S — {(Ah A27 A3)7 (A17 A37 A2)7 (AQ; A17 A3))
(A27 A37 Al)7 (A37 A17 A2)7 (A37 A27 Al)}
That is 3!. When the particles are of same kind, sample space reduces to

S = (A, A, A). So one has to multiply the corresponding integral by a factor
1/3!

2.2.3 N particles with two kinds

Consider three particles A, A, B, the number of ways we can arrange them is
S={(A4,A,B),(A B,A),(B,A A} (2.56)

ie., 3!/(211!) = 3 ways.
If the particles were A,A,B,B then the sample space will be

S = {(AABB),(ABAB),(ABBA),(BABA),(BAAB),(BBAA)} (2.57)

ie., 41/(212!) = 6 ways.
Consider N such particles in which number of A particle is n, and number of
B particle is ng, and ny +ng = N, then

NI

The number of ways we can arrange them is (2.58)

nalng!
So in such a case where two different particles are involved the integral equa-
tions we use should also change accordingly

dBquBNp
N! ways of arrangement — /f(q,p)hg—N (2.59)
N! 1 d*Nqd®*Np
T ways of arrangement — m/f(q,p)hg—]v (2.60)
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2.2.4 N particles with m kinds

If there are a total of N particles with m kinds, with each of them are of
Nn1.Ma, . ..N,, in numbers with n; +ny + -+ -+ n,, = N then

The number of ways it can be arranged — (2.61)
n'ny!...n,'
Now
d3qu3Np
N! ways of arrangement — /f(q,p)hg—N (2.62)
N! 1 BN qdPNp
nyingl ...yl Ay of arrangement = oy /f(q’p) N

So for a total number of N particles with m kinds one has to write the integral
as

1 d3qu3Np 1 dSquSNp
1 1 1 f(Q7p) 3N = 1 ! ! f<q’p)ﬂ
ni'ny!...n,! h ni'ny!...n,! R3N (27)

(2.63)

2.3 Particles of same kind (Indistinguishable)

In Section 2.1.1, we have pointed out that we considered the particles as distin-
guishable and removed the N! (Gibb’s factor) from the calculations. Now we
are considering particles of same kind i.e., particles that are indistinguishable.
So from Section 2.2, we have to consider the N!. We had

6dist _ i S = 02. ® + Z (n B 1)' " /<g>n d3p (2 64)
n=2 ! n>2 2 (27T)3 '
Now let us make it indistinguishable by adding 1/n! to it.
le.,
o0 2 3
indist. __ n o C_ (n - 1)'l n/ n d p
S _;CS”_QJF; > w9 Gy
c? c" d3p
- —_ n__ L 2.65
2

C

2

o4 cto)+mli-c o)
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Now using the relation

kBiT—c:G—c%—ec5 (2.66)
we get
Lo (foor [ oo 285
(2.67)
Now if we look back we know that
g(r) = —pU(r) (2.68)

(9) = —p(U) (Corresponding Fourier transform)

Therefore we redefine

= %/g(r) d*r — —ﬁ%/U(T) &’r= -p (2.69)

Then let us re write

P B Bc? 1 d*p c B{U)
T = @O +§/ 2n) [1+Cﬁ 0 —In [l + Be (U)]
(2.70)
where
= %/U(T’) d?r (2.71)
(U) = /U(r)eif’fd?’r (2.72)

2.4 Particles of Two kinds with opposite charges

Consider two particles with opposite charges, from the probability section if
we consider the particles as indistinguishable then

P 06 06
—— —C—C=06 - — Ce— 2.73
kT a-e ¢ dc; ¢ Oce (2.73)
. . . . dc oc
It is easy to verify the equation, on putting ¢; + c. = ¢ and 5~ 9o
C; Ce

leads us back to Eq. (2.30). For a two particle system, from Eqs. (2.46)
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and (2.60), let us write

S Z c?icge

~, 2n.!n;!
e | 2.74
n Z (n; +ne — 1)1 clicke p (2.74)
e Gn-1nGn1 AT1 23
on;In.! % 912923 In—1n9n1 AT123,...,

ni+n622
If these particles are charge dependent,
ie,

with z;, z; € {+1, —1}. Then,

2 2 / _
gl]gjz - ZZZ] X ZJZZ X gz]g]z Z gz]g]z gzggjz

2 2 2 1 o
gl]g]kgkl le] X Z]’Zk X Zkz X gmg]kgkz 2 zkgz]g]kgkzz gl]g]k‘gk‘l

2.2.2 2 o /Y A | /
912923 - - - Gn1 = 212273 - - 2 X G12023 - - - Gn1 = 912923 - - - In1

(2.76)

If the system has only two kinds of particles having charges either z;(+1) or
ze (-1), with the numbers n; and n,, such that n; +n, = n then

B2l = =1 (2.77)
So
6 = Z ﬁ
2n.!n;!
mme=? (2.78)
(ni 4+ ne — 1)1 cficle 22 z2ne ., '
+ Z o % 912923 - - Gn—1,09n1 AT12,..,
n;+ne>2
2.4.1 The neutrality condition
Assume that the medium is charge neutral. i.e., ¢;z; + ceze = 0, if |2;| = |2e]
then ¢; = ¢, = % Let us take the first term from &
1 3. 13
SR o, 'n |H 2. znevmlv/z 29y Ui dry (2.79)

ni+ne=2 ni+ne=
Ng oy Me

The term z;" 2" came from g;; = 2" 2] g;; with n;+n. = 2, the permutation is
considered here, i.e., both the two partlcle clusters can be of the same charge
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(- - or ++), or both can be different ( - +, + -). If it was g;;¢;; then we

would get 222", However we have the relation
(a+b)" = Z (n) b
=0 N
n n! —
=0
_ - [(n — j)._'_'j]!ajbnfj
= (=7

Putting n — j = ¢ we get

(a+b)" = Z Majbi
(2.81)

D | B o
arbp = S Uy 2y
(

Now let us write

cliche 1
i e n; N 3 3
6, = E o 'n~|v zilzeeglgd r1d°ry
nitne=2 " ¢

1 2 o o
=7 > (ez)™ (coze) /912d37’12

ne!n;!
ni+ne=2 (282)

1
=1 (cizi + Ceze)2 /912 d*ryy

Now, if we apply neutrality condition then ¢;z; + c.z. = 0
=0
Now we are left with
N e 2m 2ne

B (n; +ne — 1)1 ¢ clez 22
S = Z 2n;!n,! \%

/ / / !
/912923 ~ In1n9n1 dTi23,..n

n;+ne>2

1 n; +ne ' n; Ne
= Y s R ) )" [ dhashs sl Az

ni+ne>2
1 .
— 2 2 n;+ne / / ’
= Z Q(TL +n ) (CiZz' + Ceze) 912 - Yn—1,n9m1 d7'17273 _____ n
ni+ne>2 v e

(2.83)
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Now using the relation

P

— —c=6—-c——

kgT
we get

P

kel €

If we redefine (¢')

Nij =

Q

le.,

1

2

Oc

d3p

|

(1 etg) + 20

(9), we get Eq. (2.91).
In a nutshell, we approximated
exXp (-BUZ]) —1
—BU;; = gi; ( First order )
Zz‘ngéj = —Zizjﬁﬁb(ﬁj)

—5 ()

(Corresponding Fourier transform)

Ulrij) = zizj¢(rij)
Now combining Egs. (2.86) and (2.88), we get

P 1 dp [ ocpBo)
R L e R e
with
@) = [ otrjeweas
In natural units kg = 1 and 5 = 1/T, so
P L[ dEp [ Be(o)
7|, =3/ Gy [Ty e o
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(2.85)

(2.86)

(2.87)

(2.88)

(2.89)

(2.90)

(2.91)



If the concentration is a function of temperature

“ ah‘?(T ) {ﬂ (2.92)

O N 1 . d1n(c) / d3p Belo) \?

- oIn(T) 2 oIn(T) (2m)3\ 14 Be(p))
These are the two important equations for the pressure and energy density of
the system, which has an equal number of particles and anti-particles. i.e.,

the system is neutral in terms of the corresponding charges. These Eqs. (2.91)
and (2.92) are the lowest-order Mayer’s cluster expansion equations.

e(T)
T

In Chapter 3, the above equations and procedures are used to derive the equa-
tion of state for QGP using a modified liquid drop potential. A comparison
with Gamow’s liquid drop model is also done. The modified liquid drop model
is validated by fitting it with the the lattice data.
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Chapter 3

Modified Liquid Drop Model in
QGP

In 1995, Bannur [1] introduced a new method by combining Mayer’s cluster ex-
pansion with the QGP number density function to study the equations of state
of quark-gluon plasma. In his work, only the quark contribution is considered,
and the potential is dependent on the charge of the interating particles. The
model also demanded a neutral system in which the number of antiparticles
and particles should be the same. In that work, the Cornell potential of the
form a/r —br was examined. Later, it was extended by Udayanandan and VM
Bannur [2] to include the gluon contribution. Prasanth and Bannur estimated
the transport coefficient for modified Cornell potential in [3].

3.1 Study of QGP using MCE with an arbi-
trary central potential

The general steps for computing the EoS of QGP using MCE are as follows:
1. Find the appropriate central potential f(r).

2. Check whether the potential has a dependence on charge and find the
appropriate model equation.

3. Find an appropriate converging function that goes to unity when the
parameter goes to zero.

4. Three dimensional Fourier Transform the central potential with a con-
verging factor for momentum representation.
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5. Apply it to the pressure momentum relation.

6. Using standard statistical mechanics, find out various thermodynamic
quantities.

3.1.1 Fourier transform of of polynomial function in ra-
dial coordinate with inverse radial term

Consider the three dimensional Fourier transform of central potential of the

form a,r™ where n € {—1,1,2,3,...,00} and a, is a constant. Let us choose

the converging function with converging parameter h as thO exp(—hr) =1. As
ﬁ.

mentioned earlier, for a central potential function f(r),
(1) = [ f0)expaB R Pr = [ ) expl-15) ¢

o :
= 47?/ f(r)SHl(pT) x r?dr
0 pr
i.e., For central potential, Eq. (3.1) is an even function in p. In other words,
the three dimensional Fourier transform from radial coordinate to momentum
is independent of the sign of |p|.
The three dimensional Fourier transform for an arbitrary function of the
form a,r™ with the converging parameter hIifo exp(—hr) is

(3.1)

(apr™) = 47r/ a,r" X exp(—hr) x sin(pr)
0 pr

_ dman {/OOO "+ exp (—r(h — ip))}

p
_ 4ra,

o —(n+2)
= ['(n+2) x Im {(h ip) } (3.2)
_ d4ma, T'(n+2)
p (p2 +h2)n+2
~ Aty _T(n+ 2n)+2 sin {(n +2)sin~! L }
Vh2 - p?

Le., If we substitute s = p* + h? (for ease in notation),

<9> — 4l — Lt<9> — Lt 4n
T S h—0\ T h—0 S

8h? 2 8may
o) o 2 = o) -
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[48K3  24h
<a2r2> =47 = —3] ay —> Lt <a27’2> =0
s s h—0

[384h*  288h% 24
<a3r3> = 47 38 — 88 + —} as — th0<a37“3> = 96—77-(13
*>

59 54 53 53

(3.4)

One could easily find that for n = even, (a,r") = 0. Similarly,

_ '2k+1
<a2k—1 o 1> = (1) x 47% X Aok—1 (3.5)

with s = thO p? 4+ h? and k being a whole number.
_)

3.1.2 Pressure cluster relation

We have derived in Eqs. (2.91) and (2.92) that the pressure relation in natural
units is

i s

where the potential energy is U;; = z;2,;¢;5, with z;, z; € {—1,1}. Consider a
n

T T3

—In[1 + Be(g)] (3.6)

potential of the form Sc{¢) = Z a—j, then
s

j=1
bolg) _ Tia% _ Yiiast A .
T oeld) T+ oS w4 S D
N N
Let D(s) = H(s — z;)¥ with le = n. In other words, D(s) will have N
J=1 j=1

distinct roots with different degeneracy factors. The j*™ root is called z; with
degeneracy ;. Since D(s) is real, let there be v pairs of complex roots (z,
and z}) and N — 2v pairs of real roots (x,). Therefore, using partial fraction
decomposition,

N(s) D(s)—s" _ Y Ay A% A
D(s)  D(s) %;ml(s_%)+(s_%) +szﬂ(8_%y
(3.8)
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N—-2v
with 221 + Z l = n, where [. denotes the degeneracy of 7 real root
7j=1 7=1
(z,) and 1, is the v*™ complex pair root’s (z, and z}) degeneracy. Similarly
v N—-2v
D(s) = H(s —zj)li(s — 2})4 x H s — ) (3.9)

7=1

:Zl [ln(s—z])—{—ln s—z Z n(s — ;) —nln(s)

j=1

(3.10)

We can evaluate the pressure by using a method called dimensional regulariza-
tion which we will explain in the next section. The integral results are added
in the following equation. The complete derivation can be found in Section 3.3.
Now

*
A%

(s =) (S_Zf)i

P 1 -
Tﬁ / 322
N—2v I,

1/ Z;

s—xT

(3.11)
-1/ dggiz In (s — ;) +In (s — 27)]
1 / Niyz In(s — ) + & / (gjf;g In(s)
—c+ ; 3 [Re{Aﬂ}Qz (z) — Im{Aﬂ}R(zj)}
+%N§ ;A [3(2) + Jig(z,)] ——; I, Mn(z;) (3.12)
- %N I, [La(x,) + La(z,)] + SLn(0)
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with

3 3 (3.13)
_Blr=3) 2|27 cos S n | cos™ _Reiz}
- gt (G et (55
Rue) = 2 (o))
—B(n_%%)z%_"sm §—n cos ™! _Re{z} sgn (— lm(z
< g | (g o () [
(3.14)
Mn(z) = B (3_752’ 5) Re {(—z)%} -
B |
6 A
where A =/ Ag+& Ar=—Re(z), A =-Im(z) {=/ 4+ )\
ta(e) = 222 (ptea)
51y (3.16)
Lm(z) =1 67r22’ 22 (2)2 O (z)
and
L) =7 (”4;3 ot rei
Jig(z) =1 (—=1)" W (z)? " O(z) (3.17)
In(x) = Ju(x) + Ji,(2)
Ln = Ln(z) + Lm(z)
3.1.3 Dealing with divergences
We have
P_ L[ & [ eBlo) .
7=+ G T e ol o) (19
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On adding and subtracting ¢ (¢) from both the terms we get,

7 =3 Gy [ Treste )
% / (dg) [Be (9) —In (1 + e ()] .
_”1 [ P J
with t =7 / % [Be(d) —In (14 Be(9))]

As shown in Section 3.3.3, assume that a divergence k; appear in the integral
3( Bc) as a constant of integration, which is independent of Sc

a(aﬂtc) :_71/ (;17?)93 [1 +<f5><¢> - <¢>] (3.20)
o] h |
Therefore

= [ap ({%} " k:) -

_ tﬁnite +BC kl
Combining Egs. (3.19) to (3.21) we get

P c—i—l {t — Bc ]
T <6C) finite (322)
— C—l-l |:tﬁnite —ﬁcat 1
2 9(fe)

i.e., The divergence terms cancel themselves, and the integral remains finite.
Therefore

P L dp [l T
7=+3) Gy [Hcm@ In [1 + fe(6)]| = Finit (3.23)

3.2 Examples

3.2.1 Potential of the form fc(p) = %

s
Consider potential of the form U(r;;) = #;2;b/r in spherical polar coordinate.
The three dimensional Fourier transform is of the form fec(¢) = ai/s with
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a1 = 4nBbc. Here

Je) — ¢ = In(s+a n(s
T4 Berg) M+l = s ~Inls +an) + Infs) (3.24)
S0
P_ L[ &p [ Belg) )
T +2/(27T)3 [1+ﬁc<¢> In (1 + Be(9)) .
et a1I;(—a;) — Ln(—ay) + Ln(0)
2

But the effective pressure is the real part of the the pressure. So

Pl Re{P}  a1Ji(—a1)—Ln(—a;) +Ln(0)
T, " T c+ 5 (3.26)
But
B-LY) NG
Ji(x) = ——=220/—x = — = Ji(—a;) = —Y— (3.27)
42 4m Am
3
B(=53) v __(z)p af
Ln(z) = = (—x)2 = e = Ln(—a;) = ~&r (3.28)
Thus
Plo—eo of (3.29)
Tl 247 '
When ¢ = ¢; + ¢, and a; = 47Bbc = k2, So
L (3.30)
T|e ' ur '

The result is the same as that of [4].

3.2.2 Potential of the form fc(¢) =4 4+ %

S

Here D(s) = s> + a;s + ay can have all real roots when D? = a? — 4ay > 0,
or two imaginary roots which are complex conjugate to each other i.e., D3 =
4ay — a? > 0 or same root with degeneracy D = 0 = 4a, = a?. In the
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result below we have accommodated the three possibilities as shown.

Jeto) __wmsta
W—ln(l—i-ﬁc(@)— St ais + a ln(s +a15+a2)+21n(s)

= L ihxl + foQ —In(s — 1) — In(s — z3) + 2ln(s)] O(D})
+ {S flzl * S €2z2 N 111(3 - Zl) - ln(s - ZQ) + 2111(3)} @(D§>

+{’Yl i Y2

s—y "oy 2In(s —y) + 21n(s)] 5(0, D3)

(3.31)
with
2 2
1
D? =a? —4ay; >0, ap = l , Qg = — 2 , 1 == (D1 —ay),
9:1 — T9 Ty — I 2
1
Ty = —§(D1 + ay)
) 22 22
Di=day—ai >0, =——1— Bo=——"2— 2 (iDy — a)
21 — %2 22 — X1

29 =2

Dg =4day —a? =0, v = —ay and y; = +2,/ay the sign + is decided
by the sign of aji.e., 2y/as = a1,y = F+/as.

(3.32)
So
dp [ pele) .
/(27T)3 {1+5 <¢> 1 (1+6 <¢>)
= [enIi(21) + aTi(22) — Ln(21) — Lo(w) +2Ln( )] ©(DY) (3.33)
+ [BrQu(21) — BiRa(z1) — Mn(z) + 2Ln(0)] ©
+ [1T1(y) + 7212(y) — 2Ln(y) + 2Ln(0)] 50,D3
with
fr=2
(A et [

3.34
—5, 5 / + a1 ( )
Ql(zl 471'2 ai + 2



Now the effective pressure is

P 1 2

T . =c+ 5 [a1J1(z1) + @2J1(22) — Ln(21) — Ln(22)] ©(D5)
N [BrQ1(21) — 512-1(21) — Mn(zl)]@(Dg) (3.35)
L ) + 72J22(y) — 2Ln(y)] .

For D2 = 4ay—a? < 0, and changing symbols ¢ = x*T', a; — k*a; and applying
it to the above equation, gives us

; — 2T - 2; azk? + ;i/\é_j?—l:a; afrs (3.36)
This result is same as that of Bannur [1].
3.2.3 Potential of the form Sc(¢) =% + % + %4
B 11+ Beto)) = 23: Y zg:ln(s —2;) +31n(s)| ©(-D)
1+ Be(9) s ‘o

a

+ L — + 86_12 + - flzf —1In(s —x) — In(s — z1) — In(s — 27) +3ln(s)} O(D)
2! 2 73
+ L — + G 2) + 2] —3In(s — ) +31n(s)} dpo
(3.37)
Similarly
Be(d) 1° o | « B B
_ i _ 1
{1+5c<¢>} = [;S_xi O(-D) + (S_erS_Z S_Z*) o(D)
V3 Y
+ <8 vy +; G _J@j) 8p.0
(3.38)
with
3ay — aj 9ajay — 27a3 — 2a3
— 22 " p_ ,
) o (3.39)
D=Q'+R, S=(R+VD)", T:—%
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xl——%—i-Q\/— cos(g), Ig_—%—f-Q\/— cos(g—i—%r);
(3.40)
__ﬂ 2/ — €_|_4_7r
T3 3 + cos (3 3)
xp = — x? Qg = — CC%
(xl - 1‘2)@1 - xs) ($2 - $1)($2 - $3)7
o 3 (3.41)
2T (s — a1 (w5 — 72
1 iv3
m:S—FT—%; Z——§<S+T)—%+l\2/_<S—T);
{L‘S 23
a:_(x—z)(ac—z*);BR:_Re{(z—x)(z—z*)}; (3.42)
23 .
ﬁzz—lm{(z_x>(z_z*)}, b= Pr+ 1P

3.2.3. (a) When all roots are real and unequal

/ ((21;];3 L fcéf@)r :/ ((21;2;3 [g (s —aii)Q +Z_23: ; x?i—&;j (5 —13% s

(3.43)

3.2.3. (b) When two roots are complex conjugate, and the third
one is real

/(% Lfﬁ?@%/éﬁi [fﬁﬂ—+€}

= o’Iy(z) + Re {47} Q2(2) — Im {5 } Ro(2)

vl 2 Vo 2 dag)

s Rl(z)—|—4aRe{ b }Il(x)

Im(z) r—z

+
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3.2.3. (c¢) When atleast two roots are real and equal third one is
real and unequal

u/£33Lféﬁw}ii/£z3L?ﬁ*%s?m2+s?yr

=71 Is(x) + 13 La(x) + 13 Ia(y)

+ 2917 I5(z) + ivivz (Ii(x) — I1(y)) (3.45)
1 1 x
=2 | ]

Ir(r) | _Tiy) }

+2’72’73{
r—y (v—y)?

