
Quasi Particle Models in Quark Gluon Plasma under
Magnetic field, Coulomb field and Color field

Thesis submitted to the University of Calicut
in partial fulfillment of the requirements

for the award of the degree of

Doctor of Philosophy in Physics
by

Arjun. K

Under the guidance of
Dr. A. M. Vinodkumar

Department of Physics
University of Calicut

Kerala 673635
India

November 2023











Publications

International Journals

1. K. Arjun, A. M. Vinodkumar, and Vishnu Mayya Bannur, Running
coupling constant in thermal ϕ4 theory up to two loop order
Phys. Rev. D 105, 025023 (2022)

2. P. Jisha, A. M. Vinodkumar, S. Sanila, K. Arjun, B. R. S. Babu, J.
Gehlot, S. Nath, N. Madhavan, Rohan Biswas, A. Parihari, A. Vinayak,
Amritraj Mahato, E. Prasad, and A. C. Visakh, Role of positive transfer
Q values in fusion cross sections for 18O+182,184,186W reactions
Phys. Rev. C 105, 054614 (2022).

3. K. Arjun, A. M. Vinodkumar, and Vishnu Mayya Bannur, Equation
of state of quark gluon plasma in the presence of magnetic field with a
modified liquid drop model (Submitted to The European Physical Jour-
nal C)



Papers Presented in Conferences

1. K. Arjun, A.M. Vinodkumar, and Vishnu Mayya Bannur, Running of
Coupling Constant in λϕ4 theory using Finite Temperature Field Theory,
XXIII DAE-BRNS High Energy Physics Symposium
(December 10-14, 2018) (IIT-Madras)

2. K. Arjun, A.M. Vinodkumar, and Vishnu Mayya Bannur, Two Loop
Order Running Coupling Constant in Toy Model Using Imaginary Time
Formalism, XXIV DAE-BRNS Symposium on High Energy Physics
(December 14-18, 2020) (Online, NISER, Odisha)

3. P. Jisha, A.M. Vinodkumar, S. Sanila,K. Arjun, B.R.S. Babu, J.Gehlot,
S. Nath, N. Madhavan, Biswas Rohan, A. Parihari, A. Vinayak, Mahato
Amritraj, A.C. Visakh, E. Prasad, Comparisons of evaporation residue
cross-section of 16O and 18O induced reactions on W isotopes
DAE Symp. Nucl. Phys. 65, 271 (2021).



Acknowledgements

First and foremost, I would like to express my sincere and deep sense of
gratitude to my thesis supervisor, Dr. A. M. Vinodkumar, a distinguished pro-
fessor in the Department of Physics at the University of Calicut. His invaluable
guidance and unwavering support throughout my PhD studies have been in-
strumental in shaping this work. Dr. Vinodkumar’s remarkable availability
and prompt responsiveness have been truly remarkable. Under his tutelage, I
have learned invaluable approaches to addressing scientific problems, and his
constant encouragement has been pivotal in completing this research. Working
under his guidance has been an exceptional pleasure and learning experience.

I am deeply indebted to Dr. Vishnu Mayya Bannur, our esteemed col-
laborator and my M.Sc. teacher at the Department of Physics, University
of Calicut. Dr. Mayya’s profound influence and inspirational teachings have
ignited my passion for research in theoretical physics. Although retired now,
his wisdom and guidance continue to resonate in my work, and I am forever
grateful for the foundation he provided.

I extend my sincere thanks to Dr. C. D. Ravikumar, Professor and Head of
the Department of Physics at the University of Calicut, for providing me with
the necessary facilities throughout my Ph.D. studies. I am also grateful to all
the former Heads of the Department of Physics at the University of Calicut
for their support and for granting me access to the required resources to carry
out my research work.

I express my heartfelt gratitude to the esteemed faculty members and ded-
icated office staff of the Department of Physics, University of Calicut, whose
collective efforts have contributed significantly to my academic journey.

I would like to extend my thanks to my wonderful colleagues, Jinu. K. V,
Sanila. S, Irshad, and Jisha, for their caring and supportive presence through-
out this endeavor.

Furthermore, I would like to express my sincere appreciation to the Kerala
State Council for Science, Technology, and Environment (KSCSTE) for their
financial support in the form of a fellowship, which has been crucial to the
realization of this research.

i



Lastly, I am forever grateful to my family for their unwavering support
throughout this journey. I express my sincere thanks to my mother, Satheer-
atnam. M, whose unwavering belief in my abilities and her passion for math-
ematics from an early age have been the driving force behind my interest in
scientific pursuits.

This acknowledgment section is a tribute to all those who have played an
indispensable role in making this research possible, and for that, I am eternally
grateful.

Date: Arjun. K

ii



Contents

1 Introduction 1
1.1 Quasiparticles, Screening . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Quasiparticles . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.2 Plasma, Screening and Anti-Screening . . . . . . . . . . 1
1.1.3 Quark Gluon Plasma . . . . . . . . . . . . . . . . . . . . 3

1.2 Important phenomenological models . . . . . . . . . . . . . . . . 7
1.2.1 MIT Bag Model . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.2 Relativistic Harmonic Oscillator (RHO) Models . . . . . 10
1.2.3 Quasiparticle Model of QGP . . . . . . . . . . . . . . . . 11

1.3 Present study . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.4 Plan of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Mayer’s Cluster Expansion 17
2.1 Distinguishable particles . . . . . . . . . . . . . . . . . . . . . . 17

2.1.1 Distinguishable particles . . . . . . . . . . . . . . . . . . 19
2.1.2 Integrals and Diagrammatic representation . . . . . . . . 20
2.1.3 Free Energy Perturbation . . . . . . . . . . . . . . . . . 22
2.1.4 Pressure relation . . . . . . . . . . . . . . . . . . . . . . 26
2.1.5 Virial Coefficient . . . . . . . . . . . . . . . . . . . . . . 27
2.1.6 Fourier Integral in Three dimension . . . . . . . . . . . . 28
2.1.7 Evaluation of β̃n/V . . . . . . . . . . . . . . . . . . . . . 28
2.1.8 Evaluation at the lowest order . . . . . . . . . . . . . . . 29

2.2 Partition functions, Probability and Physics . . . . . . . . . . . 33
2.2.1 Permutation Rule . . . . . . . . . . . . . . . . . . . . . . 33
2.2.2 N same particles vs. N different particles . . . . . . . . . 33
2.2.3 N particles with two kinds . . . . . . . . . . . . . . . . . 34
2.2.4 N particles with m kinds . . . . . . . . . . . . . . . . . . 35

2.3 Particles of same kind (Indistinguishable) . . . . . . . . . . . . . 35
2.4 Particles of Two kinds with opposite charges . . . . . . . . . . . 36

2.4.1 The neutrality condition . . . . . . . . . . . . . . . . . . 37

iii



3 Modified Liquid Drop Model in QGP 42
3.1 QGP using MCE with central potential . . . . . . . . . . . . . . 42

3.1.1 Fourier transform of of polynomial function in radial co-
ordinate with inverse radial term . . . . . . . . . . . . . 43

3.1.2 Pressure cluster relation . . . . . . . . . . . . . . . . . . 44
3.1.3 Dealing with divergences . . . . . . . . . . . . . . . . . . 46

3.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.2.1 Potential of the form βc⟨ϕ⟩ = a1

s
. . . . . . . . . . . . . . 47

3.2.2 Potential of the form βc⟨ϕ⟩ = a1
s
+ a2

s2
. . . . . . . . . . . 48

3.2.3 Potential of the form βc⟨ϕ⟩ = a1
s
+ a2

s2
+ a3

s3
. . . . . . . . 50

3.3 Integral Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.3.1 Regularization via Contour integration method . . . . . 53
3.3.2 Regularization via Schwinger’s proper time representation 55
3.3.3 Generalizing . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.3.4 Circumventing The Poles . . . . . . . . . . . . . . . . . . 57
3.3.5 Some complex number summation results . . . . . . . . 61

3.4 SEMF and MLDM . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.4.1 Modified liquid drop model . . . . . . . . . . . . . . . . 63

3.5 Results and Conclusions . . . . . . . . . . . . . . . . . . . . . . 66

4 Equation of state under magnetic field for relativistic particle 72
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.2 Ideal free particle gas . . . . . . . . . . . . . . . . . . . . . . . . 75
4.3 MLDM under magnetic field . . . . . . . . . . . . . . . . . . . . 76
4.4 Integral table . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.4.1 Integrals in presence of Magnetic field . . . . . . . . . . . 78
4.4.2 Special Case . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.4.3 Renaming the formulae . . . . . . . . . . . . . . . . . . . 82

4.5 Results and conclusion . . . . . . . . . . . . . . . . . . . . . . . 84

5 Quark matter under magnetic field 88
5.1 Fermi Dirac Distribution . . . . . . . . . . . . . . . . . . . . . . 89
5.2 Quark matter under magnetic field . . . . . . . . . . . . . . . . 91
5.3 Integral table . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.4 Number density in presence of magnetic field . . . . . . . . . . . 94

5.4.1 Number density in presence of magnetic field for QPM
Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.4.2 Number density in presence of magnetic field for free-
particles . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.5 Energy density in presence of magnetic field . . . . . . . . . . . 97
5.5.1 Energy density in presence of magnetic field for QPM

Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

iv



5.5.2 Free particle energy density . . . . . . . . . . . . . . . . 100
5.6 Pressure in presence of magnetic field . . . . . . . . . . . . . . . 101

5.6.1 Free particle pressure . . . . . . . . . . . . . . . . . . . . 103
5.6.2 Pressure in presence of magnetic field for QPM model . . 103

5.7 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . 105

6 Quasiparticle model in thermal ϕ4 theory 110
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.1.1 Creation and Annihilation operator in quantum mechanics110
6.1.2 General description of QFT . . . . . . . . . . . . . . . . 111
6.1.3 Heisenberg picture and Action priciple . . . . . . . . . . 113
6.1.4 Green’s Function . . . . . . . . . . . . . . . . . . . . . . 114
6.1.5 Quartic interaction . . . . . . . . . . . . . . . . . . . . . 115
6.1.6 Thermal field theory : Imaginary Time Formalism . . . . 117

6.2 Running coupling constant in ϕ4 theory . . . . . . . . . . . . . . 120
6.2.1 Regularization non-thermal ϕ4 theory . . . . . . . . . . . 121
6.2.2 Examples of Dimensional Regularization . . . . . . . . . 121
6.2.3 Procedures for deriving coupling constant upto two loop

order in non-thermal ϕ4 theory . . . . . . . . . . . . . . 125
6.3 Regularization in Thermal ϕ4 Theory . . . . . . . . . . . . . . . 129

6.3.1 One loop two-point function: The Tadpole Diagram . . . 129
6.3.2 Four-point function at one loop order . . . . . . . . . . . 131
6.3.3 Two-point two loop order diagrams . . . . . . . . . . . . 134
6.3.4 Sunset/Sunrise Diagram . . . . . . . . . . . . . . . . . . 136
6.3.5 Four-point function at two loop order: Diagram 1 . . . . 140
6.3.6 Four-point function at two loop order: Diagram 2 . . . . 141
6.3.7 Four-point function at two loop order: Diagram 3 . . . . 143

6.4 Counter terms in Thermal ϕ4 theory . . . . . . . . . . . . . . . 151
6.4.1 Counter term 1 . . . . . . . . . . . . . . . . . . . . . . . 151
6.4.2 Counter term 2 . . . . . . . . . . . . . . . . . . . . . . . 152
6.4.3 Counter term 3 . . . . . . . . . . . . . . . . . . . . . . . 153
6.4.4 Counter term 4 . . . . . . . . . . . . . . . . . . . . . . . 153
6.4.5 Counter term 5 . . . . . . . . . . . . . . . . . . . . . . . 154

6.5 Renormalization MS Scheme . . . . . . . . . . . . . . . . . . . . 155
6.5.1 One and Two loop Calculation . . . . . . . . . . . . . . 155

6.6 Renormalization constants . . . . . . . . . . . . . . . . . . . . . 160
6.6.1 Case 1: K ̸= 0 . . . . . . . . . . . . . . . . . . . . . . . . 160
6.6.2 Case 2: K = 0 . . . . . . . . . . . . . . . . . . . . . . . . 160
6.6.3 Relation . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

6.7 Same Mass scale and Coupling (SMC) approximation . . . . . . 161
6.8 Coupling constant calculation . . . . . . . . . . . . . . . . . . . 164

v



6.8.1 Coupling g Limit Case T → 0 . . . . . . . . . . . . . . . 168
6.8.2 Pressure P Limit Case T → 0 . . . . . . . . . . . . . . . 170

6.9 Quasiparticle Model . . . . . . . . . . . . . . . . . . . . . . . . 171
6.10 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . 171

7 Summary and Future Plans 177
7.1 Future Plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

vi



List of Figures

1.1 The quarks within the bag exert kinetic pressure. As long as
the bag pressure B is greater than the kinetic pressure Pkin, the
bag holds the quarks. When bag pressure is overwhelmed by
the kinetic pressure Pkin of quarks, deconfinement occurs. . . . . 8

3.1 Energy density for 0, 2, 2+1, and 3 flavours is plotted. Lattice
data is taken from [10, 11]. The model parameters used to fit
the lattice data are given in Table 3.1. . . . . . . . . . . . . . . 69

3.2 Pressure scaled by T 4, for nf = 2, 2 + 1, 3 flavor QGP. Lattice
data is taken from [10, 11] . . . . . . . . . . . . . . . . . . . . . 70

3.3 Interaction measure I/T 4 = (ε− 3P ) /T 4, for nf = 2, 2 + 1, 3
flavor QGP. Lattice data is taken from [10, 11] . . . . . . . . . 70

4.1 In the absence of magnetic field, the momentum space (with
finite upper bound) is spherically symmetric. . . . . . . . . . . 74

4.2 Quantized energy states in the presence of magnetic field and
corresponding pz values under fermi distribution (with finite
upper bound). The equation involved here is p2z + 2nBqfe =
µ2 − m2 = 2nmaxBqfe + R where R < 2Bqfe, n is the level
number and is an integer, n ∈ [0, nmax]. The values are thus
discrete . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.3 Pressure for Lattice data by [3], Here Tc ≈ 113 MeV, geff ≈
20.1, qefff ≈ 1

23
, The radius factors rqq̄ are 0.986, 0.955 and 0.94

from bottom to top. The al factors are 4.735, 3.098 and 0.31
from bottom to top. The values of ac and av are 0.711 (Tc) and
15.76 (Tc), respectively. . . . . . . . . . . . . . . . . . . . . . . 83

4.4 Quark contribution of pressure with gqq̄ ≈ 64/3, al ≈ 9.389 and
rqq̄ ≈ 1.565. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.5 Quark contribution of energy density. . . . . . . . . . . . . . . 85
4.6 Quark contribution of entropy. . . . . . . . . . . . . . . . . . . 86
4.7 Quark contribution of Interaction Measure . Figs. 4.5 to 4.7 are

plotted for various values of |qeH| with gqq̄ ≈ 64/3, al ≈ 9.389
and rqq̄ ≈ 1.565. . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

vii



5.1 The scaled number density is plotted for higher chemical poten-
tial range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.2 The number density of quasi particles scaled with that of free
particles. The range of chemical potential is limited to 100 Λ to
show the effect of the magnetic field . . . . . . . . . . . . . . . . 98

5.3 The scaled energy density is plotted for higher chemical poten-
tial range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.4 The energy density of quasi particles scaled with that of free
particles. The range of chemical potential is limited to 100 Λ to
show the effect of the magnetic field . . . . . . . . . . . . . . . . 102

5.5 The scaled pressure density is plotted for higher chemical po-
tential range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.6 The pressure of quasi particles scaled with that of free particles.
The range of chemical potential is limited to 50 Λ to show the
effect of the magnetic field . . . . . . . . . . . . . . . . . . . . . 105

5.7 The pressure vs Energy of quasi particles is plotted. The range
of chemical potential is limited to 708-1100 Λ to show the ef-
fect of the magnetic field. Units of pressure is Λ4. One can
observe a kink in this figure, and there are two reasons for this
kink. Firstly, it is due to the initial condition we imposed to
derive the pressure, i.e., µ0 = 10. The kink’s position shifts
as we change this initial value, µ0. Secondly, the kink occurs
when the magnetic field and chemical potential values are in the
same order of magnitude. This is attributed to Landau quan-

tization applied here, making the ratio
⌊
µ2−m2(µ)
2|qf eB|

⌋
behave as a

step function. When this ratio surpasses a specific value, the
entire quantity increases significantly, leading to the observed
kink. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.8 Pressure vs Energy of quasi particles is plotted for higher chem-
ical potential range. . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.1 Two loop coupling constant results. g against T/m0 plotted
with varying values of integration constants lnµ0 and χ2 with
m0 ≈ 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

6.2 Two loop running mass results. The difference between the
curves is due to the different integration constants, as shown in
the figure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

6.3 Pressure scaled by
[
π2

90
T 4
]−1

against T/m0, with varying values

of T0, P0, lnµ0, χ2. . . . . . . . . . . . . . . . . . . . . . . . . . 174
6.4 µ

µ0
plotted against T/m0 with varying integration constants ln(µ0)

and χ2 with m0 ≈ 1 . . . . . . . . . . . . . . . . . . . . . . . . . 175

viii



List of Tables

2.1 The list of different clusters made up of 2, 3, and 4 particles. . . 23
2.2 (In continuation of Table 2.1). The diagrams shown in the Ta-

bles 2.1 and 2.2 with (neg.) denotes that such diagram con-
tributions are negligible compared to those of other diagrams
involving the integral [2]. An example can be seen in Eq. (2.19). 24

3.1 The parameters used in this table, when applied to Eqs. (3.108)
and (3.112) through Eq. (4.29), give us Figs. 3.1 to 3.3 . . . . . 66

ix



Acronyms and Abbreviations

QGP Quark Gluon Plasma

QFT Quantum Field Theory

QED Quantum Electro Dynamics

ITF Imaginary Time Formalism

MCE Mayer’s Cluster Expansion

EoS Equation of State

SEMF Semi-empirical mass formula

LHC Large Hadron Collider

RHIC Relativistic Heavy Ion Collider

Quasi particle Quasiparticle

x



Symbols

h Planck constant

ℏ Reduced Planck constant ( h
2π
)

T Temperature

kB Boltzmann constant

β (kBT )
−1

p,|p| Magnitude of momentum

p⃗ Momentum (Vector)

Ekin. Kinetic Energy

r⃗i Radial vector representing position of ith particle

U(rij) Pair potential of particles i and j having relative separation rij = |r⃗i − r⃗j|.

Kn(x) Modified Bessel function of second kind

xi



Preface

In recent years, equation of state of quark gluon plasma in the presence of
external magnetic field was investigated by many authors. Many of the phe-
nomenological models have successfully described the equation of state of quark
gluon plasma in the absence of a magnetic field. Some of these models have
shown remarkable agreement with lattice data. In these models, certain quasi-
particle phenomenological models have used coupling constants of QCD. Up to
two loop order, these coupling constants exhibit a logarithmic dependence on
temperature. When the temperature is below the critical temperature, some
models fail to explain the lattice data. In our work, we obtain the equation of
state of quark gluon plasma in the absence and presence of a magnetic field,
from temperature lower than the critical temperature, to higher temperature
range. Furthermore, our research introduces a novel method for determining
the coupling constant in ϕ4 theory.

The Chapters in the thesis can be classified into three. Chapter 2 to 4 is
based on Mayer’s cluster expansion. Chapter 5 is based on the quasiparticle
model of VM Bannur in the context of quark matter at zero temperature.
Chapter 6, is based on quantum field theory and thermal field theory.

In Chapter 1, we give a brief introduction to quark gluon plasma (QGP). In
Chapter 2, we provide a general overview of Mayer’s cluster expansion, which
forms the foundation for the equations utilized in Chapter 3 and Chapter 4. .

We draw inspiration from Bannur’s introduction of Mayer’s cluster expan-
sion to explain the equation of state (EoS) of the QGP. In Chapter 3, we
combined this approach with the mathematical tools from the dimensional
regularization method and developed a generalized formula for central poten-
tial of the polynomial form. Based on the famous semiempirical mass formula
of nuclear physics, we developed a modified liquid drop model. Chapter 3 has
focused on employing this modified liquid drop model to explain the equation
of state of QGP across a wide temperature range.

xii



In Chapter 4, we have extended the model to incorporate the influence of
magnetic fields. This allowed us to compare the magnetized quarks lattice
data with our model.

In Chapter 5 we use the quasiparticle model developed by VM Bannur to
determine the equation of state of a quark star in the presence of a magnetic
field at zero temperature. We compare the pressure, number and energy den-
sity ratios of quasi particles with that of free particles.

Furthermore, Chapter 6 introduces a new method, named as “Same Mass
Scale and Coupling” (SMC) method, for deriving coupling constants in ϕ4

theory. In this approach, the coupling constant and mass scale in both the
imaginary time formalism (ITF) and non-thermal quantum field theory (QFT)
are considered to be identical. By employing the conventional renormalization
method and applying renormalization group equations (RGE) simultaneously
to both ITF and QFT, we obtain the running mass and running coupling
constant. The running coupling constant and running mass values obtained
through SMC are in agreement with the expected behavior.

Finally, in Chapter 7, we outline our future plans and provide a compre-
hensive summary of the thesis.
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Chapter 1

Introduction

1.1 General description of quasiparticles, plasma

and screening

1.1.1 Quasiparticles

A quasiparticle is not an actual particle, like protons or electrons, but is more
like a mathematical model that approximates a whole phenomenon as contri-
butions from quasiparticles whose behaviour is represented by simple mathe-
matical equations.
For example, in semiconductor physics, a hole is actually the absence of an
electron. It is not a particle, but from a mathematical point of view, the
hole can be considered a quasiparticle having the opposite charge of an elec-
tron. In solid state physics, the term electron-quasiparticle is widely used; it
is essentially a particle-like mathematical approximation of an electron that is
interacting with other forces within the solid. Similarly “phonon” is a quasi-
particle associated with quantum mechanical vibrations in solids.

1.1.2 Plasma, Screening and Anti-Screening

It is possible to classify plasma as a quasi-neutral gas since it is a gas of
charged and neutral particles that exhibits collective behavior. Assume that
two charged spheres are immersed in plasma. The balls start to attract oppo-
site charges around them. Assume that a layer of opposite charges accumulates
around the spheres, which reduces the influence of the effective charge of the
sphere over a finite distance. In order to understand the idea, let’s take an
exaggerated example, as shown below.

1



1.1.2. (a) Binary charges example (+ and - charges)

Consider a sphere, as shown in the figure below, having a centre charge of
+2 C. Assume that two layers of particles with opposite charges are formed
around the centre charge. Let the first and second layers contain the opposite
charge of -1C.

+2C

-1C

-1C

As one looks from outside, one sees a zero charge. In other words, the +2C
charge at the centre is screened by the two -1C charges. After penetrating the
first layer of charge -1C, one could observe a net charge of +2C - C = +1 C.
Penetrating the next layer gives the centre charge +2C.

1.1.2. (b) Ternary charges example (red, blue, and green charges)

The notion of antiscreening can be exemplified in layman’s terms as shown be-
low. Assume a system where the charges aren’t binary but are ternary charges.
The labels red, green, and blue are taken from the analogy of primary colours.
So say green, red, and blue are the colour charges, and the combined form
gives a neutral white colour charge.

In the figure below, the left side figure is a cross section of sphere, and the
right side is the view from outside. The viewer from outside will not see blue,
green, or red, but the observer will see a white colour.

2



Green

Blue

R

W
hi

te
=R

ed+Blue+Green
If observer penetrate the first layer of Blue, he will see a colour composite
that’s neither red nor green but yellow formed by the combination of red and
green.

Green

R Y
el
lo

w=
Red+G

reen

Penetrating the layer of green gives red.

Red

The anti-screening effect in quantum chromo dynamics (QCD) is much more
complex. Both the quarks and gluons have colour degrees of freedom, while
the quarks additionaly have a flavour degree of freedom. The spherical dis-
tribution of colour charges as layers and the penetration of such a spherical
colour layer are not physically feasible as of now, but the above example can
be taken to understand the general notion of colour charge.

1.1.3 Quark Gluon Plasma

Consider the chalk we use to write on the dark/green board, which is made
up of white limestone composed of calcium carbonate (CaCO3). Calcium, car-
bon, and oxygen are the components of CaCO3. An isolated atom of 40Ca has
a weight of 40.078 u. 1.0073 u is the mass of a proton, and 1.0087 u is the
mass of a neutron, adding up to 40.32 u in the case of calcium (20 proton+ 20
neutron). The fact that the components are heavier than the nuclei suggests
that an atom lost some mass when it formed. All the nucleons in the nucleus
are glued together by the missing mass or mass defect, which functions as a
binding energy.
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The nucleus is made up of protons and neutrons, thus protons and neutrons
are collectively known as nucleons. The proton is composed of two up quarks
and one down quark, while the neutron is composed of two down quarks and
one up quark. The nucleons have a mass of about 1000 MeV. The mass of the
quarks that made up the proton was roughly 10 MeV in total, meaning that
they only made up 1% of the proton’s mass. Through mass-less gluon interac-
tion and chromodynamic binding energy, the remaining mass is attained.

40Ca

40.32u

40.08u

Sum of nucleons > Nucleus

Mass Defect/Binding Energy

P/N

Mass of Proton/Neutron > Sum of Quarks

≈1000 MeV

≈10 MeV

QCD Vacuum/QCD Binding Energy

Both quarks and electrons belong to the class of particles known as fermions
that have a half-integer spin, but quarks are fermions with flavor degrees of
freedom and color degrees of freedom.

Up Top Strange
Down Bottom Charm

× Red Green Blue

Experimentally, isolated color has never been seen [1], but this suggests
that quarks are constantly bonded together to create the color-white compos-
ite objects known as hadrons. Nambu made the first attempt to define color
in 1966 (QCD) [1]. Quantum field theories that separately describe the elec-
tromagnetism and color fields are known as quantum electro dynamics (QED)
and quantum chromo dynamics (QCD) respectively. In QCD, gluons mediate
the strong force field, whereas in QED, photons mediate the E-M field. In
terms of the variety of mediators, QCD has eight gluon mediators while QED
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only has one photon. The Quantum Chromo-Dynamical Lagrangian (QCD)
[2] is

LQCD = Lsym + Lm (1.1)

with

Lsym = −1

4
F a
µνF

µν
a +

∑

f

ψ̄f
α

(
iγµ∂µ + gγµAµ

aF a

)αβ

ψf
β

Lm = −
∑

f

ψ̄f
αm

αβ
f ψf

β

F a
µν = ∂µA

a
ν − ∂νA

a
µ + gfabcA

b
µA

c
ν

(1.2)

Aa
µ denotes the gluon field with a ∈ [1, 8] and ψf

α is quark field color with
α ∈ [1, 3] and f denotes the flavor with quark masses being mf . F a are
the SU(3) generators satisfying the commutation relation [F a, F b] = F aF b −
F bF a = ifabcF c. There exist other conventions where g is changed to −g in
Eq. (1.2) [3]. At temperatures T ≪ Tc, the quarks and gluons together form
hadrons (mesons plus baryons), with quarks having masses near 300 MeV. But
as temperatures go way beyond Tc, i.e., T ≫ Tc, the hadrons melt and the
effective mass of quarks goes to zero.
So from Eqs. (1.1) and (1.2)

T ≫ Tc =⇒ mf → 0 =⇒ Lm → 0 =⇒ L = Lsym (1.3)

i.e., at temperatures greater than the critical temperature, due to the loss
of effective quark mass, the Lagrangian becomes symmetric, known as chiral
symmetry restoration. Similarly, as temperature becomes less than critical
temperature, the Lagrangian becomes non-symmetric L = Lsym + Lm. This
is known as spontaneous chiral symmetry breaking [2]. Asymptotic freedom
is a distinctive property of the QCD, which involves non-abelian gauge theory
(SU3). The coupling constant [4] that represent the asymptotic freedom can
be expressed as

αs(µ) =
12π

(33− 2Nf ) ln
(

µ2

Λ2
QCD

) (One loop order)

αs(µ) =
12π

(33− 2Nf ) ln
(

µ2

Λ2
QCD

)
(
1− 6(153− 19Nf )

(33− 2Nf )
2

ln
(
ln
(

µ2

Λ2
QCD

))

ln
(

µ2

Λ2
QCD

)
)

(Two loop order)

(1.4)

in which Nf is the number of flavors.
ΛQCD is the QCD scale parameter. The parameter µ corresponds to energy,
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i.e., µ can be approximated as a function of temperature or momentum trans-
fer depending on the interaction and environment. As µ → ∞, the coupling
constant αs(µ) → 0. Similarly µ→ ΛQCD, the coupling constant diverges.

In other words, quarks and gluons interact weakly at high energies at short
distances but strongly at low energies, resulting in the confinement of quarks
and gluons within the composite hadrons. Quarks cannot be observed in free
states in the natural world. Photons do, however, exist in free states in the
natural world, and QED is an Abelian gauge theory. In contrast to QCD,
which also involves potentials other than the Coulomb potential, QED heavily
relies on the Coulomb potential [1].