3.2.3. (d) When all roots are real and equal

/533Lf§%ﬂ2‘/523LTx+@32P+@fb42

=71 T2(x) + 75 Ta(7) + 73T6(2) (340
+ 27172 15(2) + 271731a(2) + 27273 15()

So The general formula from Eq. (2.91) is

p_ L[ d&p [ Beo)

T —c—|—§/ ) {1—#50(@ —ln(1+ﬁc<¢>)} (3.47)
and from Eq. (2.92) for ¢ oc T®

e _ d*p [ Be(o) 17

P [ s [ )

After fitting these equations with lattice data, the Eq. (3.44) becomes the best
fit with lattice data. However, in the next section, we can see that the fitted
parameters caused = to be positive, so Ln(z) goes to zero.

P 1 1
T=c + 3 [aIi(z) + Re{f1} Qi(2) — Im {B1} Ri(2)] — 5 [Ln(z) + Mn(z)]
% =3c— (OéQIQ(ZE) + Re {ﬁf} Q2(z) — Im {ﬁf} Rg(z))

- (2a {Re{zﬁ_lx}[h@’)—Im{zﬁ_x}Rl(z)]) (3.49)

(Bl o)
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with

_3az—ai  9ayap — 27az — 2a}

_ 3 2

Q 9 R 1 , D=Q+ R~,
S:(R+\/5)§, T:—%
ay = —4nBroae, as = 8wPryta;, az = —967PBrya,.
r=S+T-2, z——l(S—i-T)—ﬂ%—i\/g(S—T)' (3:50)

N 3772 3 2 ’

3 23
"=y Rl =Rl e |
3

Here x € RT, so I,(z) contains imagniary term, so taking the real term con-
tribution we get

—Re;zf} = % —ilm (%) =3¢+ [Im* {51} — Re* {f1}] Qa(2) + 2Re {1} Im {51} Ra(2)

caafin 2 Y ne el 2 Ve

B ,
Im {Z}Rl( )
(3.51)
Similarly
RG;P) =c+ % [Re {B1} Qu(2) — Im {51} R1(z) — Mn(2)] (3:52)
The imaginary part contribution can be written as
Imj{E} = —a?Im {Iy(z)} — 4aRe { 8 } Im {I,(z)}
Im{P} « 1 . o
7 = 5 m{Li(2)} — 5 Im {Ln(2)}

The integral result shown above can be derived in the section below.

3.3 Integral Results

3.3.1 Regularization via Contour integration method

Consider integrals of the form [*° N(x)/D(x) dx, where N(x) and D(z) are
functions of polynomials with degree of N(x) is less than D(z) by two, and
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D(z) #0Vz e R.
Then one could evaluate the integral by defining f(z) = N(z)/D(x), and
evaluate the integral by

/cf(z)dz = /_FF f(z)dz+/€f(z)dz (3.54)
As

lim /f(z)dz =0 (3.55)

I'—oo

So

/C F(2)dz = / Z F(@)da (3.56)

3.3.1. (a) Examples

Consider the integral of the form
d? 1
31 (m?) = / ap
(2m)3 p? + m?
Jo 272 p? 4 m?
The numerator and denominator of above integral is not differ by a degree of
two. In order to solve the integral one could take a differentiation w.r.t m2.

0 o p? dp
2 A+ (112
I2(m)___0mQ 1(m)—/0 (—292 +m?)22_7r2

T2 7 Pl

We are taking a semicircle with imaginary axis is taken along positive y axis.

(3.57)

Imz

im

> Rez
—im
Setting f(p) = p?/(p? + m?)?, with N(p) = p? and D(p) = (p* + m?)?. Since
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N(p) is less than D(p) by a degree of two, and D(p) # 0¥p € R, we could
apply contour integral to find the solution

2
= 271 X Residue at ((Z’Q—i—m2)2>

We can take only the part in the upper half plane semicircle

z—im

domain of the contour.

- . . d R
Residue at z — im = lim — < (z — im) (—

z—im dz 22—|—m2)2

. 2imz i

= lim ——m— = ——

z—im (Z —+ 1Tn)3 4dm

, o . i1
SO7 Ig(m ) = —WJl(m ) =27l X _R X R
) 51

B ( -
om? 1(m”) 8mm

3.3.2 Regularization via Schwinger’s proper time rep-

resentation
) < p? dp
2\ ~ 2\
To(m”) = 3m2J1<m )= / (p? + m?)2 4x?

_ dp
d 2 Tp+m
/ TT/ e

§) )
= 22 dT T2
a7 J,

TG

412 m STm

(3.58)
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3.3.3 Generalizing

Using the tricks of [5], the results can be obtained as,

31<m2):/<§;]; S - dw/ 2 +w) +/(§3§3p21+a

:‘_“_+ Vo va

I (m?) k’l(a)

= I;(m?) + ki(a)

(3.59)
where a is an arbitrary lower limit of the integral.
We choose a — 0, then
1 d3p 1
J(m?) = ——vmry [ SP (3.60)
4 (27)3 p?
(m?)
I1(m?2 k1

The terms that are independent of m?, can be considered as constant of inte-
gration which contains divergence. i.e., k; is considered to be diverging. So in
general,

1 1

1 d3p m
~ 2\ _
im’) = /p2 +m2(2n)3 Ax *k

(3.61)

Consider the integral, with n being a natural number,
d3p 1
I,(m*) = / ; 3.62

The diverging constant in J; i.e., k; get’s cancelled in Section 3.1.3. So in our
calculation of pressure and energy density using MCE, the Eq. (3.62) definition
at n = 1 causes no change in the result. Using the result

()t ot 1 1
= 3.63
) ar \z52) ~ @y (363
Thus Eq. (3.62) can be expressed as
_1\n—1 n—1
In(m2) — ( 1) 9 I (mZ)

T(n) A(m2)n—1"

ey o
4 I'(n) 8(m2)”—1\/_

(3.64)
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But

%ﬁ%P§2:i:) (—2171)7_”3 (3.65)

) D)

Tn(m’) T4n T(n) 2 T(L) m2s

_1T(@m-3) 1

87 I'(n)l (%) (mg)n—% (3.66)

_Bln-335) 1

472 (mQ)n—%
So in general
d3p 1 B B(n—%,%) 1 e

/ (27)3 (P2 +m2)" Ar? (mQ)n_% o ( ) (3.67)

3.3.4 Circumventing The Poles

Dealing with plasma physics, the appearance of poles in the calculation of some
integrals is not new; it corresponds to the plasma instability mechanism [6].
Plasma waves are typically slightly damped by collisions or amplified by some
instability mechanism. Therefore, technically, the denominator of the integral
never actually goes to zero. Consider integral of the form

s = [ St

(27)3 p? — m2
0 o d*p 1
Eﬁ“m>_/@ﬂﬂw_mw (3.68)
00 2
1 P dp

“iw

The integrand is divergent in p = +m. So one cannot apply contour method
because Q(p*) = 0 at p = +m € R. If we try to circumvent the integral by
deviating m? from R — C i.e., m? — m? + ie.
0 1 o 2
—J(m2+ie):—lim/ P 5dp

om? A2 =0 [ (p? — m? — ie)

(3.69)

= — lim
42 =0 | N\ p+vVm?+ie p—vVm2+ie P
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Residues are at p = £2; = £vVm?2 + ie
M ymiEE | B
:l:Zl =4 +1
2 2/mi Vit &

Now if pole is at z = z; € Upper Half plane,

2 2
0 J(m? + ie) = “™2 Residue at (2—2)2)

om? 472 (22 — 27

: . d , 22
Residue at z — 2z = lim — { (2 — 21) m

=21 dz — 21
— lim _2mz 1
=a (z+2)%  4An (3.70)
So 6m2J(m2+ i€) = 2mi x 4—11 X 4—;2
J(m* + ie) = I
om? 8mv/m? + ie
%J(Wﬂ) = lg% %J(m2 + ie) = 87:m
If poleisin z = —z; € Lower Half plane using this circumventing pole technique
one could derive
0 J(m? + ie) = 27T—iResidue at (2—2)
Om? 472 (22 — 22)?

. . d , 22
Residue at 2 = —z; = lim 7 (z+ 21) —)2

z——z dz (22 — 22
i 2212 1
= lim — =——
m—a (22— 21)3 4z (3.71)
-1 1
2 . . .
So 8m2J(m +ie) = —27i X o X 12
0 i
J(m? 4 i€) = ————
om? ( ) 8mvm? + ie
0 o .. O 2 . i
o () =l I a9 =

Using the idea described in Section 3.3.3 about the divergence,

i i
T(m2) = 1i — = dm?’==Vm2+k
(m) 0] 8 m? + ie BT 2 (3.72)
1 3 '
J(m?) = lim d'p _im—i—kg

0 ] p2— (m2+ie)(2m)3  4r
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where ks contains divergence. For n > 1,

d3p 1
J(m? n) =i
) = iy (2m)° (p? — (m? + 1e))"

1 ot . /d3p 1
T D) om0 ) @r)Pp? = (m? +ie)

AL 0T s (3.73)
4r ' (n) 0 (m?2)"
- (_8713” - ((n) F 5)1//22)) (m2)1ng/2 O (m)
Therefore
J(m*,n) = i(—l)”w(m%?’f" O (m?) (3.74)

472

Combining the results, depending on the value of m? — z, the integral result
I,(m,x) for n > 1 can be redefined as

L(m, )= ! i
n(m,z) =lim —
e—0 ) (p24+m?—x +ie)" (2m)3

_ B (n—3.3) [( O(m? — x) L (—=1)" o (x _mz)}

e T A T T
(3.75)
and
) . 1 d®p
Hlm2) =1 | Gt = ie) (2
BCLY (o0 ) :
T { NN )} )
+ k1 (2)0(m? — 2) + kO (x — m?)
=Ii(m, z) + k1O(m* — ) + k20(x — m?)
Jn = R In O,
' (x) . e{I,(0,z)} (3.77)
Jig(z) = 1Im {1,(0,2)}
Similarly, for z € C
1 d3 B(n — §, 3 1
/ & _ Bln—3.5) i (3.78)
P = e AR (o]



So, for n > 2,

1 1 d3
Qu(m, z) = /Re {3(p§ T 2) + T } (27:)?3
Q. (m, 2) = W Re { (m* — z)%_n} (3.79)

3 p—3
I o (2]

forn =1, [Re{2/(p* + m* — 2z) } &®p/(27)* = Qi(m, z) + 2k, and for n > 1

Ry (m,z) = /Im { 0 1 nﬂlﬂ —2)" (PP + m12 - Z*)n} ((21;];3

Mn(m, z) = Mn(m, z) + k3
with

where A = Ar+ &  Ar=m?—Re(z), A;=-Im(z) &=/)%+ A\ and

ks is the constant of integration, that contains divergence.

£n(m,z) = /ln (s —x) (;gs (3.81)

Solving Eq. (3.81) with [5] and Section 3.3.3,

£n(m, r) =Ln(m, z) + ks

B —l,% 2 3 2 . 2
%[(m —z)20(m’ —z) +1i(z —m?)

(Sl

Lon(m,z) =

S} (m — mQ)]
(3.82)
where k3 diverges. In Sections 3.1.2, 3.2, 3.4 and 3.4.1. (a), we have defined
Ln(z) = Re {In(0,z)}

(3.83)
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3.3.5 Some complex number summation results

The sum of certain complex numbers are involved in the final steps of integral
calculation shown above. The formula we employed can be found as follows:
Let Ag, A\; € R, then Ag + i); is a complex number for A\; # 0.

A
(Ar 4+ iX)" + (Ar — iA1)" = 2|\|" cos [n cos ! (—R> (3.84)

Similarly

(Ar +iX)" — (Mg — iA[)" = 2i|A|"sin {n cos ! (A—R)}Sgn (A1)

AR+ AT
(3.85)
VAR + A+ Vg —idp = V2A (3.86)
2
VAR A — VAr+ A = i\//?\[ (3.87)
3 .3 Y:
()\R+Z>\[)2 +()\R—Z)\])2 = \/ﬁ(ARA—K) (388)
(Ar +iA1)? — (A — iA)? = 20\ <\/§A — %) (3.89)
. 5 o 5 o 2 . 2 . 2)\%)\]%_
Ar+iA)? + (Mg —iA1)? = V2 | (AL — A]) A n (3.90)
B e (AR =A%) ]
<>\R+Z)\[>2 — ()\R—’L)\])2 :Z\/é)\[ |:T+2)\RA (391)
7 7 4 212
(Ar+iA)2 + (Mg —iA)Z = V2 [A (A% — 3ArA?) + AIA&]
(3.92)
. 3 2
(Ar +iA1)? — (Mg — iA1)? = iV2) [A (3A% — A2) + W]
(3.93)
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1 1 CV2A

3.94
\//\R—l-i/\f VAR —iAr [ (3.94)
S R (3.95)
\//\R—l-l/\[ \/)\R—Z)\] |/\|A
2
L L ﬂg {ARA Ar } (3.96)
Ar+iAD)? (Ag—ir)2 Al A
r 1 [IA— A } (3.97)
Ar+ir)2 (A —iX)2 T V2A
1 1 V2 222\
= R a- 2R ey
Ar+iX)2 (Ag—irp)2 A
2 )2
L2y [“R ) +2ARA} (3.99)
Or+iA)?  (Ag—iA)? A A

1 1 2 AL 3A2)2
— + 7:\/_7{/\()\?3—3)\3)\%)—#@}
Ar+ir)2  (Ag—ir)z A A
(3.100)
1 1 2 3 — 2
- — - = 14)\[ {A(g)ﬁ )\2)+M}
Cativ): Om—irg: A

(3.101)

with A = \/Ag + /A% T AL and [A] = /3, + A2

3.4 Semi-empirical mass formula and Modi-

fied liquid drop model

The famous semi-empirical mass formula (SEMF) [7, 8, 9] describes the binding
energy of the nucleus as a function of mass number A and charge/proton
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number Z. The model is based on the idea of a liquid drop, in which the
binding energy is defined as

Upp = ayA —asAs — Z2(Z — 1)a,A™3 —au(N — Z)?A" 1 +6(N, Z)
~— = AN _

N iy -— —— (3.102)
Volume  Surface Coulomb Asymmetry Pairing
term term Term term term

The names of these terms can be made clear when one rewrites the above
equation with the idea of constant nuclear density. i.e.,

A
Pnuclear = 7o
%m*‘

Combining Eq. (3.103) with Eq. (3.102) we get

— =7pAs (3.103)

rs r? o e
UB.E: av_g —(15—2 _Z(Z_l)ac——CLA(N—Z) —3—|—(5(N7Z)
~ =~ ~~ ~~ Pairing
Volume  Surface C?fﬂomb Asymmetry term
term term erm term

The first two terms, volume and surface, represent the strong force contri-
bution, while the third term, Coulomb, represents the electro-static contribu-
tion. Fourth term coming from Pauli’s exclusion principle. The fourth term is
proportional to the difference between the neutron and proton numbers. The
asymmetry term is also known as the Pauli term. The fifth term, known as
the pairing term, is used to balance the spin coupling effects. The values of
the terms in this equation are a, = 15.76; ag = 17.81; a. = 0.711; ay =
23.702 a, = 34 [9], the units are in MeV.

However, in our work, we concentrate mainly on the first three terms.
There is no alternative to the asymmetric term in QGP because the system is
in a deconfined state. So the last two terms of the Eq. (3.104) make no sense
in the context of QGP.

3.4.1 DModified liquid drop model

1. Nucleons are confined forms of quarks and gluons. But in our model,
the quarks and gluons are in deconfined form. So we assume the strong
force a,, which acts towards the confinement of the nucleons. In our
case we work on the quarks size range and in the high energy regime,
in which the quarks and gluons have asymptotic freedom. So we change
this confining a, to —a,.

2. The nuclear density is constant for nucleons within the nucleus. In QGP,
the density is a function of temperature. pgecont. = p(T"), which can be
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obtained by integrating the Fermi-Dirac distribution of free particles over
momentum space.

3. The charge dependence in SEMF is through the Coulomb term (Z(Z —
1)/r). In the modified liquid drop model (MLDM), all terms are charge
dependent. i.e., U(r;;) = zizjp(ri;), with ¢(r) being a central potential.

4. In MLDM, we are adding an additional linear term a;r but we haven’t
added the last two asymmetric term and pairing term as compared to

SEMF.

5. The nucleons obey Fermi-Dirac distribution; MLDM assumes that the
quark gluon plasma medium has collective behaviour dependent on the
potential U(r;;) followed by all particles in the medium.

The mathematical expression of MLDM is

U(ri;) = z2;0(ri;) 3 2
o(r) = —ay (%) — s (:;) — e (%) Bl ‘”:_0 (3.105)

3
~ e A T LA
o) o) ==a (L) —a (%) —ul

The approximation is possible because the three dimensional Fourier transform
with the converging factor as mentioned in Eq. (3.3) thO (r*) = 0.
—

So the potential can be written as

U(r) = 22 ( —ay (%)3 _a, (%) . al:—o) (3.106)

So from Eq. (3.105), the three dimensional Fourier transform of ¢ is

acTo 2a; 24a,
=Lt —4 - 3.107
82 h—0 ﬂ{ s 7052 337’3} ( )
with s = p? + h2.
3.4.1. (a) Contribution of quarks and gluons to pressure
Now the total pressure in QGP is
QGP aq g
Ll Il (3.108)
T eff T eff T eff
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P qq P qq P qq
PP (_ >
Tl T . r (3.109)
=Cy+ ) [Bngl(Zq) — PqiR1 (Zq) - Mn(zq)}
Similarly
Pl 1
T .~ Cy + ) BerQu(zg) — PgrRa(zg) — Mn(z) (3.110)
eff
n(3 n(3)
Cuy= Oyt Gy = 0 M1 €= g," D (3111)

Thus the energy density of QGP can be written from Eq. (3.51) as

QGP 9 p|QcP
_aln(T) (T eff )
=3Cqq — [(Bir — B%) Q2(2q) — 284rBarRa(zq)]
+ 20y (Re { Hia } Qi(zq) — Im { Fiq } R1(Zq))
Tq — 2 Tq — Zq

—|—2Im{ |qul2*}Rl<Zq> (3.112)

q ~ “q

-+ 3Cg — [( ;R - ﬁél) QQ(Zg) - ZﬁgRﬂgIRQ(zgﬂ
+ 2a (Re {x ﬁigz } Qi(zg) — Im {:cfigzg } R1<Zg))
g g

£
Teff

lﬁlg‘Q
+2Im § —=— » Ry (%)
Zg — zg
with
1 aq/ i\/g
Rq/g = ) (SQ/g + Tq/g) - ng + 9 (Sare — Taye),
aq/
Tqjg = Oq/g + Ta/e — %3 Basg1 =Im {qu/g}
3
_ “q/g _ R
/Bch/g_ % ? /Bq/gR_ e{/BIQ/g}7 (3 113)
(zq/g - xq/g) <ZQ/g - Zq/g) '
o Tae Qe — 3ba/s — gy
/e (Za/g — 2a/e) (Tasg — Z;/g)’ Ve 9 ,
9aq/gbq/g — 27Cq/g — 2a3/
RQ/g = 5 g? DQ/g = Qz/g + Rgl/g

o4
65



_ D 3 T — QQ/g
Sq/g - (Rq/g + Q/g) ) - T o

Sa/g
aj
aq/g = =475 Caq/g Taa/g Gc; basg = 8P Cogyg 0
qd/g
Cqrg = —9678 Cqqyg r?— a. = 0.711, a, = 15.76
qd/g
n(3) 32
Oq(i/g = gqé/g?T3§ 99 = 16; ggq = ?nf

When we fit the Eqgs. (3.108), (3.112) and (4.29) of the proposed model with
the lattice data in [10, 11] we get fitting parameter values as shown in Table 3.1.

Ny 8qqg 8y a Tag Ty

3

3 32 16 9.052 1.374 0.061
24+1 28 16 8.638 1.435 0.043
2 64/3 16 9.389 1.565 0.075

0 - 16 8.853 - 1.682

Table 3.1: The parameters used in this table, when applied to Eqs. (3.108)
and (3.112) through Eq. (4.29), give us Figs. 3.1 to 3.3 .

The coefficients of the Volume term (a,) and Coulomb term (a.) have values of
15.76 T, and 0.711 T, respectively. The unit of q; is also T,. Since the available
lattice data is in the units of 7., for numerical calculations, we approximate
T, ~ 1.

3.5 Results and Conclusions

In Fig. 3.1, energy density /7% vs T/T, is plotted and compared with the
lattice data [10, 11]. The parameters used to plot the energy density are given
in Table 3.1. The number density of particles for quarks and gluons are %nf
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and 16 in the units of %Tg. The effective value for 2 4+ 1 flavor is considered
as 2.625. The lattice data points range from 1" > 0.727,. to T' ~ 3.5T,.. The
number of quarks and anti quarks are equal. i.e, The number density of quarks
and anti-quarks are C;/2. The lattice data points and the fitted equation of
Eq. (3.112) fall within the errorbar. The pure gluon lattice data is taken from
[11] and is without errorbar.

The pressure lattice data [10, 11] is without errorbars. The scaled pressure
in Eq. (3.108) is in agreement with the lattice data as shown in Fig. 3.2.