In case of QED screening, the vacuum becomes polarized when a charge is
present, attracting virtual particles with opposite charges and repelling virtual
particles with similar charges. Overall, the field at any fixed distance is only
partially canceled. The effect of the vacuum becomes less and less noticeable
as one gets closer to the core charge, but the effective charge rises. However,
QCD has an anti-screening nature, meaning that its force-carrying particles,
the gluons, carry color charge in their own particular way. A color charge
and an anti-color magnetic moment are both carried by each gluon. In the
vacuum, the polarization of virtual gluons has the overall effect of enhancing
and altering the field rather than screening it. This effect would contribute
to a weakening of the effective charge with decreasing distance since getting
closer to a quark reduces the antiscreening impact of the nearby virtual gluons.

Consider heating the QCD vacuum within a box. The vacuum excites hadrons.
The hadrons begin to overlap as the temperature climbs toward the critical
temperature Tc, which is between 150 and 200 MeV. The hadronic system dis-
integrates into quarks and gluons (QGP) as the temperature rises further. In
comparison the temperature at the center of the sun is 1.5 × 107 kelvins, or
0.0013 MeV. Nuclear matter has a density of about 0.16 fm−3; if the density
is increased by a factor of many, the hadronic system breaks down into quarks
and gluons.

The universe was expanding and had an origin involving a high temperature
transition, according to Alpher and Gamow’s paper The Origin of Chemical
Elements [5], Hubble’s law of galaxy redshift, and Friedmann’s solution of
Einstein’s gravitational equation in 1922 [6]. The cosmic hot era period was
established by Penzias and Wilson’s discovery of the cosmic microwave back-
ground in 1965 [7].

There is a good chance that the neutrons will melt into the cold quark
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matter if the center density of the neutron stars exceeds 5−10ρn. The strange
matter theory proposes that the quark matter (the strange matter), which has
almost equal amounts of up, down, and strange quarks, may represent a stable
ground state of matter. i.e., theoretically, there exists a finite probability for
the existence of strange quark stars. We must solve the Oppenheimer-Volkoff
(TOV) equation (Oppenheimer and Volkoff, 1939), which is derived from the
Einstein equation, along with the equation of states for the super-dense matter,
in order to understand the structure of these compact stars.

But as one can combine the density and temperature effects simultaneously
on a hadronic matter, QGP can be produced in the lab, which is done in the
Large Hadron Collider (LHC) and Relativistic Heavy Ion Collider (RHIC) [1].

1.2 Important phenomenological models

1.2.1 MIT Bag Model

Harald Fritzsch, Heinrich Leutwyler, and Murray Gell-Mann developed the
idea of colour into the theory of quantum chromodynamics in 1973 [8]. In the
very next year, Chodos et al. [9] of the Massachusetts Institute of Technology
(MIT) introduced a simple phenemenological model to study the equation of
state of hadrons and QGP.
The potential in the MIT bag model is defined as the the sum of the volume
term and the inverse radial term. The MIT bag model can be explained in the
following manner from a qualitative standpoint. The potential energy can be
written as

EH = BV +
C

r
(1.5)

The vacuum energy density, which holds quarks and gluons inside the bag,
is related to the constant B. The quarks in the bag behave as free particles
(fermions), according to the concept and the number of quarks decreases to
zero (confined) outside the bag. Eq. (1.5) can be rewritten for a spherical
drop-like form as

EH =
4

3
πr3B +

C

r
(1.6)

The kinetic energy term combined with the uncertainty principle gives rise
to the inverse radial term. In the quantum mechanics approximation, the
parameter C can be expressed as a function of the quantum number and the
quark number. Under stable conditions, the external pressure is compensated
by the confined quark pressure.
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Figure 1.1: The quarks within the bag exert kinetic pressure. As long as the
bag pressure B is greater than the kinetic pressure Pkin, the bag holds the
quarks. When bag pressure is overwhelmed by the kinetic pressure Pkin of
quarks, deconfinement occurs.

By minimizing Eq. (1.6), the radius of the bag can be determined.

∂EH

∂r

∣∣∣∣
r=R

= 0 =⇒ R =

(
C

4πB

) 1
4

(1.7)

Therefore, the total energy at the ground state equilibrium radius can be
obtained as

EH(R) =
4

3
πR3B +

C

R
=

4πR4B + 3C

3R
=

4C

3R

=
4

3R

(
4πBR4

)
= 4

(
4

3
πR3B

)
= 4V0B

(1.8)

According to the bag model [10], if the particle is a boson in a free particle
state, then the energy density and pressure relation at zero chemical potential
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(when the fugacity is equal to unity) are

⟨ε⟩B =gB

∫
d3p

(2π)3
p

eβp − 1
= gB

1

2π2

∫ ∞

0

p3
∞∑

n=1

e−nβp

=
3gB
π2β4

∞∑

n=1

1

n4
=

3gB
π2β4

ζ(4)

PB = − 1

β

∫
⟨εB⟩ dβ = gB

ζ(4)

π2β4
=

⟨εB⟩
3

(1.9)

If the distribution is fermionic, then the results would be

⟨εf⟩ =gf
∫

d3p

(2π)3
p

eβp + 1
= gf

1

2π2

∫ ∞

0

p3
∞∑

n=1

(−1)n−1e−nβp

=
3gf
π2β4

∞∑

n=1

(−1)n−1

n4
=

3gf
π2β4

η(4)

Pf = − 1

β

∫
⟨εf⟩ dβ = gf

η(4)

π2β4
=

⟨εf⟩
3

(1.10)

The Riemann zeta function ζ, and the Dirichlet eta function η, are both used,
where

ζ(s) =
∞∑

n=1

n−s

η(s) =
∞∑

n=1

(−1)n−1n−s

η(s) =
(
1− 21−s

)
ζ(s)

(1.11)

Degenerative factors for fermionic and bosonic particles are gB and gI . β = 1/T
is in natural units.

Consider a scenario where a transition occurs from a hadronic phase (mass-
less pions) to a QGP phase (composed of massless quarks and gluons) as the
temperature increases beyond the critical temperature Tc. From Eqs. (1.9)
and (1.10), the pressure of pionic stage is

Pπ = 3
ζ(4)

π2β4
(1.12)

Three degrees of freedom comes from the three charge states of pion (π+, π0, π−).
The kinetic pressure of the free particle of quarks and gluons are

Pq+g =
24η(4) + 16ζ(4)

π2β4
(1.13)
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The two spin and eight colour degrees of freedom of the gluons give the factor
16 (2×8). For quarks, the factor 24 (2×2×2×3) comes as a contribution of
two particle-antiparticle degrees of freedom, two spin, two flavour, and three
colour degrees of freedom.

At critical temperature Tc, the confinement pressure (pionic pressure +
bag pressure) becomes equal to the deconfinement pressure (quarks and gluons
kinetic pressure). i.e.,

B + Pπ

∣∣∣∣
Tc

= Pq+g

∣∣∣∣
Tc

(1.14)

Using Eqs. (1.11) and (1.12) and ζ(4) = π4/90, bag constant can be derived
as

B =

(
Pq+g − Pπ

)∣∣∣∣
Tc

=
(37− 3)

π2β4
c

ζ(4) =
17

45
π2T 4

c (1.15)

Thus the critical temperature is Tc =

(
45B

17π2

) 1
4

.

For values such as B
1
4 = 200 MeV and Tc ≈ 144 MeV, this model is rather

straightforward and fits the mass spectra of light hadrons. The pion-to-QGP
transition temperature is around 144 MeV according to the bag model. How-
ever, the bag model falls short in explaining a number of crucial aspects of
strong interactions, including chiral symmetry and others [11].

1.2.2 Relativistic Harmonic Oscillator (RHO) Models

The Hamiltonian of confined quarks and gluons is taken to be

Hq =
√
p2 +M2

q + Ω2
qr

2 (quarks)

Hg =
√
p2 + C4

gr
2 (gluons)

(1.16)

in the RHO model, which was first set forth by Khadkikar and Gupta [12] and
later expanded by Khadkikar and Vinodkumar [13]; with Cg,Ωg and Mq being
the frequency of gluon fields, quark fields and mass of quark respectively. The
Hamiltonians are replaced by the eigenvalues of the corresponding quantum
mechanical operators. i.e., a harmonic oscillator of the form

Ĥ = αp
ˆ⃗p2 + αq

ˆ⃗r2 =
(
2N̂ + 3

)
ℏαpαq (1.17)
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has an energy eigenvalue of (2n+ 1) ℏαpαq with n ∈ W. If one moves the range
of n from whole number to natural number N, then the Hamiltonian becomes
(2n + 1)ℏαpαq. Thus the result of Eq. (1.16) in natural units can be written
as

Hq =
√
(2n+ 1)Ωq +M2

q

Hg =
√
(2n+ 1)C2

g

(1.18)

The RHO model became successful in explaining various hadron spectroscopy
results and various experimental values such as mesonic mass having open
flavours, baryon magnetic moment, nucleon polarizability experimental values,
and leptonic decay width [12, 13, 14]. Even though the model failed to fit the
equation of state lattice data, especially near the critical temperature region.

1.2.3 Quasiparticle Model of QGP

The quasiparticle model proposed by VM Bannur [15, 16, 17] consistently ex-
plains the lattice data obtained. According to this model, the number density
of fermionic quarks and bosonic gluons at zero chemical potential (fugacity =
1) can be derived by integrating the appropriate distribution function in the
relativistic limit, as shown below.

⟨n⟩F.D = gF.D

∫
d3p

(2π)3
1

exp
(
β
√
p2 +m2

)
+ 1

⟨n⟩B.E = gB.E

∫
d3p

(2π)3
1

exp
(
β
√
p2 +m2

)
− 1

(1.19)

with β being inverse of temperature in natural units.
The model is thermodynamically consistent in such a way that the integration
of the distribution function over energy gives the energy density value

⟨ε⟩B.E = gB.E

∫
d3p

(2π)3

√
p2 +m2

exp
(
β
√
p2 +m2

)
− 1

⟨ε⟩F.D = gF.D

∫
d3p

(2π)3

√
p2 +m2

exp
(
β
√
p2 +m2

)
+ 1

(1.20)
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Both Eqs. (1.19) and (1.20), can be simplified by substituting p = m sinh(x),
which leads to

⟨n⟩F.D/B.E = gF.D/B.E

1

2π2

∫ ∞

0

m3 sinh2(x) cosh(x)

exp (βm cosh(x))± 1
dx

⟨ε⟩F.D/B.E = gF.D/B.E

1

2π2

∫ ∞

0

m4 sinh2(x) cosh2(x)

exp (βm cosh(x))± 1
dx

(1.21)

using the results

sinh2(x) cosh(x) =
cosh(3x)− cosh(x)

4

sinh2(x) cosh2(x) =
cosh(4x)− 1

8

1

Y ± 1
=

∞∑

n=1

(∓)n−1 Y −n, for Y > 1

Kn(β) =

∫ ∞

0

cosh(nx) exp (−β cosh(x)) dx

where Kn(x) is the modified Bessel function of second kind.

(1.22)

Eq. (1.21) becomes

⟨n⟩F.D/B.E = gF.D/B.E

m3

8π2

∞∑

n=1

(∓)n−1

[
K3(nβm)−K1(nβm)

]

= gF.D/B.E

m3

2π2

∞∑

n=1

(∓)n−1 K2(nβm)

nβm

⟨ε⟩F.D/B.E = gF.D/B.E

m4

16π2

∞∑

n=1

(∓)n−1

[
K4(nβm)−K0(nβm)

]
(1.23)

Pressure as a function of temperature can be derived using the thermodynamic
relation

P

T
− P0

T0
=

∫ T

T0

ε(T )

T 2
dT = −

∫ β

β0

ε(β)dβ (1.24)

The model proposed by VM Bannur [15, 16, 17], has m2(T ) = g2(T )T 2, where
g2(T ) = 4παs(T ) is the coupling constant in QCD. This QPM model fits well
with lattice data[18] and is one of the successful models in QGP.

1.3 Present study

There are several quasiparticle models [19, 20, 15, 16, 17] that involve quasipar-
ticle mass as a function of coupling constants. There are studies that extend
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these models to the magnetic field regime [21, 22]. But these models approxi-
mate the coupling constant as a function of ln (T/Tc), with Tc being the critical
temperature. As T/Tc ≫ 1, many of theses model fits with lattice data. But
when T/Tc ≈ 1 and 0 < T/Tc < 1, ln(T/Tc) becomes negative. This af-
fects the coupling constant, which causes a deviation between lattice data and
quasiparticle model predictions. So the quasiparticle model involving coupling
constants is successful only in the regime T/Tc > 1. In some extended quasipar-
ticle models involving magnetic fields, the same problem persists due to their

dependence on the coupling constant having a dependence on ln

(
T/Tc

)
.

So we developed a model that is independent of the coupling constant but
still able to fit the lattice data for T/Tc ≤ 1 and T/Tc > 1. Bannur [23] intro-
duced the idea of using Mayer’s cluster expansion (MCE) to explain equation
of state (EoS) of QGP. We borrow the same idea and combine it with the
idea of the dimensional regularization method, and the modified liquid drop
model enables us to successfully explain the EoS of QGP for a wide range
of temperatures. We extended the model to the magnetic field regime to ex-
plain and fit the QCD lattice data in the presence of an external magnetic field.

In addition to this, we have developed a new method for deriving coupling
constants known as the same mass scale and coupling (SMC) method. In
which, the coupling constant and mass scale for both imaginary time formalism
and non-thermal quantum field theory are considered to be the same. Then,
using the usual renormalization method and applying RGE equations to both
ITF and QFT simultaneously, we get the running mass and running coupling
constant. This running mass and coupling constant fit with the expected
behaviour of the equation of state of ϕ4 theory.

1.4 Plan of the thesis

In Chapter 2, we introduce the Mayer’s cluster expansion formulation step by
step. We also give an idea of the correction factor that needs to be multiplied
to make the distribution of distinguishable particles to the distribution of in-
distinguishable particles of different kinds. Finally, we show the equation of
state of pressure and energy density for neutral systems having an arbitrary
potential that is proportional to the product of the charges of particles in the
system. This Chapter is mainly based on the works of Mayer [24, 25] and
Balescu [26].
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In Chapter 3, we introduce the core part of the thesis, i.e., the modified
liquid drop model in QGP. The Fourier transforms of central potentials are
discussed. Examples are given to understand the cluster expansion idea and
are compared with the related published works. Various integrals and their
results are derived using the contour integration method. Methods to avoid
poles in an integral by introducing an infinitesimal complex term to the inte-
grand are discussed.

In Chapter 4, the modified liquid drop potential is extended to the magnetic
field regime. The idea of a harmonic oscillator is used with a magnetic vector
potential, giving rise to modifications in the integral equation. A new integral
table with the modified integrating technique in the presence of a magnetic
field is also derived.

In Chapter 5, we have taken the idea of Bannur’s deconfined quark matter
quasiparticle model [27] and extended it to the magnetic field regime. The
results are compared with the EoS of free particles. The formulas are derived
in a systematic way.

In Chapter 6, the quasiparticle model in thermal ϕ4 theory is discussed. A
temperature-dependent coupling constant is derived for that purpose. Running
mass, mass scale, and constant temperature relations are found using both
imaginary time formalism and non-thermal quantum field theory. For that, a
new approach, named as Same Mass Scale and Coupling (SMC), is introduced.
Applying this result to the quasiparticle model provides us with the equation
of state of the system. In Chapter 7, summary and future plans are discussed.
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Chapter 2

Mayer’s Cluster Expansion

2.1 Cluster expansion for Distinguishable par-

ticles

Consider a closed system containing particles. Consider a particle in such a
system, say B. Either the particle B can interact with no other particles or it
can interact with at least some of the particles in the system. The former is
known as an ideal gas case, while the latter is known as a non-ideal gas case. In
the non-ideal gas case, the total interaction can be divided into several clusters
of interactions[1, 2, 3] .

Consider a monoatomic gas system having a volume V and containing N
identical particles, each with mass m at equilibrium temperature. Then we
can express the Hamiltonian as

H =
N∑

i=1

Ekin(p⃗i,mi) +
∑

1≤i<j≤N

U(rij) (2.1)

with Ekin(p⃗i,mi) representing the kinetic energy contribution of ith particle
and U(rij) is the pair potential of particles i and j having relative separation
rij = |⃗ri− r⃗j|. The partition function of the gas including the Gibb’s correction
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factor [1] is

QN(V, T ) =
1

N !h3N

∫
exp(−βH) d3Np d3Nx = ZmZc (2.2)

with β = (kBT )
−1, h is the Planck’s constant. Zc and Zm are the integrals in

radial coordinate and momentum coordinate respectively.

At the non-relativistic limit Ekin =
p2i
2mi

ZNR
m =

1

h3N

N∏

i=1

[∫
exp

(
−β p2i

2mi

)
d3p

]

=

(
2π

h2β

) 3N
2

N∏

i=1

m
3
2
i .

(2.3)

At the relativistic limit Ekin =
√
p2i +m2

i ,

ZR
m =

1

h3N

N∏

i=1

[∫
exp

(
−β
√
p2i +m2

i

)
d3pi

]

=

(
4π

h3β

)N N∏

i=1

[
m2

iK2(βmi)
]

(2.4)

with K2 being modified Bessel function of the second kind and mi being the
mass of ith particle in the system.
When all the particles have the same mass;

Zm =





(
m

2πβℏ2

) 3N
2

, Non-Relativistic limit
(

m2

2π2ℏ3βK2(βm)
)N

, Relativistic limit.
(2.5)

Now the remaining part of integral in Eq. (2.2) involving the potential part is

Zc =
1

N !

∫ ∏

i<j

exp [−βUij] d
3Nr. (2.6)

The evaluation of above integral is difficult in the present form. One could use
the cluster expansion method to simplify the integral. In cluster expansion
method we define ηij = exp [−βUij]− 1.
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2.1.1 Distinguishable particles

Let us assume that all the particles are distinguishable, then let us remove the
N ! (We will consider the indistinguishability factor later). Then

Zc =

∫ ∏

i<j

(1 + ηij) d
3r1 d3r2 d3r3 . . . d3rN (2.7)

where the expansion of the function is
∏

i<j

(1 + ηij) = 1 +
∑

i<j

ηij +
∑

i<j
k<l

i,j ̸=k,l

ηijηkl + . . . (2.8)

Consider a subsystem with j particles within the N particle system. The

integral in Eq. (2.10) involves η(1, 2, 3, ..., j) as an integrand and
N∏

i=1

d3ri as in-

tegrating variables. Only the

j∏

i=1

d3ri variable interacts with the η(1, 2, 3, ..., j)

integrand. The remaining
N∏

i=j

d3ri radial coordinates provide the volume con-

tribution of V N−j when integrated. In addition to that, the multiplicity factor

will be

(
N

j

)
which corresponds to choosing j particles from N particles. Since

we use the small letter c to denote the concentration of particles in general and
the capital letter C to denote concentration in the context of the MLDM model

of Chapter 3, we will be using

(
N

j

)
to represent the combination representa-

tion of NCj. i.e.,
(
N

j

)
= NCj =

N !

(N − j)!j!
(2.9)

∴ Ij =

(
N

j

)
×
∫
η(1, 2, ..., j) d3r1 d3r2 . . . d3rj . . . d

3rN

=

(
N

j

)
× V N−j

∫
η(1, 2, 3..., j) d3r1 d

3r2 . . . d
3rj

(2.10)

As the volume goes to infinity

Lt
V→∞

Ij
V N

= Lt
V→∞

(
N

j

)
1

V j
= Lt

V→∞

N

V

(
N

V
− 1

V

)
. . .

(
N

V
− j − 1

V

)
1

j!
(2.11)
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At fixed number density c =
N

V
, at infinite volume

Lt
V→∞

Ij
V N

=
cj

j!
× wf

∫
η(1, 2, 3, . . . , j) d3r1 d3r2 . . . d3rn (2.12)

2.1.2 Integrals and Diagrammatic representation

2.1.2. (a) Two Particle cluster of the same kind

Writing down the integral as a diagram will ease the calculation. We represent,
the two particle cluster integral as

1

V N

∑

i<j

i j =
1

V N
×

N∑

i<j

∫
ηijdτ (2.13)

with dτ = d3r1 d3r2 . . . d
3rN .

This cluster integral of two particle is also known as an irreducible cluster

integral, because it cannot be broken down further. The factor
N∑

i,j=0
i<j

ηijdτ is

equivalent to [N(N − 1)/2] ηijdτ in the integral. So,

1

V N

∑

i<j

i j =
Choosing two particles
from N distinguishable

particle
× 1

V N
×
∫
ηijdτ

=

(
N

2

)
× 1

V N
× V N−2 ×

∫
ηij d

3ri d
3rj

=

(
N

V

)(
N

V
− 1

V

)
× 1

2

∫
ηij d

3ri d
3rj

≈ c2 × 1

2

∫
ηij d

3rij d
3r

≈ c2β̄2 = c2b2V

(2.14)

with c = N/V where N is total number of particles and b2 is a finite term that
doesn’t go to infinity as V → ∞. The variables dri and drj can be rearranged
using a Jacobian determinant to produce new variables drij and dr.

2.1.2. (b) Three Particle cluster of the same kind

Each integral equation is associated with certain probability factors. We are
given N particles, so the probability factor is proportional to the number of
ways we can choose the three particles from the given N particles that form
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the three particle cluster. The next two important diagrams, formed by three
particles, are depicted below. As mentioned previously, all these diagrams
correspond to some integral equation. Here we have to evaluate mainly two
diagrams

i j

k

and
i j

k

(2.15)

The result can be written as

Lt
V→∞

1

V N

i j

k

=
Choosing three particles
from N distinguishable

particle
× 1

V N
×
∫
ηijηjkηkidτ

= Lt
V→∞

(
N

3

)
× 1

V N
× V N−3 ×

∫
ηijηjkηki d3ri d3rj d3rk

=
c3

3!

∫
ηijηjkηki d3ri d3rj d3rk

= c3β̄3 ≈ c3b3V

(2.16)

Similarly in this cluster of three particles,

(
N

3

)
is multiplied by the multi-

plicative factor

(
3

2

)
, which corresponds to the number of ways the two bonds

are chosen from the three-particle cluster.

1

V N

i j

k

=
Choosing three particles
from N distinguishable

particle
×

Choosing two bonds
from 3
particle

× 1

V N
×
∫
ηikηjkdτ

=

(
N

3

)
×
(
3

2

)
× 1

V N
× V N−3

∫
ηijηjk d

3ri d
3rj d

3rk

=

(
N

3

)(
3

2

)
× 1

V 3
× V

(
2β̄2
V

)2

=
c3

2

4β̄2
2

V

(2.17)
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2.1.2. (c) The cluster ratio

Consider the next simple cluster having four particles with two bonds, i.e.,

1

V N

∑

i<j

∑

k<l

i j

k l
=

Choosing four particles
from N distinguishable

particle
×

Choosing two bonds
from 4
particle

× 1

2
× 1

V N
×
∫
ηijηkldτ

=

(
N

4

)
×
(
4

2

)
× 1

2
× 1

V 4

[∫
ηij d

3ri d
3rj

]2

=
c4

8

[
2β̄2
]2

=
c4

2
β̄2

2

(2.18)

The 1/2 factor comes to remove the repeatability. i.e.,

(
4

2

)
will have 6 two

particle sets. But two cluster pair will be half.
On comparing Eqs. (2.17) and (2.18), the ratio becomes

Ratio = Lt
V→∞

1
V N

i j

k

1
V N

i j

k l

= Lt
V→∞

4

c

1

V
→ 0

(2.19)

Since the ratio denotes that Eq. (2.18) contribution is greater as compared
to Eq. (2.17) at an infinite volume limit; so let us ignore the contribution of
Eq. (2.17).

On summing up the relevant diagram results in Tables 2.1 and 2.2, one can
rearrange them in such a way that

Lt
V→∞

Zc

V N
= 1 +

(
c2β̄2 + c3β̄3 + c4β̄4 + . . .

)
+

(
c2β̄2 + c3β̄3 + c4β̄4 + . . .

)2

2!
+ . . .

(2.20)

So

Lt
V→∞

Zc

V N
≈ exp

(∑

n≥2

cnβ̄n

)
(2.21)

2.1.3 Free Energy Perturbation

Consider a system that goes from state A to state B. The free energy difference
can be calculated by using the Zwanzig equation [4].

∆FA→B = FB − FA

= −kBT ln

(
QB

QA

)
(2.22)
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No of
particles Diagram Integral At infinite

Volume

None None 1 1

2 i j

(
N

2

)
1

V 2

∫
ηij d

3ri d
3rj c2β̄2

3
i j

k

(
N

3

)(
3

2

)
1

V 3
V

(
2β̄2
V

)2 c3

2

4β̄2
2

V
(neg.)

3
i j

k

(
N

3

)
1

V 3

∫
ηijηjkηki d

3ri d
3rj d

3rk c3β̄3

4 i j

k l

(
N

4

)
3
1

V 4

(
2β̄2
)2 1

2
c4β̄2

2

4

i j

kl
(
N

4

)
12

V 4

8β̄3
2

V 2
c4
4β̄3

2

V 2
(neg.)

4

i j

kl
(
N

4

)
× 12

V 4
× 12β̄2β̄3

V
c4
6β̄2β̄3
V

(neg.)

4

i j

kl
(
N

4

)
3

V 4
24

∫
ηijηjkηklηli d

3ri d
3rj d

3rk d
3rl c4β̄4

4

i j

kl
(
N

4

)
6

V 4
24

∫
ηijηjkηklηliηki d

3ri d
3rj d

3rk d
3rl

4

i j

kl
(
N

4

)
24

V 4

∫
ηijηjkηklηliηikηjl d

3ri d
3rj d

3rk d
3rl

Table 2.1: The list of different clusters made up of 2, 3, and 4 particles.
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No of
particles Diagram Integral At infinite Volume

5
i j

i j

k

(
N

5

)
30

V 5

8β3
2

V

2c5β3
2

V
(neg.)

5

i j

k

l

m

(
N

5

)
60

V 5

16β̄4
2

V 3

8β̄4
2c

5

V 3
(neg.)

5

i j

k

l

m

(
N

5

)
60

V 5

16β̄4
2

V 3

8β̄4
2c

5

V 3
(neg.)

5
i j

k

i j

(
N

5

)
10

V 5
12β̄2β̄3 c5β̄2β̄3

... ...
...

6
i j

k l

a b

(
N

6

)
15

V 6
8β̄3

2

c6β̄3
2

6

Table 2.2: (In continuation of Table 2.1). The diagrams shown in the Tables 2.1
and 2.2 with (neg.) denotes that such diagram contributions are negligible
compared to those of other diagrams involving the integral [2]. An example
can be seen in Eq. (2.19).
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If A is an ideal gas state, then ∆F =Free energy of real gas (with potential) -
Free energy of ideal gas (zero potential).

∆FIdeal→Real = −kBT ln

(
ZcZm

V NZm

)

= −kBT ln
(
V −NZc

)

From Eq. (2.21)

−∆F

kBT
=
∑

n≥2

cnβ̄n

(2.23)

As V → ∞ , one can see that ∆F goes to infinity. One can define a finite
quantity,

S =
−∆F

kBTV
=
∑

n≥2

cn
β̄n
V

=
∑

n≥2

cnbn (2.24)

For example, let’s take the first term;

c2β̄2 =
c2

2

∫
ηij d

3ri d
3rj

=
c2

2

∫
ηij d

3rij d
3r

= V
c2

2

∫
ηr d

3r

= V b2

(2.25)

So As V → ∞, β̄2 → ∞ but

b2 =
1

2

∫
ηr d

3r

Let us define an arbitrary η(r) = exp
(
−β
[a
r
+ br

])

=
1

2

∫ {
exp

(
−β
[a
r
+ br

])}
d3r

=
1

2

∫ {
exp

(
−β
[a
r
+ br

])}
d3r

= π

(
b

a

) 3
2

K3

[
2β

√
ab
]

(2.26)

goes to a finite result.
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2.1.4 Pressure relation

Imagine a closed system that expands at constant temperature (reversible) and
goes from state S1 to S2, changing the Helmholz energy in the process. The
change in Helmholz energy,

F2 − F1 = −
∫ S2

S1

PdV = −
∫ S2

S1

P1dV

︸ ︷︷ ︸
Ideal gas

−
∫ S2

S1

(P − P1) dV

︸ ︷︷ ︸
Real gas - Ideal gas

(2.27)

where P is the pressure for real gas, P1 is the pressure for ideal gas, V is the
volume and N is the number of particle in the system. With

−
∫ S2

S1

P1dV = −
∫
NkBT

V
dV (2.28)

The free energy expansion integral representing the ideal gas in Eq. (2.28) goes
through the same states (c, T ) as that of the real gas. c denotes the concen-
tration of particles. i.e., N /V.

Subtracting Eq. (2.28) from Eq. (2.27) will give us the free energy that cor-
responds to the interactions among the molecules. Since the ideal gas contribu-
tion from the momentum integral part is subtracted from integral in Eq. (2.27);
the integral in equation Eq. (2.29) is known as the free excess energy.

FExcess = −
∫ S2

S1

(P − P1) dV = −
∫ S2

S1

(
P − NkBT

V

)
dV

= −N
∫ S2

S1

(P − ckBT ) d

[
1

c

] (2.29)

Let us relate cluster to this as

S = −F
Excess

V kBT
=

c

kBT

∫ c

c=0

[P − ckBT ] d

[
1

c

]

=⇒ S

c
=

∫ c

c=0

(
P

kBT
− c

)
d

[
1

c

]

=⇒
∂
(
S
c

)

∂
(
1
c

) =
P

kBT
− c

=⇒ P

kBT
− c = S− c

∂S

∂c

(2.30)
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2.1.5 Virial Coefficient

Combining S =
∑

n≥2 c
nbn, with

∂
(
S
c

)

∂
(
1
c

) =
P

kBT
− c will give us the nth virial

coefficient. i.e.,

∂
(
S
c

)

∂
(
1
c

) =
∑

n≥2

cnbn[1− n] =
P

kBT
− c (2.31)

The factor [1− n]bn = Bn is the nth Virial coefficient. So

P

kBT
− c =

∑

n≥2

cnBn (2.32)

Consider the term

b2 =
1

2V

∫ ∫
ηijd

3rid
3rj

=
1

2V

∫ ∫ (
exp

[
−βU(rij)

]
− 1
)
d3rid

3rj

substituting r = ri − rj and R = (ri + rj)/2 leads to

b2 =
1

2

∫
(exp [−βU(r)]− 1) d3r

=
1

2

∫ ∞∑

n=1

[−βU(r)]n

n!
d3r

Similar to the b2 term, when examining terms in the expansion of bn, an infinite
number of terms analogous to b2 emerge inside the integral with appropriate
changes. As the upper limit of the integral tends towards infinity (i.e., infinite
volume), not all the terms contribute with the same weight. Mayer’s cluster
summation becomes relevant at this moment, where we select the appropriate
terms of various orders and arrange them in a way that underscores the lowest
relevant order.

S =
∑

n

cnbn

≈
∞∑

n=2

cn

n!

(n− 1)!

2

∫ [ n∏

i=1

(
−βUi,i+1d

3ri
)
] ∣∣∣∣

n+i=i

+S1

≈
∞∑

n=2

Sdist.

n!
+S1
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S1 is a term proportional to
∫
(−βU(r)) d3r, and this term disappears

when the system is neutral. This will be explained in detail in the upcom-
ing sections. Despite arising from the selection of specific terms, the (n!)−1

can also be interpreted as making the remaining part Sdist indistinguishable
when multiplied with it. The selection of such factors through diagrammatic
representation will be discussed in the upcoming sections.

2.1.6 Fourier Integral in Three dimension

Here we define the coordinate and momentum Fourier transform as follows:

⟨f⟩ =
∫
f(r, θ, ϕ) exp (−ip⃗.⃗r) d3r

f(r, θ, ϕ) =

∫
⟨f⟩ exp (ip⃗.⃗r) d3p

(2π)3

δ3(⃗r) =

∫
exp (i⃗r.p⃗)

d3p

(2π)3

(2.33)

If function f(r) is a central potential function that depends only on the radial
coordinate and is independent of angles θ and ϕ, then

⟨f⟩ =
∫
f(r) exp (±ip⃗.⃗r) d3r

f(r) =

∫
⟨f⟩ exp (∓ip⃗.⃗r)

d3p

(2π)3

(2.34)

The reason behind this is∫
f(r) exp {ip⃗.⃗r} d3r = 4π

∫
f(r)× sin(pr)

pr
× r2dr (2.35)

As p → −p doesn’t change the integrand because the integrand is even w.r.t
p.

2.1.7 Evaluation of β̃n/V

Consider an integral as shown below (it is a part of ZcV
−N shown in the

Eq. (2.23)). Then, one can calculate a specific component of β̄n/V , denoted

as β̃n/V , by ignoring the permutations of particles, under the approximation
ηij ≈ gij = −βUij as,

β̃n
V

=
1

V

∫
η12η23 . . . ηn1 dτ

=

∫ n∏

j=1

[∫
d3kj
(2π)3

⟨ηkj⟩eik⃗j .(⃗rj−r⃗j+1)

]
|rn+1=r1dτ

(2.36)
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with dτ = d3r1 d3r2 d3r3 . . . d
3rn In Eq. (2.36) we ignore the contribution

of permutations of particles within the cluster. It will be considered in the
Section 2.1.8. (a).

β̃n
V

=
1

V

∫ n∏

j=1

[
d3kj ⟨ηkj⟩

]
×

n∏

j=1

[
ei(k⃗j−k⃗j−1).⃗rj

d3rj
(2π)3

]

=
1

V

∫ n∏

j=1

[
⟨ηkj⟩ δ3(k⃗j − k⃗j−1) d

3kj

]

=
1

V

∫ [ n∏

j=1

⟨ηkj⟩

]
δ3(k⃗1 − k⃗2)δ

3(k⃗2 − k⃗3) . . . δ
3(k⃗1 − k⃗n) d

3k1 . . . d
3kn

=
1

V

∫
⟨ηkn⟩⟨ηk1⟩n−1δ3(k⃗1 − k⃗n)δ

3(k⃗1 − k⃗n) d
3kn d

3k1

=
1

V

∫
⟨ηk1⟩nδ3(0) d3k1

=

∫
⟨ηk1⟩n

d3k1
(2π)3

(2π)3δ3(0)

V

(2.37)

This approximation is done by omitting the permutation within each cluster.
Using the asymptotic formula

Lt
V→∞

β̃n
V

=

∫
⟨ηp⟩n

d3p

(2π)3
(2.38)

where

ηp =

∫
ηre

ip⃗.⃗r d3r (2.39)

is the momentum representation of ηr.

2.1.8 Evaluation at the lowest order

The evaluation of Eq. (2.21) can be simplified using diagrams. So far we have
not considered the number of ways the particles can get arranged within the
same cluster. Doing that using algebra is a bit hard. But using some diagram
representation will ease the task.
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The expansion of exp(x)− 1 =
∞∑

n=1

xn

n!
.

∴ ηij = exp (gij)− 1 ≈ gij +
g2ij
2

(2nd Order)

ηijηjkηki =
∞∑

n1=1

∞∑

n2=1

∞∑

n3=1

gn1
ij

n1!

gn2
jk

n2!

gn3
ki

n3!
≈ gijgjkgki (1st Order)

ηijηjkηklηli ≈ gijgjkgklgli (1st Order)

...

η12η23 . . . ηn−1,nηn1 ≈ g12g23 . . . gn−1,ngn1 (1st Order)

(2.40)

with gij = −βUij.

2.1.8. (a) Total ways of arranging the particles within a diagram

Let us write Sn =
∑

n≥2 c
nbn ≈

∑
n≥2 c

nSn, where Sn is the diagrammatic
representation of bn. We use the diagram with the alphabets as a template,
but the actual diagram is the one with the points marked by numbers. The
first few terms are

S2 =
1

V

∫
d3r1 d

3r2

[
g12 +

g12g21
2!

]
(2nd Order approximation)

S2 =
1

V

∫
dτ1,2

[
g12 +

g212
2

]
= 1 2 +

1

2
1 2

= a b +
1

2
a b

S3 =
1

V

∫
dτ1,2,3 g12 g23 g31 =

1 2

3

=
a b

c

(2.41)

S4 =
1

V

∫
dτ1,2,3,4 g12 g23 g34 g41 +

1

V

∫
dτ1,2,3,4 g14 g42 g23 g31

+
1

V

∫
dτ1,2,3,4 g12 g24 g43 g31

=
1 2

34

+
1 4

23

+
1 2

43

=3×
a b

cd

(2.42)

30



S5 =
1

V

∫
dτ1,2,3,4,5 g12 g23 g34 g45 g51 + g12 g23 g35 g54 g41

+
1

V

∫
dτ1,2,3,4,5 g12 g25 g54 g43 g31 + g12 g25 g53 g34 g41

+
1

V

∫
dτ1,2,3,4,5 g12 g24 g45 g53 g31 + g12 g24 g43 g35 g51

+
1

V

∫
dτ1,2,3,4,5 g13 g32 g24 g45 g51 + g13 g32 g25 g54 g41

+
1

V

∫
dτ1,2,3,4,5 g14 g43 g32 g25 g51 + g14 g45 g52 g23 g31

+
1

V

∫
dτ1,2,3,4,5 g15 g54 g42 g23 g31 + g15 g53 g32 g24 g41

(2.43)

S5 =

1 2

3

4

5 +

1 2

3

5

4 +

1 2

5

4

3 +

1 2

5

3

4

+

1 2

4

5

3 +

1 2

4

3

5 +

1 3

2

4

5 +

1 3

2

5

4 +

+

1 4

3

2

5 +

1 4

5

2

3 +

1 5

4

2

3 +

1 5

3

2

4

= 12×

a b

c

d

e

(2.44)
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S6 =60×

f a

b

cd

e

S7 =360×

g a

b

c

d

e

f

...
...

...

Sn =
(n− 1)!

2
× [n sided polygon]

(2.45)

Here (n− 1)! is the contribution of permutations and factor 1/2 to cancel the
same order (cycle) values (i.e., to eliminate terms like 1234 and 4321).

∞∑

n=2

Sn = a b +
1

2
a b +

a b

c

+ 3
a b

cd

+ 12

a b

c

d

e
+

· · ·+ (n− 1)!

2
(n sided polygon)

= a b +
∑

n≥2

(n− 1)!

2
(n sided polygon)

= a b +
∑

n≥2

(n− 1)!

2

1

V

∫
g12g23 . . . gn−1,ngn1 dτ1,2,3,4...,n

(2.46)

Now using Eq. (2.38) we get

∞∑

n=2

Sn = a b +
∑

n≥2

(n− 1)!

2

∫
d3p

(2π)3
⟨g⟩n (2.47)

where

⟨g⟩ =
∫
g(r)eip⃗.⃗r d3r (2.48)

We have from Eq. (2.24)

S =
∑

n≥2

cn
βn
V

=
∑

n≥2

cnSn (Here we have considered the permutations.) (2.49)
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The difference between Eq. (2.38) and Eq. (2.49) is that in the former we have
not considered the permutations within the cluster, but in the latter we have
taken care of the permutations. We have used the unbarred βn to represent
the permutations involved in calculations, and barred β̄n to represent the per-
mutations ignored calculations.

2.1.8. (b) Distinguishable particles

Now S is

Sdist =
∞∑

n=2

cnSn = c2 a b +
∑

n≥2

(n− 1)!

2
cn
∫
⟨g⟩n d3p

(2π)3
(2.50)

2.2 Partition functions, Probability and Physics

2.2.1 Permutation Rule

Consider n objects taken all at once; with
p1 objects are of 1st kind
p2 objects are of 2nd kind
...
pk objects are of kth kind
Then

Total number of permutations =
n!

p1!× p2!× · · · × pk!
(2.51)

2.2.2 N same particles vs. N different particles

In statistical physics, the number of states is evaluated by the integration of
the corresponding distribution function in phase space. i.e.,

∫
f(q, p)

d3Nqd3Np

h3N
→ For N different particle arrangements (2.52)

This integral consider N different particles, say {A1,A2,A3, . . . ,An}. So it will
give the result for the maximum permutations of the system i.e N ! ways. Now
if the N particles are same kind such as A1 = A2 = · · · = An = A. Now the
number of permutations possible for the system is 1. So one has to multiply
the integral by a factor of 1/N !

1

N !

∫
f(q, p)

d3Nqd3Np

h3N
→ For N same particle arrangements (2.53)
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In a nutshell, the total number of ways we can arrange N different particles
are N !. So we can say that

N! ways of arrangement →
∫
f(q, p)

d3Nqd3Np

h3N
(2.54)

1 way of arrangement → 1

N !

∫
f(q, p)

d3Nqd3Np

h3N
(2.55)

This N ! comes in the statistical physics in the name of Gibb’s correction factor.

2.2.2. (a) Example 1

Consider a system with three particles A1, A2, A3 i.e., the sample space accord-
ing to the integral is like

S = {(A1, A2, A3), (A1, A3, A2), (A2, A1, A3),

(A2, A3, A1), (A3, A1, A2), (A3, A2, A1)}

That is 3!. When the particles are of same kind, sample space reduces to
S = (A,A,A). So one has to multiply the corresponding integral by a factor
1/3!

2.2.3 N particles with two kinds

Consider three particles A,A,B, the number of ways we can arrange them is

S = {(A,A,B), (A,B,A), (B,A,A)} (2.56)

i.e., 3!/(2!1!) = 3 ways.
If the particles were A,A,B,B then the sample space will be

S = {(AABB), (ABAB), (ABBA), (BABA), (BAAB), (BBAA)} (2.57)

i.e., 4!/(2!2!) = 6 ways.
Consider N such particles in which number of A particle is nA and number of
B particle is nB, and nA + nB = N , then

The number of ways we can arrange them is
N !

nA!nB!
(2.58)

So in such a case where two different particles are involved the integral equa-
tions we use should also change accordingly

N! ways of arrangement →
∫
f(q, p)

d3Nqd3Np

h3N
(2.59)

N!

nA!nB!
ways of arrangement → 1

nA!nB!

∫
f(q, p)

d3Nqd3Np

h3N
(2.60)
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2.2.4 N particles with m kinds

If there are a total of N particles with m kinds, with each of them are of
n1.n2, . . . nm in numbers with n1 + n2 + · · ·+ nm = N then

The number of ways it can be arranged → N!

n1!n2! . . .nm!
(2.61)

Now

N! ways of arrangement →
∫
f(q, p)

d3Nqd3Np

h3N
(2.62)

N!

n1!n2! . . .nm!
ways of arrangement → 1

n1!n2! . . .nm!

∫
f(q, p)

d3Nqd3Np

h3N

So for a total number of N particles with m kinds one has to write the integral
as

1

n1!n2! . . .nm!

∫
f(q, p)

d3Nqd3Np

h3N
=

1

n1!n2! . . .nm!

∫
f(q, p)

d3Nqd3Np

ℏ3N(2π)3N
(2.63)

2.3 Particles of same kind (Indistinguishable)

In Section 2.1.1, we have pointed out that we considered the particles as distin-
guishable and removed the N ! (Gibb’s factor) from the calculations. Now we
are considering particles of same kind i.e., particles that are indistinguishable.
So from Section 2.2, we have to consider the N !. We had

Sdist =
∞∑

n=2

cnSn = c2 a b +
∑

n≥2

(n− 1)!

2
cn
∫
⟨g⟩n d3p

(2π)3
(2.64)

Now let us make it indistinguishable by adding 1/n! to it.
i.e.,

Sindist. =
∞∑

n=2

cnSn =
c2

2
a b +

∑

n≥2

(n− 1)!

2

1

n!
cn
∫
⟨g⟩n d3p

(2π)3

=
c2

2
a b +

∑

n≥2

cn

2n

∫
⟨g⟩n d3p

(2π)3

=
c2

2
a b − 1

2

(
c ⟨g⟩+ ln [1− c ⟨g⟩]

)
(2.65)
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Now using the relation

P

kBT
− c = S− c

∂S

∂c
(2.66)

we get

P

kBT
− c = −

(
c2

2
a b +

1

2

∫
d3p

(2π)3

[
ln(1− c⟨g⟩) + c ⟨g⟩

1− c ⟨g⟩

])

(2.67)

Now if we look back we know that

g(r) = −βU(r)
⟨g⟩ = −β⟨U⟩ (Corresponding Fourier transform)

(2.68)

Therefore we redefine

a b =
1

V

∫
g(r) d3r → −β 1

V

∫
U(r) d3r = −β a b (2.69)

Then let us re write

P

kBT
− c =

βc2

2
a b +

1

2

∫
d3p

(2π)3

[
c β⟨U⟩

1 + cβ ⟨U⟩
− ln [1 + βc ⟨U⟩]

]

(2.70)

where

a b =
1

V

∫
U(r) d3r (2.71)

⟨U⟩ =
∫
U(r)eip⃗.⃗r d3r (2.72)

2.4 Particles of Two kinds with opposite charges

Consider two particles with opposite charges, from the probability section if
we consider the particles as indistinguishable then

P

kBT
− ci − ce = S− ci

∂S

∂ci
− ce

∂S

∂ce
(2.73)

It is easy to verify the equation, on putting ci + ce = c and
∂c

∂ci
=

∂c

∂ce
= 1

leads us back to Eq. (2.30). For a two particle system, from Eqs. (2.46)

36



and (2.60), let us write

S =
∑

ni+ne=2

cni
i c

ne
e

2ne!ni!
i j

+
∑

ni+ne≥2

(ni + ne − 1)!

2ni!ne!

cni
i c

ne
e

V

∫
g12g23 . . . gn−1,ngn1 dτ1,2,3,...,n

(2.74)

If these particles are charge dependent,
i.e,

gij → zizjg
′
ij = zizjg

′(|⃗ri − r⃗j|) (2.75)

with zi, zj ∈ {+1,−1}. Then,

gijgji = zizj × zjzi × g′ijg
′
ji = z2i z

2
j g

′
ijg

′
ji = g′ijg

′
ji

gijgjkgki = zizj × zjzk × zkzi × g′ijg
′
jkg

′
ki = z2i z

2
j z

2
kg

′
ijg

′
jkg

′
ki = g′ijg

′
jkg

′
ki

...

g12g23 . . . gn1 = z21z
2
2z

2
3 . . . z

2
n × g′12g

′
23 . . . g

′
n1 = g′12g

′
23 . . . g

′
n1

(2.76)

If the system has only two kinds of particles having charges either zi(+1) or
ze (-1), with the numbers ni and ne, such that ni + ne = n then

z21z
2
2z

2
3 . . . z

2
n = z2ni

i z2ne
e = 1 (2.77)

So

S =
∑

ni+ne=2

cni
i c

ne
e

2ne!ni!
i j

+
∑

ni+ne≥2

(ni + ne − 1)!

2ni!ne!

cni
i c

ne
e z

2ni
i z2ne

e

V

∫
g′12g

′
23 . . . g

′
n−1,ng

′
n1 dτ1,2,...,n

(2.78)

2.4.1 The neutrality condition

Assume that the medium is charge neutral. i.e., cizi + ceze = 0, if |zi| = |ze|
then ci = ce =

c
2
. Let us take the first term from S

S1 =
∑

ni+ne=2

cni
i c

ne
e

2ne!ni!
i j =

∑

ni+ne=2

cni
i c

ne
e

2ne!ni!

1

V

∫
zni
i z

ne
e g

′
ij d

3ri d
3rj (2.79)

The term zni
i z

ne
i came from gij = zni

i z
ne
e g

′
ij with ni+ne = 2, the permutation is

considered here, i.e., both the two particle clusters can be of the same charge
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(- - or ++), or both can be different ( - +, + -). If it was gijgji then we
would get z2ni

i z2ne
e . However we have the relation

(a+ b)n =
n∑

j=0

(
n

j

)
ajbn−j

=
n∑

j=0

n!

(n− j)!j!
ajbn−j

=
n∑

j=0

[(n− j) + j]!

(n− j)!j!
ajbn−j

(2.80)

Putting n− j = i we get

(a+ b)n =
∑

i+j=n

(i+ j)!

i!j!
ajbi

(a+ b)2 =
∑

i+j=2

(i+ j)!

i!j!
ajbi =

2

i!j!
ajbi

(2.81)

Now let us write

S1 =
∑

ni+ne=2

cni
i c

ne
e

2ne!ni!

1

V

∫
zni
i z

ne
e g12 d

3r1 d
3r2

=
1

4

∑

ni+ne=2

2

ne!ni!
(cizi)

ni (ceze)
ne

∫
g12 d

3r12

=
1

4
(cizi + ceze)

2

∫
g12 d

3r12

Now, if we apply neutrality condition then cizi + ceze = 0

= 0

(2.82)

Now we are left with

S =
∑

ni+ne≥2

(ni + ne − 1)!

2ni!ne!

cni
i c

ne
e z

2ni
i z2ne

e

V

∫
g′12g

′
23 . . . g

′
n−1,ng

′
n1 dτ1,2,3,...,n

=
∑

ni+ne≥2

1

2(ni + ne)

(ni + ne)!

ni!ne!

(
ciz

2
i

)ni
(
cez

2
e

)ne

∫
g′12g

′
23 . . . g

′
n−1,ng

′
n1 dτ1,2,3,...,n

=
∑

ni+ne≥2

1

2(ni + ne)

(
ciz

2
i + cez

2
e

)ni+ne

∫
g′12 . . . g

′
n−1,ng

′
n1 dτ1,2,3,...,n

(2.83)
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z2i = z2e = 1, ci + ce = c, ni + ne = n

=
∑

n≥2

cn

2n

∫
g′12g

′
23 . . . g

′
n−1,ng

′
n1 dτ1,2,3,...,n

=
∑

n≥2

cn

2n

∫
⟨g′⟩n d3p

(2π)3

= −1

2
[ln (1− c⟨g′⟩) + c⟨g′⟩]

(2.84)

Now using the relation

P

kBT
− c = S− c

∂S

∂c
(2.85)

we get

P

kBT
− c = −1

2

∫
d3p

(2π)3

[
ln (1− c⟨g′⟩) + c⟨g′⟩

1− c⟨g′⟩

]
(2.86)

If we redefine ⟨g′⟩ = −β⟨ϕ⟩, we get Eq. (2.91).
In a nutshell, we approximated

ηij = exp (−βUij)− 1

≈ −βUij = gij ( First order )

gij = zizjg
′
ij = −zizjβϕ(rij)

⟨g′⟩ = −β⟨ϕ⟩ (Corresponding Fourier transform)

(2.87)

i.e.,

U(rij) = zizjϕ(rij) (2.88)

Now combining Eqs. (2.86) and (2.88), we get

P

kBT
− c =

1

2

∫
d3p

(2π)3

[
c β⟨ϕ⟩

1 + cβ ⟨ϕ⟩
− ln [1 + βc ⟨ϕ⟩]

]
(2.89)

with

⟨ϕ⟩ =
∫
ϕ(r)eip⃗.⃗r d3r (2.90)

In natural units kB = 1 and β = 1/T , so

P

T

∣∣∣∣
qq̄

− c =
1

2

∫
d3p

(2π)3

[
βc⟨ϕ⟩

1 + βc⟨ϕ⟩
− ln [1 + βc ⟨ϕ⟩]

]
(2.91)
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If the concentration is a function of temperature

ε(T )

T

∣∣∣∣
qq̄

=
∂

∂ ln(T )

[
P

T

]
(2.92)

=
∂c

∂ ln(T )
+

1

2

(
1− ∂ ln(c)

∂ ln(T )

)∫
d3p

(2π)3

(
βc ⟨ϕ⟩

1 + βc ⟨ϕ⟩

)2

.

These are the two important equations for the pressure and energy density of
the system, which has an equal number of particles and anti-particles. i.e.,
the system is neutral in terms of the corresponding charges. These Eqs. (2.91)
and (2.92) are the lowest-order Mayer’s cluster expansion equations.

In Chapter 3, the above equations and procedures are used to derive the equa-
tion of state for QGP using a modified liquid drop potential. A comparison
with Gamow’s liquid drop model is also done. The modified liquid drop model
is validated by fitting it with the the lattice data.

40



Bibliography

[1] R. Balescu, Statistical Mechanics of Charged Particles Monographs in Sta-
tistical Physics, Vol. 4, Interscience Publishers

[2] H. L. Friedman, Ionic Solution Theory. Based on Cluster Expansion Meth-
ods. Monographs in Statistical Physics and Thermodynamics, Volume 3,
Interscience Publishers

[3] J. E. Mayer, J. Chem. Phys. 18, 1426 (1950)

[4] R. K. Pathria, Statistical mechanics, Elsevier/Academic Press (2011)

41



Chapter 3

Modified Liquid Drop Model in
QGP

In 1995, Bannur [1] introduced a new method by combining Mayer’s cluster ex-
pansion with the QGP number density function to study the equations of state
of quark-gluon plasma. In his work, only the quark contribution is considered,
and the potential is dependent on the charge of the interating particles. The
model also demanded a neutral system in which the number of antiparticles
and particles should be the same. In that work, the Cornell potential of the
form a/r−br was examined. Later, it was extended by Udayanandan and VM
Bannur [2] to include the gluon contribution. Prasanth and Bannur estimated
the transport coefficient for modified Cornell potential in [3].

3.1 Study of QGP using MCE with an arbi-

trary central potential

The general steps for computing the EoS of QGP using MCE are as follows:

1. Find the appropriate central potential f(r).

2. Check whether the potential has a dependence on charge and find the
appropriate model equation.

3. Find an appropriate converging function that goes to unity when the
parameter goes to zero.

4. Three dimensional Fourier Transform the central potential with a con-
verging factor for momentum representation.
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5. Apply it to the pressure momentum relation.

6. Using standard statistical mechanics, find out various thermodynamic
quantities.

3.1.1 Fourier transform of of polynomial function in ra-
dial coordinate with inverse radial term

Consider the three dimensional Fourier transform of central potential of the
form anr

n where n ∈ {−1, 1, 2, 3, . . . ,∞} and an is a constant. Let us choose
the converging function with converging parameter h as Lt

h→0
exp(−hr) = 1. As

mentioned earlier, for a central potential function f(r),

⟨f⟩ =
∫
f(r) exp(ip⃗.⃗r) d3r =

∫
f(r) exp(−ip⃗.⃗r) d3r

= 4π

∫ ∞

0

f(r)
sin(pr)

pr
× r2dr

(3.1)

i.e., For central potential, Eq. (3.1) is an even function in p. In other words,
the three dimensional Fourier transform from radial coordinate to momentum
is independent of the sign of |p|.

The three dimensional Fourier transform for an arbitrary function of the
form anr

n with the converging parameter Lt
h→0

exp(−hr) is

⟨anrn⟩ = 4π

∫ ∞

0

anr
n × exp(−hr)× sin(pr)

pr
× r2dr

=
4πan
p

Im

{∫ ∞

0

rn+1 exp (−r(h− ip))

}

=
4πan
p

× Γ (n+ 2)× Im
{
(h− ip)−(n+2)

}

=
4πan
p

Γ (n+ 2)

(p2 + h2)n+2 Im
{
(h+ ip)n+2}

≈ 4πan
p

Γ (n+ 2)

(p2 + h2)
n+2
2

sin

[
(n+ 2) sin−1

(
p√

h2 + p2

)]

(3.2)

i.e., If we substitute s = p2 + h2 (for ease in notation),
〈
a

r

〉
= 4π

a

s
=⇒ Lt

h→0

〈
a

r

〉
= Lt

h→0
4π
a

s

〈
a1r

〉
= 4π

[
8h2

s3
− 2

s2

]
a1 =⇒ Lt

h→0

〈
a1r

〉
= −8πa1

s2

(3.3)
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〈
a2r

2

〉
= 4π

[
48h3

s4
− 24h

s3

]
a2 =⇒ Lt

h→0

〈
a2r

2

〉
= 0

〈
a3r

3

〉
= 4π

[
384h4

s5
− 288h2

s4
+

24

s3

]
a3 =⇒ Lt

h→0

〈
a3r

3

〉
=

96π

s3
a3

(3.4)

One could easily find that for n = even, ⟨anrn⟩ = 0. Similarly,

〈
a2k−1 r

2k−1

〉
= (−1)k × 4π

Γ (2k + 1)

sk+1
× a2k−1 (3.5)

with s = Lt
h→0

p2 + h2 and k being a whole number.