The interaction measure (also known as trace anomaly) is defined as

I c—3P
ﬁ _ i (3.114)

For an ideal gas of free particles obeying the Fermi-Dirac distribution, the
energy density at zero chemical potential (fugacity = 1) is

_ d’p €p

8‘/ (27)° exp (Bey) + 1

:/ d’p v (3.115)
(2m)2 exp (BIp|) +1

77(4)T4'

T2

=3

From standard statistical mechanics

P PO_/ngT

T T g T (3.116)
n(4)
T2 77 - T3]
S0
T = o T3 — 3T0 = Constant (3.117)

Thus, for an ideal free particle gas, the theoretical value of the interaction
measure should be such that /7% oc T73.

The interaction measure Fig. 3.3 shows that QGP is different from the ideal
gas. The lattice data shows a gradual rise between 7'/T, € [0.72,1.25]. After
T/T. ~ 1.25, the interaction measure I/T* goes down similar to 773. The
Egs. (3.108) and (3.112) are in good agreement with the interaction measure
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lattice data [11].

In Chapter 4, the modified liquid drop model will be extended to the mag-
netic field regime. The idea of a quantum harmonic oscillator result is coupled
with the relativistic equations of a free particle having a charge in the presence
of a magnetic field. The integral equations and the results are modified and
redefined. The results are then compared with the lattice data. The pros,
cons, and refinements needed in the model are also discussed in Chapter 4.
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Figure 3.2: Pressure scaled by T*, for ny = 2, 2 + 1, 3 flavor QGP. Lattice
data is taken from [10, 11]
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Figure 3.3: Interaction measure [/T* = (¢ — 3P) /T*, for ny =2,2+1,3
flavor QGP. Lattice data is taken from [10, 11]
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Chapter 4

Equation of state under
magnetic field for relativistic
particle

4.1 Introduction

Consider a quantum mechanical system whose square of the Hamiltonian in
the absence of a magnetic field is

H} o = (P2 + p2 +p2) + Im?c? (4.1)

In the presence of a magnetic field with a magnetic vector potential,

—
~

A=10,z,0] B

2 . (4.2)
= V X A= BIz
Hamiltonian becomes
~ 72 ~
H%#) =2 (]552,; + [ﬁy — qA] +ﬁz) + m204ﬂ
L 72 A (4.3)
=& (ﬁi + B [a; - p—y] + ﬁﬁ) + m?'l
qB
For a harmonic oscillator with Hamiltonian of the form
Hyo = 042(53 — fo)z + 52(2595 - ﬁxo)Q
with properties
o ] = ik
oD =i (4.4)
[l’,ﬂfo] - ['IapJJO] -
[‘%0713900] - [Amﬁwo] =0
and o, f € R
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can be reduced to the form
Huo = (QN + 1) ha
with annihilation operator
) o 3 (4.5)
a= ﬁ(x—xo)—i- \/;( — Dx0)
and N = a'a

Combining Eq. (4.3) with Eq. (4.4), the Hamiltonian get reduced to Eq. (4.3)
as

]:I%#O = <2N + 1) ghBE + p2 + m2c'l (4.6)
Thus spin effect included Hamiltonian in terms of natural units is

ﬁiB = <2N+ [0 + 1]ﬁ> qB + p? + m*l

A (4.7)
(Hyp)=(2n+0+1)¢B +pZ +m’
defining
1
Vo =4+ —2 (4.8)
2
where o can be +1 w.r.t spin up and down.
Vned{0,1,2,...,00},3 vpp ={1,2,...,00} and
~={0,1,2,...,00} (1.9)
Vet .- =2{0,1,2,..., 00} — {0} '
= {W} (2 - 5w,0)

where {W} = {0,1,2,3,...} For ease in calculation we write ¢ = g¢se, then
Hamiltonian can be approximated as

(H2 3) = 2qreBn, + p2 + m® (4.10)

with degeneracy 2 — d,, 0.

This is also known as relativistic Landau quantization. In this semi-classical
approximation the value of p, only affects the wavefunction, not the energy
(To = ) Corresponding change in phase space calculation [1, 2] becomes

/((21: qf’eB’ Z/ % 9 5, ) (4.11)
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Figure 4.1: In the absence of magnetic field, the momentum space (with finite
upper bound) is spherically symmetric.
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Figure 4.2: Quantized energy states in the presence of magnetic field and
corresponding p, values under fermi distribution (with finite upper bound).
The equation involved here is p? + 2nBqre = p? —m?* = 2npaxBgpe + R where
R < 2Bgye, 1 is the level number and is an integer, n € [0, nyax]. The values
are thus discrete
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4.2 lIdeal free particle gas

Let us define

~ de

o= | @nr

T - dpz

IzB - Z o (2 - 671,0)
n=0

The free particle energy density can be written as

.= T(W) 7 (i(—m—wm exp <—n5|p|>)

n=1

pe = T(i(—l)“ﬁ\p! exp (—nﬁlpl))

n=1

From standard statistical mechanics

B8
BP = ByPy — / £(8) B

Bo

0 —nB|p|18
I»Bopo‘i‘f[Z(_l)nle Bl]

n=1 Bo

I
:50P0+I{Z(—1) 1( — - ”

n=1

n

Therefore

B(e—3P)==33P+1 {i(—n"l (ﬁlpl - %) enam]

n=1
P 3
T —1\ [ 2 ) e—nbolpl
g @)
For an N dimensional integral
2 I'(N+1) 3
B(e=3P)= =3P+ - —x———n(V+1) {1——}
P amF T () N

6 T(Y) n(V +1)
By (47?)% I'(N/2)

(4.12)

(4.13)

(4.14)

(4.15)

(4.16)

It is evident from the above equation that for three dimensions, 5 (¢ — 3P) is a
constant. For all other dimensions, € —3 P varies with respect to temperature.
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4.3 Modified liquid drop model under mag-
netic field

The magnetic field can affect the distribution of quarks in the presence of
magnetic field. From now on we use H to denote the magnetic field instead of
B, because we employ B to represent the beta function. Consider Fermi-Dirac
distribution under a magnetic field for mass-less particles; the number density
of particles under a magnetic field is

o lqreH| /OO 2—djo dp-

M S exp (B T 2ilare]) 127 o
= T ) 4 235, (sy/2raster])
with
Si(r) = (=1)"'zKi(nx) (4.18)
So(x) = —m%Sl(x) => (—1)"" [na’Ko(nz)] (4.19)
Si(x) = (—1)"'n’2 Ky (nx) (4.20)
y%Sl (z) = HX:I(—U” [naKo(nz)] yg—;j (4.21)

As one extends the modified liquid drop model into the magnetic field
regime, one can get the result by replacing the three dimensional integral with
the magnetic field integral, as shown in Eq. (4.11); the pressure relation is as
straight forward as

H H
qu? _ P

1
7= | =it g [5a0l ) - BRI () -l (2)] (4.22)
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21, = o (7],
(62— 52) 0l (2) — 2BaBiRY (2)]
0In(T)
+2aT<Re xﬁ_lz}Qf(Z)—Im{xﬂ_lz}R{](zo -

From Egs. (3.114), (3.116) and (3.117), the interaction measure can be written
as

Loz €qa — 3P4

T4 T (4.24)
with

Hiy _ 2G,(qreH) { ( 1 —z )}_

W = eyt T 2 e ) A )
(4.25)

RI(2) — 2G,(qreH) Im {C ( 1 —z

= 577 ) ¢ — 2lageH nRpya(2)
(2|qreH|)" 2 2 2\qfeH\)}

(4.26)
G(qreH) :|q£:f|]3 (%n %) (4.27)
_ %W (4.28)

|z] = \/Re2 {2} +Im? {2}
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with

1 iv/3
r=S+T -2 Br=In{)
53
3 a2
o _ T ,ngb a’
(x —2)(z — 2%) 9
9ab — 27c — 2a3 3 9
= =1 , D=Q°+R
_ 5o @
_<R+\/5) , T=—=,
a=—4np qu Tqq Gc; b = 873 cé{-l ﬂ;
Tqq

= —9675 cify - S 4. =0.711, a, = 15.76

qq

The expected result is that as the magnetic field increases, the energy
density, pressure due to quarks increase.

4.4 Integral table

4.4.1 Integrals in presence of Magnetic field

Consider the integral of the form

H| & dp
17 (m?) \qfe / z 2_5.
n( Z p + m?2 ) ( ]70)
4.30
_ageHIS~ 5o laseH] s 0
272 Z (m;) 472 (m”)
=0
with m3 = m* + 2j|qreH|. So
o0 dp Bn—131,1)
2y _ z _ 272
0= [ G o
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H| B(n—3,3 1 2
7 (m? = laseH| B (n— 5 Q)IC(n——, m )—2n|qfeH|I(m2,n—|—1) O (m?)
2m5 (2|qseH|)" 2 2" 2|qpeH|
(4.32)
Bn—11)¢(n—14520)
() — | 27 2n2)3 UL~ anlggeH| 1m0+ 1) | © (m?)
(lgred])" i
(4.33)
Similarly
lqreH | 1 dp,
Q, (m, 2) = w ¢ (2= 0;0)
S DY R | e (A e e L A O
2
B(n-11 Re{{(n—é,i”&%)
Q(m, ) = | 21 2:3) e onlggeH G (m, 2)
(2lareH])" > 2m
(4.34)
repeating

H _ laseH| Oo/ 1 _ 1 o\ dp.
R, (m,z) = o Z Im (2 2 )n (p§+m§—z*)"}<2 d50) o

RY (m, 2) = —2n|qreH|Ryq1(m, 2)

(4.35)
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4.4.2 Special Case

Consider the integral

=0 " (4.36)
_|Qf€H| G J 2 |QfeH|J( 2 ) '
272 Z ( j)  4r2 z

=0
with m?, = m® + 2j|qreH| — .
4.4.2. (a) Case 1: m* —z >0
From Eq. (4.33), the result is

1 m*—2x
TH+ (2, 7) = B(n-33) C( 2’2\‘1feH|> O (m? — )
(2lqreH|)™ 3 42 (4.37)

4.4.2. (b) Case 2: m* —x <0

Then the summation can be divided into two with 2j|qreH| +m? —z < 0 and
2jlqreH| +m? — x > 0, so the summation term

Jmin

D) =D f()8 (x—m® = 2jlqpeH|) + Y f(1)O (2jlgeH| +m® — x)
j=0 j=0 i 1

Jmin 2_13
=2, 70) (mqu\ ) Zf ( 2|qfeHr)

]mln

=2 fG)+ ‘Z FG)*

jmin oo
=3 FG) T+ G+ i+ DT
=0 i=0

(4.38)
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with jnin = L;l”q ’:H|J Now

_ H d dp 1

(P2 +m?—x)"
_lgreH \ S lgsef| ;
== jz; J™(2j|qreH| + m? —x)| — i J~(m? — 1)
S R (e 5+ [ 1))
+ J |\ 2|qreH| |j + + +1
272 jgo lareH] 2|qreH| 2|qreH|
(4.39)
using the result
o0 dp, B l,n —1
sty = [~ e e - Ban=5) g
oo (P2 +m?) (m2)"" 2
_ N A dp.
J~(m?) =lim B z’e)"@(_m2) (4.40)
1 _1\n+1
=iB|=-,n— 1 Ll@(—mQ)
2 2 (—m?2)" "2
So
1 1 (_1)n+1
J- (m2—x)—iB<—,n——>—1@ x —m? 4.41
2 3) e ) (4.1
Combining
jmin
-ty s s (L3 | R
T 2) 5= (e = m2 = 2jlgeH))"" 7 (w0 —m2)"
qreH 1 1 |z—m? r —m?
N e
T (2)qreH|)" 2 2|qreH| 2|qreH|
(4.42)
Thus
I (m? z) =100 (m* —2) + 170 (z — m?) (4.43)
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- dp. lgreH| (2 — 0;0)
H — I 7,
Ry (m, 2) =21m {Z (27)? [(pg + 2jlgreH| +m? — 2)"

=0
B(3n-1) - m2— » (4.44)
< e e (202 0 )

- Qn‘QfeH‘R'nJrl(m? Z)

dp. lgreH | (2 = d;0)
@ (. 2) —2Re{2/ [pz—l—Qj\qfeH\—l—mQ—z)

:w@wmﬁ "R {C (n—1/2, ;:f;a)} (4.45)

- 2n|Qf€H|Qn+1 (m> Z)

Using the idea from Sections 3.1.3 and 3.3.3

" _ ICJf6H| dpz piAmy—z\
Mn”(m, z) = 2Re { o l ( P ) (2 5n,0):| }
m

_ [2gpeH|z 1 m? =z 1 m? (4.46)
T Reqs 27 [2qseH] =6 27 2|gseH]
B \/§|Qf€H|A

2w

where A = /A +&  Ar=m?—Re(z), M =-Im(z) = /A4+ N\

4.4.3 Renaming the formulae

Now let us take some cases where the parameter s = p> + m? — p? at m =0

I,,(0,21) = I,(21)

Q.(0,21) = Qu(21)

Rn(O,LCl) = R-n(l'l)

170, 2,) = 1 (x, (4.47)
QrIL{(O>$1) = Qf(xl)

RZ(0,21) = R (1)

The above notations are used in Section 4.3.
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Figure 4.3: Pressure for Lattice data by [3], Here T, ~ 113 MeV, g =~ 20.1,
¢~ %, The radius factors 7,5 are 0.986, 0.955 and 0.94 from bottom to top.
The a; factors are 4.735, 3.098 and 0.31 from bottom to top. The values of a.

and a, are 0.711 (7.) and 15.76 (7.), respectively.
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4.5 Results and conclusion

We have extended the modified liquid drop model in the presence of a magnetic
field and derived the equation of state for magnetized quark matter. This
is achieved by changing the integral equations of MLDM in Chapter 3 to a
magnetic field dependent integral. The magnetic field dependent integral is
formed on the basis of relativistic Landau level quantization.

In Figs. 4.4 to 4.7, the pressure, energy density, and entropy are plotted
for qualitative purposes. The magnetic fields are described in terms of critical
temperature ranging from |geH| = T? to 40T?. The parameters used in the
above mentioned plots are the same as those of two flavor data in Table 3.1,
ie.,g,g = 64/3, @y = 9.389 and ry; = 1.565. The results match with the ex-
pected behaviour of [3].

The magnetic field can cause the production of new quarks [4, 5, 6, 7],
which can cause a change in degeneracy. The magnetic field can also affect
the charge neutrality of the plasma medium. This can be compensated by
assuming an effective charge flavor ¢;. The quantitative comparison is done in
Fig. 4.3 with the lattice data [3].

The magnetic fields are [eH| =~ 0.2 GeV?, 0.3 GeV?, 0.4 GeV?. In Fig. 4.3
the values are represented in terms of critical temperature. Fig. 4.3 is fitted
with g = 20.1, ¢ &~ 1/22.8, the radius factors are r4; &~ 0.986,0.955 and 0.94
from bottom to top. The q; factors are 4.735,3.098 and 0.31. The results are
in quantitative agreement at the lower magnetic field.

The fluctuation between the fitted curve and the lattice data in 0.3GeV? ~
23.49T? and 0.4GeV? ~ 31.3372 could be minimised if the degeneracy factor,
which is considered a constant with respect to temperature, is modified by
considering quark production happening in accordance with the magnetic field.

In Chapter 5, we derive the equation of state of deconfined quark matter in
the presence of a magnetic field. Chapter 5 is dependent on the quasiparticle
model of VM Bannur described in [8]. The integral equations in [8] are changed
to magnetic field dependent integrals as shown in Eq. (4.11).

84



4
a/T

H
Pq
N

lgeH| = 27T2 -
|geH| = 4072 — —
\\ |
~
S~

I
lgeH| = 1272 5

2 2.5 3 3.5 4

T/T.

Figure 4.4: Quark contribution of pressure with g . ~ 64/3, a; ~ 9.389 and

ros ~ 1.565.
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Figure 4.5: Quark contribution of energy density.
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Figure 4.6: Quark contribution of entropy.
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Figure 4.7: Quark contribution of Interaction Measure . Figs. 4.5 to 4.7 are
plotted for various values of |geH| with g . ~ 64/3, a; ~ 9.389 and
Tqq ~ 1.560.
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Chapter 5

De-confined quark matter under
magnetic field

When a massive supergiant star collapses, if the core has a mass about 1.4
times that of the sun, it forms a neutron star. The order of magnitude of the
radius of a neutron star is about 10km [1, 2]. When the pressure inside a neu-
tron star is so intense that the density of matter becomes several times greater
than the nuclear density (pnuciear = 0.16 fm_3), neutrons are transformed into
quarks.

As the temperature reaches to zero, the distribution of quarks, which are
fermions, gets bound by the chemical potential. The mathematical relations
connecting the momentum, mass of the quasiparticle and chemical potential
are given in Egs. (5.10) to (5.12). The quasiparticle model of Bannur [3] is
applied in the magnetic field regime. The magnetic field independent coupling
constant and integrals are replaced by corresponding magnetic field dependent
coupling constant from [4] and integral Eq. (5.16).

Using these approximations, the magnetic field contribution to pressure,
energy density, and number density for various chemical potentials are derived.

Consider a quark star having the charge neutrality condition

2 1 1
; gn; =0 — gnup - gndown - gnstrange —ne =0 (51)

where Ny, Ddown and Ngtrange, are the number density of up, down and strange
quark. n. is the electron number density. The chemical equilibrium attained
through weak interaction can be written as

d>ute + Ve = g = by + [le

- (5.2)
S<rUt e FVUem = s = My + e
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At equilibrium
stucd+u = g =y (5.3)

assuming that there is no neutrino participation in the quark star’s thermo-
dynamic properties and approximating the rest mass of quarks in the medium
to be zero leads to the approximation

My, = Hd = s

P (5.4)

for the medium.

5.1 Quasi Particle Model and Fermi Dirac Dis-
tribution

Consider quark matter that has a medium-dependent mass. At absolute zero
temperature, let the mass be a function of the chemical potential and rest mass
of the constituent quark matter. i.e.,

m? = m2 4+ V2m,mo + m: (5.5)

According to the quasiparticle model put forward by Bannur [3], at T = 0, the
medium-dependent effective quark mass can be approximated as

() = SO 2 (56)

with a = (%)2.

For one loop approximation, when B = 0

4872
g (u, A) = - (5.7)
(33 — 2ns) In (fA%)
For one loop approximation [4], when B # 0
i -1
In { £

leB]

(1, A, |eB|) = ¢*(u, A) |1+ <“ > (5.8)

In this chapter, we use B to represent the magnetic field unlike H that was
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used in Chapter 4.

We use the same procedure as in [3] and take the same approximation

22 2
g°T 1
men (T, ) = =——ny (1 + W)

(5.9)

The general equation for average energy and number density is

> / [1 + exp (gﬂ(z - Uui))} (5.10)

i o=%1

Z Z / {1 + exp (gl((oful - U#z’))] (5.11)

i o==£1

with g; being the degeneracy factor of the i" species. Since we are dealing
with matter involving particles (not antiparticles), it is crucial to note that
only the case where ¢ = +1 in Egs. (5.10) and (5.11) will be considered for
the subsequent calculations in this chapter. Now as § — oo the systems goes
to Fermi distribution. As a result, in phase space, a surface with the highest
energy value is generated, which limits the range of energy values. When B=0,
the equation becomes

2 2 2 2 2 2
(H?)p_y =0 +p,+p2+m=p (5.12)
= pitp, +pl =t —m?

and thus phase space has spherical symmetry bounded by surface with radius

\/m . So number density is
<>—g@/( s (\/ 2~ [p])

/O T (Vg - ppl) dp

\/_

(5.13)
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Similarly energy density is

(© =0 [ s © (Vi — 1)

12 —m?2 d
:gi/ 2 VP mi
0 ™

Putting p = msinh(x), then

sinhfl( “2727'12)
= %/ "7 mtcosh?(z) sinh?(z)dx
™ Jo

g sinh*( 7;22> 4
=1

% [cosh(4x) — 1] dz

) o ()

5.2 Quark matter under magnetic field

As discussed in Chapter 4, if we consider a magnetic field with magnetic vector
potential

~
—

A=Bzxy

. (5.15)
B=V xBxj=B?3

with B being the magnitude of magnetic field. The three dimensional integrals
changes accordingly i.e.,

[1o0) S By S [0t maen) 0 -a0 G G0
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5.3 The integral table for deconfined matter

under magnetic field

Consider the integral,

/md
xr

I, = Fl(a,z) =

u2

:/u2—|—a2du
a2
_/(1 —u2+a2)du

} du) , Putting u = atan6

(- [ [
(- a0)
o (22

If one puts u = acot @, then

a

V=& + atan? (—“ )
A /.T2 _ CL2

N
Va2 —a2+acot™! (—x a )

In (/J,—l— \ 2 — m2)
I :/ 5 du
I
Putting i = mcoshx

I, = / tanh(z) sech(z) {Lﬂ(m)} da

m
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z , Putting u? = 2 — a®

(5.17)

(5.18)

(5.19)



The integral with integrand tanh(z) sech(x) can be solved as
Iy = /xtanh(x) sech(x)dx
= x/tanh(:p) sech(z)dx — //tanh(x) sech(z)dx

::E/—d (sech(x)) —i—//d(sech(m))

= —xsech(z) + /sech(x)da: (5.20)
= —x sech(x) +/ a

d
e 1
putting u = e*

1
= — h 2
xsech(x) + /u2+1

= —xsech(z) + 2tan"" (")

du

On continuing

I, = / tanh(z) sech(z) {Lﬂ(m)} da

m
1
= — [2tan"'(e”) — wsech(z) — In(m) sech(z)]
m
putting sech(x) = m/u
[ + 2 —m2
! 2tan ! ('u p—m ) —
m

m In(m)

()

m
.
m

_ % 5 tan—t (“i W) - (v \//W)]
(5.21)
So
Gom :/m (u+ W)du
i (5.22)
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The other way of working out the integral is
In <u + \/m>
/ p ‘
_ n<u+\//m>/i2du—/;
p ViZ—-m2 o n
In (,u -+ \//W) 1
— + / P dp

H w? —m? (5.23)
Putting 1 = asec

(i) 10
= - + —sec | —

I m

1 1( MQ—W) 1“(‘”“‘2_7"2)
= —tan —
m

m 1t

G(mv :u) =

m

5.4 Number density in presence of magnetic
field

The limit relation of momentum in z direction, chemical potential and mass
can be developed as

2q¢leBlng + p? +m?* = i (5.24)
= 2q;|eB|n, +p? = p* —m?