3.1.2 Pressure cluster relation

We have derived in Eqs. (2.91) and (2.92) that the pressure relation in natural
units is

P

T
= c+

1

2

∫
d3p

(2π)3

[
cβ⟨ϕ⟩

1 + cβ⟨ϕ⟩
− ln [1 + βc⟨ϕ⟩]

]
(3.6)

where the potential energy is Uij = zizjϕij, with zi, zj ∈ {−1, 1}. Consider a

potential of the form βc⟨ϕ⟩ =
n∑

j=1

aj
sj
, then

βc⟨ϕ⟩
1 + βc⟨ϕ⟩

=

∑n
j=1

aj
sj

1 +
∑n

j=1
aj
sj

=

∑n
j=1 ajs

n−j

sn +
∑n

j=1 ajs
n−j

=
N (s)

D(s)
(3.7)

Let D(s) =
N∏

j=1

(s − zj)
lj with

N∑

j=1

lj = n. In other words, D(s) will have N

distinct roots with different degeneracy factors. The jth root is called zj with
degeneracy lj. Since D(s) is real, let there be ν pairs of complex roots (zν
and z∗ν) and N − 2ν pairs of real roots (xτ ). Therefore, using partial fraction
decomposition,

N (s)

D(s)
=

D(s)− sn

D(s)
=

ν∑

j=1

lj∑

i=1

[
Aji

(s− zj)
i +

A∗
ji(

s− z∗j
)i

]
+

N−2ν∑

τ=1

l̄τ∑

i=1

Āτ,i

(s− xτ )
i

(3.8)
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with 2
ν∑

j=1

lν +
N−2ν∑

j=1

l̄j = n, where l̄τ denotes the degeneracy of τ th real root

(xτ ) and lν is the νth complex pair root’s (zν and z∗ν) degeneracy. Similarly

D(s) =
ν∏

j=1

(s− zj)
lj(s− z∗j )

lj ×
N−2ν∏

τ=1

(s− xτ )
l̄τ (3.9)

ln (1 + βc⟨ϕ⟩) = ln

(
1 +

n∑

j=1

aj
sj

)

= ln [D(s)]− n ln(s)

=
ν∑

j=1

lj
[
ln (s− zj) + ln

(
s− z∗j

)]
+

N−2ν∑

τ=1

l̄τ ln(s− xτ )− n ln(s)

(3.10)

We can evaluate the pressure by using a method called dimensional regulariza-
tion which we will explain in the next section. The integral results are added
in the following equation. The complete derivation can be found in Section 3.3.
Now

P

T
= c+

1

2

∫
d3p

(2π)3

ν∑

j=1

lj∑

i=1

[
Aji

(s− zj)
i +

A∗
ji(

s− z∗j
)i

]

+
1

2

∫
d3p

(2π)3

N−2ν∑

τ=1

l̄τ∑

i=1

Āτ,i

(s− xτ )
i

− 1

2

∫
d3p

(2π)3

ν∑

j=1

lj
[
ln (s− zj) + ln

(
s− z∗j

)]

− 1

2

∫
d3p

(2π)3

N−2ν∑

τ=1

l̄τ ln(s− xτ ) +
n

2

∫
d3p

(2π)3
ln(s)

(3.11)

P

T
= c+

1

2

ν∑

j=1

lj∑

i=1

[
Re {Aji} Qi(zj)− Im {Aji} Ri(zj)

]

+
1

2

N−2ν∑

τ=1

l̄τ∑

i=1

Āτ,i [Ji(xτ ) + Jii(xτ )]−
1

2

ν∑

j=1

lj Mn(zj)

− 1

2

N−2ν∑

τ=1

l̄τ [Ln(xτ ) + Lm(xτ )] +
n

2
Ln(0)

(3.12)
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with

Qn(z) =
B(n− 3

2
, 3
2
)

2π2
Re
{
(−z)

3
2
−n
}

=
B(n− 3

2
, 3
2
)

2π2
|z|

3
2
−n cos

[(
3

2
− n

)
cos−1

(
−Re {z}

|z|

)] (3.13)

Rn(z) =
B(n− 3

2
, 3
2
)

2π2
Im
{
(−z)

3
2
−n
}

=
B(n− 3

2
, 3
2
)

2π2
|z|

3
2
−n sin

[(
3

2
− n

)
cos−1

(
−Re {z}

|z|

)]
sgn (− Im(z))

(3.14)

Mn(z) =
B
(
−1

2
, 3
2

)

3π2
Re
{
(−z)

3
2

}

= −
√
2

6π

[
λRΛ− λ2I

Λ

] (3.15)

where Λ =
√
λR + ξ, λR = −Re(z), λI = − Im(z) ξ =

√
λ2R + λ2I

Ln(x) =
B
(
−1

2
, 3
2

)

6π2
(−x)

3
2 Θ(−x)

Lm(x) = i
B
(
−1

2
, 3
2

)

6π2
(x)

3
2 Θ(x)

(3.16)

and

Jn(x) =
B
(
n− 3

2
, 3
2

)

4π2
(−x)

3
2
−nΘ(−x)

Jin(x) = i (−1)n
B
(
n− 3

2
, 3
2

)

4π2
(x)

3
2
−nΘ(x)

In(x) = Jn(x) + Jin(x)

Ln = Ln(x) + Lm(x)

(3.17)

3.1.3 Dealing with divergences

We have

P

T
= c+

1

2

∫
d3p

(2π)3

[
cβ⟨ϕ⟩

1 + cβ⟨ϕ⟩
− ln [1 + βc⟨ϕ⟩]

]
(3.18)
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On adding and subtracting βc ⟨ϕ⟩ from both the terms we get,

P

T
= c+

1

2

∫
d3p

(2π)3

[
cβ⟨ϕ⟩

1 + cβ⟨ϕ⟩
− βc ⟨ϕ⟩

]

+
1

2

∫
d3p

(2π)3
[βc ⟨ϕ⟩ − ln (1 + βc ⟨ϕ⟩)]

= c+
1

2

[
t− βc

∂t

∂(βc)

]

with t =
1

2

∫
d3p

(2π)3
[βc ⟨ϕ⟩ − ln (1 + βc ⟨ϕ⟩)]

(3.19)

As shown in Section 3.3.3, assume that a divergence k1 appear in the integral
∂t

∂(βc)
as a constant of integration, which is independent of βc

i.e.,

∂t

∂(βc)
=
−1

2

∫
d3p

(2π)3

[
⟨ϕ⟩

1 + cβ⟨ϕ⟩
− ⟨ϕ⟩

]

=

[
∂t

∂(βc)

]finite
+ k1

(3.20)

Therefore

t =

∫
d[βc]

([
∂t

∂(βc)

]finite
+ k1

)

= tfinite + βc k1

(3.21)

Combining Eqs. (3.19) to (3.21) we get

P

T
= c+

1

2

[
t− βc

∂t

∂(βc)

]

= c+
1

2

[
tfinite − βc

∂tfinite

∂(βc)

] (3.22)

i.e., The divergence terms cancel themselves, and the integral remains finite.
Therefore

P

T
= c+

1

2

∫
d3p

(2π)3

[
cβ⟨ϕ⟩

1 + cβ⟨ϕ⟩
− ln [1 + βc⟨ϕ⟩]

]
= Finite (3.23)

3.2 Examples

3.2.1 Potential of the form βc⟨ϕ⟩ = a1
s

Consider potential of the form U(rij) = zizjb/r in spherical polar coordinate.
The three dimensional Fourier transform is of the form βc⟨ϕ⟩ = a1/s with
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a1 = 4πβbc. Here

βc⟨ϕ⟩
1 + βc⟨ϕ⟩

− ln (1 + βc⟨ϕ⟩) = a1
s+ a1

− ln(s+ a1) + ln(s) (3.24)

So

P

T
= c+

1

2

∫
d3p

(2π)3

[
βc⟨ϕ⟩

1 + βc⟨ϕ⟩
− ln (1 + βc⟨ϕ⟩)

]

= c+
a1I1(−a1)− Ln(−a1) + Ln(0)

2

(3.25)

But the effective pressure is the real part of the the pressure. So

P

T

∣∣∣∣
eff.

=
Re {P}
T

= c+
a1J1(−a1)− Ln(−a1) + Ln(0)

2
(3.26)

But

J1(x) =
B
(
−1

2
, 3
2

)

4π2

√
−x = −

√
−x
4π

=⇒ J1(−a1) = −
√
a1

4π
(3.27)

Ln(x) =
B
(
−1

2
, 3
2

)

6π2
(−x)

3
2 = −(−x) 3

2

6π
=⇒ Ln(−a1) = −a

3
2
1

6π
(3.28)

Thus

P

T

∣∣∣∣
eff.

= c− a
3
2
1

24π
(3.29)

When c = ci + ce, and a1 = 4πβbc = κ2, So

P

T

∣∣∣∣
eff.

= ci + ce −
κ3

24π
(3.30)

The result is the same as that of [4].

3.2.2 Potential of the form βc⟨ϕ⟩ = a1
s + a2

s2

Here D(s) = s2 + a1s + a2 can have all real roots when D2
1 = a21 − 4a2 > 0,

or two imaginary roots which are complex conjugate to each other i.e., D2
2 =

4a2 − a21 > 0 or same root with degeneracy D2
3 = 0 =⇒ 4a2 = a21. In the
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result below we have accommodated the three possibilities as shown.

βc⟨ϕ⟩
1 + βc⟨ϕ⟩

− ln (1 + βc⟨ϕ⟩) = a1s+ a2
s2 + a1s+ a2

− ln
(
s2 + a1s+ a2

)
+ 2 ln(s)

=

[
α1

s− x1
+

α2

s− x2
− ln(s− x1)− ln(s− x2) + 2 ln(s)

]
Θ(D2

1)

+

[
β1

s− z1
+

β2
s− z2

− ln(s− z1)− ln(s− z2) + 2 ln(s)

]
Θ(D2

2)

+

[
γ1

s− y
+

γ2
(s− y)2

− 2 ln(s− y) + 2 ln(s)

]
δ(0, D3)

(3.31)

with

D2
1 = a21 − 4a2 > 0 , α1 = − x21

x1 − x2
, α2 = − x22

x2 − x1
, x1 =

1

2
(D1 − a1) ,

x2 = −1

2
(D1 + a1)

D2
2 = 4a2 − a21 > 0 , β1 = − z21

z1 − z2
, β2 = − z22

z2 − z1
, z1 =

1

2
(iD2 − a1),

z2 = z∗1
D2

3 = 4a2 − a21 = 0, γ2 = −a2 and γ1 = ±2
√
a2 the sign ± is decided

by the sign of a1i.e., 2
√
a2 = a1, y = ∓

√
a2.

(3.32)

So ∫
d3p

(2π)3

[
βc⟨ϕ⟩

1 + βc⟨ϕ⟩
− ln (1 + βc⟨ϕ⟩)

]

=
[
α1I1(x1) + α2I1(x2)− Ln(x1)− Ln(x2) + 2Ln(0)

]
Θ(D2

1)

+
[
βRQ1(z1)− βIR1(z1)− Mn(z1) + 2Ln(0)

]
Θ(D2

2)

+
[
γ1I1(y) + γ2I2(y)− 2Ln(y) + 2Ln(0)

]
δ0,D3

(3.33)

with

βR =
a1
2

βI =
a21 −D2

2

4D2

=
a21 − 2a2

2
√

4a2 − a21

Q1(z1) =
B
(
−1

2
, 3
2

)

4π2

√
a1 + 2

√
a2 = −

√
2
√
a2 + a1

4π

R1(z1) = −
B
(
−1

2
, 3
2

)

4π2

√
−a1 + 2

√
a2 =

√
2
√
a2 − a1

4π

(3.34)
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Now the effective pressure is

P

T

∣∣∣∣
eff.

= c+
1

2
[α1J1(x1) + α2J1(x2)− Ln(x1)− Ln(x2)] Θ(D2

1)

+
[βRQ1(z1)− βIR1(z1)− Mn(z1)]

2
Θ(D2

2)

+
[γ1J1(y) + γ2J2(y)− 2Ln(y)]

2
δ0,D3

(3.35)

For D2
2 = 4a2−a21 < 0, and changing symbols c = κ2T , ai → κ2ai and applying

it to the above equation, gives us

P

T
= κ2T − 1

24π

a2κ
3
2 + a1

√
a2κ

5
2 + a21κ

7
2

√
2
√
a2 + a1κ

. (3.36)

This result is same as that of Bannur [1].

3.2.3 Potential of the form βc⟨ϕ⟩ = a1
s + a2

s2 +
a3
s3

βc⟨ϕ⟩
1 + βc⟨ϕ⟩

− ln (1 + βc⟨ϕ⟩) =

[
3∑

j=1

αj

s− xj
−

3∑

j=1

ln(s− xj) + 3 ln(s)

]
Θ(−D)

+

[
α

s− x
+

β1
s− z

+
β∗
1

s− z∗1
− ln(s− x)− ln(s− z1)− ln(s− z∗1) + 3 ln(s)

]
Θ(D)

+

[
γ1

s− x
+

γ2
(s− x)2

+
γ3

(s− x)3
− 3 ln(s− x) + 3 ln(s)

]
δD,0

(3.37)

Similarly

[
βc⟨ϕ⟩

1 + βc⟨ϕ⟩

]2
=

[
3∑

j=1

αi

s− xi

]2
Θ(−D) +

(
α

s− x
+

β1
s− z

+
β∗
1

s− z∗

)2

Θ(D)

+

(
γ3

s− y
+

2∑

j=1

γj
(s− x)j

)
δD,0

(3.38)

with

Q =
3a2 − a21

9
R =

9a1a2 − 27a3 − 2a31
54

,

D = Q3 +R2, S =
(
R +

√
D
) 1

3
, T = −Q

S

(3.39)
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x1 = −a1
3

+ 2
√

−Q cos

(
θ

3

)
; x2 = −a1

3
+ 2
√

−Q cos

(
θ

3
+

2π

3

)
;

x3 = −a1
3

+ 2
√

−Q cos

(
θ

3
+

4π

3

) (3.40)

α1 = − x31
(x1 − x2)(x1 − x3)

; α2 = − x32
(x2 − x1)(x2 − x3)

;

α3 = − x33
(x3 − x1)(x3 − x2)

(3.41)

x = S + T − a1
3
; z = −1

2
(S + T )− a1

3
+

i
√
3

2
(S − T );

α = − x3

(x− z)(x− z∗)
; βR = −Re

{
z3

(z − x)(z − z∗)

}
;

βI = − Im

{
z3

(z − x)(z − z∗)

}
, β1 = βR + iβI

(3.42)

3.2.3. (a) When all roots are real and unequal

∫
d3p

(2π)3

[
βc⟨ϕ⟩

1 + βc⟨ϕ⟩

]2
=

∫
d3p

(2π)3

[
3∑

i=1

α2
i

(s− xi)2
+

3∑

i,j=1,i ̸=j

αiαj

xi − xj

(
1

s− xi
− 1

s− xj

)]

=
3∑

i=1

α2
i I2(xi) + 2

3∑

i>j=1

αiαj

xi − xj
(I1(xi)− I1(xj))

(3.43)

3.2.3. (b) When two roots are complex conjugate, and the third
one is real

∫
d3p

(2π)3

[
βc⟨ϕ⟩

1 + βc⟨ϕ⟩

]2
=

∫
d3p

(2π)3

[
α

s− x
+

β1
s− z

+
β∗
1

s− z∗

]2

= α2I2(x) + Re
{
β2
1

}
Q2(z)− Im

{
β2
1

}
R2(z)

+ 2α

[
Re

{
β1

z − x

}
Q1(z)− Im

{
β1

z − x

}
R1(z)

]

+
|β1|2

Im(z)
R1(z) + 4αRe

{
β1

x− z

}
I1(x)

(3.44)
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3.2.3. (c) When atleast two roots are real and equal third one is
real and unequal

∫
d3p

(2π)3

[
βc⟨ϕ⟩

1 + βc⟨ϕ⟩

]2
=

∫
d3p

(2π)3

[
γ1

s− x
+

γ2
(s− x)2

+
γ3

s− y

]2

=γ21I2(x) + γ22I4(x) + γ23I2(y)

+ 2γ1γ2I3(x) +
2γ1γ3
x− y

(I1(x)− I1(y))

+ 2γ2γ3

[
1

xy
+

1

x(x− y)
− x

y(x− y)2

]
I1(x)

+ 2γ2γ3

[
I2(x)

x− y
+

I1(y)

(x− y)2

]

(3.45)

3.2.3. (d) When all roots are real and equal
∫

d3p

(2π)3

[
βc⟨ϕ⟩

1 + βc⟨ϕ⟩

]2
=

∫
d3p

(2π)3

[
γ1

s− x
+

γ2
(s− x)2

+
γ3

(s− x)3

]2

=γ21I2(x) + γ22I4(x) + γ3I6(x)

+ 2γ1γ2I3(x) + 2γ1γ3I4(x) + 2γ2γ3I5(x)

(3.46)

So The general formula from Eq. (2.91) is

P

T
= c+

1

2

∫
d3p

(2π)3

[
βc⟨ϕ⟩

1 + βc⟨ϕ⟩
− ln (1 + βc⟨ϕ⟩)

]
(3.47)

and from Eq. (2.92) for c ∝ T 3

ε

T
= 3c−

∫
d3p

(2π)3

[
βc⟨ϕ⟩

1 + βc⟨ϕ⟩

]2
(3.48)

After fitting these equations with lattice data, the Eq. (3.44) becomes the best
fit with lattice data. However, in the next section, we can see that the fitted
parameters caused x to be positive, so Ln(x) goes to zero.

P

T
= c+

1

2
[αI1(x) + Re {β1} Q1(z)− Im {β1} R1(z)]−

1

2
[Ln(x) + Mn(z)]

ε

T
= 3c−

(
α2I2(x) + Re

{
β2
1

}
Q2(z)− Im

{
β2
1

}
R2(z)

)

−
(
2α

[
Re

{
β1

z − x

}
Q1(z)− Im

{
β1

z − x

}
R1(z)

])

−
(

|β1|2

Im(z)
R1(z) + 4αRe

{
β1

x− z

}
I1(x)

)
(3.49)
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with

Q =
3a2 − a21

9
R =

9a1a2 − 27a3 − 2a31
54

, D = Q3 +R2,

S =
(
R +

√
D
) 1

3
, T = −Q

S
a1 = −4πβr0ac, a2 = 8πβr−1

0 al, a3 = −96πβr−3
0 av.

x = S + T − a1
3
; z = −1

2
(S + T )− a1

3
+

i
√
3

2
(S − T );

α = − x3

(x− z)(x− z∗)
; Re {β1} = −Re

{
z3

(z − x)(z − z∗)

}
;

Im {β1} = − Im

{
z3

(z − x)(z − z∗)

}
; β1 = Re {β1}+ i Im {β1}

(3.50)

Here x ∈ R+, so In(x) contains imagniary term, so taking the real term con-
tribution we get

Re {ε}
T

=
ε

T
− i Im

( ε
T

)
= 3c+

[
Im2 {β1} − Re2 {β1}

]
Q2(z) + 2Re {β1} Im {β1} R2(z)

+ 2α

[
Im

{
β1

z − x

}
R1(z)− Re

{
β1

z − x

}
Q1(z)

]

− |β1|2

Im {z}
R1(z)

(3.51)

Similarly

Re(P )

T
= c+

1

2
[Re {β1} Q1(z)− Im {β1} R1(z)− Mn(z)] (3.52)

The imaginary part contribution can be written as

Im {ε}
T

= −α2 Im {I2(x)} − 4αRe

{
β1

x− z

}
Im {I1(x)}

Im {P}
T

=
α

2
Im {I1(x)} −

1

2
Im {Ln(x)}

(3.53)

The integral result shown above can be derived in the section below.

3.3 Integral Results

3.3.1 Regularization via Contour integration method

Consider integrals of the form
∫∞
−∞N(x)/D(x) dx, where N(x) and D(x) are

functions of polynomials with degree of N(x) is less than D(x) by two, and
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D(x) ̸= 0 ∀x ∈ R.
Then one could evaluate the integral by defining f(x) = N(x)/D(x), and
evaluate the integral by

∫

c

f(z)dz =

∫ Γ

−Γ

f(z)dz +

∫

ϵ

f(z)dz (3.54)

As

lim
Γ→∞

∫

ϵ

f(z)dz = 0 (3.55)

So
∫

c

f(z)dz =

∫ ∞

−∞
f(x)dx (3.56)

3.3.1. (a) Examples

Consider the integral of the form

I1(m
2) =

∫
d3p

(2π)3
1

p2 +m2

=

∫ ∞

0

dp

2π2

p2

p2 +m2

The numerator and denominator of above integral is not differ by a degree of
two. In order to solve the integral one could take a differentiation w.r.t m2.

I2(m
2) = − ∂

∂m2
I1(m

2) =

∫ ∞

0

p2

(p2 +m2)2
dp

2π2

=
1

4π2

∫ ∞

−∞

p2

(p2 +m2)2
dp

(3.57)

We are taking a semicircle with imaginary axis is taken along positive y axis.

Im z

Re z

im

−im

−Γ Γ

Setting f(p) = p2/(p2 +m2)2, with N(p) = p2 and D(p) = (p2 +m2)2. Since
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N(p) is less than D(p) by a degree of two, and D(p) ̸= 0∀p ∈ R, we could
apply contour integral to find the solution

I2(m
2) = − ∂

∂m2
I1(m

2) = lim
Γ→∞

∫ Γ

−Γ

z2

(z2 +m2)2
dz

4π2

= 2πi× Residue at

(
z2

(z2 +m2)2

)∣∣∣∣
z→im

We can take only the part in the upper half plane semicircle

domain of the contour.

Residue at z → im = lim
z→im

d

dz

{
(z − im)2

z2

(z2 +m2)2

}

= lim
z→im

2imz

(z + im)3
= − i

4m

So, I2(m
2) = − ∂

∂m2
I1(m

2) = 2πi×− i

4m
× 1

4π2

− ∂

∂m2
I1(m

2) =
1

8πm

3.3.2 Regularization via Schwinger’s proper time rep-
resentation

I2(m
2) = − ∂

∂m2
I1(m

2) =

∫ ∞

−∞

p2

(p2 +m2)2
dp

4π2

=

∫ ∞

0

dτ τ

∫ ∞

−∞
p2e−τ(p2+m2) dp

4π2

=
Γ
(
3
2

)

4π2

∫ ∞

0

dτ τ−
1
2 e−τm2

=
Γ
(
3
2

)

4π2

Γ
(
1
2

)

m
=

1

8πm

(3.58)
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3.3.3 Generalizing

Using the tricks of [5], the results can be obtained as,

I1(m
2) =

∫
d3p

(2π)3
1

(p2 +m2)
= −

∫ m2

a

dw

∫
d3p

(2π)3
1

(p2 + w)2
+

∫
d3p

(2π)3
1

p2 + a

= − 1

4π

√
m2

︸ ︷︷ ︸
I1(m2)

+
1

4π

√
a+

∫
d3p

(2π)3
1

p2 + a︸ ︷︷ ︸
k1(a)

= I1(m
2) + k1(a)

(3.59)

where a is an arbitrary lower limit of the integral.
We choose a→ 0, then

I1(m
2) = − 1

4π

√
m2

︸ ︷︷ ︸
I1(m2)

+

∫
d3p

(2π)3
1

p2︸ ︷︷ ︸
k1

(3.60)

The terms that are independent of m2, can be considered as constant of inte-
gration which contains divergence. i.e., k1 is considered to be diverging. So in
general,

I1(m
2) = −

∫
1

8π
√
m2

dm2 = − 1

4π

√
m2

I1(m
2) =

∫
1

p2 +m2

d3p

(2π)3
= −m

4π
+ k1

(3.61)

Consider the integral, with n being a natural number,

In(m
2) =

∫
d3p

(2π)3
1

(p2 +m2)n
(3.62)

The diverging constant in I1 i.e., k1 get’s cancelled in Section 3.1.3. So in our
calculation of pressure and energy density using MCE, the Eq. (3.62) definition
at n = 1 causes no change in the result. Using the result

(−1)n−1

Γ(n)

∂n−1

∂xn−1

(
1

x+ p2

)
=

1

(x+ p2)n
(3.63)

Thus Eq. (3.62) can be expressed as

In(m
2) =

(−1)n−1

Γ(n)

∂n−1

∂(m2)n−1
I1(m

2)

= − 1

4π

(−1)n−1

Γ(n)

∂n−1

∂(m2)n−1

√
m2

(3.64)
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But

∂n−1

∂xn−1

√
x =

1

2

Γ

(
2n−3

2

)

Γ
(
1
2

) (−1)n

(x)
2n−3

2

(3.65)

So Eq. (3.64) can be written as

In(m
2) = − 1

4π

(−1)n−1

Γ(n)

1

2

Γ
(
n− 3

2

)

Γ
(
1
2

) (−1)n

m2n−3

=
1

8π

Γ
(
n− 3

2

)

Γ(n)Γ
(
1
2

) 1

(m2)n−
3
2

=
B(n− 3

2
, 3
2
)

4π2

1

(m2)n−
3
2

(3.66)

So in general
∫

d3p

(2π)3
1

(p2 +m2)n
=
B(n− 3

2
, 3
2
)

4π2

1

(m2)n−
3
2

Θ
(
m2
)

(3.67)

3.3.4 Circumventing The Poles

Dealing with plasma physics, the appearance of poles in the calculation of some
integrals is not new; it corresponds to the plasma instability mechanism [6].
Plasma waves are typically slightly damped by collisions or amplified by some
instability mechanism. Therefore, technically, the denominator of the integral
never actually goes to zero. Consider integral of the form

J(m2) =

∫
d3p

(2π)3
1

p2 −m2

∂

∂m2
J(m2) =

∫
d3p

(2π)3
1

(p2 −m2)2

=
1

4π2

∫ ∞

−∞

p2

(p2 −m2)2
dp

(3.68)

The integrand is divergent in p = ±m. So one cannot apply contour method
because Q(p2) = 0 at p = ±m ∈ R. If we try to circumvent the integral by
deviating m2 from R → C i.e., m2 → m2 + iϵ.

∂

∂m2
J(m2 + iϵ) =

1

4π2
lim
ϵ→0

∫ ∞

−∞

p2

(p2 −m2 − iϵ)2
dp

=
1

4π2
lim
ϵ→0

∫ ∞

−∞

(
p

p+
√
m2 + iϵ

× 1

p−
√
m2 + iϵ

)2

dp

(3.69)
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Residues are at p = ±z1 = ±
√
m2 + iϵ

±z1 = ±



√
m2 +

√
m4 + ϵ2

2
+ i

√
2 ϵ

2
√
m4 +

√
m2 + ϵ2




Now if pole is at z = z1 ∈ Upper Half plane,

∂

∂m2
J(m2 + iϵ) =

2πi

4π2
Residue at

(
z2

(z2 − z21)
2

)

Residue at z → z1 = lim
z→z1

d

dz

{
(z − z1)

2 z2

(z2 − z21)
2

}

= lim
z→z1

2z1z

(z + z1)3
=

1

4z1

So
∂

∂m2
J(m2 + iϵ) = 2πi× 1

4z1
× 1

4π2

∂

∂m2
J(m2 + iϵ) =

i

8π
√
m2 + iϵ

∂

∂m2
J(m2) = lim

ϵ→0

∂

∂m2
J(m2 + iϵ) =

i

8πm

(3.70)

If pole is in z = −z1 ∈ Lower Half plane using this circumventing pole technique
one could derive

∂

∂m2
J(m2 + iϵ) =

2πi

4π2
Residue at

(
z2

(z2 − z21)
2

)

Residue at z → −z1 = lim
z→−z1

d

dz

{
(z + z1)

2 z2

(z2 − z21)
2

}

= lim
z→−z1

− 2z1z

(z − z1)3
= − 1

4z1

So
∂

∂m2
J(m2 + iϵ) = −2πi× −1

4z1
× 1

4π2

∂

∂m2
J(m2 + iϵ) =

i

8π
√
m2 + iϵ

∂

∂m2
J(m2) = lim

ϵ→0

∂

∂m2
J(m2 + iϵ) =

i

8πm

(3.71)

Using the idea described in Section 3.3.3 about the divergence,

J(m2) = lim
ϵ→0

∫
i

8π
√
m2 + iϵ

dm2 =
i

4π

√
m2 + k2

J(m2) = lim
ϵ→0

∫
1

p2 − (m2 ± iϵ)

d3p

(2π)3
= i

m

4π
+ k2

(3.72)
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where k2 contains divergence. For n > 1,

J(m2, n) = lim
ϵ→0

∫
d3p

(2π)3
1

(p2 − (m2 + iϵ))n

=
1

Γ (n)

∂n−1

∂ (m2)n−1 limϵ→0

∫
d3p

(2π)3
1

p2 − (m2 + iϵ)

=
i

4π

1

Γ (n)

∂n−1

∂ (m2)n−1

√
m2 Θ

(
m2
)

= i
(−1)n

8π

Γ (n− 3/2)

Γ (n) Γ (1/2)

1

(m2)n−3/2
Θ
(
m2
)

(3.73)

Therefore

J(m2, n) = i(−1)n
B
(
n− 3

2
, 3
2

)

4π2

(
m2
) 3−2n

2 Θ
(
m2
)

(3.74)

Combining the results, depending on the value of m2 − x, the integral result
In(m,x) for n > 1 can be redefined as

In(m,x) = lim
ϵ→0

∫
1

(p2 +m2 − x± iϵ)n
d3p

(2π)3

=
B
(
n− 3

2
, 3
2

)

4π2

[
Θ(m2 − x)

(m2 − x)n−3/2
+ i

(−1)n

(x−m2)n−3/2
Θ
(
x−m2

)]

(3.75)

and

I1(m,x) = lim
ϵ→0

∫
1

(p2 +m2 − x± iϵ)

d3p

(2π)3

=
B
(
−1

2
, 3
2

)

4π2

[
Θ(m2 − x)√
m2 − x

− i
1√

x−m2
Θ
(
x−m2

)]

+ k1(a)Θ(m2 − x) + k2Θ(x−m2)

=I1(m,x) + k1Θ(m2 − x) + k2Θ(x−m2)

(3.76)

Jn(x) = Re {In(0, x)}
Jin(x) = i Im {In(0, x)}

(3.77)

Similarly, for z ∈ C
∫

1

(p2 +m2 − z)n
d3p

(2π)3
=
B(n− 3

2
, 3
2
)

4π2

1

(m2 − z)n−
3
2

(3.78)
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So, for n ≥ 2,

Qn(m, z) =

∫
Re

{
1

(p2 +m2 − z)n
+

1

(p2 +m2 − z∗)n

}
d3p

(2π)3

Qn(m, z) =
B(n− 3

2
, 3
2
)

2π2
Re
{(
m2 − z

) 3
2
−n
}

=
B
(
3
2
, n− 3

2

)

2π2
ξ

3
2
−n cos

[(
3

2
− n

)
cos−1

(
λR
ξ

)]
(3.79)

for n = 1,
∫
Re {2/(p2 +m2 − z)} d3p/(2π)3 = Q1(m, z) + 2k1 and for n ≥ 1

Rn(m, z) =

∫
Im

{
1

(p2 +m2 − z)n
− 1

(p2 +m2 − z∗)n

}
d3p

(2π)3

Rn(m, z) =
B(n− 3

2
, 3
2
)

2π2
Im
{(
m2 − z

) 3
2
−n
}

= sgn(λI)
B
(
3
2
, n− 3

2

)

2π2
ξ

3
2
−n sin

[(
3

2
− n

)
cos−1

(
λR
ξ

)]

Mn(m, z) =

∫
Re
{
ln
(
p2 +m2 − z

)
+ ln

(
p2 +m2 − z∗

)} d3p

(2π)3

Mn(m, z) = Mn(m, z) + k3

with

Mn(m, z) =
B
(
−1

2
, 3
2

)

3π2
Re
{(
m2 − z

) 3
2

}
= −

√
2

6π

[
λRΛ− λ2I

Λ

]

(3.80)

where Λ =
√
λR + ξ, λR = m2−Re(z), λI = − Im(z) ξ =

√
λ2R + λ2I and

k3 is the constant of integration, that contains divergence.

Ln(m,x) =

∫
ln (s− x)

d3p

(2π)3
(3.81)

Solving Eq. (3.81) with [5] and Section 3.3.3,

Ln(m,x) =Ln(m,x) + k3

Ln(m,x) =
B
(
−1

2
, 3
2

)

6π2

[(
m2 − x

) 3
2 Θ(m2 − x) + i

(
x−m2

) 3
2 Θ
(
x−m2

)]

(3.82)

where k3 diverges. In Sections 3.1.2, 3.2, 3.4 and 3.4.1. (a), we have defined

Ln(x) = Re
{
Ln(0, x)

}

Lm(x) = Im
{
Ln(0, x)

}

Mn(z) = Mn(0, z)

Rn(z) = Rn(0, z)

Qn(z) = Qn(0, z)

(3.83)
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3.3.5 Some complex number summation results

The sum of certain complex numbers are involved in the final steps of integral
calculation shown above. The formula we employed can be found as follows:
Let λR, λI ∈ R, then λR + iλI is a complex number for λI ̸= 0.

(λR + iλI)
n + (λR − iλI)

n = 2|λ|n cos

[
n cos−1

(
λR√
λ2R + λ2I

)]
(3.84)

Similarly

(λR + iλI)
n − (λR − iλI)

n = 2i|λ|n sin
[
n cos−1

(
λR√
λ2R + λ2I

)]
sgn (λI)

(3.85)

√
λR + iλI +

√
λR − iλI =

√
2Λ (3.86)

√
λR + iλI −

√
λR + iλI = i

√
2λI
Λ

(3.87)

(λR + iλI)
3
2 + (λR − iλI)

3
2 =

√
2

(
λRΛ− λ2I

Λ

)
(3.88)

(λR + iλI)
3
2 − (λR − iλI)

3
2 = 2iλI

(√
2Λ− |λ|√

2Λ

)
(3.89)

(λR + iλI)
5
2 + (λR − iλI)

5
2 =

√
2

[(
λ2R − λ2I

)
Λ− 2λ2IλR

Λ

]
(3.90)

(λR + iλI)
5
2 − (λR − iλI)

5
2 = i

√
2λI

[
(λ2R − λ2I)

Λ
+ 2λRΛ

]
(3.91)

(λR + iλI)
7
2 + (λR − iλI)

7
2 =

√
2

[
Λ
(
λ3R − 3λRλ

2
I

)
+
λ4I − 3λ2Iλ

2
R

Λ

]

(3.92)

(λR + iλI)
7
2 − (λR − iλI)

7
2 = i

√
2λI

[
Λ
(
3λ2R − λ2I

)
+
λ3R − 3λRλ

2
I

Λ

]

(3.93)
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1√
λR + iλI

+
1√

λR − iλI
=

√
2Λ

|λ|
(3.94)

1√
λR + iλI

− 1√
λR − iλI

= −i
√
2λI

|λ|Λ
(3.95)

1

(λR + iλI)
3
2

+
1

(λR − iλI)
3
2

=

√
2

|λ|3

[
λRΛ− λ2I

Λ

]
(3.96)

1

(λR + iλI)
3
2

− 1

(λR − iλI)
3
2

= −i2λI
|λ|3

[√
2Λ− |λ|√

2Λ

]
(3.97)

1

(λR + iλI)
5
2

+
1

(λR − iλI)
5
2

=

√
2

|λ|5

[(
λ2R − λ2I

)
Λ− 2λ2IλR

Λ

]
(3.98)

1

(λR + iλI)
5
2

− 1

(λR − iλI)
5
2

= −i
√
2

|λ|5
λI

[
(λ2R − λ2I)

Λ
+ 2λRΛ

]
(3.99)

1

(λR + iλI)
7
2

+
1

(λR − iλI)
7
2

=

√
2

|λ|7

[
Λ
(
λ3R − 3λRλ

2
I

)
+
λ4I − 3λ2Iλ

2
R

Λ

]

(3.100)

1

(λR + iλI)
7
2

− 1

(λR − iλI)
7
2

= −i
√
2

|λ|7
λI

[
Λ
(
3λ2R − λ2I

)
+
λ3R − 3λRλ

2
I

Λ

]

(3.101)

with Λ =
√
λR +

√
λ2R + λ2I, and |λ| =

√
λ2R + λ2I

3.4 Semi-empirical mass formula and Modi-

fied liquid drop model

The famous semi-empirical mass formula (SEMF) [7, 8, 9] describes the binding
energy of the nucleus as a function of mass number A and charge/proton
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number Z. The model is based on the idea of a liquid drop, in which the
binding energy is defined as

UB.E = avA︸︷︷︸
Volume
term

− asA
2
3︸ ︷︷ ︸

Surface
term

−Z(Z − 1)acA
− 1

3

︸ ︷︷ ︸
Coulomb
Term

− aA(N − Z)2A−1

︸ ︷︷ ︸
Asymmetry

term

+ δ(N,Z)︸ ︷︷ ︸
Pairing
term

(3.102)

The names of these terms can be made clear when one rewrites the above
equation with the idea of constant nuclear density. i.e.,

ρnuclear =
A

4
3
πr3

=⇒ r = r0A
1
3 (3.103)

Combining Eq. (3.103) with Eq. (3.102) we get

UB.E = av
r3

r30︸︷︷︸
Volume
term

− as
r2

r20︸︷︷︸
Surface
term

−Z(Z − 1)ac
r0
r︸ ︷︷ ︸

Coulomb
Term

− aA(N − Z)2
r30
r3︸ ︷︷ ︸

Asymmetry
term

+ δ(N,Z)︸ ︷︷ ︸
Pairing
term

(3.104)

The first two terms, volume and surface, represent the strong force contri-
bution, while the third term, Coulomb, represents the electro-static contribu-
tion. Fourth term coming from Pauli’s exclusion principle. The fourth term is
proportional to the difference between the neutron and proton numbers. The
asymmetry term is also known as the Pauli term. The fifth term, known as
the pairing term, is used to balance the spin coupling effects. The values of
the terms in this equation are av = 15.76; aS = 17.81; ac = 0.711; aA =
23.702 ap = 34 [9], the units are in MeV.

However, in our work, we concentrate mainly on the first three terms.
There is no alternative to the asymmetric term in QGP because the system is
in a deconfined state. So the last two terms of the Eq. (3.104) make no sense
in the context of QGP.

3.4.1 Modified liquid drop model

1. Nucleons are confined forms of quarks and gluons. But in our model,
the quarks and gluons are in deconfined form. So we assume the strong
force av, which acts towards the confinement of the nucleons. In our
case we work on the quarks size range and in the high energy regime,
in which the quarks and gluons have asymptotic freedom. So we change
this confining av to −av.

2. The nuclear density is constant for nucleons within the nucleus. In QGP,
the density is a function of temperature. ρdeconf. = ρ(T ), which can be
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obtained by integrating the Fermi-Dirac distribution of free particles over
momentum space.

3. The charge dependence in SEMF is through the Coulomb term (Z(Z −
1)/r). In the modified liquid drop model (MLDM), all terms are charge
dependent. i.e., U(rij) = zizjϕ(rij), with ϕ(r) being a central potential.

4. In MLDM, we are adding an additional linear term alr but we haven’t
added the last two asymmetric term and pairing term as compared to
SEMF.

5. The nucleons obey Fermi-Dirac distribution; MLDM assumes that the
quark gluon plasma medium has collective behaviour dependent on the
potential U(rij) followed by all particles in the medium.

The mathematical expression of MLDM is

U(rij) = zizjϕ(rij)

ϕ(r) = −av
(
r

r0

)3

− as

(
r

r0

)2

− ac

(r0
r

)
− al

r

r0

ϕ(r) ≈ ϕ(r)

∣∣∣∣
eff.

= −av
(
r

r0

)3

− ac

(r0
r

)
− al

r

r0

(3.105)

The approximation is possible because the three dimensional Fourier transform
with the converging factor as mentioned in Eq. (3.3) Lt

h→0
⟨r2⟩ = 0.

So the potential can be written as

U(r) = zizj

(
− av

(
r

r0

)3

− ac

(r0
r

)
− al

r

r0

)
(3.106)

So from Eq. (3.105), the three dimensional Fourier transform of ϕ is

⟨ϕ⟩ = Lt
h→0

− 4π

[
acr0
s

− 2al
r0s2

+
24av
s3r30

]
(3.107)

with s = p2 + h2.

3.4.1. (a) Contribution of quarks and gluons to pressure

Now the total pressure in QGP is

P

T

∣∣∣∣
QGP

eff

=
P

T

∣∣∣∣
qq̄

eff

+
P

T

∣∣∣∣
g

eff

(3.108)
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with

P

T

∣∣∣∣
qq̄

eff

=
P

T

∣∣∣∣
qq̄

− i Im

(
P

T

∣∣∣∣
qq̄)

= Cqq̄ +
1

2

[
βqRQ1(zq)− βqIR1(zq)− Mn(zq)

] (3.109)

Similarly

P

T

∣∣∣∣
g

eff

= Cg +
1

2

[
βgRQ1(zg)− βgIR1(zg)− Mn(zg)

]
(3.110)

Cqq̄ = Cq + Cq̄ = gqq̄
η(3)

π2
T 3; Cg = gg

η(3)

π2
T 3 (3.111)

Thus the energy density of QGP can be written from Eq. (3.51) as

ε

T

∣∣∣∣
QGP

eff

=
∂

∂ ln(T )

(
P

T

∣∣∣∣
QGP

eff

)

=3Cqq̄ −
[(
β2
qR − β2

qI

)
Q2(zq)− 2βqRβqIR2(zq)

]

+ 2αq

(
Re

{
β1q

xq − zq

}
Q1(zq)− Im

{
β1q

xq − zq

}
R1(zq)

)

+ 2 Im

{
|β1q|2

zq − zq∗

}
R1(zq)

+ 3Cg −
[(
β2
gR − β2

gI

)
Q2(zg)− 2βgRβgIR2(zg)

]

+ 2αg

(
Re

{
β1g

xg − zg

}
Q1(zg)− Im

{
β1g

xg − zg

}
R1(zg)

)

+ 2 Im

{
|β1g|2

zg − z∗g

}
R1(zg)

(3.112)

with

zq/g = −1

2

(
Sq/g + Tq/g

)
−

aq/g

3
+

i
√
3

2
(Sq/g − Tq/g),

xq/g = Sq/g + Tq/g −
aq/g

3
; βq/g I = Im

{
β1q/g

}

β1q/g = −
z3q/g

(
zq/g − xq/g

) (
zq/g − z∗q/g

) , βq/g R = Re
{
β1q/g

}
,

αq/g = −
x3q/g

(xq/g − zq/g)(xq/g − z∗q/g)
, Qq/g =

3bq/g − a2q/g

9
,

Rq/g =
9aq/gbq/g − 27cq/g − 2a3q/g

54
, Dq/g = Q3

q/g +R2
q/g

(3.113)
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Sq/g =
(
Rq/g +

√
Dq/g

) 1
3 , T = −

Qq/g

Sq/g

,

aq/g = −4πβ Cqq/g rqq/g ac; bq/g = 8πβ Cqq̄/g
al
rqq̄/g

;

cq/g = −96πβ Cqq̄/g
av
r3qq̄/g

, ac = 0.711, av = 15.76

Cqq̄/g = gqq̄/g
η(3)

π2
T 3; gg = 16; gqq̄ =

32

3
nf

When we fit the Eqs. (3.108), (3.112) and (4.29) of the proposed model with
the lattice data in [10, 11] we get fitting parameter values as shown in Table 3.1.

nf gqq̄ gg al rqq̄ rg

32
3
nf (16)

3 32 16 9.052 1.374 0.061

2+1 28 16 8.638 1.435 0.043

2 64/3 16 9.389 1.565 0.075

0 - 16 8.853 - 1.682

Table 3.1: The parameters used in this table, when applied to Eqs. (3.108)
and (3.112) through Eq. (4.29), give us Figs. 3.1 to 3.3 .

The coefficients of the Volume term (av) and Coulomb term (ac) have values of
15.76 Tc and 0.711 Tc, respectively. The unit of al is also Tc. Since the available
lattice data is in the units of Tc, for numerical calculations, we approximate
Tc ≈ 1.

3.5 Results and Conclusions

In Fig. 3.1, energy density ε/T 4 vs T/Tc is plotted and compared with the
lattice data [10, 11]. The parameters used to plot the energy density are given
in Table 3.1. The number density of particles for quarks and gluons are 32

3
nf
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and 16 in the units of η(3)
π2 T

3. The effective value for 2 + 1 flavor is considered
as 2.625. The lattice data points range from T > 0.72Tc to T ≈ 3.5Tc. The
number of quarks and anti quarks are equal. i.e, The number density of quarks
and anti-quarks are Cqq̄/2. The lattice data points and the fitted equation of
Eq. (3.112) fall within the errorbar. The pure gluon lattice data is taken from
[11] and is without errorbar.

The pressure lattice data [10, 11] is without errorbars. The scaled pressure
in Eq. (3.108) is in agreement with the lattice data as shown in Fig. 3.2.

The interaction measure (also known as trace anomaly) is defined as

I

T 4
=
ε− 3P

T 4
(3.114)

For an ideal gas of free particles obeying the Fermi-Dirac distribution, the
energy density at zero chemical potential (fugacity = 1) is

ε =

∫
d3p

(2π)3
ϵp

exp (βϵp) + 1

=

∫
d3p

(2π)3
|p|

exp (β|p|) + 1

= 3
η(4)

π2
T 4.

(3.115)

From standard statistical mechanics

P

T
− P0

T0
=

∫ T

T0

ε

T 2
dT

=
η(4)

π2

[
T 3 − T 3

0

] (3.116)

So

ε− 3P

T
=

3η(4)

π2
T 3
0 − 3

P0

T0
= Constant (3.117)

Thus, for an ideal free particle gas, the theoretical value of the interaction
measure should be such that I/T 4 ∝ T−3.

The interaction measure Fig. 3.3 shows that QGP is different from the ideal
gas. The lattice data shows a gradual rise between T/Tc ∈ [0.72, 1.25]. After
T/Tc ≈ 1.25, the interaction measure I/T 4 goes down similar to T−3. The
Eqs. (3.108) and (3.112) are in good agreement with the interaction measure
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lattice data [11].

In Chapter 4, the modified liquid drop model will be extended to the mag-
netic field regime. The idea of a quantum harmonic oscillator result is coupled
with the relativistic equations of a free particle having a charge in the presence
of a magnetic field. The integral equations and the results are modified and
redefined. The results are then compared with the lattice data. The pros,
cons, and refinements needed in the model are also discussed in Chapter 4.

68



02468

1
0

1
2

1
4

1
6

1
1
.5

2
2
.5

3
3
.5

4
02468

1
0

1
2

1
4

1
6

1
1
.5

2
2
.5

3
3
.5

4

ε/T4

T
/
T

c

2
F
la
v
o
r
L
a
tt
ic
e

3
F
la
v
o
r
L
a
tt
ic
e

2
+
1
F
la
v
o
r
L
a
tt
ic
e

0
F
la
v
o
r
L
a
tt
ic
e

ε/T4

T
/
T

c

F
ig
u
re

3.
1:

E
n
er
gy

d
en
si
ty

fo
r
0,

2,
2+

1,
an

d
3
fl
av
ou

rs
is

p
lo
tt
ed
.
L
at
ti
ce

d
at
a
is

ta
ke
n
fr
om

[1
0,

11
].

T
h
e
m
o
d
el

p
ar
am

et
er
s

u
se
d
to

fi
t
th
e
la
tt
ic
e
d
at
a
ar
e
gi
ve
n
in

T
ab

le
3.
1.

69



0

1

2

3

4

5

6

1 1.5 2 2.5 3 3.5 4
0

1

2

3

4

5

6

1 1.5 2 2.5 3 3.5 4
0

1

2

3

4

5

6

1 1.5 2 2.5 3 3.5 4

P T
4

T/Tc

2 Flavor

3 Flavor

P T
4

T/Tc

2+1 Flavor

0 Flavor

P T
4

T/Tc

Figure 3.2: Pressure scaled by T 4, for nf = 2, 2 + 1, 3 flavor QGP. Lattice
data is taken from [10, 11]
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Chapter 4

Equation of state under
magnetic field for relativistic
particle

4.1 Introduction

Consider a quantum mechanical system whose square of the Hamiltonian in
the absence of a magnetic field is

Ĥ2
B=0 = c2(p̂2x + p̂2y + p̂2z) + Îm2c4 (4.1)

In the presence of a magnetic field with a magnetic vector potential,

⃗̂
A = [0, x, 0]B

=⇒ ∇× ⃗̂
A = BÎẑ

(4.2)

Hamiltonian becomes

Ĥ2
B ̸=0 = c2

(
p̂2x +

[
p̂y − qÂ

]2
+ p̂2z

)
+m2c4Î

= c2

(
p̂2x + q2B2

[
x̂− p̂y

qB

]2
+ p̂2z

)
+m2c4Î

(4.3)

For a harmonic oscillator with Hamiltonian of the form

ĤHO = α2(x̂− x̂0)
2 + β2(p̂x − p̂x0)

2

with properties

[x̂, p̂x] = iℏ
[x̂, x̂0] = [x̂, p̂x0] = 0

[x̂0, p̂x0] = [p̂x, p̂x0] = 0

and α, β ∈ R

(4.4)
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can be reduced to the form

ĤHO =
(
2N̂ + 1

)
ℏαβ

with annihilation operator

â =

√
α

2ℏβ
(x̂− x̂0) + i

√
β

2ℏα
(p̂x − p̂x0)

and N̂ = â†â

(4.5)

Combining Eq. (4.3) with Eq. (4.4), the Hamiltonian get reduced to Eq. (4.3)
as

Ĥ2
B ̸=0 =

(
2N̂ + 1

)
qℏBc2 + p̂2zc

2 +m2c4Î (4.6)

Thus spin effect included Hamiltonian in terms of natural units is

Ĥ2
σ,B =

(
2N̂ + [σ + 1] Î

)
qB + p̂2z +m2Î

⟨Ĥ2
σ,B⟩ = (2n+ σ + 1) qB + p2z +m2

(4.7)

defining

νσ = n+
1 + σ

2
(4.8)

where σ can be ±1 w.r.t spin up and down.

∀ n ∈ {0, 1, 2, . . . ,∞} ,∃ νσ+ = {1, 2, . . . ,∞} and

νσ− = {0, 1, 2, . . . ,∞}
∴ vσ+ + vσ− = 2 {0, 1, 2, . . . ,∞}− {0}

= {W} (2− δw,0)

(4.9)

where {W} = {0, 1, 2, 3, . . . } For ease in calculation we write q = qfe, then
Hamiltonian can be approximated as

⟨Ĥ2
σ,B⟩ = 2qfeBnσ + p2z +m2 (4.10)

with degeneracy 2− δnσ ,0.
This is also known as relativistic Landau quantization. In this semi-classical

approximation, the value of p̂y only affects the wavefunction, not the energy

(x̂0 =
p̂y
qB

). Corresponding change in phase space calculation [1, 2] becomes

∫
d3k

(2π)3
→ qf |eB|

2π

∞∑

nσ=0

∫ ∞

−∞

dkz
2π

(2− δnσ ,0) (4.11)
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Figure 4.1: In the absence of magnetic field, the momentum space (with finite
upper bound) is spherically symmetric.
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Figure 4.2: Quantized energy states in the presence of magnetic field and
corresponding pz values under fermi distribution (with finite upper bound).
The equation involved here is p2z +2nBqfe = µ2−m2 = 2nmaxBqfe+R where
R < 2Bqfe, n is the level number and is an integer, n ∈ [0, nmax]. The values
are thus discrete
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4.2 Ideal free particle gas

Let us define

ÎND =

∫
dNp

(2π)N

ÎzB =
∞∑

n=0

∫
dpz
2π

(2− δn,0)

(4.12)

The free particle energy density can be written as

ε = Î

(
|p|

exp (β|p|) + 1

)
= Î

( ∞∑

n=1

(−1)n−1|p| exp (−nβ|p|)
)

βε = Î

( ∞∑

n=1

(−1)n−1β|p| exp (−nβ|p|)
) (4.13)

From standard statistical mechanics

βP = β0P0 −
∫ β

β0

ε(β) dβ

= β0P0 + Î

[ ∞∑

n=1

(−1)n−1 e
−nβ|p|

n

]β

β0

= β0P0 + Î

[ ∞∑

n=1

(−1)n−1

(
e−nβ|p|

n
− e−nβ0|p|

n

)]
(4.14)

Therefore

β (ε− 3P ) = −3β0P0 + Î

[ ∞∑

n=1

(−1)n−1

(
β|p| − 3

n

)
e−nβ|p|

]

+ Î

[ ∞∑

n=1

(−1)n
(
3

n

)
e−nβ0|p|

] (4.15)

For an N dimensional integral

β (ε− 3P ) = −3β0P0 +
2

βN

Γ (N + 1)

(4π)
N
2 Γ
(
N
2

)η(N + 1)

[
1− 3

N

]

+
6

βN
0

Γ(N)

(4π)
N
2

η(N + 1)

Γ (N/2)

(4.16)

It is evident from the above equation that for three dimensions, β (ε− 3P ) is a
constant. For all other dimensions, ε−3P varies with respect to temperature.
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4.3 Modified liquid drop model under mag-

netic field

The magnetic field can affect the distribution of quarks in the presence of
magnetic field. From now on we use H to denote the magnetic field instead of
B, because we employ B to represent the beta function. Consider Fermi-Dirac
distribution under a magnetic field for mass-less particles; the number density
of particles under a magnetic field is

cHqq̄ =
|qfeH|
2π

∞∑

j=0

∫ ∞

−∞

2− δj,0

exp
(
β
√
p2z + 2j|qfeH|

)
+ 1

dpz
2π

=
qf |eH|T

2π2

[
η(1) + 2

∞∑

ν=1

S1

(
β
√

2νqf |eH|
)] (4.17)

with

S1(x) =
∞∑

n=1

(−1)n−1xK1(nx) (4.18)

S0(x) = −x ∂
∂x

S1(x) =
∞∑

n=1

(−1)n−1
[
nx2K0(nx)

]
(4.19)

S̄1(x) =
∞∑

n=1

(−1)n−1n2x3K1(nx) (4.20)

y
∂

∂y
S1(x) =

∞∑

n=1

(−1)n [nxK0(nx)] y
∂x

∂y
(4.21)

As one extends the modified liquid drop model into the magnetic field
regime, one can get the result by replacing the three dimensional integral with
the magnetic field integral, as shown in Eq. (4.11); the pressure relation is as
straight forward as

PH
qq̄

T
=
P

T

∣∣∣∣
H

eff

= cHqq̄ +
1

2

[
βRQ

H
1 (z)− βIR

H
1 (z)− MnH(z)

]
(4.22)
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εHqq̄
T

=
ε

T

∣∣∣∣
H

eff

=
∂

∂ ln(T )

(
P

T

∣∣∣∣
eff

)

=
∂cqq̄

∂ ln(T )
−
[(
β2
R − β2

I

)
QH2 (z)− 2βRβIR

H
2 (z)

]

+ 2α

(
Re

{
β1

x− z

}
QH1 (z)− Im

{
β1

x− z

}
RH1 (z)

)

+ 2 Im

{
|β1|2

z − z∗

}
RH1 (z)

(4.23)

From Eqs. (3.114), (3.116) and (3.117), the interaction measure can be written
as

Iqq̄
T 4

=
εqq̄ − 3Pqq̄

T 4
(4.24)

with

QHn (z) =
2Gn(qfeH)

(2|qfeH|)n−
1
2

Re

{
ζ

(
n− 1

2
,

−z
2|qfeH|

)}
− 2|qfeH|nQn+1(z)

(4.25)

RHn (z) =
2Gn(qfeH)

(2|qfeH|)n−
1
2

Im

{
ζ

(
n− 1

2
,

−z
2|qfeH|

)}
− 2|qfeH|nRn+1(z)

(4.26)

Gn(qfeH) =
|qfeH|
2π2

B

(
1

2
, n− 1

2

)
(4.27)

MnH(z) =
|2qfeH| 32

π

[
Re

{
ζ

(
−1

2
,− z

|2qfeH|

)}
− ζ(−1/2)

]

−
√
2|qfeH|
2π

√
|z| − Re {z}

|z| =
√
Re2 {z}+ Im2 {z}

(4.28)
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with

z = −1

2
(S + T )− a

3
+

i
√
3

2
(S − T ),

x = S + T − a

3
; β I = Im {β1}

β1 = − z3

(z − x) (z − z∗)
, β R = Re {β1} ,

α = − x3

(x− z)(x− z∗)
, Q =

3b − a2

9
,

R =
9ab − 27c − 2a3

54
, D = Q3 +R2

(4.29)

S =
(
R +

√
D
) 1

3
, T = −Q

S
,

a = −4πβ cHqq rqq ac; b = 8πβ cHqq̄
al
rqq̄

;

c = −96πβ cHqq̄
av
r3qq̄

, ac = 0.711, av = 15.76

The expected result is that as the magnetic field increases, the energy
density, pressure due to quarks increase.

4.4 Integral table

4.4.1 Integrals in presence of Magnetic field

Consider the integral of the form

IHn (m
2) =

|qfeH|
2π

∞∑

j=0

∫ ∞

−∞

dpz
2π

1(
p2z +m2

j

)n (2− δj,0)

=
|qfeH|
2π2

∞∑

j=0

J(m2
j)−

|qfeH|
4π2

J(m2)

(4.30)

with m2
j = m2 + 2j|qfeH|. So

J(m2) =

∫ ∞

−∞

dpz
(p2z +m2)n

=
B(n− 1

2
, 1
2
)

(m2)n−
1
2

(4.31)
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So

IHn (m
2) =

|qfeH|
2π2

B

(
n− 1

2
,
1

2

)[ ∞∑

j=0

1

(m2 + 2j|qfeH|)n−
1
2

− 1

2m2n−1

]

=
|qfeH|
2π2

B

(
n− 1

2
,
1

2

)

ζ
(
n− 1

2
, m2

2|qf eH|

)

(2|qfeH|)n−
1
2

− 1

2 (m2)n−
1
2




IHn (m
2) =

[
|qfeH|
2π2

B
(
n− 1

2
, 1
2

)

(2|qfeH|)n−
1
2

ζ

(
n− 1

2
,

m2

2|qfeH|

)
− 2n|qfeH|I(m2, n+ 1)

]
Θ
(
m2
)

(4.32)

IHn (m
2) =


 B

(
n− 1

2
, 1
2

)

(2|qfeH|)n−
3
2

ζ
(
n− 1

2
, m2

2|qf eH|

)

4π2
− 2n|qfeH|I(m2, n+ 1)


Θ

(
m2
)

(4.33)

Similarly

QHn (m, z) =
|qfeH|
2π

∞∑

j=0

∫
Re

{
1(

p2z +m2
j − z

)n +
1(

p2z +m2
j − z∗

)n
}
(2− δj,0)

dpz
2π

QHn (m, z) =


 B

(
n− 1

2
, 1
2

)

(2|qfeH|)n−
3
2

Re
{
ζ
(
n− 1

2
, m2−z
2|qf eH|

)}

2π2
− 2n|qfeH|Qn+1(m, z)




(4.34)

repeating

RHn (m, z) =
|qfeH|
2π

∞∑

j=0

∫
Im

{
1(

p2z +m2
j − z

)n − 1(
p2z +m2

j − z∗
)n
}
(2− δj,0)

dpz
2π

RHn (m, z) =


 B

(
n− 1

2
, 1
2

)

(2|qfeH|)n−
3
2

Im
{
ζ
(
n− 1

2
, m2−z
2|qf eH|

)}

2π2
− 2n|qfeH|Rn+1(m, z)




(4.35)

79



4.4.2 Special Case

Consider the integral

IHn (m
2, x) =

|qfeH|
2π

∞∑

j=0

∫ ∞

−∞

dpz
2π

1(
p2z +m2

j − x
)n (2− δj,0)

=
|qfeH|
2π2

∞∑

j=0

J(m2
j)−

|qfeH|
4π2

J(m2 − x)

(4.36)

with m2
jx = m2 + 2j|qfeH| − x.