Here we have to give special consideration to the quantized state of the system.

We introduced the limiting condition with the involvement of theta function.

qu dpz
=S [ B b )l = 2upleBing — )

Ne=0

(5.25)

In quasiparticle model mass is a function of chemical potential. For free particle
approximation, the mass m =0 which leads to a change in relativistic energy

VP2 +m?2 = |pl.
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5.4.1 Number density in presence of magnetic field for

QPM Model
B dp.
=B [T gm0ty — = 20sieBlns ~ )
No=0
B|'&X B
- By {\/u —m2 - 2 \eB\no} N
No=0
V(B 2 p2—m?\ _ qfleB| s
L e (e
V2(lgreB)? (1 42 =m*\  qpleB| 5 (5.26)
B 72 ¢(§’ 2\qfeB\) T g VAT

with

{z} =2 —|z] >0
[z)

w(sﬂﬂ) :Z<x_n>s :C<—S,{$}) —C(—S,l‘—i—l), 5s>0

n=0
i
NMmax = | 51 o1
2¢sleB]
We used the mathematical operator floor || and ceil[], ([a] meaning the
largest integer less than or equal to a. i.e L%J = 1, [a] the smallest integer
greater than or equal to a. (%W =2).

The relation between mass, chemical potential and coupling constant for
one loop approximation is

2 2 In (54— ]7-1
Nl 481 (u2+|eB|)
() = T2 x : x{1+—

™ @3- (5)

o Ol )

A2 A2

with m? = m2 + vV2mgem,, + mi. The calculation can be made simple if we
consider the magnitude of A = 1 and rewrite both p, py and |eB] in the units

of A. Thus

=) =1 - @in( )Hln (ﬁ)} 2%




5.4.2 Number density in presence of magnetic field for
free-particles

As we have mentioned, for free particle the mass m = 0 (1/p?> + m? — |p|),

“207leBln, + 92 = 2 (5.29)
= 2qs|eB|n, + p? = p?

The number density of free particle is

ree eB dz
5 [ o[

No=0
_q eB| & qrleB
fl lz {\/MQ—QQf\eB\nal - f| |\/_
No=0
\qfeB! nmzx { 12 } qf|€B|\/_2
- - 5 VH 5.30
= 2|qreB]| 27 (5.30)
3
_ V2(lareBD? (1 N _arleBl
2 2’ 2|qreB| 272

with

rome = |t
2qs|eB]

Let us represent the total number density of quark in the qpm model as

Z Tgg = (1) up (M) down T (M) gtrange and that of the free particle as Z ng. =
<n>f1r§e—|—<n>g§fm+<n>g‘znge. The ratio of Z ntto Z ng.. is plotted in Figs. 5.1
and 5.2.

In Fig. 5.1, z axis is the chemical potential in units of A ranging from 15
to 1000 . The Y axis is the ratio of the number density of quasi particles
to that of free particles. It can be observed that the curve follows a similar
trend as in non-magnetic regime [3]. But when the same plot is enlarged as
shown in Fig. 5.2, it can be observed that when the magnetic field contribution
|eB| is near to the chemical potential, large oscillations can be observed. This
is due to the quantization effect where the energy is quantized with a maxi-

mum value of quantization frequency L . For the charge neutrality

2|qreB
to be fulfilled and to balance this charged ‘ggrti(lle oscillation, a corresponding
positron-electron oscillation will also occur. But in our quasiparticle approxi-
mation we have given the chemical potential of electron as zero, thus it doesn’t
affect the charge neutrality.
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Figure 5.1: The scaled number density is plotted for higher chemical

potential range.

5.5 Energy density in presence of magnetic

field

In presence of magnetic field the Eq. (5.10) changes to

Qf|eB|Z/ \/pz+m2+2j|€B|Qf (2 —46;0)0(A)

where A = \/u? —m? — 2¢s|eBlj — |ps|.

97

dp.

27



0.96

leB| = 1A2 ——
09 leB| =502 — |
leB| = 15.6A%2 ———
089 | | | | | | | |
20 30 40 50 60 70 80 90 100

Figure 5.2: The number density of quasi particles scaled with that of free
particles. The range of chemical potential is limited to 100 A to show the
effect of the magnetic field

5.5.1 Energy density in presence of magnetic field for
QPM Model

The energy density in presence of magnetic field is

eB dp
), = qfl |2/ V2 mi2 (2= 6;0)0(y/ 1% —mj2 — |p.) 2];

eB Nmax 2 ,mj /2 —m?2
= q’;'ﬂz, | {2 Z/ \/ P2+ m3 dp. —/ V2 +m? dpz]
j=0 70 0

(5.32)

with m? = m? 4 2j|geB|. Eq. (5.32) can be solved by putting p = msinh(z),
then

ir—m? 1 12 — m2
/ Vp?+ m2dp = 3 (M\/,LLQ “m? 4+ m2sinh ! [ VAT > (5.33)
0

m
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and sinh () = In (a; + Va2 + ) in case of real sinh ™! value, we can approx-
imate sinh™'(z) = In (2 + V22 + 1). Therefore

p2—m? 2 _ 2 2 — 2
[ v A, VI g )
0 2 2
Thus the energy density is
q |6B| Mmax
b =" D pu2 = m2 — 2/eBlqgn,
ne=0
eBlq; & 2 —m?2 —2q¢leBln, +
+ | 5 |2qf Z(m2+2ng|€B|Qf) In \/p’ ! qf’ ’ 2
™ = \/m + 2n,|eB|qy
B /12 o2
_qil';z| M\/u2—m2+m21n( K mm +u>

(5.35)

But as per Eq. (5.27), the square of the mass is a function of the coupling
constant. i.e.,

m?(u) o< g*(, lgre B))p? (5.36)

One could re-write the equation as

(asleBl)” m? | p?—m?

—_— —In (2¢¢|eB

)y =3 | 5~ CareBD) | 9 ’2qf|eB|’ 20s1eBT | )|
qsleB| y
2qsleB
oy 2arleBle | 505 ]eB]

(5.37)
qyleB| 2 p+ N/ —m?
—4—7rz<“w2—m2+mln< m

Mmax

B
n asleB| > (m? +2jlgeB|) In (u + \/u2 —m? — 2jqf163’>
=0

272
with
o 1 (s, x) . In(n+ z)
C(S,I)—Zo(n_i_x)sa Os = ZOW
s , "= (5.38)
¢(Sax;nmax) = T N\s ZQ(S,III) _<(37x+nmax+1)
nz% (x +n)



So

“ia:"M\/MQ_mJQ‘ i/ 2q5leB] y (1 /ﬂ—m2)

prt 2 2 2’ 2q¢leB|
and
Txm?o (1 o= m? + 2f|qpeB|
-7 ) = _ f 2 .
> (o) - S it weB) (s

qf|eB| iy < m? ) [ m? ,
= — +7 | | In(2g¢leB|) + In +7
Z e (20fleBl) +1n (50

qsleB| m® | p?—m?
== —1 2qrleB

The total energy density can be written as

s=—1

Etotal = Eup + €down Estrange (540)

5.5.2 Free particle energy density

The free particle approximation of quarks in our model assumes the mass of the
quark to be negligible. i.e., m, ~ 0. Thus, the calculation is straight-forward
and we get,

free Qf|eB| = \/ Qf|€B|
(e) oz HZO p? = 2leBlgn, — < -1
. (5.41)
Blqg, &% — 2q¢|leBlng +
|e |Qf Z (2noleBlay) V12— 2qyleBln, +
\/2n,|eBlqy
. R

with npax = {—2%63&

The total energy density of quark in the gqpm model is represented as
Z €4 = (E)up T (E)down T (E)srange and that of the free particle as Z el =

free free free
<5>up + <€>down + <€>strange

The ratio of Zs to Z €hee 15 plotted in Figs. 5.3 and 5.4. The X axis
of Fig. 5.3 is the chemical potential ranging from 15 to 1000 in the units of A.
Comparing Fig. 5.3 with the enlarged version Fig. 5.4, very high oscillation can
be observed for |eB| = 15.6A2, when the chemical potential is comparable. As
we have mentioned in the number density section, the oscillation of charged
particles is balanced by a corresponding quasielectron-quasipositron oscilla-
tion. Since the chemical potential of this quasielectron and quasipositron is
zero. The contribution to energy density is negligible.
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Figure 5.3: The scaled energy density is plotted for higher chemical potential
range.

5.6 Pressure in presence of magnetic field

The pressure can be derived using the relation [3]
P
<. 9 {—} (5.42)
po Oln(p) | p

where ¢ is the energy density in terms of p. P is the pressure and p is the
chemical potential. The corresponding integral expression is

PR ")
T +/ﬂ wr o4

0
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Figure 5.4: The energy density of quasi particles scaled with that of free
particles. The range of chemical potential is limited to 100 A to show the
effect of the magnetic field
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5.6.1 Free particle pressure

The pressure can be derived using Section 5.5.2 and Eqgs. (5.17) to (5.19)
and (5.21),

Pfree _ &_‘_/u <€(Iu)>free
/’l’ :LLO MO /’L
\‘Q\eﬁquJ
_Qf|€B| Z F<2| B| ) : _Qf|6B|[]N
=53 eBlqsne, p 7 M
ne=0 120]
2

qrleB| In (2n,|eBlgs)\ 1"
2leB 2 B _— 7
+ 52 [ E leBlgn, ((?( neleBlqr) + o N

ng=0

2
\‘QQf\eBlJ 14
arleB| [ NE 1 (Vi —2leBlgsn,
= p? —2leBlgsn, — \/2|eBlgsn, tan
2m? Z \V2|eB|qsn, o

ng=0
(5.44)

T
2qfleB]

grleB| |" | qsleB| In (2¢¢[eB|n,) 1"
Yl bl 1 2q¢leBln,) — 197
el Z (asleBlng) == ==
eB) Sl -
Y| X destone ()|
+ = 2ngleBlqr sec _
22 | %Z_O leBlas 2n|eBlqy
qf\eBr{”ﬁB'J i+ /i = 2n,]eBlgr \ 1"
S o) ()
L 1240

ne=0

5.6.2 Pressure in presence of magnetic field for QPM
model

The pressure can be derived using

P, P " (e

L +/ )y, (5.45)
with
m3 =m? + 2j|qseB]
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The analytical derivation is complex because of the involvement of mass,
which is a function of the coupling constant. But one can solve it numer-
ically. Let us represent the total pressure of quark in the gpm model as

E Pq% = Pyp + Piown + Perange and that of the free particle as E Pffee =
Pfree + Pfree + Pfree
up

down strange*
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leB| = 15.6A2 ——
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Figure 5.5: The scaled pressure density is plotted for higher chemical
potential range.

The ratio of Z Pqu to Z PZE s plotted in Figs. 5.5 and 5.6. Due to quan-

. . . . 2— 2 . .
tization with a maximum frequency of L%J, oscillation can be observed

in the enlarged plot Fig. 5.6. The ratio comparing the pressure of quasipar-
ticles with that of free particles gives us insight into the ratio of non-ideal
and ideal-behaviour of quasiparticles. Since the contribution of electron and
positron pressure is negligible in this approximation, such pressure values are
not considered. In addition to that the pressure of the magnetic field P = %2
is not included in the plot.
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Figure 5.6: The pressure of quasi particles scaled with that of free particles.
The range of chemical potential is limited to 50 A to show the effect of the
magnetic field

5.7 Results and Discussion

For a finite chemical potential, we have taken into account the pressure, energy
density, and number density of the magnetized quark at zero Kelvin. The
formulas for number density, energy density, and pressure are obtained by
combining the relative particle result with the quantized harmonic oscillator
result, as demonstrated in Chapter 4.

We have compared the result with that of free particles. In Figs. 5.1 and 5.2,
we have compared the relative number density of quasiparticle quarks with
that of free particle gas at finite chemical potential and absolute zero temper-
ature. When the chemical potential is comparable with the magnetic field, a
larger oscillation can be seen. The plots for various magnetic fields can also
be obtained. The reason for the oscillation is the quantization of phase space
due to the applied magnetic field. This introduces a maximum frequency of

H%” The mass of a quasiparticle is a function of coupling constant
which is a function of chemical potential. It also gives rise to the oscillation.
In order to compensate the charge neutrality, quasielectron-quasipositron os-

cillation is assumed.
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Comparing Figs. 5.3 and 5.4, the same kind of oscillation can be observed.
In the Figs. 5.3 and 5.4, only the energy density due to the quasiparticle is
taken into account. The total energy density requires the contribution caused
by the pure magnetic field ie., B*/2

Since the chemical potential of quasielectron and quasipositron is consid-
ered as zero, the contribution to energy density is negligible. The pressure is
calculated for pg = 10, and Py = 0. Comparing this with Figs. 5.5 and 5.6,
one can observe that when the magnetic field is greater than the chemical po-
tential, a larger oscillation can be observed. Later, energy density vs. pressure
are compared. The total pressure will also have a magnetic field contribution
value of B%/2.

In a nutshell, in this chapter, we have derived the equation of state for quasi
particles at zero temperature at finite chemical potential. For symmetrical
pressure, energy density and baryonic density, the Tolman—-Oppenheimer—Volkoff
(TOV) equation can be used to derive the radius and mass dependence of a
star. But in our case because of this asymmetric magnetic field, we cannot
apply our model in TOV. So we might need to transform TOV equations to
the magnetic field regime first and then derive the mass-radius relation. We
expect to do some research in that regard in the future.
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Figure 5.7: The pressure vs Energy of quasi particles is plotted. The range of
chemical potential is limited to 708-1100 A to show the effect of the magnetic
field. Units of pressure is A%. One can observe a kink in this figure, and there
are two reasons for this kink. Firstly, it is due to the initial condition we
imposed to derive the pressure, i.e., o = 10. The kink’s position shifts as we
change this initial value, p9. Secondly, the kink occurs when the magnetic
field and chemical potential values are in the same order of magnitude. This

is attributed to Landau quantization applied here, making the ratio
L%J behave as a step function. When this ratio surpasses a specific
value, the entire quantity increases significantly, leading to the observed kink.
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Figure 5.8: Pressure vs Energy of quasi particles is plotted for higher
chemical potential range.
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Chapter 6

Quasiparticle model in thermal
#* theory having coupling
constant up to two loop order

6.1 Introduction

6.1.1 Creation and Annihilation operator in quantum
mechanics

Consider the quantum mechanical Harmonic Oscillator with Hamiltonian

29

X 1 .
H= 2p—m + imwzfQ (6.1)

The eigenvalue of the n'* energy state for the above Hamiltonian is

En:<n (N+%)hwn>:(n+%)hw (6.2)

with n € W, where W is the set of all whole numbers. The N is the state
operator, which can be written as

A

N =a'a (6.3)

where @ is the annihilation operator, which when acted on, changes a state |n)
to |[n — 1). And the creation operator a' does the opposite. i.e.,

aln) =+v/nln—1)
a'ln) =vn+1|n+1) (6.4)
al0)y=0
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The creation and annihilation operators can be expressed in terms of momen-
tum and coordinates operator as

. mwT +ip
a@= —
2mhw
2mhw
~ AT [iuﬁ] — 1
&.4] ih

6.1.2 General description of QFT

We can represent every particle and wave in the universe as an excitation of
a corresponding quantum field. As we have mentioned in the previous section,
in quantum mechanics a, annihilates a particle or changes the state to a lower
state. i.e.

ap [1) = 10) (6.6)

Similarly, d,' creates a particle with momentum P (or increases the state). i.e.

d,'0) = |1) (6.7)

where |0) is the lowest-order state, also known as the ground state. |1) is the
next higher level of state.

At the same time in quantum field theory,

@) = == 3 dle (6.5)

creates a particle at © with momentum p.
Similarly

2 1 N
o) = Z e (6.9)

annihilates a particle at Z.

Corresponding to the Lagrangian in classical and quantum mechanics, there
exists a corresponding quantum field theory function known as Lagrangian
density, which, when integrated over four dimensions, gives the Lagrangian.

L:/L&x (6.10)
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There are different kinds of Lagrangian equations; the prominent ones are
the Klein-Gordon scalar field equation and the charged Klein-Gordon field
equation.

For Klein-Gordon scalar field

L= % (0"¢0,9 — m*¢?) (6.11)

solving using Euler-Lagrange equation

oL oL
55_@(m%w)20 (042

gives
(6.13)

For charged Klein-Gordon field
1 * *
£ =5 (06" 00— m6"0)

7 - i(p.T—w A —i(p.T—w d3p (614)
— 0a) = [ (0T 4 e 7 oo

Two types of particles involved here, i.e., a and b.

In quantum mechanics we have Schrodinger picture, and Heisenberg picture.
In Schrodinger picture the state is time dependent and the operator is inde-
pendent of time. The state of a particle or physical system at a time ¢ can be
obtained in the Schrodinger picture by multiplying the initial state with the
time evolution operator U(t)
ie.,

Y(t) = U(t, to)(to). (6.15)
But in the Heisenberg picture, the state is time-independent, but the opertor is
time-dependent. In both pictures, the expectation value of an operator should
be the same, so one could relate both via

WO Ae()) = (VrlAn(t)|vn)

= (W)U U400 (1) = (Wuldu(®)lgm) (6.16)

— (@OU U AD0 @) = (ulAu(t)dn)
On one to one comparison of LHS with RHS,
v =U(t)

R 6.17
Ay =U1AU (6.17)
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6.1.3 Heisenberg picture and Action priciple

In Heisenberg’s picture, we have

0y =T [9) (6.18)
where U is the time evolution operator, and
Ap(t) =UtAU (6.19)

where Ay (t) is the opertor in the Heisenberg picture and A(t) is the operator
in the Schrodinger picture. Consider the propagation of a particle from

(z,t1) = (y,t2) (6.20)
the corresponding expectation value is
L= (y, talz, 1)y = (y|U(t) U (t1)]2) . (6.21)

But U = exp (—iﬁt)
— (y,ta|z, 1)y = (y| exp (—u%) ) (6.22)

where 7 = ty — t;. We can divide the long interval into n equal intervals of
small size.

[t1,ta] =[t1,t1 + AT] + (t1 + AT, 11 + 2A7] + ...
+ (t1 + nAT, t + (n+ 1)AT]
with ty =t; + (n + 1)AT .

(6.23)

I = (y|exp (—z’ﬁﬁ‘) |z) = (y| exp <—Uf](n + 1)A7‘> |x)

Now using the completeness relation

/|xn> (o] day = 1

I= / (y| exp (—iﬁAT) |x,) (x| exp (—iﬁAT) |Tp_1) ... (z1] exp <—i]:]AT> |z) dzy..dz),

combining completeness relations in momentum coordinates

(x| exp (—iﬁAT) |Tn_1) = /(xn|p> exp (—iH,AT) (p|r,—1) dp

= /exp <iAT {p% — Hp}) dp
T

= /exp (:LAT)dp
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(6.24)

In the continuum limit for each z,,, if we express it like this, then

= (y,to|z,t,) = /eXp (i/Ldt) DaDp (6.25)

6.1.4 Green’s Function

If we do the same as above in functional theory, then we get an exponential
term containing

S = / Ldt = / Ld'z (6.26)

In case of Klein-Gordon equation

L == (8"60,6 — m*¢”) (6.27)

N | —

If we solve it for action S then

O $0, 6 — m? 0,0+ m?
sz/( ¢“¢2 m¢)d4a;:—/¢(” (Z+m¢)d4x (6.28)

The solution to the equation — (9,0"¢ + m*¢) = §*(z — '), for ¢ is known
as the Feynman propagator and is denoted as Ap(z — 2’) .