4.4.2. (a) Case 1: m2 − x > 0

From Eq. (4.33), the result is

IH+
n (m2, x) =


 B

(
n− 1

2
, 1
2

)

(2|qfeH|)n−
3
2

ζ
(
n− 1

2
, m2−x
2|qf eH|

)

4π2


Θ

(
m2 − x

)

− 2n|qfeH|In+1(m
2, x)Θ

(
m2 − x

)
(4.37)

4.4.2. (b) Case 2: m2 − x < 0

Then the summation can be divided into two with 2j|qfeH|+m2 − x < 0 and
2j|qfeH|+m2 − x > 0, so the summation term

∞∑

j=0

f(j) =

jmin∑

j=0

f(j)Θ
(
x−m2 − 2j|qfeH|

)
+

∞∑

jmin+1

f(j)Θ
(
2j|qfeH|+m2 − x

)

=

jmin∑

j=0

f(j)Θ

(
x−m2

2|qfeH|
− j

)
+

∞∑

jmin+1

f(j)Θ

(
j +

m2 − x

2|qfeH|

)

=

jmin∑

j=0

f(j)− +
∞∑

jmin+1

f(j)+

=

jmin∑

j=0

f(j)− +
∞∑

j=0

f(j + jmin + 1)+

(4.38)
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with jmin =

⌊
x−m2

2|qf eH|

⌋
Now

IH−
n (m2, x) =

|qfeH|
2π

∞∑

j=0

∫ ∞

−∞

dpz
2π

1(
p2z +m2

j − x
)n (2− δj,0)

=
|qfeH|
2π2

[
jmin∑

j=0

J−(2j|qfeH|+m2 − x)

]
− |qfeH|

4π2
J−(m2 − x)

+
|qfeH|
2π2

∞∑

j=0

[
J

(
2|qfeH|

[
j +

m2 − x

2|qfeH|
+

⌊
x−m2

2|qfeH|

⌋
+ 1

])]

(4.39)

using the result

J(m2) =

∫ ∞

−∞

dpz
(p2z +m2)n

Θ(m2) =
B
(
1
2
, n− 1

2

)

(m2)n−
1
2

Θ(m2)

J−(m2) = lim
ϵ→0

∫ ∞

−∞

dpz
(p2z +m2 − iϵ)n

Θ(−m2)

= iB

(
1

2
, n− 1

2

)
(−1)n+1

(−m2)n−
1
2

Θ(−m2)

(4.40)

So

J−(m2 − x) = iB

(
1

2
, n− 1

2

)
(−1)n+1

(x−m2)n−
1
2

Θ
(
x−m2

)
(4.41)

Combining

IH−
n (m2, x) =i(−1)n+1 |qfeH|

4π2
B

(
1

2
, n− 1

2

)[jmin∑

j=0

2

(x−m2 − 2j|qfeH|)n−
1
2

− 1

(x−m2)n−
1
2

]

+
|qfeH|
2π2

1

(2|qfeH|)n−
1
2

ζ

(
n− 1

2
,

⌊
x−m2

2|qfeH|

⌋
+ 1− x−m2

2|qfeH|

)

(4.42)

Thus

IHn (m
2, x) = IH+

n Θ
(
m2 − x

)
+ IH−

n Θ
(
x−m2

)
(4.43)
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RHn (m, z) =2 Im

{ ∞∑

j=0

∫
dpz
(2π)2

[
|qfeH| (2− δj,0)

(p2z + 2j|qfeH|+m2 − z)n

]}

=
B
(
1
2
, n− 1

2

)

2π2
(2|qfeH|)

3
2
−n Im

{
ζ

(
n− 1/2,

m2 − z

2|qfeH|

)}

− 2n|qfeH|Rn+1(m, z)

(4.44)

QHn (m, z) = 2Re

{ ∞∑

j=0

∫
dpz
(2π)2

[
|qfeH| (2− δj,0)

(p2z + 2j|qfeH|+m2 − z)n

]}

=
B
(
1
2
, n− 1

2

)

2π2
(2|qfeH|)

3
2
−nRe

{
ζ

(
n− 1/2,

m2 − z

2|qfeH|

)}

− 2n|qfeH|Qn+1(m, z)

(4.45)

Using the idea from Sections 3.1.3 and 3.3.3

MnH(m, z) = 2Re

{
|qfeH|
2π

∞∑

n=0

∫
dpz
2π

[
ln

(
p2z +m2

n − z

p2z +m2
n

)
(2− δn,0)

]}

=
|2qfeH| 32

π

[
Re

{
ζ

(
−1

2
,
m2 − z

|2qfeH|

)}
− ζ

(
−1

2
,

m2

2|qfeH|

)]

−
√
2|qfeH|
2π

Λ

(4.46)

where Λ =
√
λR + ξ, λR = m2 − Re(z), λI = − Im(z) ξ =

√
λ2R + λ2I

4.4.3 Renaming the formulae

Now let us take some cases where the parameter s = p2 +m2 → p2 at m = 0

In(0, x1) = In(x1)

Qn(0, x1) = Qn(x1)

Rn(0, x1) = Rn(x1)

IHn (0, x1) = IHn (x1)

QHn (0, x1) = QHn (x1)

RHn (0, x1) = RHn (x1)

(4.47)

The above notations are used in Section 4.3.
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Figure 4.3: Pressure for Lattice data by [3], Here Tc ≈ 113 MeV, geff ≈ 20.1,
qefff ≈ 1

23
, The radius factors rqq̄ are 0.986, 0.955 and 0.94 from bottom to top.

The al factors are 4.735, 3.098 and 0.31 from bottom to top. The values of ac
and av are 0.711 (Tc) and 15.76 (Tc), respectively.
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4.5 Results and conclusion

We have extended the modified liquid drop model in the presence of a magnetic
field and derived the equation of state for magnetized quark matter. This
is achieved by changing the integral equations of MLDM in Chapter 3 to a
magnetic field dependent integral. The magnetic field dependent integral is
formed on the basis of relativistic Landau level quantization.

In Figs. 4.4 to 4.7, the pressure, energy density, and entropy are plotted
for qualitative purposes. The magnetic fields are described in terms of critical
temperature ranging from |qeH| = T 2

c to 40T 2
c . The parameters used in the

above mentioned plots are the same as those of two flavor data in Table 3.1,
i.e.,gqq̄ = 64/3, al = 9.389 and rqq̄ = 1.565. The results match with the ex-
pected behaviour of [3].

The magnetic field can cause the production of new quarks [4, 5, 6, 7],
which can cause a change in degeneracy. The magnetic field can also affect
the charge neutrality of the plasma medium. This can be compensated by
assuming an effective charge flavor qf . The quantitative comparison is done in
Fig. 4.3 with the lattice data [3].

The magnetic fields are |eH| ≈ 0.2 GeV2, 0.3 GeV2, 0.4 GeV2. In Fig. 4.3
the values are represented in terms of critical temperature. Fig. 4.3 is fitted
with geff = 20.1, qefff ≈ 1/22.8, the radius factors are rqq̄ ≈ 0.986, 0.955 and 0.94
from bottom to top. The al factors are 4.735, 3.098 and 0.31. The results are
in quantitative agreement at the lower magnetic field.

The fluctuation between the fitted curve and the lattice data in 0.3GeV2 ≈
23.49T 2

c and 0.4GeV2 ≈ 31.33T 2
c could be minimised if the degeneracy factor,

which is considered a constant with respect to temperature, is modified by
considering quark production happening in accordance with the magnetic field.

In Chapter 5, we derive the equation of state of deconfined quark matter in
the presence of a magnetic field. Chapter 5 is dependent on the quasiparticle
model of VM Bannur described in [8]. The integral equations in [8] are changed
to magnetic field dependent integrals as shown in Eq. (4.11).
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Figure 4.4: Quark contribution of pressure with gqq̄ ≈ 64/3, al ≈ 9.389 and
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Figure 4.5: Quark contribution of energy density.
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Figure 4.6: Quark contribution of entropy.
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Chapter 5

De-confined quark matter under
magnetic field

When a massive supergiant star collapses, if the core has a mass about 1.4
times that of the sun, it forms a neutron star. The order of magnitude of the
radius of a neutron star is about 10km [1, 2]. When the pressure inside a neu-
tron star is so intense that the density of matter becomes several times greater
than the nuclear density (ρnuclear = 0.16 fm−3), neutrons are transformed into
quarks.

As the temperature reaches to zero, the distribution of quarks, which are
fermions, gets bound by the chemical potential. The mathematical relations
connecting the momentum, mass of the quasiparticle and chemical potential
are given in Eqs. (5.10) to (5.12). The quasiparticle model of Bannur [3] is
applied in the magnetic field regime. The magnetic field independent coupling
constant and integrals are replaced by corresponding magnetic field dependent
coupling constant from [4] and integral Eq. (5.16).

Using these approximations, the magnetic field contribution to pressure,
energy density, and number density for various chemical potentials are derived.

Consider a quark star having the charge neutrality condition

∑

i

qini = 0 =⇒ 2

3
nup −

1

3
ndown −

1

3
nstrange − ne = 0 (5.1)

where nup, ndown and nstrange, are the number density of up, down and strange
quark. ne is the electron number density. The chemical equilibrium attained
through weak interaction can be written as

d↔ u+ e− + ν̄e− =⇒ µd = µu + µe

s↔ u+ e− + ν̄e− =⇒ µs = µu + µe

(5.2)
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At equilibrium

s+ u↔ d+ u =⇒ µd = µu (5.3)

assuming that there is no neutrino participation in the quark star’s thermo-
dynamic properties and approximating the rest mass of quarks in the medium
to be zero leads to the approximation

µu = µd = µs

µe = 0
(5.4)

for the medium.

5.1 Quasi Particle Model and Fermi Dirac Dis-

tribution

Consider quark matter that has a medium-dependent mass. At absolute zero
temperature, let the mass be a function of the chemical potential and rest mass
of the constituent quark matter. i.e.,

m2 = m2
0 +

√
2mµm0 +m2

µ (5.5)

According to the quasiparticle model put forward by Bannur [3], at T = 0, the
medium-dependent effective quark mass can be approximated as

m2(µ) =
g2(

√
aµ)

18π2
µ2 nf (5.6)

with a =
(
1.91
2.91

)2
.

For one loop approximation, when B = 0

g2(µ,Λ) =
48π2

(33− 2nf ) ln
(

µ2

Λ2

) (5.7)

For one loop approximation [4], when B ̸= 0

g2(µ,Λ, |eB|) = g2(µ,Λ)


1 +

ln
(

µ2

µ2+|eB|

)

ln
(

µ2

Λ2

)




−1

(5.8)

In this chapter, we use B to represent the magnetic field unlike H that was
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used in Chapter 4.

We use the same procedure as in [3] and take the same approximation

m2
th(T, µ) ≈

g2T 2

18
nf

(
1 +

µ2

π2T 2

)

m2
th(0, µ)

∣∣∣∣
nf=3

≈ g2µ2

6π2

(5.9)

The general equation for average energy and number density is

⟨ϵ⟩ =
∑

i

∑

σ=±1

∫
d3p

(2π)3

[
gi ωi

1 + exp (β(ωi − σµi))

]
(5.10)

⟨n⟩ =
∑

i

∑

σ=±1

∫
d3p

(2π)3

[
giσ

1 + exp (β(ωi − σµi))

]
(5.11)

with gi being the degeneracy factor of the ith species. Since we are dealing
with matter involving particles (not antiparticles), it is crucial to note that
only the case where σ = +1 in Eqs. (5.10) and (5.11) will be considered for
the subsequent calculations in this chapter. Now as β → ∞ the systems goes
to Fermi distribution. As a result, in phase space, a surface with the highest
energy value is generated, which limits the range of energy values. When B=0,
the equation becomes

〈
H2
〉
B=0

= p2x + p2y + p2z +m2 = µ2

=⇒ p2x + p2y + p2z = µ2 −m2
(5.12)

and thus phase space has spherical symmetry bounded by surface with radius√
µ2 −m2. So number density is

⟨n⟩ = gi

∫
d3p

(2π)3
Θ
(√

µ2 −m2 − |p|
)

=
gi
2π2

∫ ∞

0

p2 Θ
(√

µ2 −m2 − |p|
)

dp

=
gi
2π2

∫ √
µ2−m2

0

p2dp

=
gi
6π2

(√
µ2 −m2

)3

(5.13)
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Similarly energy density is

⟨ϵ⟩ =gi
∫

d3p

(2π)3

√
p2 +m2 Θ

(√
µ2 +m2 − |p|

)

=gi

∫ √
µ2−m2

0

p2
√
p2 +m2

dp

2π2

Putting p = m sinh(x), then

=
gi
2π2

∫ sinh−1

(√
µ2−m2

m2

)
0

m4 cosh2(x) sinh2(x)dx

=
gi
2π2

∫ sinh−1

(√
µ2−m2

m2

)
0

m4

8
[cosh(4x)− 1] dx

=
gi

16π2

[(
µ
√
µ2 −m2

[
2µ2 −m2

])
−

(
m4 sinh−1

(√
µ2 −m2

m

))]

(5.14)

5.2 Quark matter under magnetic field

As discussed in Chapter 4, if we consider a magnetic field with magnetic vector
potential

ˆ⃗
A = Bx ŷ

B⃗ = ∇×Bx ŷ = B ẑ
(5.15)

with B being the magnitude of magnetic field. The three dimensional integrals
changes accordingly i.e.,

∫
f(p2)

d3p

(2π)3
→ |qeB|

2π

∞∑

n=0

∫
f(p2z + 2n|qeB|) (2− δn,0)

dpz
2π

(5.16)
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5.3 The integral table for deconfined matter

under magnetic field

Consider the integral,

I1 = F (a, x) =

∫ √
x2 − a2

x
dx , Putting u2 = x2 − a2

=

∫
u2

u2 + a2
du

=

∫ (
1− a2

u2 + a2

)
du

=

(
u−

∫ [
a2

u2 + a2

]
du

)
, Putting u = a tan θ

=

(
u− aθ

)

=

[√
x2 − a2 − a tan−1

(√
x2 − a2

a

)]

(5.17)

If one puts u = a cot θ, then

I1 =

(
u−

∫ [
a2

u2 + a2

]
du

)

= u+ aθ

=
√
x2 − a2 + a cot−1

(√
x2 − a2

a

)

=
√
x2 − a2 + a tan−1

(
a√

x2 − a2

)

(5.18)

I2 =

∫ ln
(
µ+

√
µ2 −m2

)

µ2
dµ

Putting µ = m coshx

I2 =

∫
tanh(x) sech(x)

[
x+ ln(m)

m

]
dx

(5.19)
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The integral with integrand tanh(x) sech(x) can be solved as

I21 =

∫
x tanh(x) sech(x)dx

= x

∫
tanh(x) sech(x)dx−

∫ ∫
tanh(x) sech(x)dx

= x

∫
−d (sech(x)) +

∫ ∫
d (sech(x))

= −x sech(x) +
∫

sech(x)dx

= −x sech(x) +
∫

2ex

e2x + 1
dx

putting u = ex

= −x sech(x) + 2

∫
1

u2 + 1
du

= −x sech(x) + 2 tan−1(ex)

(5.20)

On continuing

I2 =

∫
tanh(x) sech(x)

[
x+ ln(m)

m

]
dx

=
1

m

[
2 tan−1(ex)− x sech(x)− ln(m) sech(x)

]

putting sech(x) = m/µ

=
1

m

[
2 tan−1

(
µ±

√
µ2 −m2

m

)
− m

µ
ln

(
µ±

√
µ2 −m2

m

)
− m

µ
ln(m)

]

=
1

m

[
2 tan−1

(
µ±

√
µ2 −m2

m

)
− m

µ
ln
(
µ±

√
µ2 −m2

)]

(5.21)

So

G (m,µ) =

∫ ln
(
µ+

√
µ2 −m2

)

µ2
dµ

=
1

m

[
2 tan−1

(
µ+

√
µ2 −m2

m

)
− m

µ
ln
(
µ+

√
µ2 −m2

)] (5.22)
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The other way of working out the integral is

G(m,µ) =

∫ ln
(
µ+

√
µ2 −m2

)

µ2
dµ

= ln
(
µ+

√
µ2 −m2

)∫ 1

µ2
dµ−

∫
1√

µ2 −m2
×− 1

µ
dµ

= −
ln
(
µ+

√
µ2 −m2

)

µ
+

∫
1

µ
√
µ2 −m2

dµ

Putting µ = a sec θ

= −
ln
(
µ+

√
µ2 −m2

)

µ
+

1

m
sec−1

(
µ

m

)

=
1

m
tan−1

(√
µ2 −m2

m

)
−

ln
(
µ+

√
µ2 −m2

)

µ

(5.23)

5.4 Number density in presence of magnetic

field

The limit relation of momentum in z direction, chemical potential and mass
can be developed as

2qf |eB|nσ + p2z +m2 = µ2 (5.24)

=⇒ 2qf |eB|nσ + p2z = µ2 −m2

Here we have to give special consideration to the quantized state of the system.
We introduced the limiting condition with the involvement of theta function.

⟨n⟩q =
qf |eB|
2π

∞∑

nσ=0

∫ ∞

−∞

dpz
2π

(2− δnσ ,0)Θ(
√
µ2 −m2 − 2qf |eB|nσ − |pz|)

(5.25)

In quasiparticle model mass is a function of chemical potential. For free particle
approximation, the mass m =0 which leads to a change in relativistic energy√
p2 +m2 → |p|.
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5.4.1 Number density in presence of magnetic field for
QPM Model

⟨n⟩q =
qf |eB|
2π

∞∑

nσ=0

∫ ∞

−∞

dpz
2π

(2− δnσ ,0)Θ(
√
µ2 −m2 − 2qf |eB|nσ − |pz|)

=
qf |eB|
π2

nmax∑

nσ=0

[√
µ2 −m2 − 2qf |eB|nσ

]
− qf |eB|

2π2

√
µ2 −m2

=

√
2 (|qfeB|)

3
2

π2

nmax∑

nσ=0

√
nσ +

{
µ2 −m2

2|qfeB|

}
− qf |eB|

2π2

√
µ2 −m2

=

√
2 (|qfeB|)

3
2

π2
ψ

(
1

2
,
µ2 −m2

2|qfeB|

)
− qf |eB|

2π2

√
µ2 −m2

with

{x} = x− ⌊x⌋ ≥ 0

ψ(s, x) =

⌊x⌋∑

n=0

(x− n)s = ζ (−s, {x})− ζ (−s, x+ 1) , s > 0

nmax =

⌊
µ2 −m2

2qf |eB|

⌋

(5.26)

We used the mathematical operator floor ⌊⌋ and ceil⌈⌉, (⌊a⌋ meaning the
largest integer less than or equal to a. i.e

⌊
3
2

⌋
= 1, ⌈a⌉ the smallest integer

greater than or equal to a.
⌈
3
2

⌉
= 2).

The relation between mass, chemical potential and coupling constant for
one loop approximation is

m2(µ) =
nfµ

2

18π2
× 48π2

(33− 2nf ) ln
(

µ2

Λ2

) ×
[
1 +

ln
(

µ2

µ2+|eB|

)

ln
(

aµ2

Λ2

)
]−1

m2(µ)

∣∣∣∣
nf=3

=

(
2

3

)3
µ2

ln
(

µ2

Λ2

)
[
1 +

ln
(

µ2

µ2+|eB|

)

ln
(

µ2

Λ2

)
]−1

(5.27)

with m2 = m2
0 +

√
2m0mµ + m2

µ. The calculation can be made simple if we
consider the magnitude of Λ = 1 and rewrite both µ, µ0 and |eB| in the units
of Λ. Thus

µ2 −m2(µ) = µ2

[
1−

(
2

3

)3
1

ln
(

µ2

Λ2

)
+ ln

(
µ2

µ2+|eB|

)
]

(5.28)
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5.4.2 Number density in presence of magnetic field for
free-particles

As we have mentioned, for free particle the mass m = 0 (
√
p2 +m2 → |p|),

∴2qf |eB|nσ + p2z = µ2 (5.29)

=⇒ 2qf |eB|nσ + p2z = µ2

The number density of free particle is

⟨n⟩freeq =
qf |eB|
2π

∞∑

nσ=0

∫ ∞

−∞

dpz
2π

(2− δnσ ,0)Θ(
√
µ2 − 2qf |eB|nσ − |pz|)

=
qf |eB|
π2

nmax∑

nσ=0

[√
µ2 − 2qf |eB|nσ

]
− qf |eB|

2π2

√
µ2

=

√
2 (|qfeB|)

3
2

π2

nmax∑

nσ=0

√
nσ +

{
µ2

2|qfeB|

}
− qf |eB|

2π2

√
µ2

=

√
2 (|qfeB|)

3
2

π2
ψ

(
1

2
,

µ2

2|qfeB|

)
− qf |eB|

2π2

√
µ2

with

nmax =

⌊
µ2

2qf |eB|

⌋

(5.30)

Let us represent the total number density of quark in the qpm model as∑
nB
qq̄ = ⟨n⟩up+ ⟨n⟩down+ ⟨n⟩strange and that of the free particle as

∑
nB
free =

⟨n⟩freeup +⟨n⟩freedown+⟨n⟩freestrange. The ratio of
∑

nB
qq̄ to

∑
nB
free is plotted in Figs. 5.1

and 5.2.

In Fig. 5.1, x axis is the chemical potential in units of Λ ranging from 15
to 1000 . The Y axis is the ratio of the number density of quasi particles
to that of free particles. It can be observed that the curve follows a similar
trend as in non-magnetic regime [3]. But when the same plot is enlarged as
shown in Fig. 5.2, it can be observed that when the magnetic field contribution
|eB| is near to the chemical potential, large oscillations can be observed. This
is due to the quantization effect where the energy is quantized with a maxi-

mum value of quantization frequency

⌊
µ2 −m2

2|qfeB|

⌋
. For the charge neutrality

to be fulfilled and to balance this charged particle oscillation, a corresponding
positron-electron oscillation will also occur. But in our quasiparticle approxi-
mation we have given the chemical potential of electron as zero, thus it doesn’t
affect the charge neutrality.
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Figure 5.1: The scaled number density is plotted for higher chemical
potential range.

5.5 Energy density in presence of magnetic

field

In presence of magnetic field the Eq. (5.10) changes to

⟨ϵ⟩q =
qf |eB|
2π

∞∑

j=0

∫ ∞

−∞

√
p2z +m2 + 2j|eB|qf (2− δj,0)Θ(A)

dpz
2π

(5.31)

where A =
√
µ2 −m2 − 2qf |eB|j − |pz|.
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Figure 5.2: The number density of quasi particles scaled with that of free
particles. The range of chemical potential is limited to 100 Λ to show the
effect of the magnetic field

5.5.1 Energy density in presence of magnetic field for
QPM Model

The energy density in presence of magnetic field is

⟨ϵ⟩q =
qf |eB|
2π

∞∑

j=0

∫ ∞

−∞

√
p2z +mj

2 (2− δj,0)Θ(
√
µ2 −mj

2 − |pz|)
dpz
2π

=
qf |eB|
2π2

[
2
nmax∑

j=0

∫ √
µ2−m2

j

0

√
p2z +m2

j dpz −
∫ √

µ2−m2

0

√
p2z +m2 dpz

]

(5.32)

with m2
j = m2 + 2j|qeB|. Eq. (5.32) can be solved by putting p = m sinh(x),

then

∫ √
µ2−m2

0

√
p2 +m2dp =

1

2

(
µ
√
µ2 −m2 +m2 sinh−1

(√
µ2 −m2

m

))
(5.33)
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and sinh−1(x) = ln
(
x±

√
x2 + 1

)
, in case of real sinh−1 value, we can approx-

imate sinh−1(x) = ln
(
x+

√
x2 + 1

)
. Therefore

∫ √
µ2−m2

0

√
p2 +m2dp =

µ
√
µ2 −m2

2
+
m2

2
ln

[
µ+

√
µ2 −m2

m

]
(5.34)

Thus the energy density is

⟨ε⟩q =
qf |eB|
2π2

nmax∑

nσ=0

µ
√
µ2 −m2 − 2|eB|qfnσ

+
|eB|qf
2π2

nmax∑

n=0

(m2 + 2nσ|eB|qf ) ln

(√
µ2 −m2 − 2qf |eB|nσ + µ√

m2 + 2nσ|eB|qf

)

− qf |eB|
4π2

[
µ
√
µ2 −m2 +m2 ln

(√
µ2 −m2 + µ

m

)]

(5.35)

But as per Eq. (5.27), the square of the mass is a function of the coupling
constant. i.e.,

m2(µ) ∝ g2(µ, |qfeB|)µ2 (5.36)

One could re-write the equation as

⟨ε⟩q =
(qf |eB|)2

2π2

[
∂

∂s
− ln (2qf |eB|)

]
ϕ

(
s,

m2

2qf |eB|
,

⌊
µ2 −m2

2qf |eB|

⌋)∣∣∣∣
s=−1

+
qf |eB|
2π2

µ
√

2qf |eB|ψ
(
1

2
,
µ2 −m2

2qf |eB|

)

− qf |eB|
4π2

(
µ
√
µ2 −m2 +m2 ln

(
µ+

√
µ2 −m2

m

))

+
qf |eB|
2π2

nmax∑

j=0

(
m2 + 2j|qeB|

)
ln

(
µ+

√
µ2 −m2 − 2jqf |eB|

)

(5.37)

with

ζ(s, x) =
∞∑

n=0

1

(n+ x)s
,

∂ζ(s, x)

∂s
= −

∞∑

n=0

ln (n+ x)

(n+ x)s

ϕ(s, x, nmax) =
nmax∑

n=0

1

(x+ n)s
= ζ (s, x)− ζ (s, x+ nmax + 1)

(5.38)
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So

nmax∑

j=0

µ
√
µ2 −m2

j

2
=
µ
√
2qf |eB|
2

ψ

(
1

2
,
µ2 −m2

2qf |eB|

)

and
nmax∑

j=0

m2
j

2
ln

(
1

mj

)
= −

nmax∑

j=0

m2 + 2j|qfeB|
4

ln
(
m2 + 2j|qfeB|

)

= −qf |eB|
2

nmax∑

j=0

(
m2

2qf |eB|
+ j

)[
ln (2qf |eB|) + ln

(
m2

2qf |eB|
+ j

)]

=
qf |eB|

2

[
∂

∂s
− ln (2qf |eB|)

]
ϕ

(
s,

m2

2qf |eB|
,

⌊
µ2 −m2

2qf |eB|

⌋)∣∣∣∣
s=−1

(5.39)

The total energy density can be written as

εtotal = εup + εdown + εstrange (5.40)

5.5.2 Free particle energy density

The free particle approximation of quarks in our model assumes the mass of the
quark to be negligible. i.e., mq ≈ 0. Thus, the calculation is straight-forward
and we get,

⟨ε⟩free =qf |eB|
2π2

nmax∑

nσ=0

µ
√
µ2 − 2|eB|qfnσ −

qf |eB|
4π2

µ2

+
|eB|qf
2π2

nmax∑

n=0

(2nσ|eB|qf ) ln

(√
µ2 − 2qf |eB|nσ + µ√

2nσ|eB|qf

) (5.41)

with nmax =
⌊

µ2

2qf |eB|

⌋

The total energy density of quark in the qpm model is represented as∑
εBqq̄ = ⟨ε⟩up + ⟨ε⟩down + ⟨ε⟩strange and that of the free particle as

∑
εBfree =

⟨ε⟩freeup + ⟨ε⟩freedown + ⟨ε⟩freestrange.

The ratio of
∑

εBqq̄ to
∑

εBfree is plotted in Figs. 5.3 and 5.4. The X axis

of Fig. 5.3 is the chemical potential ranging from 15 to 1000 in the units of Λ.
Comparing Fig. 5.3 with the enlarged version Fig. 5.4, very high oscillation can
be observed for |eB| = 15.6Λ2, when the chemical potential is comparable. As
we have mentioned in the number density section, the oscillation of charged
particles is balanced by a corresponding quasielectron-quasipositron oscilla-
tion. Since the chemical potential of this quasielectron and quasipositron is
zero. The contribution to energy density is negligible.
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Figure 5.3: The scaled energy density is plotted for higher chemical potential
range.