6.1.4. (a) The idea behind Green’s function

Consider an equation

Ayp(x) = g(x) (6.29)
Let there exist a Green’s function such that
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Eq. (6.29) and Eq. (6.30), when combined, become
o) = [ 9w~ y)dy
~ [ o) AGla)y
— A, [ 96l u)y (6.31)
— g(0) = Ao() = A, [ 90)Glr )y

— ola) = [ gwGlr)dy
The beauty of Green’s function is that once G(x,y) is found, it can be
readily applied to RHS to find the solution for any RHS function.
6.1.4. (b) Propagator in QFT
The solution to
—(0,0" + m*) G(z,2) = 6"(z — 2') (6.32)

is known as the Feynmann propagator. The solution can be derived by defining
G(x,z’) such that

= — (00" + m?) G(z,2') = §"(x — 2')
= —(9,0" +m?) / Gp)er" e P _ / gt wu—ey) _4"P

(2m)" (2m)m
- / (—pup +m?) Gp)e™ s L2 _ / eiv u—ay) 4P
g (2m)™ (2m)" 6.33
= — (~pupt +m*) G(p) =1 (6.33)
1
Gp) = ——
(p) (onp = 2)

ipH(zp—x,) dr
G(z,2') = / o — 77:2) (277?" = Ap(x — 2') = Feynman Propagator

6.1.5 Quartic interaction

Consider a quartic self-interacting theory A¢?*, where the action can be defined as

A[¢]=/< (060,06 — m?6?] - A¢>d4
From Eq. (6.28)

8)
Al /¢d4

(6.34)
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Thus a generating function Zy(J), can be defined as

Zy\(J) = /exp <iS[¢] + i/d4a: [—2¢4+ ng] >D¢>

Zo(J) = /exp (iS[qﬁ] + i/d4af [J¢])D<;S

20(0) = [ exp (15061)Do

Zx(0) = /exp <iS[¢] + i/d4x [2&} >D¢ = /D¢exp <iA[¢]>

Differentiating with respect to J, we can connect the equations shown above as

/¢4 exp (iS[qb] +i/d41: [J¢]>D¢: wexp( /d4 [J¢] >

(6.35)

(6.36)
Therefore
Z (—ir/4h)™ {/d4xqﬁ4(:c)}n
Z (—ia/an" [H/d%l ¢! ml] (6.37)
n—O
il (—ir/4an" H/d% Zo(J)
o™ 7Lz Lo l)4 "
and
2() = 2o(0) 3. ) { 1 [ d st ¢($z)} (6.38)
n=0 ' “i=0
One can correlate Green’s function with Zy(J) as shown below
Z30) = Z6(0) S 71;{ /G(”) (21,2, - 0m) [ [ T () iz } (6.39)
n=0 " 1=0
with

=/ ngnz;) {H [ ater stan) oten) fexp 2160 (6.40)

G (21,2, ... xy) is called n-point Green’s function. Dividing Eq. (6.40) by Eq. (6.39)
we get

[Py on,{nl L[ dta J(w) 6 >}exp<iA[¢]>

2000) S0 5] 60 m) Ty o) |

1= (6.41)
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So for two-point functions,

| _ S Do J dtaidiasd(21) ] (z2)¢(21)d(ws) exp (14[¢])

Z0(0) [ G(z1,22) J(x1) J(z2) d*zidizy (6.42)
comparing the denominator and numerator,
Glora) = 7 [ D olonoten)exp (1416]) (6.43)
Similarly, four-point Green function can be written as
Gloronanan) = 50 [ D0 olen)oten)ota)ofas) exp (1411 »

_ Zol(o) / D¢ exp (iA[qﬁ]) l]jl<z>(xz)

i.e., As shown in Eq. (6.39), Z)(J) can be expanded in terms of Green’s function.

The expansion of Green’s function, can be rewritten in terms of momentum rep-
resentation, as shown in the Section 6.1.4. Similarly, the expansion can be simplified
using Feynmann diagrams. We are not going into detail on deriving the Feymann
diagram’s rule, but we simply state the rules while we interchange the integrals from
Euclidean to Minkowski space.

1. Draw the diagram in the momentum space associating a momentum label,
with each of the linels. We label each momentum k; and associate them with
a factor (kf +m?)~

2. Assume that momentum is conserved at each vertex (Sum of incoming mo-
mentum = Sum of outgoing momentum)
i.e., associate it with (27)N6N[ky 4+ ko + -+ - + ky]

3. Momentum associated with internal lines are integrated over with measure
dNE

(2m) N
4. Associate a factor — \/4! with each vertex

5. Associate the correct symmetry factor and weight factor with diagram.

6.1.6 Thermal field theory : Imaginary Time Formalism

Here, the continuation of Heisenberg picture and Action principle in Section 6.1.3
is considered in the context of a canonical ensemble. In order to differentiate the
formalism in ITF, we use ¢ and 7 instead of x and p used in Section 6.1.3. Similarly
the expectation value of an operator B is considered as

15y e (1)) -

"~ nfon (8))
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The partition function is defined as [1]
2= [ 46, (nlexp -8 - it 6. (6.46)

As the variable changes to imaginary, i.e., moving from real to complex plane,

T — it, a periodicity arises to conserve the charge density N.

i.e., the Hamiltonian density changes from H — H — uN . Therefore, we skip to the
basic formula [1]

7 = /dw /pemdic d¢exp [/OB dT/d3x (iwgf —H+ MN)] : (6.47)

Here ¢, = ¢(z,0) = ¢(z, ). Thus the Feynmann diagram in thermal ¢* theory can
be defined as

1. Draw all diagrams that are connected

2. Find the weight factor for each diagram

a3 1
3. For each line give the factor T Z / @ Z; , where wy, = 2mnT
n

)3 w2 + p? + m?
4. For each vertex associate a factor —\

5. For each vertex associate a factor (2m)38(Pincoming — Poutgoing)Swi wous- L RIS
delta function usage is to preserve energy-momentum conservation. At the
end, a factor (2m)336(0) = BV will remain.

For comparison of thermal and non-thermal QFT, the difference can be written as
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Characteristics QFT ¢* ITF ¢*
Weight factor Same/Identical Same/Identical
Vertex factor —A —-A

Line factor

Conservation

1

/ dip
@) P2+ m?

(27‘-)464 ( incoming

Poutgoing)

TZ/ w2+p + m?

n=—oo

(277-)3653 (pincoming - poutgoing)(swin,wout
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6.2 Running coupling constant in ¢* theory

S

Running Coupling constant

Beta function

a—

Renormalized Lagrangian
and RGE Parameters

am

MS Scheme

Counter terms

Divergent terms

Regularization of diagrams

L One Particle Irreducible Diagrams J

Feynman Diagrams ‘

{ Quartic interaction Lagrangian ‘

The coupling constant in the ¢* theory affects the quasiparticle model we employ in
the work. Therefore, a temperature-dependent coupling constant must be derived
in order to complete the model.

The typical procedure for determining the coupling constant involves defining
the Lagrangian, selecting the appropriate order of approximation, writing down irre-
ducible diagrams, and regularizing such diagrams and noting the divergences. Later
inorder to remove the divergence and makes the theory in order, counter terms are
derived which cancels the diverging terms of the Feynman diagrams. Renormal-
ization group equations (RGE) are utilised to renormalize the Lagrangian. Several
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RGE parameters were derived for it. Beta function is one of them. The coupling
constant can be obtained by solving the beta function.

6.2.1 Dimensional Regularization of Feynmann diagram’s
in non thermal ¢* theory

We use the dimensional regularization method [2, 3, 4], which successfully regularizes
the non-Abelian gauge theory while maintaining symmetries. The minimal subtrac-
tion scheme (MS scheme) follows after regularization and in which it corresponds
to the cancellation of pole terms (™", n > 1) using the counter-term method [5].
The vertex function, which is formed by the Feynmann diagrams, has divergences.
When appropriate counter terms are added, the divergence terms get removed, and
it becomes the proper vertex function [6, 7, 8, 9]. In the next stage, the corre-
sponding renormalized group equation (RGE) is applied to the finite proper vertex
function of the imaginary time formalism. Those diagrams which have a subscript
QFT corresponds to non-themal ¢* QFT diagram. The diagram which has an ITF
subscript corresponds with the diagrams of the thermal ¢* theory of the imaginary
time formalism.

6.2.2 Examples of Dimensional Regularization
6.2.2. (a) One loop two-point function diagram

Consider the simple tadpole diagram and the integral expression

- Oam] = [ (5 ) o (6.49)

P2+m?) (2r)

It is very clear from the equation itself that the integral is diverging. d*P is propor-
tional to P3, thus the integral in Eq. (6.48) is divergent itself. Because the integrand
has an effective power of 3—2 = 1. But in order to pinpoint the diverging terms, the
method of regularization can be used. For that, certain re-arrangements are done.
The dimension of integral equation is changed from 4 to NV

datp avp
6.49
@M NS (2m)N (6.49)
The coupling constant changed with a coefficient of mass scale, i.e.,
A — gus (6.50)
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So

. 1 aNp . 1 1 mN/2pN
9K 2 2 N~ 9K 2 2 x d N
P2 +m? ) (2) P2 +m? ) (27) r(3+1)

N dimensional
volume

(6.51)

_ _gue e} 2PN—1
= ] X o Jo P2 rm? dP
(4m) (7)

e}

Using L = [° exp(—tz)dt

€ 1 dNp B —gue oo poo N1 (o , m2
—gp /<p2+m2> (2m)N (47r)1;]1“(1§)/0 /0 [QP e p( t(P* + ))]dt dP
(6.52)

Integrating with respect to P, we get

o 1 NP g *r(5)
gu /<P2+m2> (27'I')N - (471_)%1_\(%) X/O g eXp( tm )dt

t
et T(EHT(O-5) (6.53)
mEr(3) (' |
—gut T(1-3)

(47)2 (m2)'"2

Now putting back N — 4 — ¢, we get

N —gue T(1=-X
Lt _gue/< 1 )dP_Lt gn T (1-3)

N—4—e P? +m? (27T)N  Nod—e (47T)% (m2)1_§
_ zym® (4mp’ gr (5 . 1)
1672 m?2 2

I‘(n—|—1+e){1+62 [7: —w’(n+1)} +(9(e4)}

(6.54)

(=D"

The expansion of I' (—n + €) =

(n!)? e
n—1 1 n—1 1
with ¢(n) = —y + > 7=v(1)+) 7 Thus
=1 =1
’ 2
F(1+€):{1+¢(2)+6|:1+w§2) 1/)(22) :|}+O(62) (6.55)
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Therefore Eq. (6.54) becomes

1 AP —gm? [4mp2\?
Lt — g/f/ U R (f - 1)
N—d—e P2+m?2) 2m)N 1672 \ m? 2

(6.56)
fg; L 4 $(2) +In (4;“ >+0( )]
Therefore
[{ )\}QQFT} = 162 [ +1(2) + (4;?;2) +(9(€)] (6.57)

We define a pole picking operator X which can pick out the diverging terms. i.e.,

K (QQFT> _gm’1 (6.58)

872 €

6.2.2. (b) One loop four-point function diagram

The simple four-point function diagram [10] of first order is

I = {)\2}>O<QFT - )\2/ (‘;f); <P2 im2> <(P+K1)2+m2> (6.59)

Now, following the dimensional regularization procedure, the integral can be re-
written as

= () g = Nlifef”ze/ (iljr;; <P2 i m2> ((P + K1)2 - m2> (6.:60)

Using gamma function properties

1 oo [e.e]
v :/0 /0 exp (—tX —uY) dt du

1:/ 0(q—t—wu)dg
0

: /OO/OO/OO

oo = exp (—tX —uY)d(q —t —u) dt du dg

w- | ] e Yola—t )
Puttingt:qa&u:qb (6.61)

XY /// g% exp ( ‘IXJFbY])é(l_qa_b)dadb

://Mdadb
1

/0 [aX + (1 —a)Y]?
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Combining Eq. (6.61) with Eq. (6.60) becomes

(
I, = g° /éip <p2_|1_m2> <(P+K1)2 2)

QQue 1 )
(27 )N/o da/ m?2 + [aP? 4+ (1 —a)(P + K)2)2 a¥p (6.62)
= g;)‘;/ da/texp t(m? + [aP? + (1 — a)(P + K)?))) dVP dt

The N dimensional integral can be converted into N rectangular coordinates, So

= 05 [ao [Tt tesp (-om?) H/ exp (~t [B2 + 2P, (1 a) + K,2(1 - a)])

1 )
g K 2
27T)N/0 da ; dt texp (—tm?) H/ exp P + K,(1—a)) —l—Kfa(l—a)DdPM
g
2m)N Jo 0

1 00 00
W
= 2m) / da dt texp (—t(m? + K?a(1 — a))) 1:[ /oo exp (—tPﬁ) dp,
N/2

:]

1 9
QMN/ da i dt texp (—t(m* + K?a(1 — a))) [tN/2]

1 1 re-=x%
292/«L€ N/ da ( 2) <
2 Jo [ 2

o
)

SN—

(e}

(47) m? + K2a(1 — a)*~
(6.63)
Therefore
2 1 4 2 EF €
Lt I= -9 / Um0 (3) (6.64)
N—d—e 1672 [m? + K2a(1 —a)]?

Now as shown in Example 1, using Digamma function the result can be written as

(2 Ky = 9 e 2{ + (1) + /Oldaln [KQG(147_T‘5)+m2]+0(6)} (6.65)

The diverging term of the above diagram is
2
1
K <>O<QFT> _ 9 (6.66)

The results of diagrams of Non-thermal ¢* theory are well known [10]

&QFT _—m’g’ { 4 ) +v(E) 41n< m’? > +0(60)] (6.67)

(4m)t | e € 47
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So

K ﬁm S ) RSOSSN 41n< m’ )} (6.68)

(4m)t | €2 € 472

'S

Further diagrams results can be found in standard textbooks [10]. We are not going
to reproduce the same results, but in the upcoming section we will try to find the
corresponding results for thermal ¢* theory.
For calculation easiness proper vertex function is used in some calculations. The
proper vertex function is defined as
n n
PR, K, = —/ S G (@@B) . Go(@R) (6.60)
(2) (27)
. The examples of two- and four-point vertex functions can be found in the com-
ing sections. The procedure for deriving the coupling constant in ¢* theory for
Lagrangians can be written down as shown below [10].

6.2.3 Procedures for deriving coupling constant upto
two loop order in non-thermal ¢* theory

1. Define the Lagrangian density
1 A
L= (0,004 — m*¢?] — Eqb‘l (6.70)

2. Write down the Feynmann diagrams for two and four-point functions up to
two loop order

@ = (1O 1& -~
r _ _ (= N -
qrr = (—aqrr) <2 QFT> 1 QFT + ¢ T | 671)

One loop

Two loop

3 [ 3 3>@<
FS%T = _><QFT - <2 >Q<QFT) -3 QFT + ZmQFT + 3 QFT

One loop

Two loop

(6.72)

3. Use the regularization method to pick out the diverging terms and write
down the counter-terms. Make the proper vertex function finite by adding
the counter terms. The operator K can be used as a pole finding operator.
The results for the non-thermal ¢* theory can be taken from Kleinert [10], as
shown below
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Two-point function

One loop Counter terms

The finite two-point proper vertex function can be written as
o =T2 - K (1?)

(6.73)
= (7)(511:T — {;QQFT + %QFT + +QFT} + (’)(92)

where the counter terms are

(a)

1 g 1
%QFT = —mQC}nz = —§’C <QQFT> = —m2 (471')2 ; (674)

~K?cj = —6—qrr =0 (6.75)

6.2.3. (a) Two loop Counter terms

The finite proper vertex function for two-point function at two loop approxi-
mation is

~ 1
Fg%‘T — (7)*1 _ <2QQFT + %QFT + —GfQFT)

- i&QFT + ;QQFT - (é%QFT + ;QQFT)

+0(g%)
(6.76)

with * being an operator that substitutes the appropriate counter term —m?c,,,2

or —ufgcy, the new counter terms in the two loop approximation being
H-gCq

(6.77)




QQFT = (—#696;) QQFT <_1>

gue

PO (arr) (21)

gue

(6.78)

| W

Four-point function
6.2.3. (b) One loop Counter terms

The finite four-point proper vertex function up to one loop order can be written
as

~ 3
Fg%T == (XQFT T3 >O<QFT + xQFT) +0(g%) (6.79)
with the counter term
3 3g 1
:( = —ufgct = = >Q< — — € _ .
QrT = —Hgey = =5 K QFT A rme (6.80)

6.2.3. (c) Two loop Counter terms

The finite four-point proper vertex function up to two loop order is

~ 3
r®—=_ {><QFT + 5 >O<QFT + xQFT}

_ {3 éQFT + ZmQFT + z;>@<QFT} (6.81)
_ {3 >O(QFT +3 >€§<QFT} +0(g")

The counter terms are

O3 ()| om0

Similarly
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(b

K

)
>€§<QFT =K [—g/f (—;8?’12>O<QFT) (;;17) (_;K [QQFTD]

e (5Cx
= _§IC ( QFT,kownk)

(6.83)

4. Find the renormalization constants via diagrammatic expansion as shown

Zy(gie ) =1+ gl {3IC <>O<QFT> 43K (@QFT> }

pe | 2

o {30 (O0m) 3 () } s

gue | 4

+ = {3/c <>C(QFT> 43K <>@QFT> }

gH

So from standard textbook result of QFT [10] the analytical value of the
calculation is,

_ 3 g° 9 3
Zy(ge ) =1+-2_2 5-° :
g(g:¢7) + (4m)% € + (4m)4 <62 6) (6:85)
and
1 1 1 & 1
L2 = 1+W §IC <QQFT) + ZK QFT | + EIC <%QFT,K2=0>
1 1 1
(6.86)
the analytical solution of Eq. (6.86) from [10] is
B 1 ¢ (2 1
Z D14 L o :
m2(g,€ ) + ) e + an)i <€2 2€> (6.87)
Finally
11
Zy =1+ ﬁé’c <%QFT> ’m2:0,k0:wnk
— 1t (6.58)
9L
(4m)4 12¢
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5. From the relation between Renormalization Group Equation (RGE) and proper
vertex function

d ~
r™ (m, g, T, 1) =0
) | (6.89)
8 0 0 1~ '
= —— mmo— | T T, p) ~
+B( ) g nr}/( )+’7 mam (mag, 7/‘6) TLAO
where
dg
=B(g
i) ~ " (6.90)
dIn(m) () :
The renormalization constants can be derived [10] as
Y(9) = —Zyp1 = —ecy
_1g 1g
"9 = 5z " 3y T (6.91)
32 6g°
Blg) = —eg+ g — 2+ 4g7(9)

(4m)?  (4m)*

6.3 Dimensional Regularization in Thermal ¢*
Theory

6.3.1 Omne loop two-point function: The Tadpole Dia-
gram

The Tadpole diagram in Imaginary Time Formalism (ITF) is defined as

QITF_—ATZ/ 2+m2+w2 ——)\TZ/E2+W2 - (6.92)
with w, = 27mnT.
The summation
The summation can be done using the formula [11]
Z f(n)=— Z Res [7f(z) cot(nz)]
LT * o (6.93)
Z (-1 ZRGS 7 f(2)cse(mz)]
n=-—oo Z=Zk
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where zj, is the pole values of f(z).
In order to solve Eq. (6.92) we have to do the summation

oo 1 oo
P e Al D) (6.94)
Here
1 1 1 1
_ _ L _ 6.95
/) 224+ a?  2ia L’— ia 2+ ia] (6.:95)

So simple poles are at z = +ia. Thus the summation can be evaluated as

(e 9]

Z R +a2 = ZRes 7 f(2z) cot(mz)]

__Res[ﬂ%[ S I

2ia |z—1ia z+1ia (6.96)
= —ﬁ [cot(wz) T cot(mz) Z_ia]
= gcoth(ﬂa)
Defining np(x) = xp(a) — 1 and using Eq. (6.96)
TnZOO w2 +e3 2; i anffgp) (%90

Here we can re write

1:/Ooldpo (6.98)

2p  Jooo DG+ e 2

where 512) = p? + m?, with p = [ps,py,pz], So as pointed out by [12], these two
diagrams can be connected like (combining Eq. (6.98) and Eq. (6.97))

/T i 1 dp _ / 1 d3*p dpo N / np(Bep) dp
S wh ey (2m)? P2+ p? +m? (2m)3 (2n) ep  (2m)

(6.99)
/ dip +/”B(r85p) d’p
P2+m2 Ep (277)3
where P = [po, Dz, Dy, P-]

On comparing the tadpole diagram in both QFTand I'TFwe have

O gpr = -» / ( 1 > dip (6.100)

P2+ m?) (2m)?
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and

O = -2 TZ/<w2 +€l> ;Zg (6.101)

combining Egs. (6.99) to (6.101)

{_)‘}QITF = {_)‘}QQFT — AS1(m, T) (6.102)
| - |

where

[e.e]

_ ”B(ﬁ%)ﬂ _ l m ném
Si(m,T) _/(%)3 = an::l <2mﬁ> K1 (nfm) (6.103)

€p

Where K (n,x) is the Modified Bessel function of second kind. The braces {\} used
to denote the power of the integral in terms of A and doesn’t mean the multiplication
purpose.

6.3.2 Four-point function at one loop order

1
I%I}“) = >Q<ITF = \? 2 2 2 2
Wy, T €p Why—n, T Ep—r

d3p > 1 1
= \2 T
/ (2m)3 Z_:OO (w%p + 6%) (w%p+n, +e; )

Np

(6.104)

The summation of the integrand in Eq. (6.104) can be derived using Eq. (6.93) as

. 1
T Z (wg +82> (wz +62> = [t1(p, g, nr) + t2(p, g, nr) + t2(q, p, )]

np=—00 Np ="y q

(6.105)

with

1 1
t e 6.106
1) 0—2;:1 (45p5q> ((Ep+€q+iaw”r>) ( |

1 1
an) = 5 (1) Geam o) =) (6.107

o,01==*1

and Eq. (6.104) for A = 1, becomes

3 3
(4,1) _ d’p d’q 353
IITF - / (271')3 (27’(‘)3 [tl(pa q, nq) + 752(177 q, nq) + tQ(Q7p’ Tl,q)] (27’[') ) (p +q+ T)
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(6.108)

Using the fact that p <+ ¢ doesn’t alter the integral in Eq. (6.108) gives

(4,1)
Lirp

-/

(gjrl))?) ((gijrq):% [t1(ps g 1r) + 2t2(p, g, )] (27)°8%(p+ g +7)  (6.109)

One can use the result that

& 1 1 qu dp()
0 n
-1 T 1 1 1 1 dpo d
- G ) ()] [( =) - ()| dmr w2
Ep€q J—oo L\ D0 — 1&p po + iep qo — igq qo + igq 27 2w
i /°° (.t (Lt LY _ (1t gilpor+ao-+n, )1 4P0 dao A
depeq J oo L\ D0 — igp po +iep qo — igq qo + igq 2w 27 2m
-1 < » dl
= e, /_OO _27rie_€f'lt9(l) —|—27Tie€pl0(—l)} [27rie_€‘1l9(l) —|—27Tie€ql€(—l)] e“""’"lw
: OO[_(“re)z (ep+ea)l won,l A1
= e~ (Ertealg(l) + elertea 9(—1)] gionl =
45p5q oo 2m
() Z [ el
depeg o= 0
1 1 1
B (277) (45p5q> 021 <5p &g+ if’wnr>
(6.110)
Thus, we can write
> 1 1 dgo dpo
= 5 n
(6.111)
Now
d3p d3
/ tl(]?a%nr) (27‘()353(]3—}—614-7’) pg 3
(2m)* (2m) (6.112)
1 1 4ol d*pP d*Q '
= 2 P
[ (o) (i) Lot @s G s
with
P = [po, p]
Q = [q0,4] (6.113)
R = [wy, 7]




So

9~ (i) () oo m 2

d3p d3 np(Bep) (277)353(p+ q+r)
* Z / )3 < 25p5qp > (Ulap—l—sq—i-iawnr) (6.114)

o,01==*1
g Y [ -
QFT O’O'lzi]_ 2epEptr <015p + Eptr t 10Wnr) (2m)3

ie.,

/ &p i 1 1 B / 1 1 a*p
(2m)3 - w%p + 522, w%pfn + 512,774 - P2 4+ m? (P—R)2+m?) (2n)*
np=—00 r

T S L
o,01==%1 2epEptr \O1Ep + Eppr + 1owny, (277)3

In terms of diagrammatic representation, the equation can be expressed as

PO = 2P g, Ro=swn,

np /Bep 1 d3p
+ 22 / < | ) N
o'glz:il 25p5p+r O1€p + Ep+tr + iowy, (277)3 (6 5)

2P g = 2P COKgpr Ry + N2W (1)

Now let us look at the nature of integral

d®p ([ 2np(Bey) [r? + 2prcosf + w? |
W (r,n,) = P n 6.116
(r,ny) / (2m)3 < Ep > [(rQ + 2prcosf + w? )? + 4612,w,%r] ( )

2
Ny

W(T,nr)m:o:/(dgp <2n3(’85p)) <( 2pr cos ) (6.117)

2m)3 Ep 2pr cos )% + 4e2w?

when we apply the limit R? = w? + 72 = 0 Then integral becomes

Taking integration of angular coordinate we get

p2dp 2np(Bep) /1 2pr cos 0
42 g [(2pr cos 0)? + 4e2w? |

W(r,nr)Rzzoz/ dcosf (6.118)

2pr cos 0
2pr cos 0)%+4e2w2

From result from standard textbook [10]

Y Oarn = 25 (2w + [ dwtos [ ™)+ 000)

Since i is an odd function w.r.t cosf, the integral becomes zero.
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(6.119)

Thus

{9’ }>Q<ITF =

) ( +y(1) + /Old:clog [Rzm(;{uf)_i_mz])‘l%ozwm

+ gQW(h )
(6.120)
The result can be thus obtained as
X Kire = X K grr gomen, + (01 W (q,79) (6.121)
with
2np(Bep) (7“2 + 2pr cos 6 + w%T) d3p (6.122)

W) = [
Ep [(72 + 2pr cos 0 + w%T)2 + 45]27(,()&} (27)?

6.3.3 Two-point two loop order diagrams

The integral expression of {2 }& in QFT is

{V}gimTv/<l>[< 1 )Fdﬁawg

P? + m? P? +m? (2m)* (2m)4
/ d4P1 N I / 1 d'p
P2+ m?2 (2 om? PZ +m?2 (2m)*

(10 ) (s O )

(6.123)

The same kind of arrangements of diagrams is also applicable in ITF thus the
corresponding diagram in ITF is

Np1=—00 Np2=—00

1 d3p d3p
- (AT/ Z npl—l-e (27r)13> ( om? { )\T/ Z wp +€ (27r)13]>

Np1=—00 Np1=—00
(6.124)

2
1 d3p; d3
{Vgi [ Y% <n1 >[<n2+s>]<ﬁ;@£;
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Now

{/\2}&1@ = <{_>\}QITF> <—822{—)\}QITF>
= (QQFT — AS1(m, T)) <—8 [QQFT - )\Sl(mj)])

om? (6.125)
= O g < QQFT> + 2281 (m. T)S(m. )
__:;Sb@n,yy[£:>QFT]4-A51@n,7983ﬂ<:)QFT
So
{AQ}&ITF = {Az}&QFT + i‘jbﬁ(m, T)So(m.T) 6 196)
—%So(m, T) [{—A}QQFT} +>\Sl(m,T)%{—A}QQFT
where
Sy(m,T) = (i) i (2:;/8>N Ky (nmp) (6.127)

Using the results from [10] and from Section 6.3.1 we can write

0
&ITF —&QFT - 75’0 m T QQFT] + gSl (m,T)WQQFT

+ismﬂ%mﬂ
(6.128)
with
D [Aoa (2122 tn(25) o
(6.129)
[QQFT] = (7272_)92 [i +4(2) +1n (4;’;2” +O(e) (6.130)
aan [QQFT} - ﬁ [i + (1) +1In (4;’;2” +O(e) (6.131)



6.3.4 Sunset/Sunrise Diagram

The next important two-point two loop diagram can be written as

182 =~ e
_ 22 / i 1 1 1 d’p dq
Np,Ng=—00 w%p + 6127 w%q + Eg w%pJanJrnr + EngquT (27T)3 (2’”)3

> 1 (2m)3 Bp+qg+r+s) [d3Q
_ )\2T2/
Z (w%p + E%) (w%q + E%) < w%p+nq+m + &2 H (2m)3

Np,Ng=—00 Q:p7q7s

—

6.132)

d3Q dBp d3q d3s > = >
ith = = .
vk 11 &)~ e, 2 = 3 3
=p,q,s Np,Ng=—00 Np=—00 Ng=—00

The summation result using Eq. (6.93) is

00 [e%e) 1 1 1
T =51+ 52+ 53
"pg—:oo nq;OO (wgl’ T 612’) (w%q + 53) <w2p+nq+nr + 6%)

(6.133)

1 1
S =
1 <8€p€q€r> <U;1 <5p +éegter+ iowy, ))

S = < ! ) ( ns(Bey) np(8e,) )
8EpEqgEr it} O18p + €¢g +&r + 10wy,  €p+o018¢ +Er + iowy,

(o). 2. e )
8EpEqEr o1 \Ep + &g+ 018 + iowy,

G — < 1 > ( np(Beq)np(Ber) n np(Bep)np(Beq) >
o 86p6q€T 0,01,09=%1

Ep + 016q + 026r + 10wy, 018p + 028¢ + &4 + 10wy,
n < 1 > Z ( ”B(ﬁfp)”B(ﬁc?r:) >
8EpEgEr 01Ep + €¢ + 028, + 10wy,

o,01,00==+1

(6.134)
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We can use the relation that

IZ/ (ZPOn - b) dpor dpoz dpo3 .. dpom H [(po Lo )]
n pon

= H / exp 1lp0n dpon exp(— 1lb) dl
00 pOn + Ep(]n 2m
77

= [ TL[ e, 00 + sz, -1 exinn o

—00 1 6\pOn m

< dl T = =
:/ —exp(ibl) | =m— |exp —lZaPOn 0(1) + exp lZaPOn 6(—1)

—00 27 Hn=1 €pon n=1 n=1

1 " 1
B (271-) (H:Ln:lEpOn> O'Z:tl (ZTL 1 Ep()n + 10b>

Using the relation Eq. (6.135) the sum of certain terms can be written as an integral
equation as

= (ae) 2, (Gomresam)
b 8cqeper ) 5, \Ep + &g+ &r + 10wy,

1 1 1 dpo dgo dro
- 2m)d(po+qo + 10 + 5 SO0
/(p3+€%> <Q§+sg) (r8+s%>( JoE0 +do + 7o + s0) comun, 27 27 27

dl

(6.135)

(6.136)
(o _ () ( 1 )
2 8epeqer =, \O16p + ¢+ & + 10wy,
np(Bep) / 1 < 1 > dpo dro
= 2716 (po + qo + 1o + s0)| _ _ —
g;l 2¢ey @ + g2 r3 + &2 pSOOZ—i‘*:Tnl;Z ] 2r 27
(6.137)

Sép) is the first term of S in Eq. (6.134). Replacing p by ¢ and p by r gives the
second and third term of Sy respectively.

gp) _ np(Bep)np(Beq) Z 1
3 8EpEqgEr O1Ep + 098¢ + € + 10wy,

o,01,00==*1

6.138
_ np(Bep)np(Pey) Z / 2md(po + qo + 7o + s0) dgo ( )
depe, it q3 + €2 ’Zs‘go_%g; o
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Sép) is the first term of S in Eq. (6.134). Replacing p by ¢ and p by r gives the
second and third term of S5 respectively.

One can evaluate the integral result by combining Egs. (6.132) and (6.136) to (6.138)
and including the symmetry in the Dirac delta function as

I = IEQF% +12+13 (6.139)
where
2.2
I(Q % = %QFT
4 4 4
:AQ/ 1 1 LY (amyist() AP '@ 'R
P24+ m? ) \Q*+m?) \ R? +m? (2m)* (2m)% (2m)4
(6.140)

with S = [wp,, 5] and 6*(...) = 0%(P+Q + R+ 9).

Ip = A2 / (%p s =S / (2m)"3" . (Q2+m2) <R2+m2)(2w>4(2w>4

o1==+1
d3p 3n €
:/(27:)) Bﬂp > e ((P+57)
o1==%1
(6.141)
with
P = [i01€ ,ﬁ]
S = w4 (6.142)
= [wn,,,
and
d*p 1 1
XK (K2) = A2 / 6.143
QrT(K7) (2m)* <P2—|—m2> <(P—I—K)2—|—m2> ( )
. 22) .
The third term of I%TF) is
I :/\2/ d3p d3q 3nB(,3€p)nB(B£q) Z / (27) 454 d4R
K (27)3 (27)3 ety L) R +m2 (2m)2
’ (6.144)
_)\2/ d3p d3q 3nB(B5p)nB(55q) Z [ ]
- 3 3 .
(27T) (27‘r) 45p5q el
with
1
(o _—
iorep + i098g +wn,)? + (P + 7+ 5)2 +m?
( ' ; * ( ) (6.145)

S.)=6"(P+Q+R+S)
P =lioiep,pl, Q =[io2eq,q], S = |wn,,5]
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(However, when wy,, = 0 and s # 0, integral I is not analytical [13] for some external
momenta s.)
We use {}, to denote the order of coupling factor. So

0 e =02 e

d*p 3np(Bep) 2 (X (6.146)
(P I
+f 2 O e (P87 s

Now by taking the corresponding result from [10] and Eq. (6.59), when A — gu€, we
can write

N /R d3p 3n €
rr =\ QFT Ko=wn, T / P E;(fp)Z@QFT(P—i—SF

2r)? .
122) (6.147)
Iz
+13
where
2 2 2 2
- 5 m 6 S o m~ 63 dmp
QFTko=wn, = 9 gy (@* 2m26> I myi e [ (1) +log | <
+0O(e)
(6.148)

with 2 = w%k + 52
Similarly

{g°n} Z X Kqer(P+ 9)

2 (/ drlos [[(iaep + wny )2+ gfs)?]x(l — )+ mD

= W (2 +o) + 000

(6.149)

Now combining the result we can write it as in the case of pole term. i.e.,

( ITF) < QFT,kownk> +351(m,T) K (>O<QFT>
= (gQFT kg_wnk> +381(m,T) ig’C <QQFT>

(6.150)
om
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when wp,k = 0 and s # 0 integral I3 is not analytical for some external momenta s
[13]. Similarly when external momentum S = 0 the whole result can be written as

%ITF,S:O :%QFT,Szo +381(m, T) K (>Q<QFT)

I
2 € 1 4 2
+351(m,T) g M2 (w(l) —/ log(1 —$+x2)dm+log< 77;/; >>
0

Iz

3g°m? [ [
o /O /0 U(x)U(y)G(z,y) dz dy
Ty
(6.151)
with
_ sinh(x)
Ulz) = exp (fmcosh(x)) — 1
1+ 2cosh(z —y) 1 — 2cosh(z + y)
=1

1
/ log(l—:z—i—a:z)dx:\/?r—Q
0

6.3.5 Four-point function at two loop order: Diagram 1

One of the two loop order four-point function is >OQ< . The expression of the
diagram in non-thermal QFT in terms of integral and diagrammatic representation
[10] is

Ogr == (3) e [ 22 (2 L)
REE N O ot \(P—K)2+m2) \ P2+ m2
) (6.153)
1
-~ (3) [P
The corresponding diagram’s thermal form is
SOCX 1 P d?p 1 1
r = — | 7 | [AT /
<)\> i np;w (2m)3 (eik + w%pnk> (6]2, + w%p)
IN T 2
. (Q >©<}
Using the results from Section 6.3.2,

= (1) POarr + 2w
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(6.154)

with

Wrn)= Y /”B(BEP)< ! ) p (6.155)

vy ) 26pEpir \O16p + Gppr + 10wy, (2m)3
Then
><><><ITF ZmQFT,kO:wM —2gW (r,n;) |:>O<QFT,I§00J"T:|
(6.156)
- 93W2 (Tv nr‘)
If we take the results from [10], we can write
2
g 4 4
mQFT,kQ:wM =— gy )t (62 + 6¢(1))

(6.157)

2 1 2
e 9 4 A 0
— - dzl
gk (4m)t e /0 vioe {sz(l —z)+ mQ} +0(<)

and K2 = w%T + k2.
From Section 6.3.2,

X Kaer = (g::); (i (1) + /01 dz log [K%(f?jf) - m2] + O(@) (6.158)

6.3.6 Four-point function at two loop order: Diagram 2

The next four-point, two loop order diagram >®< in non-thermal ¢* theory is

=0 O [ 88 () (s | i ()
4 2 3
[ () oo o () o] [ o ()

~ [0z (0P O%en) | [E-0-Clrn

20m?

(6.159)
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Similar diagram in ITF can be written as

00 d3 1 1
{—A3}>®<ITF = -\ ; / (2771))3 (62_k +w; ) <(612> *“’%p)2>

Np—"nk

: 2 / ( +w%q)

Ng=—00

(1 9 Z / d3p 1 AT
B 2)om? — | @ \e twr | E+uwl
—AT Z / (62 + w2 )

) aan({:}@m)} (9.0 ]
3) oz (03P Olarr 422w )]
L

X )\}QQFT — )\Sl (m, T):|

§
§

(6.160)
On solving, we get
Si(m,T) 0
>®<ITF :>®<QFT,k0:wnk + 91(2)82 [@QFT}
( ) m : ) (6.161)
g% 0 W (k, ny 351(m,T) 0O
?W [QQFT] +9 Tww(k’nk)

Using [10] and the results from Sections 6.3.1 and 6.3.2, we can write

>®<QFT,/Ic0=wnk = —gu‘ g 2 {/01 dx (K2 WZQ(l — ) + (’)(e)] (6.162)

(4m)% e z(1l —z) + m?)

and K2 = w%k + k2,

g [ awr] =585 [ (=) (6169

{QQFT] B m2)9 [ +9(2) +1n (4,7;@2)] +0(e) (6.164)

(4m)?
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6.3.7 Four-point function at two loop order: Diagram 3

The next diagram on the list is

GITF = Z /<w%_i3€]23> (w;jsg) (W%—:Jr 5?«) (sz(—Qei)nGTSg) Q I [(

n,0=— =p,q,7,

(6.165)

where 66 = 3(F+ 5 — k1 — ko) (5 + G — p — ka), Z = Z Z and
n,0=—o0 n=-—00 f=—0c0

H [d3Q _ dp diq & d3s
( (

Opams 2m)3 | (2m)3 (2m)3 (2m)3 (2m)3

The corresponding expression in non-thermal QFT is

St ) (25 (552) 1L, 5

Q=P,Q,R,S
(6.166)
with 08(...) = 6*(R+ P — K; — K3)0*(S+Q — P — K3).
As we follow the summation method using the idea of residue, we get
1 1 1
T2
nZ_:MZ (oﬂ + 52> (wg + 53) <w%_a + a%) (W%—G-H? + 5§>
1 1 1
— 72 (6.167)
n_Z_OOOZ (w2 + 52> (wg + sg> (wﬁ_a + E%) (Wq%—em T 53)
_ T+ T3+ T2
16epereqes
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1 1
Uzil <5T +eéep— iawa> <€p +egtes+ iaw7,>

T82 -
1
+ -
azi:l <5T +ep+ mwa> <57« +eqt+es+ wwn_m)
_|_

1 1
Uzil <5T +egtes+ iawa+n> <6p +egtes+ iawn>

T2 = to1 + tog + tog + tog + tos + tog + tor + tog
Ty = t31 + t3g + t3z + t3g + t35

1 1
far = Z (s,« + o1(gp — iawa)> <6q + &5+ 02(gp + iawn)> ns(fep)

0,01,00=%1

1 1
tog = - - n €
22 Z <5p +o1(er + wwa)> <5q +ées + oa(er + zawn+a)> 5(Ber)

0,01,09=%1

1 1
taz = - - n €
2 Umz_ﬂ (63 —|—€,~+025q+w(wn+a)> <€p+63+026q+20wn) 5(Beq)

m= % ) (5o, =iy ) ot
24 = - np(Be
s \Ertept iowa ) \&p + €5 + 02eq — lowy, 4
m= % >( ) 0
25 = : npg(Be
oot Er +€p + 10wy Er + €5+ 028¢ +10Wy1a a
1
tog = ( > < . > np(Be
Z:: 1 \Eq +&r + 025 +iownia ) \&p + g + 0285 + oWy, (Bes)
1
tor = €
27 Z: 1<6T+5p+wwa> <6p+5q+0255—i0wn>n3(5 s)
1
tog = n €
% Z:: (an e+ wwa> <5r + e+ ooes + z’awn+a> B(fes)
= Y < ng(Bep) ) < np(Beq) )
o1 cmat1 \ET + o1(ep — iowy) €s + 02eq + 03(ep + iowWy)
m= 3 ( o) ) (___ete) )
oron er +o1(ep —iowy) gq + 02es + 03(ep + iowWy)
= Y < nB (Ber) ) < np(Bes) >
o1 comat1 \Ep T 01 (er +iowa) ) \ &g+ 02es + 03(er + i0Wy1a)
tay = Z < TZB ﬁer > ( nB(ng) )
o1 camat1 \EP +o1(ep —iowy) €5+ 02eq + 03(er — i0Wy1a)
fas = 3 < np(Bes) > < np(Beq) )
3 Ep + 0285 + 0164 + ToWy, er + 03(02e5 + 0164 + i0Wy1a)

0,01,09,03==%1

with 144
np(z) = (e* —1)7!
g=1/T



One can rewrite the summation as integral as shown below

th (1 / 1 1 1 62 I ao
16cpc4qer  \ A2 pitep) \rg+et) \ag+e;) \sg+ei/

=P0,70,90,50

(6.168)

with 62 = 6(ro+po —wa) 8(so+qo—po—wy) and [ dQ = dpo dro dgo dso.