5.6 Pressure in presence of magnetic field

The pressure can be derived using the relation [3]

ε

µ
=

∂

∂ ln(µ)

[
P

µ

]
(5.42)

where ε is the energy density in terms of µ. P is the pressure and µ is the
chemical potential. The corresponding integral expression is

P

µ
=
P0

µ0

+

∫ µ

µ0

⟨ε(µ)⟩
µ2

dµ (5.43)

.
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Figure 5.4: The energy density of quasi particles scaled with that of free
particles. The range of chemical potential is limited to 100 Λ to show the
effect of the magnetic field
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5.6.1 Free particle pressure

The pressure can be derived using Section 5.5.2 and Eqs. (5.17) to (5.19)
and (5.21),

P free

µ
=
P0

µ0

+

∫ µ

µ0

⟨ε(µ)⟩free

µ2
dµ

=
qf |eB|
2π2

[
⌊

µ2

2|eB|qf

⌋
∑

nσ=0

F (2|eB|qfnσ, µ)

]µ

µ0

− qf |eB|
4π2

[µ]µµ0

+
qf |eB|
2π2

[
⌊

µ2

2|eB|qf

⌋
∑

nσ=0

2|eB|qfnσ

(
G(2nσ|eB|qf ) +

ln (2nσ|eB|qf )
2µ

)]µ

µ0

=
qf |eB|
2π2

[
⌊

µ2

2qf |eB|

⌋
∑

nσ=0

√
µ2 − 2|eB|qfnσ −

√
2|eB|qfnσ tan

−1

(√
µ2 − 2|eB|qfnσ√

2|eB|qfnσ

)]µ

µ0

(5.44)

− qf |eB|
4π2

µ

∣∣∣∣
µ

µ0

+
qf |eB|
4π2

[
⌊

µ2

2qf |eB|

⌋
∑

nσ=0

(2qf |eB|nσ)
ln (2qf |eB|nσ)

µ

]µ

µ0

+
qf |eB|
2π2

[
⌊

µ2

2qf |eB|

⌋
∑

nσ=0

√
2nσ|eB|qf sec−1

(
µ√

2n|eB|qf

)]µ

µ0

− qf |eB|
2π2

[
⌊

µ2

2qf |eB|

⌋
∑

nσ=0

(
2n|eB|qf

)
ln

(
µ+

√
µ2 − 2nσ|eB|qf

µ

)]µ

µ0

5.6.2 Pressure in presence of magnetic field for QPM
model

The pressure can be derived using

Pq

µ
=
P0

µ0

+

∫ µ

µ0

⟨εq(µ)⟩
µ2

dµ (5.45)

with
m2

j = m2 + 2j|qfeB|
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The analytical derivation is complex because of the involvement of mass,
which is a function of the coupling constant. But one can solve it numer-
ically. Let us represent the total pressure of quark in the qpm model as∑

PB
qq̄ = Pup + Pdown + Pstrange and that of the free particle as

∑
PB
free =

P free
up + P free

down + P free
strange.
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Figure 5.5: The scaled pressure density is plotted for higher chemical
potential range.

The ratio of
∑

PB
qq̄ to

∑
PB
free is plotted in Figs. 5.5 and 5.6. Due to quan-

tization with a maximum frequency of
⌊
µ2−m2

2|qf eB|

⌋
, oscillation can be observed

in the enlarged plot Fig. 5.6. The ratio comparing the pressure of quasipar-
ticles with that of free particles gives us insight into the ratio of non-ideal
and ideal-behaviour of quasiparticles. Since the contribution of electron and
positron pressure is negligible in this approximation, such pressure values are
not considered. In addition to that the pressure of the magnetic field P = B2

2

is not included in the plot.
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Figure 5.6: The pressure of quasi particles scaled with that of free particles.
The range of chemical potential is limited to 50 Λ to show the effect of the
magnetic field

5.7 Results and Discussion

For a finite chemical potential, we have taken into account the pressure, energy
density, and number density of the magnetized quark at zero Kelvin. The
formulas for number density, energy density, and pressure are obtained by
combining the relative particle result with the quantized harmonic oscillator
result, as demonstrated in Chapter 4.

We have compared the result with that of free particles. In Figs. 5.1 and 5.2,
we have compared the relative number density of quasiparticle quarks with
that of free particle gas at finite chemical potential and absolute zero temper-
ature. When the chemical potential is comparable with the magnetic field, a
larger oscillation can be seen. The plots for various magnetic fields can also
be obtained. The reason for the oscillation is the quantization of phase space
due to the applied magnetic field. This introduces a maximum frequency of⌊[

µ2−m2

2|qf eB|

]⌋
. The mass of a quasiparticle is a function of coupling constant

which is a function of chemical potential. It also gives rise to the oscillation.
In order to compensate the charge neutrality, quasielectron-quasipositron os-
cillation is assumed.

105



Comparing Figs. 5.3 and 5.4, the same kind of oscillation can be observed.
In the Figs. 5.3 and 5.4, only the energy density due to the quasiparticle is
taken into account. The total energy density requires the contribution caused
by the pure magnetic field ie., B2/2

Since the chemical potential of quasielectron and quasipositron is consid-
ered as zero, the contribution to energy density is negligible. The pressure is
calculated for µ0 = 10, and P0 = 0. Comparing this with Figs. 5.5 and 5.6,
one can observe that when the magnetic field is greater than the chemical po-
tential, a larger oscillation can be observed. Later, energy density vs. pressure
are compared. The total pressure will also have a magnetic field contribution
value of B2/2.

In a nutshell, in this chapter, we have derived the equation of state for quasi
particles at zero temperature at finite chemical potential. For symmetrical
pressure, energy density and baryonic density, the Tolman–Oppenheimer–Volkoff
(TOV) equation can be used to derive the radius and mass dependence of a
star. But in our case because of this asymmetric magnetic field, we cannot
apply our model in TOV. So we might need to transform TOV equations to
the magnetic field regime first and then derive the mass-radius relation. We
expect to do some research in that regard in the future.
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Figure 5.7: The pressure vs Energy of quasi particles is plotted. The range of
chemical potential is limited to 708-1100 Λ to show the effect of the magnetic
field. Units of pressure is Λ4. One can observe a kink in this figure, and there
are two reasons for this kink. Firstly, it is due to the initial condition we
imposed to derive the pressure, i.e., µ0 = 10. The kink’s position shifts as we
change this initial value, µ0. Secondly, the kink occurs when the magnetic
field and chemical potential values are in the same order of magnitude. This
is attributed to Landau quantization applied here, making the ratio⌊
µ2−m2(µ)
2|qf eB|

⌋
behave as a step function. When this ratio surpasses a specific

value, the entire quantity increases significantly, leading to the observed kink.
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Chapter 6

Quasiparticle model in thermal
ϕ4 theory having coupling
constant up to two loop order

6.1 Introduction

6.1.1 Creation and Annihilation operator in quantum
mechanics

Consider the quantum mechanical Harmonic Oscillator with Hamiltonian

Ĥ =
ˆ⃗p2

2m
+

1

2
mω2 ˆ⃗x2 (6.1)

The eigenvalue of the nth energy state for the above Hamiltonian is

En =

〈
n

∣∣∣∣
(
N̂ +

1

2

)
ℏω
∣∣∣∣n
〉

=

(
n+

1

2

)
ℏω (6.2)

with n ∈ W, where W is the set of all whole numbers. The N̂ is the state
operator, which can be written as

N̂ = â†â (6.3)

where â is the annihilation operator, which when acted on, changes a state |n⟩
to |n− 1⟩. And the creation operator â† does the opposite. i.e.,

â |n⟩ =
√
n |n− 1⟩

â† |n⟩ =
√
n+ 1 |n+ 1⟩

â |0⟩ = 0

(6.4)
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The creation and annihilation operators can be expressed in terms of momen-
tum and coordinates operator as

â =
mωx̂+ ip̂√

2mℏω

â† =
mωx̂− ip̂√

2mℏω
[
â, â†

]
=

[x̂, p̂]

iℏ
= 1

(6.5)

6.1.2 General description of QFT

We can represent every particle and wave in the universe as an excitation of
a corresponding quantum field. As we have mentioned in the previous section,
in quantum mechanics âp annihilates a particle or changes the state to a lower
state. i.e.

âp |1⟩ = |0⟩ (6.6)

Similarly, âp
† creates a particle with momentum p⃗ (or increases the state). i.e.

âp
† |0⟩ = |1⟩ (6.7)

where |0⟩ is the lowest-order state, also known as the ground state. |1⟩ is the
next higher level of state.

At the same time in quantum field theory,

ϕ̂†(x) =
1√
V

∑

p⃗

âp
†e−ip⃗.x⃗ (6.8)

creates a particle at x⃗ with momentum p⃗.
Similarly

ϕ̂(x) =
1√
V

∑

p⃗

âpe
ip⃗.x⃗ (6.9)

annihilates a particle at x⃗.
Corresponding to the Lagrangian in classical and quantum mechanics, there
exists a corresponding quantum field theory function known as Lagrangian
density, which, when integrated over four dimensions, gives the Lagrangian.

L =

∫
L d4x (6.10)
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There are different kinds of Lagrangian equations; the prominent ones are
the Klein-Gordon scalar field equation and the charged Klein-Gordon field
equation.
For Klein-Gordon scalar field

L =
1

2

(
∂µϕ∂µϕ−m2ϕ2

)
(6.11)

solving using Euler-Lagrange equation

∂L
∂ϕ

− ∂µ

(
∂L

∂[∂µϕ]

)
= 0 (6.12)

gives

ϕ̂(x) =

∫ (
âp(t)e

i(p⃗.x⃗−ωt) + âp
†(t)e−i(p⃗.x⃗−ωt)

) d3p√
(2π)32ω

(6.13)

For charged Klein-Gordon field

L =
1

2

(
∂µϕ∗∂µϕ−m2ϕ∗ϕ

)

=⇒ ϕ̂(x) =

∫ (
b̂p(t)e

i(p⃗.x⃗−ωt) + âp
†(t)e−i(p⃗.x⃗−ωt)

) d3p√
(2π)32ω

(6.14)

Two types of particles involved here, i.e., a and b.

In quantum mechanics we have Schrodinger picture, and Heisenberg picture.
In Schrodinger picture the state is time dependent and the operator is inde-
pendent of time. The state of a particle or physical system at a time t can be
obtained in the Schrodinger picture by multiplying the initial state with the
time evolution operator Û(t)
i.e.,

ψ(t) = Û(t, t0)ψ(t0). (6.15)

But in the Heisenberg picture, the state is time-independent, but the opertor is
time-dependent. In both pictures, the expectation value of an operator should
be the same, so one could relate both via

⟨ψ(t)|Âs|ψ(t)⟩ = ⟨ψH |ÂH(t)|ψH⟩
=⇒ ⟨ψ(t) Û−1Û︸ ︷︷ ︸

1̂

|Âs| ÛÛ−1

︸ ︷︷ ︸
1̂

ψ(t)⟩ = ⟨ψH |ÂH(t)|ψH⟩

=⇒ ⟨ψ(t)Û−1|Û−1ÂsÛ|Û−1ψ(t)⟩ = ⟨ψH |ÂH(t)|ψH⟩

(6.16)

On one to one comparison of LHS with RHS,

ψH = Û−1ψ(t)

ÂH = Û−1ÂsÛ
(6.17)
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6.1.3 Heisenberg picture and Action priciple

In Heisenberg’s picture, we have

|ϕ⟩H = Û−1 |ϕ⟩ (6.18)

where Û is the time evolution operator, and

ÂH(t) = U−1ÂU (6.19)

where ÂH(t) is the opertor in the Heisenberg picture and Â(t) is the operator
in the Schrodinger picture. Consider the propagation of a particle from

(x, t1) → (y, t2) (6.20)

the corresponding expectation value is

I = ⟨y, t2|x, t1⟩H = ⟨y|Û(t2)Û−1(t1)|x⟩ . (6.21)

But Û = exp
(
−iĤt

)

=⇒ ⟨y, t2|x, t1⟩H = ⟨y| exp
(
−iĤτ

)
|x⟩ (6.22)

where τ = t2 − t1. We can divide the long interval into n equal intervals of
small size.

[t1, t2] =[t1, t1 +∆τ ] + (t1 +∆τ, t1 + 2∆τ ] + ...

+ (t1 + n∆τ, t1 + (n+ 1)∆τ ]
(6.23)

with t2 = t1 + (n+ 1)∆τ .

I = ⟨y| exp
(
−iĤτ

)
|x⟩ = ⟨y| exp

(
−iĤ(n+ 1)∆τ

)
|x⟩

Now using the completeness relation∫
|xn⟩ ⟨xn| dxn = 1

I =

∫
⟨y| exp

(
−iĤ∆τ

)
|xn⟩ ⟨xn| exp

(
−iĤ∆τ

)
|xn−1⟩ ... ⟨x1| exp

(
−iĤ∆τ

)
|x⟩ dx1..dxn

combining completeness relations in momentum coordinates

⟨xn| exp
(
−iĤ∆τ

)
|xn−1⟩ =

∫
⟨xn|p⟩ exp (−iHp∆τ) ⟨p|xn−1⟩ dp

=

∫
exp

(
i∆τ

[
p
xn − xn−1

∆τ
−Hp

])
dp

=

∫
exp (iL∆τ) dp
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(6.24)

In the continuum limit for each xn, if we express it like this, then

I = ⟨y, t2|x, t1⟩ =
∫

exp

(
i

∫
Ldt

)
DxDp (6.25)

6.1.4 Green’s Function

If we do the same as above in functional theory, then we get an exponential
term containing

S =

∫
Ldt =

∫
Ld4x (6.26)

In case of Klein-Gordon equation

L =
1

2

(
∂µϕ∂µϕ−m2ϕ2

)
(6.27)

If we solve it for action S then

S =

∫
(∂µϕ∂µϕ−m2ϕ2)

2
d4x = −

∫
ϕ (∂µ∂

µϕ+m2ϕ)

2
d4x (6.28)

The solution to the equation −
(
∂µ∂

µϕ+m2ϕ
)
= δ4(x−x′), for ϕ is known

as the Feynman propagator and is denoted as ∆F (x− x′) .

6.1.4. (a) The idea behind Green’s function

Consider an equation

Âxϕ(x) = g(x) (6.29)

Let there exist a Green’s function such that

ÂxG(x, y) = δ(x− y) (6.30)
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Eq. (6.29) and Eq. (6.30), when combined, become

g(x) =

∫
g(y)δ(x− y)dy

=

∫
g(y)ÂxG(x, y)dy

= Âx

∫
g(y)G(x, y)dy

=⇒ g(x) = Âxϕ(x) = Âx

∫
g(y)G(x, y)dy

=⇒ ϕ(x) =

∫
g(y)G(x, y)dy

(6.31)

The beauty of Green’s function is that once G(x, y) is found, it can be
readily applied to RHS to find the solution for any RHS function.

6.1.4. (b) Propagator in QFT

The solution to

−
(
∂µ∂

µ +m2
)
G(x, x′) = δn(x− x′) (6.32)

is known as the Feynmann propagator. The solution can be derived by defining
G(x, x′) such that

=⇒ −
(
∂µ∂

µ +m2
)
G(x, x′) = δn(x− x′)

=⇒ −
(
∂µ∂

µ +m2
) ∫

G(p)eip
µ(xµ−x′

µ)
dnp

(2π)n
=

∫
eip

µ(xµ−x′
µ)

dnp

(2π)n

=⇒ −
∫ (

−pµpµ +m2
)
G(p)eip

µ(xµ−x′
µ)

dnp

(2π)n
=

∫
eip

µ(xµ−x′
µ)

dnp

(2π)n

=⇒ −
(
−pµpµ +m2

)
G(p) = 1

G(p) =
1

(pµpµ −m2)

G(x, x′) =
∫

eip
µ(xµ−x′

µ)

(pµpµ −m2)

dnp

(2π)n
= ∆F (x− x′) = Feynman Propagator

(6.33)

6.1.5 Quartic interaction

Consider a quartic self-interacting theory λϕ4, where the action can be defined as

A[ϕ] =

∫ (
1

2

[
∂µϕ∂µϕ−m2ϕ2

]
− λ

4!
ϕ4
)
d4x

From Eq. (6.28)

A[ϕ] = S[ϕ]− λ

4!

∫
ϕ4d4x

(6.34)
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Thus a generating function Zλ(J), can be defined as

Zλ(J) =

∫
exp

(
iS[ϕ] + i

∫
d4x

[
− λ

4!
ϕ4 + Jϕ

])
Dϕ

Z0(J) =

∫
exp

(
iS[ϕ] + i

∫
d4x [Jϕ]

)
Dϕ

Z0(0) =

∫
exp

(
iS[ϕ]

)
Dϕ

Zλ(0) =

∫
exp

(
iS[ϕ] + i

∫
d4x

[
− λ

4!
ϕ4
])

Dϕ =

∫
Dϕ exp

(
iA[ϕ]

)

(6.35)

Differentiating with respect to J , we can connect the equations shown above as

∫
ϕ4 exp

(
iS[ϕ] + i

∫
d4x [Jϕ]

)
Dϕ =

∫
δ4

δJ4
exp

(
iS[ϕ] + i

∫
d4x [Jϕ]

)
Dϕ

(6.36)

Therefore

Zλ(J) = Z0(J)
∞∑

n=0

1

n!
(−iλ/4!)n

{∫
d4xϕ4(x)

}n

= Z0(J)

∞∑

n=0

1

n!
(−iλ/4!)n

[ n∏

l=0

∫
d4xl ϕ

4(xl)

]

=

∞∑

n=0

1

n!
(−iλ/4!)n

[ n∏

l=0

∫
d4xl

δ4

δJ(xl)4

]
Z0(J)

(6.37)

and

Z0(J) = Z0(0)

∞∑

n=0

(in)

n!

{ n∏

l=0

∫
d4xl J(xl) ϕ(xl)

}
(6.38)

One can correlate Green’s function with Zλ(J) as shown below

Zλ(J) = Z0(0)

∞∑

n=0

in

n!

{∫
G(n)(x1, x2, . . . , xn)

n∏

l=0

J(xl) d
4xl

}
(6.39)

with

Zλ(J) =

∫
Dϕ

∞∑

n=0

in

n!

{ n∏

l=0

∫
d4xl J(xl) ϕ(xl)

}
exp (iA[ϕ]) (6.40)

G(n)(x1, x2, . . . xn) is called n-point Green’s function. Dividing Eq. (6.40) by Eq. (6.39)
we get

1 =

∫
Dϕ
∑∞

n=0
in

n!

{∏n
l=0

∫
d4xl J(xl) ϕ(xl)

}
exp (iA[ϕ])

Z0(0)
∑∞

n=0
in

n!

{∫
G(n)(x1, x2, . . . , xn)

∏n
l=0 d

4xl J(xl)

} (6.41)
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So for two-point functions,

1 =

∫
Dϕ
∫
d4x1d

4x2J(x1)J(x2)ϕ(x1)ϕ(x2) exp (iA[ϕ])

Z0(0)
∫
G(x1, x2) J(x1) J(x2) d4x1d4x2

(6.42)

comparing the denominator and numerator,

G(x1, x2) =
1

Z0(0)

∫
Dϕ ϕ(x1)ϕ(x2) exp

(
iA[ϕ]

)
(6.43)

Similarly, four-point Green function can be written as

G(x1, x2, x3, x4) =
1

Z0(0)

∫
Dϕ ϕ(x1)ϕ(x2)ϕ(x3)ϕ(x4) exp

(
iA[ϕ]

)

=
1

Z0(0)

∫
Dϕ exp

(
iA[ϕ]

) 4∏

l=1

ϕ(xl)

(6.44)

i.e., As shown in Eq. (6.39), Zλ(J) can be expanded in terms of Green’s function.

The expansion of Green’s function, can be rewritten in terms of momentum rep-
resentation, as shown in the Section 6.1.4. Similarly, the expansion can be simplified
using Feynmann diagrams. We are not going into detail on deriving the Feymann
diagram’s rule, but we simply state the rules while we interchange the integrals from
Euclidean to Minkowski space.

1. Draw the diagram in the momentum space associating a momentum label,
with each of the lines. We label each momentum ki and associate them with
a factor

(
k2i +m2

)−1

2. Assume that momentum is conserved at each vertex (Sum of incoming mo-
mentum = Sum of outgoing momentum)
i.e., associate it with (2π)NδN [k1 + k2 + · · ·+ kn]

3. Momentum associated with internal lines are integrated over with measure
dNk
(2π)N

4. Associate a factor − λ/4! with each vertex

5. Associate the correct symmetry factor and weight factor with diagram.

6.1.6 Thermal field theory : Imaginary Time Formalism

Here, the continuation of Heisenberg picture and Action principle in Section 6.1.3
is considered in the context of a canonical ensemble. In order to differentiate the
formalism in ITF, we use ϕ and π instead of x and p used in Section 6.1.3. Similarly
the expectation value of an operator B̂ is considered as

〈
B̂
〉
=

Tr
{
B̂ exp

(
−βĤ

)}

Tr
{
exp

(
−βĤ

)} (6.45)
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The partition function is defined as [1]

Z =
∑

n

∫
dϕn

〈
ϕn| exp

[
−β(Ĥ − µiN̂i)

]
|ϕn
〉

(6.46)

As the variable changes to imaginary, i.e., moving from real to complex plane,
τ → it, a periodicity arises to conserve the charge density N .
i.e., the Hamiltonian density changes from H → H− µN . Therefore, we skip to the
basic formula [1]

Z =

∫
dπ

∫

periodic
dϕ exp

[∫ β

0
dτ

∫
d3x

(
iπ
∂ϕ

∂τ
−H+ µN

)]
. (6.47)

Here ϕa = ϕ(x, 0) = ϕ(x, β). Thus the Feynmann diagram in thermal ϕ4 theory can
be defined as

1. Draw all diagrams that are connected

2. Find the weight factor for each diagram

3. For each line give the factor T
∑

n

∫
d3p

(2π)3
1

ω2
n + p2 +m2

, where ωn = 2πnT

4. For each vertex associate a factor −λ

5. For each vertex associate a factor (2π)3βδ(pincoming − poutgoing)δωin,ωout . This
delta function usage is to preserve energy-momentum conservation. At the
end, a factor (2π)3βδ(0) = βV will remain.

For comparison of thermal and non-thermal QFT, the difference can be written as
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Characteristics QFT ϕ4 ITF ϕ4

Weight factor Same/Identical Same/Identical

Vertex factor −λ −λ

Line factor

∫
d4P

(2π)4
1

P 2 +m2
T

∞∑

n=−∞

∫
d3p

(2π)3
1

ω2
n + p2 +m2

Conservation (2π)4δ4(Pincoming − Poutgoing) (2π)3βδ3(pincoming − poutgoing)δωin,ωout
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6.2 Running coupling constant in ϕ4 theory

Quartic interaction Lagrangian

Feynman Diagrams

One Particle Irreducible Diagrams

Regularization of diagrams

Divergent terms

Counter terms

MS Scheme

Renormalized Lagrangian
and RGE Parameters

Beta function

Running Coupling constant

The coupling constant in the ϕ4 theory affects the quasiparticle model we employ in
the work. Therefore, a temperature-dependent coupling constant must be derived
in order to complete the model.

The typical procedure for determining the coupling constant involves defining
the Lagrangian, selecting the appropriate order of approximation, writing down irre-
ducible diagrams, and regularizing such diagrams and noting the divergences. Later
inorder to remove the divergence and makes the theory in order, counter terms are
derived which cancels the diverging terms of the Feynman diagrams. Renormal-
ization group equations (RGE) are utilised to renormalize the Lagrangian. Several
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RGE parameters were derived for it. Beta function is one of them. The coupling
constant can be obtained by solving the beta function.

6.2.1 Dimensional Regularization of Feynmann diagram’s
in non thermal ϕ4 theory

We use the dimensional regularization method [2, 3, 4], which successfully regularizes
the non-Abelian gauge theory while maintaining symmetries. The minimal subtrac-
tion scheme (MS scheme) follows after regularization and in which it corresponds
to the cancellation of pole terms (ϵ−n, n ≥ 1) using the counter-term method [5].
The vertex function, which is formed by the Feynmann diagrams, has divergences.
When appropriate counter terms are added, the divergence terms get removed, and
it becomes the proper vertex function [6, 7, 8, 9]. In the next stage, the corre-
sponding renormalized group equation (RGE) is applied to the finite proper vertex
function of the imaginary time formalism. Those diagrams which have a subscript
QFT corresponds to non-themal ϕ4 QFT diagram. The diagram which has an ITF
subscript corresponds with the diagrams of the thermal ϕ4 theory of the imaginary
time formalism.

6.2.2 Examples of Dimensional Regularization

6.2.2. (a) One loop two-point function diagram

Consider the simple tadpole diagram and the integral expression

[
{−λ} QFT

]
= −λ

∫ (
1

P 2 +m2

)
d4P

(2π)4
(6.48)

It is very clear from the equation itself that the integral is diverging. d4P is propor-
tional to P 3, thus the integral in Eq. (6.48) is divergent itself. Because the integrand
has an effective power of 3−2 = 1. But in order to pinpoint the diverging terms, the
method of regularization can be used. For that, certain re-arrangements are done.
The dimension of integral equation is changed from 4 to N

d4P

(2π)4
→ Lt

N→4−ϵ

dNP

(2π)N
(6.49)

The coupling constant changed with a coefficient of mass scale, i.e.,

λ→ gµϵ (6.50)
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So

−gµϵ
∫ (

1

P 2 +m2

)
dNP

(2π)N
= −gµϵ

∫ (
1

P 2 +m2

)
1

(2π)N
d




πN/2PN

Γ
(
N
2 + 1

)
︸ ︷︷ ︸
N dimensional

volume




=
−gµϵ

(4π)
N
2 Γ
(
N
2

)
∫ ∞

0

2PN−1

P 2 +m2
dP

(6.51)

Using 1
x =

∫∞
0 exp(−tx)dt

−gµϵ
∫ (

1

P 2 +m2

)
dNP

(2π)N
=

−gµϵ

(4π)
N
2 Γ
(
N
2

)
∫ ∞

0

∫ ∞

0

[
2PN−1 exp

(
−t(P 2 +m2)

)]
dt dP

(6.52)

Integrating with respect to P , we get

−gµϵ
∫ (

1

P 2 +m2

)
dNP

(2π)N
=

−gµϵ

(4π)
N
2 Γ
(
N
2

) ×
∫ ∞

0

Γ
(
N
2

)

t
N
2

exp
(
−tm2

)
dt

=
−gµϵ

(4π)
N
2 Γ
(
N
2

) ×
Γ
(
N
2

)
Γ
(
1− N

2

)

(m2)1−
N
2

=
−gµϵ

(4π)
N
2

Γ
(
1− N

2

)

(m2)1−
N
2

(6.53)

Now putting back N → 4− ϵ, we get

Lt
N→4−ϵ

− gµϵ
∫ (

1

P 2 +m2

)
dNP

(2π)N
= Lt

N→4−ϵ

−gµϵ

(4π)
N
2

Γ
(
1− N

2

)

(m2)1−
N
2

=
−gm2

16π2

(
4πµ2

m2

) ϵ
2

Γ
( ϵ
2
− 1
) (6.54)

The expansion of Γ (−n+ ϵ) =
(−1)n

(n!)2 ϵ
Γ (n+ 1 + ϵ)

{
1 + ϵ2

[
π2

6
− ψ’(n+ 1)

]
+O(ϵ4)

}

with ψ(n) = −γ +
n−1∑

l=1

1

l
= ψ(1) +

n−1∑

l=1

1

l
. Thus

Γ (−1 + ϵ) = −
{
1

ϵ
+ ψ(2) + ϵ

[
1 +

ψ’(2)

2
+
ψ(2)2

2

]}
+O(ϵ2) (6.55)
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Therefore Eq. (6.54) becomes

Lt
N→4−ϵ

− gµϵ
∫ (

1

P 2 +m2

)
dNP

(2π)N
=

−gm2

16π2

(
4πµ2

m2

) ϵ
2

Γ
( ϵ
2
− 1
)

=
gm2

16π2

[
2

ϵ
+ ψ(2) + ln

(
4πµ2

m2

)
+O(ϵ)

] (6.56)

Therefore

[
{−λ} QFT

]
=
gm2

16π2

[
2

ϵ
+ ψ(2) + ln

(
4πµ2

m2

)
+O(ϵ)

]
(6.57)

We define a pole picking operator K which can pick out the diverging terms. i.e.,

K
(

QFT

)
=
gm2

8π2
1

ϵ
. (6.58)

6.2.2. (b) One loop four-point function diagram

The simple four-point function diagram [10] of first order is

I2 =
{
λ2
}

QFT = λ2
∫

d4P

(2π)4

(
1

P 2 +m2

)(
1

(P +K)2 +m2

)
(6.59)

Now, following the dimensional regularization procedure, the integral can be re-
written as

I2 =
{
λ2
}

QFT = Lt
N→4−ϵ

g2µ2ϵ
∫

dNP

(2π)N

(
1

P 2 +m2

)(
1

(P +K)2 +m2

)
(6.60)

Using gamma function properties

1

XY
=

∫ ∞

0

∫ ∞

0
exp (−tX − uY ) dt du

1 =

∫ ∞

0
δ(q − t− u)dq

∴
1

XY
=

∫ ∞

0

∫ ∞

0

∫ ∞

0
exp (−tX − uY ) δ(q − t− u) dt du dq

Putting t = qa & u = qb

1

XY
=

∫ ∫ ∫ ∞

0
q2 exp (−q [aX + bY ])

δ(1− a− b)

q
da db

=

∫ ∫
δ(1− a− b)

[aX + bY ]2
da db

=

∫ 1

0

da

[aX + (1− a)Y ]2

(6.61)
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Combining Eq. (6.61) with Eq. (6.60) becomes

I2 = g2µϵ
∫

dNP

(2π)N

(
1

P 2 +m2

)(
1

(P +K)2 +m2

)

=
g2µϵ

(2π)N

∫ 1

0
da

∫
1

[m2 + [aP 2 + (1− a)(P +K)2]2
dNP

=
g2µϵ

(2π)N

∫ 1

0
da

∫
t exp

(
−t(m2 + [aP 2 + (1− a)(P +K)2])

)
dNP dt

(6.62)

The N dimensional integral can be converted into N rectangular coordinates, So

I2 =
g2µϵ

(2π)N

∫ 1

0
da

∫ ∞

0
dt t exp

(
−tm2

) N∏

ν=1

∫ ∞

−∞
exp

(
−t
[
Pν

2 + 2PνKν(1− a) +Kν
2(1− a)

])

=
g2µϵ

(2π)N

∫ 1

0
da

∫ ∞

0
dt t exp

(
−tm2

) N∏

ν=1

∫ ∞

−∞
exp

(
−t
[
(Pν +Kν(1− a))2 +Kν

2a(1− a)
])

dPµ

=
g2µϵ

(2π)N

∫ 1

0
da

∫ ∞

0
dt t exp

(
−t(m2 +K2a(1− a))

) N∏

ν=1

∫ ∞

−∞
exp

(
−tP 2

µ

)
dPµ

=
g2µϵ

(2π)N

∫ 1

0
da

∫ ∞

0
dt t exp

(
−t(m2 +K2a(1− a))

)
[
πN/2

tN/2

]

= g2µϵ
1

(4π)
N
2

∫ 1

0
da

Γ
(
2− N

2

)

[m2 +K2a(1− a)]2−
N
2

(6.63)

Therefore

Lt
N→4−ϵ

I2 =
g2

16π2

∫ 1

0

(4πµ2)
ϵ
2Γ
(
ϵ
2

)

[m2 +K2a(1− a)]
ϵ
2

da (6.64)

Now as shown in Example 1, using Digamma function the result can be written as

{
λ2
}

QFT =
g2µϵ

16π2

{
2

ϵ
+ ψ(1) +

∫ 1

0
da ln

[
4πµ2

K2a(1− a) +m2

]
+O(ϵ)

}
(6.65)

The diverging term of the above diagram is

K
(

QFT

)
=

g2

8π2
1

ϵ
(6.66)

The results of diagrams of Non-thermal ϕ4 theory are well known [10]

QFT =
−m2g2

(4π)4

[
4

ϵ2
+ 2

ψ(1) + ψ(2)

ϵ
− 4

ϵ
ln

(
m2

4πµ2

)
+O(ϵ0)

]
(6.67)
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So

K


 QFT


 =

−m2g2

(4π)4

[
4

ϵ2
+ 2

ψ(1) + ψ(2)

ϵ
− 4

ϵ
ln

(
m2

4πµ2

)]
(6.68)

Further diagrams results can be found in standard textbooks [10]. We are not going
to reproduce the same results, but in the upcoming section we will try to find the
corresponding results for thermal ϕ4 theory.
For calculation easiness proper vertex function is used in some calculations. The
proper vertex function is defined as

Γ̄(n)(k⃗1 . . . k⃗n) = −
∫

dnl1

(2π)N
. . .

dnlL

(2π)N
G0

(
q⃗1(⃗l, k⃗)

)
. . . G0

(
q⃗I (⃗l, k⃗)

)
(6.69)

. The examples of two- and four-point vertex functions can be found in the com-
ing sections. The procedure for deriving the coupling constant in ϕ4 theory for
Lagrangians can be written down as shown below [10].