Q=p0,70,90,50

t21 nB(Bap) / 1 1 (52
16epeqeres 2 4rey rg+e2) \qi+¢e2 ) \s§+e? 7o ddo dsolpo—io,

o==+1
(6.169)

too nB(ﬁE,») / 1 1 ( 52 >
= dpo dgo dso
16epe46rEs Ugl dmre, pg+et ) \q5+e2) \s§+e2 ro=—ioer

(6.170)

to3 + to4 + t25 np(Be,) 1 1 5
- Z 2, 2 2, 2 52| dpo dro dso
16epeqeres dme, Pyt & ry + €z 8§+ €5

o==1 qo=10¢q
(6.171)
tos +tor +t2s _ Z np(Bes) / 1 ( 1 > 62 dpo dro dgo
16epe4eres e, e pg+et ) \rg+e2) \ ¢ +¢e2 so=ioes
(6.172)

oy ) (1 ) dro dso
16epeqeres 2ep 24 r3 +e2 2 + &2 po=—io3sep,

o1,03==*1 qo=—101¢q

(6.173)

po=*i03€p,
SQ=—101€s

(6.174)

Gy et [(L 1) ") dao
6epegeres | 5= 25 2es rg+e2) \ qf + €2
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ts3 np(Ber) np(Bes) 1 52
Toyeres ~ 22 2, 2 = ) == | o dm
p=q=T=s p s PoTé&p qp t+ €5

o1,03=%1

ro=—103&r,
SQg=—101€s

(6.175)

t34 np(Ber) np(Bey) / 1 6
ot dsg d
16epeqeres Z 2er 2eq Py +ep ) \sg+ei w0 o

o1,03==%1

ro=—1i03¢&r,
qo=—101&q

(6.176)

_tw oy mslBe) ns(Bey) / ! ) dro dpo
16epeqeres 2es 2e4 pi+ep ) \rg+e?

o1,03=%1

SQ=—103¢€s,
qo=—i01€q

(6.177)

The summation result can be connected with the integral equations as shown
below.

t dB3r d3s d%p d3q
L= [ — 22— (2m)%° - 1
P /165p5q5r58( ) (2m)3 (27)3 (2m)3 (27)3 (6.178)

By combining Egs. (6.169) and (6.178) by omitting A for a moment, one can express

I / to1 @ )666 dBr d3s dPp diq
217 ) 16epe4e0es (27)3 (2m)3 (2m)3 (2m)3

_/d3p np(Bep) Z/( (27 8) 5266 < 1 > H <d3QdQO)
(2m)3  2¢, rg+e2) \qf+e2 ) \s§+e? s @2 ) |pomios,

(6.179)

2m)3 (27)3 (27)3 2n 27w 2m

with H <d3Qon> _ (d37‘ d3q d3s dry dgo dso

Q=p,q,s
ie.,

[ & np(Bey) @0\ (8 [ Ploo=-ios, a0
121_/(2703 %, (;1/(7%%%) <s%+s§>< a% +e3 >>QI;IQS[<%)4]

(6.180)
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with 6662 = 68 = 4(R+ P — K1 — K3) 0*(S+Q — P — K3)

R={ro, 7]
P = [po ; ]5]
K1+ Ko = [wa CF 4 EQ] (6.181)
K3 = [wn : E;;}

Now Eq. (6.180) becomes

o d D nB 5 ’pof—zaap d4R d4Q d4S
1 _/ (2m)3 2sp (Z / R% + Q2+m2>(52+m2) 2m)t (2n) (2@4)

(6.182)
If we define
1 1 a‘p
J(K?) = /
P? + m? (P—K)2+m?) (2m)*
) . P (6.183)
-/ (P? +m2> <<P+K>2 +m2> (2m)’!
then integrating the variables R and Q will give
d3p np(Be
I21=/ p3 B2Bp ZIQ1PK
( €p Po=—10¢€p (6 184)
- / d*p np(Bep) J[(P + K3)?] .
(2m)3  2g, (P — K1 — K3)? + m? A
Po=—10¢€p
with
(1) 1 1 1 d*s
P K)=
Ly (P, K) <(P—K1 — K>)? +m2> / [((S—P—Kgﬁ —|—m2> <S2 +m? )| (2m)4
(6.185)
Similarly, combining Eqs. (6.170) and (6.178), one can express
d3r nB ﬁﬁr (1)
Ipo = Ly (R, K
> / (277)3 267“ Z:tl 22 ) ro=—1t0€r
) (6.186)
_/ d3r np(Be) Z J[(K1 4 Kz 4 K3 — R)?]
) @)’ 26 & | (R K1 - K)?+m?

with

Iél?) - <(R—K1 —1K2)2+m2)/|:<(S+R—K1—;(2—K3)2+m2> (SQim2>] ((;:?4
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(6.187)
Combining Egs. (6.171) and (6.178), we get

d3q np(Be,)
I I Ips = I
23 + 24 + o5 /( 57 2¢, Z

(6.188)

q():iUEq

with

? = () (o) ( 1
2 (R—Kl—K2)2+m2 R2 +m? (R+Q—K1—KQ—K3)2—|—m2

(6.189)
Similarly, combining Egs. (6.172) and (6.178),
d®s np(Bes) 3)
Iog + Io7 + Iog :/ P 2, Z I e (6.190)

o=+1

with

Ié3) :/<(R—K1 —1K2)2+m2) <R2—il—m2> ((R+S—K1—;(2—K3)2+m2> (

(6.191)
Combining Egs. (6.173) and (6.178),
_ [ &°p np(Bey) d’q np(Beg) 0
Is1 _/(Qw)za 2, (27)° 2¢, 123:11131 (P,Q, K) po=ioiep, (6.192)
01,03= qo=103¢&q

with

(1) B 1 1
I3/ (P, Q. K) = |:<(P_K1 _K2)2+m2> <(Q_P_K3)2+m2>] (6.193)
Also, Eqgs. (6.174) and (6.178), give

_ [ @®p np(Bey) dPs np(Bes) W

ts2 _/ (27) 2, (27)3 2, > L/(PSK) womine,,  (6:194)

01703:i1 PO=103Ep
Egs. (6.175) and (6.178), give
d3s np(Bes) d*r np(Be)

1 = s r I (1) K

33 /(27T)3 2¢, (2m)3 2, e 33" (S, R, )soziales, (6.195)
01,03= ro=103€r

with

1 1
(1) —
I3V (S, R, K) ((R—K1—K2)2+m2> ((S+R—K1—K2—K3)2+m2>
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(6.196)

Egs. (6.176) and (6.178) leads to

/ &p np(Be) d3q np(Bey)
2m)3  2¢  (2m)3 2

Isy =

> 1Y@ R, K)‘ (6.197)

q0=101&q
o1,03==%1 ’

ro=1t03Ey

Using Egs. (6.177) and (6.178), I35 becomes

I _/ d3s np(Bes) d3q np(feq)
B @) 26, (2m)3 2¢,

Z IZ(’)15)(Q7S7 K)Q0=i016q, (6.198)

o1,03==%1 s0=i03¢€s

0 _ L 1
I35 (@, 5, K) = ((S+Q—K3)2+m2> <(Q+S+K1+K2—K3)2+m2>
(6.199)

Combining Eqgs. (6.168) and (6.178), one can express the result as the same as
a corresponding QFT diagram @QFT with

I11

K+ Ky = [wa k4 722] (6.200)
K3 = [wn ) Es} |

Now if we look at the integral, we can find one thing: the first three terms
of the integral (I11,Io1, Iz9) diverge, and the rest becomes a finite one. The sum
of the rest of the terms (Igg + Iog + Ios + - - - + I35) can be written as the sum
of finite terms (2Ip; + 2Ipg + 2l pg + Ipy) with

d*R
(27T)4 qo=10¢cq

(6.201)

d’q np(Pey)
Iy = 23 L(R-K,—K —K,—K,—K
- /(271-)3 2€q Z (R 1 Q,R, R“FQ 1 2 3)

ngz/(dgp np(fe,) d’q np(fe,

) qo=103€
G(P — Ky — Ky, Q — P — I)| 2175
213 2, (2m)3  2¢, Z ( ! 20 3

Po=101€p
o1,03=%1

(6.202)

149



d38 d37" HB(BES)TLB(ﬁST> (1) .
I = 1 R, K TU:?U3€r
s / (27T)3 (27()3 4ege, Z F3( ’ )|so—w1ss (6203)

o1,03==%1
with
Igg(RaK):G(R_Kl—KZ,S‘i‘R_[Q—KQ—Kg) (6.204)

d3q dSS n Bgs n Bé sp=1i03€
Im_/( B(Bes)np(Bey) SIS, QK= (6.205)

2m)3 (2m)3 dese,

o1,03==%1
with

I0(S,0,K) = G(S +Q — K3,Q + S+ K1 + Ky — ) (6.206)
where

L(A,B,C) = (Azinﬂ) <BQn1Lm2) (C’?—lka) (6.207)
and

G(A, B) = ( ! > < ! ) (6.208)

A2+ m2 B2 + m?
If we define the pole finding operator K, then by the structure, we can write
@ ITF = @ QrT +la1 + oo + 2(Ip1 + Ir2 + Ip3) + Iry (6.209)

———

I11

{_)\3}@ITF {—Ag}@QFT,kozwnk
_ ()\/ d3p np(Bep) K [{)\2} Z >Q<(P + K3) +>O<(—P + K1+ K9 + K3) powgp])

K =K

(27‘(‘)3 2517 —t1 (P — K — K2)2 + m?

We rewrite

/ deosd 3 ((P 7 +m2> B / deost 3, <<p Y <w; ) +m2)

1 2 2_2 2
B / Jeosd (k pk cos 6 + wy)

i (k% — 2pk cos 0 + w2)? + delw?
_/1 Jeosd 2 (k? + 2pk cos 0 + w?)
) (k2 4 2pk cos 0 + w?2)? + deiw?
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d*p 2 42 0+ w;
W(T,nr):/ p 2nplPey) T AATCOSO L, gy
(2m) ep  (r?+2preost + w2 )? + dew?
We know that from Eq. (6.65)
2, €
gue (2
K (W) = 2 6.211
art) = 225 (2 (6:211)

and

([ ] 5[O

. d®p 2ng(Be,) (k? + 2pk cos 0 + w?) >O<
B (/ (2m)® e, (K24 2pkcosf +w?2)? + 4512)ng ( QFT)

So the pole term relation can be written as

K {@*m} —K [@QF%F%J g W (i, )K <>Q<QFT) (6.212)

where
2 2
K {GQFT} = gy’ (4g7r)46—2 (1 + % te ¢(1)>
5 1 5 B 5 (6.213)
e 9 2/ dxln{(KﬁLKﬁ (1 $)+m}
" (4m)* € Jo Amp?

6.4 Counter terms in Thermal ¢* theory

6.4.1 Counter term 1

From [10], the counter term for divergence for the four-point function derived
1s

3
):QFT = —;fgc; = —§IC <>Q<QFT> (6214)
The corresponding diagram in imaginary time formalism is

3
g = —/LEQC; = —§’C (>O<ITF> (6.215)
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From the tadpole diagram result, one can find that the diverging term is
the same for the diagram in imaginary time formalism and non-thermal QFT;
thus, we can write

g = —glC <>O<QFT> (6.216)

3g 1

6.4.2 Counter term 2

From [10] Defining * operator the substitution of the counter term —m?c,,2 or

—pcgey, we can express counter terms as
ﬁQFT = QQFT * —%IC [QQFT} (6217)
o (72 D) () ([ O

We have from tadpole diagram result the relation

K [@ITF} — K [QQFT] (6.218)

So, for ITF, the corresponding derivation is

QITF = QITF * —%’C [QQFT] (6.219)
[ qen]

[ —0 O
=~ 9K <W ITF) —29M6

= o (5 Qe = 13 (L) (1 [ O ]

m 2gpu°
S0
o g SO(maT)
QITF = QQFT + ET’C [QQFT]
C2mPgt 1 (1) 1 m? 0 g*m2So(m,T) 1
~ (4n)d L_Q % %hl <47T,u2) 0l )} N (47)3 €
(6.220)
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6.4.3 Counter term 3

From [10], the calculation proceeds as

L = (Do) (1) (woe)

/~’L€
-1 3
_ (QQFT> (guf) (—§IC [>Q<QFT]> (6.221)
the corresponding diagram made with results from Sections 6.3.1 and 6.3.2 is
-1 3
QITF = QITF (—6> (——IC |:>Q<ITF]) (6.222)
gp 2
-1 3
= <QQFT — g/fSl(m, T)) (glue) (—51(: |:>Q<ITF:|)

= QQFT - ;Sl (m, THK (>O<ITF)
— QQFT — ;Sl (m, T)K <>Q<QFT)

_mPg? [1 9((2) 1 m?
~ (4n)d |:€_2 T T %hl <47T,u2) * 0(60)}

315? S1(m, T)
(47)? €

6.4.4 Counter term 4

From [10], the diagram evaluated is

] =k P@QFT ; _g/c ()

QFT} (6.223)

QFT
Using the results of Section 6.3.2 corresponding diagram in [TF can be written
as
[ 3
K [>C(} = 1 PR % -2 (>Q<> ] (6.224)
ITF i 2 ITF
- kPO + 2 ) e (5Cx)
L QFT ko=wn, 2 ITF
—/c'>C(} W) 29
! QFT ko=uwn, " )2 e
with
€.3 1 1 2 K2 1 —
©pOK SV (O O MY R T £
QFTko=wn,  (4m)* | €2 € € Jo A7 142
(6.225)
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where K? = k> + w;,

6.4.5 Counter term 5

From [10], one can derive the diagram as

oy '@QFT] (6.226)
-k :AX;/ (<P2 . mi> <<p e ﬁm> (Zw];d 4(;m20’1*‘2) (g,i)}l
i Py / 1((13; T m2>) <<P Ry m2 e (7 m2) (g_/f)}
=0 (= (3) g ) (5y) (- (3) £ [ Par])|
26 T/1\ [1 1 m?g (1
[ () ] (6 )
1

>®<QFTJ€0 =Wwny, ]

(6.227)

The corresponding counter term in imaginary time formalism can be written

as = _@ITF] (6.228)
R |
(6.229
() Ot 220 2 ()
(i) + (2) () [ O
(6.230)
-~ (1) (Oxm)
It can be also derived using * operation [10] i.e,
K [@m] —K {>®<ITF ¥ — (%) K [QITFH (6.231)

154



6.5 Renormalization MS Scheme

6.5.1 Omne and Two loop Calculation
6.5.1. (a) Two-point function one loop calculation

We have to find the counter term for first order g, and if we follow the [10] as
the reference text, then the finite proper vertex function is

Jrr — (%QITF +—X—+—o—+ (9(92)) (6.232)

where —<— represents contribution of mass counter term, and —e— repre-
sents field contribution.

1
% = —m2071n2 = —§IC (QITF
from Sec.(6.3.1)

_ —%IC (QQFT) (6.233)
1

N——

The counter term that is proportional to K? in first order is zero, so
—K?cy =—6—=0 (6.234)

Thus the renormalized proper vertex function, which is finite at € — 0,

f(2)(k) = ( ity — <%QITF — %/C (QITF> + 0(92))
= ( ity — <%QQFT — %/C (QQFT) - gsl(“% T)+ 0(92))
(6.235)

6.5.1. (b) Four-point function one loop

Similar to two-point function, the corresponding four-point finite proper vertex
function can be derived as

r®—=_ <>< + g >Q<ITF + xITF) + O(g%) (6.236)
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3 6.237

= =5k (am) o
. 39 1
=Xt = 19y

6.5.1. (c) Two loop calculation

Finite two-point function up to two loop order for ITF can be written as
1
B ()t - (§QITF PRV +)
8.0
— 11 ITF + §@ITF (6.238)
1 69 1

- (6 ITF + EQITF) +0(g°)

As per Section 6.3.3, the diagram in ITF can be expanded as

L (8.) (8 1
Z,C ITF = ZIC QFT — %S@(TH,T) —,C [Q

4 QFT]

(6.239)

3D 0 e (O o)

4 om
As per Section 6.3.4,

éIC (%ITF) = é/C (QQFT,kO:wnJ + %Sl(m’T) K <>Q<QFT>

| , 5 (6.240)
- () 5 2 (O
As per Section 6.4.2,
1 1 S T
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From Section 6.4.3,
%QITF = EQQFT — §Sl(m, T) IC <>Q<QFT)
1QQFT — —Sl m T) 8 ’C (QQFT>

om?

(6.242)

6.5.1. (d) Two loop renormalization two-point functions

It is interesting that the sum of pole terms in the above diagrams in I'TF is
the same as that of Non-thermal QFT up to two loop orders for two-point
functions.

ie.,

1 1 1 1 1
S=K EQITF + 1 ITF + BQITF + §@ITF + §QITF

1 1 1 1 1
=K §QQFT + 1 QFT + G O QF T ko + §QQFT + §QQFT

=Wn,

(6.243)
All other terms cancel with each other. So from [10]
2 2 som?2  m? K2
¢ 5 - §—_ | 9 m 9 —— —— )| (6.244
* (4m)? € * (4m)* 2 2¢ 12 ( )

with K? = w? +k:2 K2

ie., In ITF, 1f we follow the textbook procedure [10], then the counter terms
are the same as those of QFT, with ky = +w,,,. When K? = 0, both ITF and
QFT will be in the same form. Now if we extract polynomials with coefficients
m? and K2, then one can write ([10])

w2 (ks + 24) = m? {(4;";)2% + (497:)4 (632 - Qie)} (6.245)

For field renormalization, we have to consider the term proportional to K2,

2

g 1
K2 = _/c <%QFT> o ko, = — K e (6.246)
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6.5.1. () Two loop Renormalization of four-point function

= <>< + g >Q<ITF + xITF)
Ot 25
— (3 @ + Z>QQ<ITF + B TF + 3 @ITF +3 >€§<ITF)

—O(g")
(6.247)

From counter terms section, one can verify the above results with complete
derivation. Taking those results now we can write from Section 6.3.7

3IC <QITF) = ?)K: (éQFT,kozwn,k) -3 g W(’f‘, TLT) ’C (>O<QFT>
(6.248)
similarly Section 6.3.5 gives
ZIC (WITF) = ZIC (WQFT&O:MJ — g g Wir,n,) K (>Q<QFT>
(6.249)

and Section 6.3.6 gives

glc (@ITF> = ;/C <>6<QFT,k0:wnk) - S_QQM K [QQFT]

4 om?
(6.250)

From Section 6.4.4,
31 (e ) = 31 (XX qpn o, =0 ) + g g Wirn,) K (X ae)
(6.251)

From Section 6.4.5,

3K (@m> = 3K <@QFTJ§OW> 2 (M) Kk [QQFT]

4 om?
(6.252)
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Thus one can write

1

Zy(g, ) =1+
I g

e
/g?
|
=5
N—
+
(U%)
')
/&
|
=5
N———
+
~] w
e
/é
=
=S|
—,

=

H
o5
N——
_I_
W
=

H
NG
_l’_
w
=
5 i
H
g5
N——

@

=

(L}
I 1T 1T 1T 1
Ol NIW W N w

= =
QOE
9 O
= 3
v\_/
_|_
& 8
= "
@Q Po)
= 5]
= =
~—
o+
% w
I'®)
=S|
H
N—
El
||
z

gps
=1+g¢,
Thus referring from [10],

3g 1 g° 9 3
-1 z J 2
* (4m)2 e i (4m)* (62 e)

(6.253)

Similarly, from Eq. (6.243) and Sections 6.3.1, 6.5.1. (c) and 6.5.1. (d)

Imz =1+ % %/C (QITF> + ;l/C &ITF + é’c <%ITF,K2:O>
+ LQ 1/C (QITF> + EIC (QITF>
m? | 2 2
=1+ LZ %’C (QQFT> + %/C &QFT + é/C <%QFT,I§2:O>
() ()
=14 c,2
From [10],

(6.254)
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From Section 6.5.1. (d) and Eq. (6.246),

11
Z¢ =1+ -—-K (%QFT) ’m2=0,k0=wnk

K?6
=1+cy
Thus from [10]
g 1
(47)* 12¢

6.6 Renormalization constants

We have from [10],

Blg) = —eg + éi; - (iiyl +4g7(9)

6.6.1 Case 1: K #0
In this case, as per Eq. (6.88)

2 2
@ K21
) Gl . ——
T TUni 12 €

So, Eqs. (6.256) to (6.258) becomes

g 1
1l g 5 ¢?
Ml9) = 5 4 T 12 ()
_ . 3> 17¢°
Blg) = —eg + G2 3(ny

6.6.2 Case 2: K =0
Now Egs. (6.256) to (6.258) changes because of

K2C¢ =0

160

(6.255)

(6.256)

(6.257)

(6.258)

(6.259)

(6.260)
(6.261)

(6.262)

(6.263)



So,

1(g9) =0 (6.264)
1y 1 g
(9 = 3 )~ 2 ) (626
39> 6¢°
Blg) = —eg + (47{)2 - ﬁ (6.266)
6.6.3 Relation
We can relate them as
g 1
Y(9k=0 = V(9)kz0 — anin 0 (6.267)
2
’ym(g>k:0 - Vm(g)k;éo - (45;_)4 E (6268>
1 3
B9)i=0 = Blg)rro — 5 ( 4‘(; i (6.269)

6.7 Same Mass scale and Coupling (SMC) ap-
proximation

In the following section, we introduce a new scheme, in which the coupling
constant and mass scale for thermal and non-thermal ¢* theory considered to
be equal and same. The one to one correspondence with the RGE parameters
and renormalization constants has lead us to this scheme of approximation.
The similarity between the underlying mathematical structure also supports
such a scheme. The details can be found in the upcoming sections.

1. Up to two loop order, we have seen that any two-point, one-loop I'TF
diagram can be expressed as a combination of a QFT diagram with
thermal factors.

2. The same is true for the two loop approximation, where one component of
the external momenta of QFT is approximated with those of the thermal
one.

3. Even though the same kind of diagram in two different formalisms (ITF
and QFT at ko = wy, ), is different, the renormalization constants
(Zm2, Zg, ...Cm2, ¢4) are in the same form.
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4. Thus, if we make the assumption that QFT and I'TF at external momen-
tum zero have the same coupling constant and mass scale, then one can
write,

FRITF _ FQFT | paif (6.270)

where T =T0@ _ (F(Q))

5. Thus any renormalization group equation which is true for both ITF, and
QFT, will also be true for their differences (I = [ITF _ [2)QFT)

6. Thus if we assume that the Callan Symanzik Equation is true for ITF
and QFT for the same mass scale and coupling (since both have the same
renormalization constants), then in that particular case

™ (m, g, T, 1) =0

d(In )
0 0 0 |~ (6.271)
— = i N T 1) ~

{u o + 6(9) 99 ny(g) + Ymm 8m1 (m,9,T, 1) =ppa 0

0 0
[u— +B(9)7- —2v(9) + vmm%} Lo (my g, T, 1) ~rpa 0 (6.272)

0 |~
_m] Fg“)F (m,g,T,p) =74 0 (6.273)

Subtracting Eq. (6.272) from Eq. (6.273) we get

0 0 0 :
g 0005 = 22(0) 4 | P 01,9, ) ora O 6270

dg ~ 2 3
Tin(n) B(9) = B29” + Bsg
dIn(m(u)) (6.275)

VR s 2
1001 Ym(9) & Vmi G + VYma9
Y(9) = 129

Subscript TLA means two loop approximation.
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We have already shown that both ITF and QFT have the same structure
renormalization constants, so we can approximate both having the same
B(g),7(g) and v,,(g) under same mass scale and same coupling (SMC)
assumption as given in Section 6.6.2

21
Y(9)k=0 = 7(9)1#0 - _<4g7r)4§ =0
2 1 1 1 g2
Y (9) jeo = ”Ym(g)k;éo - 57)4 T (4i>2 3 (497)4 (6.276)
1 3 3 2 6 3
B@ino = Bl = 3735 = ~9F [ ~ T

with
o= - [0 -k (O] (6.277)
_i &—IC &
5[ % ()

i.e., The two-point proper function is made finite by subtracting out the di-
verging terms, the mathematical compensation is done via renormalization
constants and 3(g),v(g), vm(g) functions. Let us define an operator

A(A) = Arrrlkwa, =0 = K (A17F) [kwn, =0 — Agrr[k k=0 + K (AQrr) ko k=0
(6.278)

diff
nk,k:()

where A represents the appropriate diagram. Since we defined I’

DOIE] ko — T@QFT] g we get

_pain L (Q) + %lA & SEYN (@) (6.279)

nk=0 — 9 6

From Sec.(6.3.1),

%A ((O) = ~28s,(m. 1) (6.280)
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From Sec.(6.3.3), we get

Ia & —9—25( T)S1(m,T)
~16n o\, 1\m,

4
s o en(TO)] B
: ﬁ;)”gl(m’ﬂ {@/)(1) +1n ( Wfﬂ

From Sec.(6.3.4), we get

2

L () =y s (ww () 2 T3> (628

2,2
g*m
+ 1 Y(m,T)
with
Y(m,T) / / G(z,y) dx dy (6.283)
sinh( )
Ulz) = exp (Smcosh(z)) — 1 (6:284)
B 1+ 2cosh(z —y) 1 — 2cosh(z + y)

Gla,y) =In (1 + 2cosh(z +y) 1 — 2cosh(z — y) (6.285)

Therefore on combining above results, we get

L P %% [wm +In (4;‘52)]
4(g )so(m,T)Sl(ijH%SO(m’T) {¢(2)+1n (4;52)}
g ) x

Y (m,T) — #Sl(m,T) [2 - ﬁ}

6474
(6.286)

6.8 Coupling constant calculation

The coupling constant derivation using RGE equations and I can be solved
as shown below.
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Re writing the function with coefficients of g,

with

Fif,gzo =gl + 92T2

a Fdiff_‘
Olnp mwk=0
0 :
]-—\dlﬂH —
Olnm k=0

1 m
Sw(m,T) = T Zl (27mﬁ

T

= %Sl(ma T)

=gl jnp+ QQTQ,IHM

ng,lnm + gQTQ,lnm

)NKN(nmﬁ)

T, =Vi(m,T) + Va(m,T) In(p)

Tl,lnu =0

Tl,lnm =

T2,ln,u = ‘/2(771, T)
T2,lnm = Vvl,lnm + ‘/2,lnm ln#

Vi(m,T)

Va(m, T)

‘/271nm =

_m?_
4(4m)3
. § Sl <m7 T)

So(m,T) {¢(2) +1In (

e o (5]

_ 1
4(4r)
- Sl (m, T)
3272

4m?2Sy(m, T)

So(m. T)Si(m, T) = ==

2

V3

]

- (2(47r)350(m’T) T T 2(4r)

3Sl (ma T)

miS_1(m,T)

(47)°

(4m)*
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Y(m,T)

)

(6.287)

(6.288)

(6.293)



2m?

Visn = 2 sy [ot) 10 (2]

m S_1(m,T) {w(Q) +1In (%)}

2(4m)?
6.294)
381 (m, T)  m25%(m,T) m? (
= S T)S5_ T
2 (4r)2 2amz T apprm S (m 1)
m?2Sy(m, T) V3T m? ( ) m* 9Y (m,T)
— —_—— S — m j—
(4)3 3 3274 ’ 327t Om?
Defining operator RGE as,
RGE = j-- + flg) — ny(g) + (6.295)
= = pu— ——n M= :
dlnp 'uﬁ,u g dg T e,
with
B(9) = Bog” + Bag®
1(9) = 19° (6.296)
Ym(9) = Y19 + Ym29”
In the two loop approximation,
]‘:T(}\E) Fdiﬁ (m7 g, T7 ,LL) NTLA 0. (6297)
The results can be expressed in terms of polynomial in g.
0 4
raf {2651} + ¢P {28 T% + 5T
B(g) 9 {2851} + g° {25215 + B5 T3} (6.298)

a_g nk,EZO -
+ ¢ {81}

0 .
m Fdlff“ =g* m T nm 3 m T nm m T nm
gl <g)8lnm oo =9 {rm2Tomm} + 9" {vmi Tomm + Ym2Tiamm} (6.299)

+ 92 {’leTl,lnm}

~2y(g)T0 ) = g {=27To} + ¢° {—27T1} (6.300)

(6.301)

0 i
Oln uri:fézo = 9" Doy + 9T m
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RGE Fif,;:o =" {2 (85 — 2) To + Ym2Tomm }
+g° {2851 + (Bs — 292) 11 + Vo1 Toimnm + Ym2 L1 imm
+ BT + Yo Tidam + Totnp} + 971 1mp

Applying the Eqs. (6.288) to (6.291) to the above equation, it is clear that
terms that have coefficient ¢, and g2 are zero.

— A(m,T)Inp+ B(m,T)
E T4 = = ’ 302
RG 0=y Cim,T)Inp+ D(m,T) (6.302)
and
A= [ ’le‘/anm - 252‘/2(777' T)]
C=2(p Vo + Ym2Vainm
[ ( 72> 2 Ym2 21 ] (6303)
B = (272 — B3)Th — 262Vi(m, T) — Ym1Vimnm — Ym2T 1 nm
- 2(53 - 72)‘/1 + 7m2‘/1,lnm
Combining beta coupling relation with mass scale as,
dg () 2 3
pu— . 4
dIn(p) B2g” + B3g (6.304)
give rise to the result,
1 1 53 < 52)
n(p) = ———dl = + = + +1In 6.305
2 / Baot? + B3t By B3 % g po )
The corresponding running mass and coupling relation is
dIn(m)
Combining with the above relation
0 In(m) dg 0 In(m)  vn(g)
o9 amG) "Y' T Ty T h (0:307
Solving by substituting
01 m m
n(m) _ Jmt & Ymzg (6.308)

o9 Bag+ Bsg?

m\ Tm1 Tm2  Tm1
In (%) X2 + El n(g) + (@ 3, ) In(B3 g + Be) (6.309)

The integral constants are In(ug), mo and y2. We have three equations con-
taining coupling constant g, running mass m, and mass scale pu. Therefore
solving Eqgs. (6.302), (6.305) and (6.309) simultaneously, we get temperature
dependent running mass and coupling constant.
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6.8.1 Coupling g Limit Case T — 0

Consider the limit case § — oo, i.e., T — 0 when m # 0. In order to find

the coupling nature of p at T" =~ 0, fm — oo, we have to find the rate of
convergence of A(m,T), B(m,T), C(m,T) and D(m,T) as T — 0, since

A(m,T)Inp+ B(m,T)

7= C(m,T)Inp+ D(m,T) (6.310)

Here

lim Sy(m,T) =0 (6.311)

Bm—oo

Because both the numerator and denominator of Eq. (6.310) contain Sx(m,T)
with varying N. The rate of convergence of the ratios is important. So

lim Sn+1(m,T)

312
Bm—o0 SN(’ITL T) =0 (6 J )

As N rises, the rate of Sy(m,T') convergence also grows. The convergence of
Y (m,T) can be derived as

Y (m,T) / / G(z,y) dz dy

sinh( )
Ulw) = lexp (Bm cosh(z)) — 1] (6.313)
B 1+ 2cosh(x —y) 2cosh(z +y) — 1 :
Glz,y) = In (1 + 2 cosh(z + y) 2cosh(x — y) — 1)
Sn(m,T) = %Z (225) Kn(jpm)

J=1

The limit of G(x,y) can be found from its logarithmic expression, which is
G(z,y) < 1In(3). So,

Y(m,T) < In(3) { /Ooo [exp(ﬂrzizl(?s(lf()m)) —1] dx} | (6.314)
< In(3) {%S;(m, T)} 2
Therefore
LY (6.315)

pm—oo S_1(m,T')
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Dividing both the numerator and denominator by S_;(m,T) in g gives

A(m,T) B(m,T)
S PP Sy (M)

lim ¢g= lim
Bm—o0 9= Bm—o0 C((m %) ln,u +

) (6.316)

-1(m,T)

where

i ey == (g @+ (57
lim M’T)) ~ = Y1 <_mi>

pm—oo S_1(m, T

Jim T (% W o (;LT)D

lim D(m,T) —m?
pmoseo S_y(m, T) "2\ ()

We have equations connecting p and g as

H /33 Bo
(2)- 55 (2)

Applying the result of Eq. (6.316) to the above equations, we get

. 2 Ym2 53 < Ym2B2 )
lim In( — | = — 6.319
Bm—ro0 (No) B2Ym1 52 % Ym1 ( )

The RHS of Eq. (6.319) changes to a complex number at the zero momentum
limit in this approximation. One can still make (7" ~ 0) a real number if we
choose pp in LHS appropriately (i.e., to a complex number or complex function
approximation at 1" ~ 0).

(6.317)

The relation between running mass m and coupling relation g at 7" — 0 is
approximated as

. m Tm1 —Ym1 Ym2 Tm1 Ym1Bs
lim In{— +—1In +(___) ln( — )

fm—roo (m0) i B2 ( Tm2 ) B3 B & Ym2
(6.320)

At this approximation, one can choose the running mass m(7 ~ 0) as real or
complex by intentionally choosing x, and In yy accordingly.
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6.8.2 Pressure P Limit Case T — 0

In Fig. 3, we have selected different values as Ty, Py, X2, In . All those results
show a similar trend. i.e., T"— 00, P — Plqeal, irrespective of the initial value.

The energy density of a quasiparticle with zero chemical potential, obey-
ing the relativistic Bose-Einstein distribution, can be derived from standard
statistical mechanics.

<5> / /p2 + m2 d3p
= 6.321
(exp(By/o7 + 2) — 1) 27)° (6.321)
1 [ p?y/p? + m?
<€> = 2 2 dp
™ Jo exp(ﬁwp2 +m2> -1
Put p = msinhz (6.322)
_omt [ [cosh(4z) — 1] da
~ 1672 J, [exp(Bmcosh(x)) — 1]
At T — 0,
i.e., fm — 0o, we have
m* [
lim (g) = 5 (cosh(4z) — 1) exp[—pm cosh(z)|dz
pm—sco 167 Jo (6.323)
4
m
= D (K(5m) — Kofpm)
We have
lim K(N,z) - 0.. lim (¢) =0 (6.324)
T—00 Bm—o0
The equation connecting pressure with energy is
T Te(T)
P(T)=—=F+T —=dT 6.325
1)= R T [ (6.325)

In Eq. (6.325) as T' — T, the integration part goes to zero. (Integral becomes
a zero width integral). So at T — Ty, P — Fy. P, can have negative or
positive or zero values depending upon the initial conditions we impose on it.
But in the plot of pressure vs. temperature we have shown that irrespective
of value of Py, the pressure goes to the ideal limit.
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In the case of the integrand e(T)/T? at zero temperature limit, assume
m#0,and T — 0 = [m — o0, according to Eq. (6.323),

ﬂliin (Bm)* Ky (Bm) — 0 (6.326)

Because the energy density at the temperature limits of zero achieves values
of zero. The value of pressure at a point can be made negative at some points
if one chooses F, as negative at appropriate Ty. In our case, we found that it
reaches the ideal value at a high-temperature limit, irrespective of the initial
value of F.

6.9 Quasiparticle Model

Combining these results with the quasiparticle model of Bannur [14, 15, 16],
we get an expression for energy density and pressure as

0= [ G s
m i {3}@(%) N Kl(%)}

(6.327)

4

“orgg 2 [0 (F) 5o ()]

n=1

with ¢, = \/p? + m?, and

T
5_&:/ (D), T) (6.328)
T T, J, T

6.10 Results and Discussion

In order to derive the equation of state for the quasiparticle model in ther-
mal ¢* theory, we need the running mass, which is a function of the coupling
constant and mass scale. In thermal and non thermal ¢* theory, the renor-
malization constants and coupling constant relations are not enough to derive
the thermal dependent coupling constant and running mass. So we introduce
a new scheme known as the same mass scale and coupling scheme, in which
thermal and non-thermal theory are combined on the basis of the same math-
ematical structure. In this work, each thermal diagram is written in terms of
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Figure 6.1: Two loop coupling constant results. ¢ against 7'/mg plotted with
varying values of integration constants In py and yo with my ~ 1

its corresponding non-thermal diagram, which has coefficients that are tem-
perature dependent.

Applying the Renormalization Group Equation simultaneously to the finite
proper vertex function in both non-thermal and thermal ¢* theory under SMC
[17] has produced a new coupling constant equation, as shown in Eq. (6.302).
This new equation, in addition to the already existing renormalization equa-
tions, is sufficient to produce the temperature dependent coupling constant and
running mass. This is achieved in this work by solving Eqgs. (6.302), (6.305)
and (6.309) simultaneously.

We have plotted the results in Figs. 6.1 to 6.4 with different integration
constants. The two loop coupling constant is plotted against the temperature
in Fig. 6.1. It is qualitatively in agreement with the predicted behaviour. i.e.,
as the temperature goes to infinity, the coupling constant goes to zero. The
running mass per temperature is plotted in Fig. 6.2, and it also goes to zero
as the temperature tends to infinity. In Fig. 6.3, the scaled pre%sure is plotted,

where the pressure is divided by an ideal pressure value of g—0T4. The ideal
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Figure 6.2: Two loop running mass results. The difference between the curves
is due to the different integration constants, as shown in the figure.

pressure value is the pressure value that corresponds to a free particle under the
Bose-Einstein distribution. It has been observed in Fig. 6.3 that, irrespective
of the initial value, the pressure reaches its ideal behaviour as the temperature
goes to infinity. The mass scale against the temperature is plotted in Fig. 6.4
for various integration constants.

When lattice data becomes available in the future, we hope to compare this

work with those lattice data. We hope the extension of this SMC model from
¢* to QCD might lead us to some new insights on new methods in the future.
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Figure 6.3: Pressure scaled by [g—;T4] against T'/mg, with varying values of

TOa POa In Ho, X2-
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Figure 6.4: -N% plotted against T'/mq with varying integration constants In(zy)
and yo with mg ~ 1
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Chapter 7

Summary and Future Plans

In Chapter 1, we have given a general introduction to quark-gluon plasma and
some phenemenological models. Phenemenological models are good tools for
predicting the equation of state of quark-gluon plasma. The phenemenological
models mentioned include the MIT Bag model, the relativistic harmonic oscil-
lator model, and quasiparticle models. The quasiparticle models [1, 2, 3, 4, 5]
approximate mass as a function of coupling constants, which are functions of
temperature. Many of the coupling constant-dependent models predict the
equation of state, which is in good agreement with the lattice data for the
temperature range T/T. > 1 [3, 4]. The relation between quasiparticle mass

and coupling constant can be approximated as

m*(T) = ¢*(T)T? = 4ma(T)T?

{1 ~ 3(153 — 19ny) n (2 In (T/AT))}
(33— 2n;) In (T/AT> (B3 =20, (T/AT)
(7.1)
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where At is the QCD scale factor. In many published works, At is represented

as a multiple of critical temperature T..

The coupling constants both in one loop and two loop order have factors of
In(T'/Ar). Thus, when T goes to Az or less than Az, the mass goes complex,
negative, or even towards divergence, depending on the value of T'/Ar.

In the magnetic field regime, the coupling constant still depends on In(7"/Ar)
and In((T? + |eB|)/A%). Thus, this makes the model deviate from the lattice
data for low values of T. So the coupling constant independent pheneomeno-
logical model has an upper hand in the regime of T'< Ar or T' = Ar.

In 1995, Vishnu Mayya Bannur combined the work of Balescu [6], which was
based on Mayer’s cluster expansion (MCE) for charged particles, with the
quark number density [7]. Using Cornell potential, Bannur successfully fitted
the derived equation of state with lattice data for T > T.. The model extended
by Udayanandan and Bannur [8] involves the gluon contribution to the EoS.

The model used Cornell potential for both quarks and gluons.

In Chapter 2, we describe Mayer’s cluster expansion for the lowest order step
by step. We also described how the correction factor works between distin-
guishable particle integrals and indistinguishable particle integrals with differ-
ent indistinguishable particle species. The equations of state corresponding to
pressure and energy density were also described. We have studied the statis-
tical mechanics and thermodynamics of interacting systems using the cluster

expansion method in both the presence and absence of a magnetic field.
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In Chapter 3, we introduced the modified liquid drop model in QGP. Fourier
transforms of central potential functions (i.e., polynomials in radial coordi-
nates) are studied. Previous published work on these topics involving MCE
is covered. Various integrals involved in the formulation of our model are
discussed. The poles in the integral equations are removed by introducing an
infinitesimal imaginary term in the integrand. The contour integration method
is used for this purpose. In the proposed modified liquid drop model, the ef-
fective terms in the potential are linear, volume, and Coulomb. The energy
density, pressure, entropy and number density is calculated for zero magnetic
field. It is found that the model does fit with the available lattice data for

certain parameters.

In Chapter 4, the liquid drop model extended to magnetic field environ-
ment. The idea of a harmonic oscillator is used with a magnetic vector poten-
tial, giving rise to modifications in the integral equation. A new integral table
with the modified integrating technique in the presence of a magnetic field is
also derived. The model was concentrated heavily on quarks in Chapter 4, and
we have shown that the data is in good agreement with the expected behavior

in both quantitative and qualitative terms.

In Chapter 5, we have used quasi particle model of VM Bannur [9] in
presence of magnetic field to study the behaviour of quarks with finite chemical
potential at zero temperature. We have taken a neutron star case in which,
due to high pressure at the core, the quarks became deconfined and resulted in

a quark star. Chapter is entirely different from Chapters 3 and 4. The QPM
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equations [9] are changed to accommodate the magnetic field effects. The EoS
results are compared with that of free particles.

In Chapter 6, the equation of state of the thermal and non-thermal ¢*
theories are discussed. We have developed a new method for resolving the
beta function pole problem in the RGE equation. The method is known as the
SMC method, where simultaneously the thermal and non-thermal quantum
field theory proper vertex functions up to two loop orders are solved by the
assumption of the same coupling and mass scale. This method works, and we
get a coupling constant and running mass that are in qualitative agreement

with the expected behaviour of the equation of state of ¢* theory.

7.1 Future Plan

It is important to study the transport coefficients of QGP in the presence of
a magnetic field to find the non-ideal behaviour of QGP in the presence of
external forces. Chapters 3 and 4 can be extended in this way to find the
transport coefficient by using Boltzmann transport equations for relativistic
particles.

In Chapter 5, the longitudinal pressure of quarks causes an asymmetry of pres-
sure in different directions. Thus, TOV cannot be applied to find the radius of
a quark star under the present QPM model. So we have to use an asymmetric

pressure equation for TOV to further explore the properties of QGP.

The method used in Chapter 3 and 4 works with a constant density at an

infinite volume. The density is constant only with respect to the volume, but

180



it can still be a function of temperature and magnetic field. If one uses the
above concept in the context of cosmology, i.e., the Big Bang, space-time, and
the idea of atoms of spacetime [10], one could possibly make the density of the
space-time particles a function of some parameters. The quasiparticle model
of Bannur [3] can also be rearranged to accommodate the idea of a spacetime

atom.

We hope the rules of statistical mechanics for atoms in spacetime can be
derived using these approaches. We will have to proceed towards accomplish-

ing these goals in the future.

The SMC method we introduced in Chapter 6, is qualitatively in good
agreement with the expected behaviour. Once lattice data is available, we
would like to compare our model with it. We hope the extension of this SMC

model from ¢* to QCD might lead us to some new insights into QGP.
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Recommendations

The study of matter in its diverse forms has played a profoundly significant
role throughout human history. Our comprehension of fundamental particles
has provided us with invaluable insights into the nature of the universe. While
it is impossible to journey back in time to gain direct knowledge about the
behavior of matter during different phases of the universe’s expansion, we can
leverage high-energy experimental findings and theoretical models based on

such experiments to investigate and simulate those specific periods.

In our study to examine the equation of state of quark gluon plasma, we
have devised a model that agrees with the equation of state obtained from
lattice data. The model, namely the modified liquid drop model developed
in this study, enable us to make predictions about the equation of state of
quark gluon plasma across a wide range of temperatures and magnetic fields.
Furthermore, the same mass and coupling method we have developed can be

extended for further applications across other domains of physics.
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