6.2.3 Procedures for deriving coupling constant upto
two loop order in non-thermal ϕ4 theory

1. Define the Lagrangian density

L =
1

2

[
∂µϕ∂

µϕ−m2ϕ2
]
− λ

4!
ϕ4 (6.70)

2. Write down the Feynmann diagrams for two and four-point functions up to
two loop order

Γ
(2)
QFT = ( QFT)

−1 −
(
1

2
QFT

)

︸ ︷︷ ︸
One loop

−



1

4
QFT +

1

6
QFT




︸ ︷︷ ︸
Two loop

(6.71)

Γ
(4)
QFT = − QFT −

(
3

2
QFT

)

︸ ︷︷ ︸
One loop

−


3 QFT +

3

4
QFT +

3

2
QFT




︸ ︷︷ ︸
Two loop

(6.72)

3. Use the regularization method to pick out the diverging terms and write
down the counter-terms. Make the proper vertex function finite by adding
the counter terms. The operator K can be used as a pole finding operator.
The results for the non-thermal ϕ4 theory can be taken from Kleinert [10], as
shown below
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Two-point function

One loop Counter terms

The finite two-point proper vertex function can be written as

Γ̃
(2)
QFT = Γ2 −K

(
Γ(2)

)

= ( )−1
QFT −

{
1

2
QFT + QFT + QFT

}
+O(g2)

(6.73)

where the counter terms are

(a)

QFT = −m2c1m2 = −1

2
K
(

QFT

)
= −m2 g

(4π)2
1

ϵ
(6.74)

(b)

−K2c1ϕ = QFT = 0 (6.75)

6.2.3. (a) Two loop Counter terms

The finite proper vertex function for two-point function at two loop approxi-
mation is

Γ̃
(2)
QFT = ( )−1 −

(
1

2
QFT + QFT + QFT

)

−



1

4
QFT +

1

2
QFT


−

(
1

6
QFT +

1

2
QFT

)

+O(g3)

(6.76)

with ∗ being an operator that substitutes the appropriate counter term−m2cm2

or −µϵgcg, the new counter terms in the two loop approximation being

(a)

QFT = QFT ∗ −1

2
K
[

QFT

]

= −gµϵ
(

−∂
∂m2 QFT

)(
1

2gµϵ

)
K
[

QFT

] (6.77)
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(b)

QFT =
(
−µϵgc1g

)(
QFT

)(
−1

gµϵ

)

= −3

2
K
[

QFT

](
QFT

)(
−1

gµϵ

) (6.78)

Four-point function

6.2.3. (b) One loop Counter terms

The finite four-point proper vertex function up to one loop order can be written
as

Γ̃
(4)
QFT = −

(
QFT +

3

2
QFT + QFT

)
+O(g3) (6.79)

with the counter term

QFT = −µϵgc1g = −3

2
K
(

QFT

)
= −µϵg 3g

(4π)2
1

ϵ
(6.80)

6.2.3. (c) Two loop Counter terms

The finite four-point proper vertex function up to two loop order is

Γ̃(4) =−
{

QFT +
3

2
QFT + QFT

}

−



3 QFT +

3

4
QFT +

3

2
QFT





−

{
3 QFT + 3 QFT

}
+O(g4)

(6.81)

The counter terms are

(a)

K
[ ]

QFT

= K

[
QFT ∗ −3

2
K
( )

QFT

]
(6.82)

Similarly
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(b)

K

[
QFT

]
= K

[
−gµϵ

(
−1

2

∂

∂m2 QFT

)(
−1

µϵg

)(
−1

2
K
[

QFT

])]

= −1

2
K




QFT,k0=ωnk




(6.83)

4. Find the renormalization constants via diagrammatic expansion as shown

Zg(g, ϵ
−1) = 1 +

1

gµϵ

{
3

2
K
(

QFT

)
+ 3K

(
QFT

)}

+
1

gµϵ




3

4
K
(

QFT

)
+

3

2
K


 QFT







+
1

gµϵ

{
3K
(

QFT

)
+ 3K

(
QFT

)}

(6.84)

So from standard textbook result of QFT [10] the analytical value of the
calculation is,

Zg(g, ϵ
−1) = 1 +

g

(4π)2
3

ϵ
+

g2

(4π)4

(
9

ϵ2
− 3

ϵ

)
(6.85)

and

Zm2 = 1+
1

m2




1

2
K
(

QFT

)
+

1

4
K


 QFT


+

1

6
K
(

QFT,K2=0

)




+
1

m2

{
1

2
K

(
QFT

)
+

1

2
K
(

QFT

)}

(6.86)

the analytical solution of Eq. (6.86) from [10] is

Zm2(g, ϵ−1) = 1 +
g

(4π)2
1

ϵ
+

g2

(4π)4

(
2

ϵ2
− 1

2ϵ

)
(6.87)

Finally

Zϕ = 1 +
1

K2

1

6
K
(

QFT

)
|m2=0,k0=ωnk

= 1 + cϕ

= 1− g2

(4π)4
1

12ϵ

(6.88)
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5. From the relation between Renormalization Group Equation (RGE) and proper
vertex function

d

d(lnµ)
Γ̃(n) (m, g, T, µ) = 0

[
µ
∂

∂µ
+ β(g)

∂

∂g
− nγ(g) + γmm

∂

∂m

]
Γ̃(n) (m, g, T, µ) ≈TLA 0

(6.89)

where

dg

d ln(µ)
= β(g)

d ln(m)

d ln(µ)
= γm(g)

(6.90)

The renormalization constants can be derived [10] as

γ(g) = −Zϕ,1 = −ϵcϕ

γm(g) =
1

2

g

(4π)2
− 1

2

g2

(4π)4
+ γ(g)

β(g) = −ϵg + 3g2

(4π)2
− 6g3

(4π)4
+ 4gγ(g)

(6.91)

6.3 Dimensional Regularization in Thermal ϕ4

Theory

6.3.1 One loop two-point function: The Tadpole Dia-
gram

The Tadpole diagram in Imaginary Time Formalism (ITF) is defined as

ITF = −λ T
∑

n

∫
1

p2 +m2 + ω2
n

d3p

(2π)3
= −λ T

∑

n

∫
1

ε2p + ω2
n

d3p

(2π)3
(6.92)

with ωn = 2πnT .
The summation
The summation can be done using the formula [11]

∞∑

n=−∞
f(n) = −

∑

k

Res [πf(z) cot(πz)]

∣∣∣∣
z=zk

∞∑

n=−∞
(−1)nf(n) = −

∑

k

Res [πf(z) csc(πz)]

∣∣∣∣
z=zk

(6.93)
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where zk is the pole values of f(z).
In order to solve Eq. (6.92) we have to do the summation

∞∑

n=−∞

1

n2 + a2
=

∞∑

n=−∞
f(n) (6.94)

Here

f(z) =
1

z2 + a2
=

1

2ia

[
1

z − ia
− 1

z + ia

]
(6.95)

So simple poles are at z = ±ia. Thus the summation can be evaluated as

∞∑

n=−∞

1

n2 + a2
= −

∑

k

Res [πf(z) cot(πz)]

= −Res

[
π

1

2ia

[
1

z − ia
− 1

z + ia

]
cot(πz)

]

= − π

2ia

[
cot(πz)

∣∣∣∣
z=ia

− cot(πz)

∣∣∣∣
z=−ia

]

=
π

a
coth(πa)

(6.96)

Defining nB(x) =
1

exp(x)− 1
and using Eq. (6.96)

T

∞∑

n=−∞

1

ω2
n + ε2p

=
1

2εp
+
nB(βεp)

εp
(6.97)

Here we can re write

1

2εp
=

∫ ∞

−∞

1

p20 + ε2p

dp0
2π

(6.98)

where ε2p = p2 + m2, with p = [px, py, pz], So as pointed out by [12], these two
diagrams can be connected like (combining Eq. (6.98) and Eq. (6.97))

∫
T

∞∑

n=−∞

1

ω2
n + ε2p

d3p

(2π)3
=

∫
1

p20 + p2 +m2

d3p

(2π)3
dp0
(2π)

+

∫
nB(βεp)

εp

d3p

(2π)

(6.99)

=

∫
1

P 2 +m2

d4P

(2π)4
+

∫
nB(βεp)

εp

d3p

(2π)3

where P = [p0, px, py, pz]
On comparing the tadpole diagram in both QFTand ITFwe have

QFT = −λ
∫ (

1

P 2 +m2

)
d4P

(2π)4
(6.100)
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and

ITF = −λ T
∑

nl

∫ (
1

ω2
nl

+ ε2l

)
d3l

(2π)3
(6.101)

combining Eqs. (6.99) to (6.101)

[
{−λ} ITF

]
=

[
{−λ} QFT

]
− λS1(m,T ) (6.102)

where

S1(m,T ) =

∫
nB(βεp)

εp

d3p

(2π)3
=

1

π

∞∑

n=1

(
m

2πnβ

)
K1(nβm) (6.103)

Where K(n, x) is the Modified Bessel function of second kind. The braces {λ} used
to denote the power of the integral in terms of λ and doesn’t mean the multiplication
purpose.

6.3.2 Four-point function at one loop order

I
(4,1)
ITF = ITF = λ2

∫
d3p

(2π)3
T

∞∑

np=−∞

(
1

ω2
np

+ ε2p

)(
1

ω2
np−nr

+ ε2p−r

)

= λ2
∫

d3p

(2π)3
T

∞∑

np=−∞

(
1

ω2
np

+ ε2p

)(
1

ω2
np+nr

+ ε2p−r

) (6.104)

The summation of the integrand in Eq. (6.104) can be derived using Eq. (6.93) as

T
∞∑

np=−∞

(
1

ω2
np

+ ε2p

)(
1

ω2
np−nr

+ ε2q

)
= [t1(p, q, nr) + t2(p, q, nr) + t2(q, p, nr)]

(6.105)

with

t1(p, q, nr) =
∑

σ=±1

(
1

4εpεq

)((
1

εp + εq + iσωnr

))
(6.106)

t2(p, q, nr) =
∑

σ,σ1=±1

(
1

4εpεq

)(
1

σ1εp + εq + iσωnr

)
nB(βεp) (6.107)

and Eq. (6.104) for λ = 1, becomes

I
(4,1)
ITF =

∫
d3p

(2π)3
d3q

(2π)3
[t1(p, q, nq) + t2(p, q, nq) + t2(q, p, nq)] (2π)3δ3(p+ q + r)
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(6.108)

Using the fact that p↔ q doesn’t alter the integral in Eq. (6.108) gives

I
(4,1)
ITF =

∫
d3p

(2π)3
d3q

(2π)3
[t1(p, q, nr) + 2t2(p, q, nr)] (2π)3δ3(p+ q + r) (6.109)

One can use the result that

∫ ∞

−∞

(
1

p20 + ε2p

)(
1

q20 + ε2q

)
δ(p0 + q0 + ωnr)

dq0
2π

dp0
2π

=
−1

4εpεq

∫ ∞

−∞

[(
1

p0 − iεp

)
−
(

1

p0 + iεp

)][(
1

q0 − iεq

)
−
(

1

q0 + iεq

)]
δ(p0 + q0 + ωnr)

dp0
2π

dq0
2π

=
−1

4εpεq

∫ ∞

−∞

[(
1

p0 − iεp

)
−
(

1

p0 + iεp

)][(
1

q0 − iεq

)
−
(

1

q0 + iεq

)]
ei(p0+q0+ωnr )l

dp0
2π

dq0
2π

dl

2π

=
−1

4εpεq

∫ ∞

−∞

[
2πie−εplθ(l) + 2πieεplθ(−l)

] [
2πie−εqlθ(l) + 2πieεqlθ(−l)

]
eiωnr l

dl

(2π)3

=

(
1

4εpεq

)∫ ∞

−∞

[
e−(εp+εq)lθ(l) + e(εp+εq)lθ(−l)

]
eiωnr l

dl

2π

=

(
1

4εpεq

) ∑

σ=±1

∫ ∞

0

[
e−l(εp+εq+iσωnr )

] dl

2π

=

(
1

2π

)(
1

4εpεq

) ∑

σ=±1

(
1

εp + εq + iσωnr

)

(6.110)

Thus, we can write

t1(p, q, nr) =

∫ ∞

−∞

(
1

p20 + ε2p

)(
1

q20 + ε2q

)
2πδ(p0 + q0 + ωnr)

dq0
2π

dp0
2π

(6.111)

Now
∫

t1(p, q, nr) (2π)
3δ3(p+ q + r)

d3p

(2π)3
d3q

(2π)3

=

∫ (
1

P 2 +m2

)(
1

Q2 +m2

)
(2π)4δ4(P +Q+R)

d4P

(2π)4
d4Q

(2π)4

(6.112)

with

P = [p0, p]

Q = [q0, q]

R = [ωr, r]

(6.113)
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So

I
(4,1)
ITF =

∫ (
1

P 2 +m2

)(
1

Q2 +m2

)
(2π)4δ4(P +Q+R)

d4P

(2π)4
d4Q

(2π)4

+
∑

σ,σ1=±1

∫
d3p

(2π)3
d3q

(2π)3

(
nB(βεp)

2εpεq

)(
(2π)3δ3(p+ q + r)

σ1εp + εq + iσωnr

)

=I
(4,1)
QFT +

∑

σ,σ1=±1

∫
nB(βεp)

2εpεp+r

(
1

σ1εp + εp+r + iσωnr

)
d3p

(2π)3

(6.114)

i.e.,

∫
d3p

(2π)3
T

∞∑

np=−∞

(
1

ω2
np

+ ε2p

)(
1

ω2
np−nr

+ ε2p−r

)
=

∫ (
1

P 2 +m2

)(
1

(P −R)2 +m2

)
d4P

(2π)4

+
∑

σ,σ1=±1

∫
nB(βεp)

2εpεp+r

(
1

σ1εp + εp+r + iσωnr

)
d3p

(2π)3

In terms of diagrammatic representation, the equation can be expressed as

{λ2} ITF = {λ2} QFT,R0=ωnr

+ λ2
∑

σ,σ1=±1

∫
nB(βεp)

2εpεp+r

(
1

σ1εp + εp+r + iσωnr

)
d3p

(2π)3

{λ2} ITF = {λ2} QFT,R0=ωnr
+ λ2W (r, nr)

(6.115)

Now let us look at the nature of integral

W (r, nr) =

∫
d3p

(2π)3

(
2nB(βεp)

εp

) [
r2 + 2pr cos θ + ω2

nr

]
[
(r2 + 2pr cos θ + ω2

nr
)2 + 4ε2pω

2
nr

] (6.116)

when we apply the limit R2 = ω2
nr

+ r⃗2 = 0 Then integral becomes

W (r, nr)R2=0 =

∫
d3p

(2π)3

(
2nB(βεp)

εp

)(
2pr cos θ

(2pr cos θ)2 + 4ε2pω
2
nr

)
(6.117)

Taking integration of angular coordinate we get

W (r, nr)R2=0 =

∫
p2dp

4π2
2nB(βεp)

εp

∫ 1

−1

2pr cos θ[
(2pr cos θ)2 + 4ε2pω

2
nr

] d cos θ (6.118)

Since 2pr cos θ
(2pr cos θ)2+4ε2pω

2
nr

is an odd function w.r.t cos θ, the integral becomes zero.

From result from standard textbook [10]

{g2µϵ} QFT =
g2µϵ

(4π)2

(
2

ϵ
+ ψ(1) +

∫ 1

0
dx log

[
4πµ2

R2x(1− x) +m2

]
+O(ϵ)

)
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(6.119)

Thus

{g2µϵ} ITF =
g2µϵ

(4π)2

(
2

ϵ
+ ψ(1) +

∫ 1

0
dx log

[
4πµ2

R2x(1− x) +m2

])
|R0=ωnr

+ g2W (r, nr)

(6.120)

The result can be thus obtained as

ITF = QFT,Q0=ωnq
+ (gµϵ)2W (q, nq) (6.121)

with

W (r, nr) =

∫
2nB(βεp)

(
r2 + 2pr cos θ + ω2

nr

)

εp

[(
r2 + 2pr cos θ + ω2

nr

)2
+ 4ε2pω

2
nr

] d3p

(2π)3
(6.122)

6.3.3 Two-point two loop order diagrams

The integral expression of {λ2} in QFT is

{λ2} QFT = λ2
∫ (

1

P 2
1 +m2

)[(
1

P 2
2 +m2

)]2 d4P1

(2π)4
d4P2

(2π)4

=

(
−λ
∫

1

P 2
1 +m2

d4P1

(2π)4

)(
− ∂

∂m2

[
−λ
∫

1

P 2
2 +m2

d4P2

(2π)4

])

=

(
{−λ} QFT

)(
− ∂

∂m2
{−λ} QFT

)

(6.123)

The same kind of arrangements of diagrams is also applicable in ITF thus the
corresponding diagram in ITF is

{λ2} ITF =

∫
λ2T 2

∞∑

np1=−∞

∞∑

np2=−∞

(
1

ω2
np1

+ ε2p1

)[(
1

ω2
np2

+ ε2p2

)]2
d3p1
(2π)3

d3p2
(2π)3

=


−λT

∫ ∞∑

np1=−∞

1

ω2
np1

+ ε2p1

d3p1
(2π)3




− ∂

∂m2


−λT

∫ ∞∑

np1=−∞

1

ω2
np1

+ ε2p1

d3p1
(2π)3






(6.124)
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Now

{λ2} ITF =

(
{−λ} ITF

)(
− ∂

∂m2
{−λ} ITF

)

=

(
QFT − λS1(m,T )

)(
− ∂

∂m2

[
QFT − λS1(m,T )

])

= QFT

(
− ∂

∂m2 QFT

)
+
λ2

4π
S1(m,T )S0(m,T )

− λ

4π
S0(m,T )

[
QFT

]
+ λS1(m,T )

∂

∂m2 QFT

(6.125)

So

{λ2} ITF = {λ2} QFT +
λ2

4π
S1(m,T )S0(m,T )

− λ

4π
S0(m,T )

[
{−λ} QFT

]
+ λS1(m,T )

∂

∂m2
{−λ} QFT

(6.126)

where

SN (m,T ) =

(
1

π

) ∞∑

n=1

(
m

2πnβ

)N

KN (nmβ) (6.127)

Using the results from [10] and from Section 6.3.1 we can write

ITF = QFT − g

4π
S0(m,T )

[
QFT

]
+ gS1(m,T )

∂

∂m2 QFT

+
g2

4π
S1(m,T )S0(m,T )

(6.128)

with

QFT = −m
2g2

(4π)4

[
4

ϵ2
+ 2

(
ψ(1) + ψ(2)

ϵ

)
− 4

ϵ
ln

(
m2

4πµ2

)
+O(ϵ0)

]

(6.129)

[
QFT

]
=

m2g

(4π)2

[
2

ϵ
+ ψ(2) + ln

(
4πµ2

m2

)]
+O(ϵ) (6.130)

∂

∂m2

[
QFT

]
=

g

(4π)2

[
2

ϵ
+ ψ(1) + ln

(
4πµ2

m2

)]
+O(ϵ) (6.131)
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6.3.4 Sunset/Sunrise Diagram

The next important two-point two loop diagram can be written as

I
(2,2)
ITF = ITF

= λ2T 2

∫ ∞∑

np,nq=−∞

(
1

ω2
np

+ ε2p

)(
1

ω2
nq

+ ε2q

)(
1

ω2
np+nq+nr

+ ε2p+q+r

)
d3p

(2π)3
d3q

(2π)3

= λ2T 2

∫ ∞∑

np,nq=−∞

(
1

ω2
np

+ ε2p

)(
(2π)3

ω2
nq

+ ε2q

)(
δ3(p+ q + r + s)

ω2
np+nq+nr

+ ε2s

) ∏

Ω=p,q,s

[
d3Ω

(2π)3

]

(6.132)

with
∏

Ω=p,q,s

[
d3Ω

(2π)3

]
=

d3p

(2π)3
d3q

(2π)3
d3s

(2π)3
and

∞∑

np,nq=−∞
=

∞∑

np=−∞

∞∑

nq=−∞
.

The summation result using Eq. (6.93) is

T 2
∞∑

np=−∞

∞∑

nq=−∞

(
1

ω2
np

+ ε2p

)(
1

ω2
nq

+ ε2q

)(
1

ω2
np+nq+nr

+ ε2r

)
= S1 + S2 + S3

(6.133)

with

S1 =

(
1

8εpεqεr

)(∑

σ=±1

(
1

εp + εq + εr + iσωnr

))

S2 =

(
1

8εpεqεr

) ∑

σ,σ1=±1

(
nB(βεp)

σ1εp + εq + εr + iσωnr

+
nB(βεq)

εp + σ1εq + εr + iσωnr

)

+

(
1

8εpεqεr

) ∑

σ,σ1=±1

(
nB(βεr)

εp + εq + σ1εr + iσωnr

)

S3 =

(
1

8εpεqεr

) ∑

σ,σ1,σ2=±1

(
nB(βεq)nB(βεr)

εp + σ1εq + σ2εr + iσωnr

+
nB(βεp)nB(βεq)

σ1εp + σ2εq + εr + iσωnr

)

+

(
1

8εpεqεr

) ∑

σ,σ1,σ2=±1

(
nB(βεp)nB(βεr)

σ1εp + εq + σ2εr + iσωnr

)

(6.134)
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We can use the relation that

I =

∫ ∞

−∞
δ

(
m∑

n=1

p0n − b

)
dp01 dp02 dp03 . . . dp0m

m∏

n=1

[(
1

p20n + ε2p0n

)]

=

m∏

n=1

∫ ∞

−∞

exp (ilp0n)

p20n + ε2p0n
dp0n exp(−ilb) dl

2π

=

∫ ∞

−∞

m∏

n=1

[
π

εp0n
[exp(−lεp0n)θ(l) + exp(lεp0n)θ(−l)]

]
exp(ibl)

dl

2π

=

∫ ∞

−∞

dl

2π
exp(ibl)

(
πm∏m

n=1 εp0n

[
exp

(
−l

m∑

n=1

εp0n

)
θ(l) + exp

(
l

m∑

n=1

εp0n

)
θ(−l)

])

=

(
1

2π

) (
πm

Πm
n=1εp0n

) ∑

σ=±1

(
1∑m

n=1 εp0n + iσb

)

(6.135)

Using the relation Eq. (6.135) the sum of certain terms can be written as an integral
equation as

S1 =

(
1

8εqεpεr

) ∑

σ=±1

(
1

εp + εq + εr + iσωnk

)

=

∫ (
1

p20 + ε2p

)(
1

q20 + ε2q

)(
1

r20 + ε2r

)
(2π)δ(p0 + q0 + r0 + s0)

∣∣∣∣
s0=ωnk

dp0
2π

dq0
2π

dr0
2π

(6.136)

S
(p)
2 =

nB(βεp)

8εpεqεr

∑

σ,σ=±1

(
1

σ1εp + εq + εr + iσωnk

)

=
∑

σ1=±1

nB(βεp)

2εp

∫ (
1

q20 + ε2q

)(
1

r20 + ε2r

)
2πδ(p0 + q0 + r0 + s0)

∣∣∣∣ s0=ωnk
,

p0=iσ1εp

dp0
2π

dr0
2π

(6.137)

S
(p)
2 is the first term of S2 in Eq. (6.134). Replacing p by q and p by r gives the

second and third term of S2 respectively.

S
(p)
3 =

nB(βεp)nB(βεq)

8εpεqεr

∑

σ,σ1,σ2=±1

(
1

σ1εp + σ2εq + εr + iσωnk

)

=
nB(βεp)nB(βεq)

4εpεq

∑

σ1,σ2=±1

∫
2πδ(p0 + q0 + r0 + s0)

q20 + ε2q

∣∣∣∣p0=σ1εp,
r0=σ2εr,
s0=ωnk

dq0
2π

(6.138)
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S
(p)
3 is the first term of S3 in Eq. (6.134). Replacing p by q and p by r gives the

second and third term of S3 respectively.
One can evaluate the integral result by combining Eqs. (6.132) and (6.136) to (6.138)
and including the symmetry in the Dirac delta function as

I
(2,2)
ITF = I

(2,2)
QFT + I2 + I3 (6.139)

where

I
(2,2)
QFT = QFT

= λ2
∫ (

1

P 2 +m2

)(
1

Q2 +m2

)(
1

R2 +m2

)
(2π)4δ4(...)

d4P

(2π)4
d4Q

(2π)4
d4R

(2π)4

(6.140)

with S = [ωnk
, s⃗] and δ4(...) = δ4(P +Q+R+ S).

I2 = λ2
∫

d3p

(2π)3
3nB(βεp)

2εp

∑

σ1=±1

∫
(2π)4δ4(...)

(
1

Q2 +m2

)(
1

R2 +m2

)
d4Q

(2π)4
d4R

(2π)4

=

∫
d3p

(2π)3
3nB(βεp)

2εp

∑

σ1=±1

QFT

(
(P + S)2

)

(6.141)

with

P = [iσ1εp, p⃗]

S = [ωnk
, s⃗]

(6.142)

and

QFT(K
2) = λ2

∫
d4P

(2π)4

(
1

P 2 +m2

)(
1

(P +K)2 +m2

)
(6.143)

The third term of I
(2,2)
ITF is

I3 = λ2
∫

d3p

(2π)3
d3q

(2π)3
3nB(βεp)nB(βεq)

4εpεq

∑

σ1,σ2=±1

∫
(2π)4δ4(...)

R2 +m2

d4R

(2π)4

= λ2
∫

d3p

(2π)3
d3q

(2π)3
3nB(βεp)nB(βεq)

4εpεq

∑

σ1,σ2=±1

[. . . ]

(6.144)

with

[. . . ] =

(
1

(iσ1εp + iσ2εq + ωnk
)2 + (p⃗+ q⃗ + s⃗)2 +m2

)

δ4(. . . ) = δ4(P +Q+R+ S)

P = [iσ1εp, p⃗], Q = [iσ2εq, q⃗], S = [ωnk
, s⃗]

(6.145)
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(However, when ωnk
= 0 and s ̸= 0, integral I3 is not analytical [13] for some external

momenta s.)
We use {}, to denote the order of coupling factor. So

{λ2} ITF ={λ2} QFT

+

∫
d3p

(2π)3
3nB(βϵp)

2ϵp

∑

σ1=±1

{λ2} QFT

(
(P + S)2

)
+ I3

(6.146)

Now by taking the corresponding result from [10] and Eq. (6.59), when λ→ gµϵ, we
can write

ITF = QFT,K0=ωnk︸ ︷︷ ︸
I
(2,2)
QFT

+

∫
d3p

(2π)3
3nB(βϵp)

2ϵp

∑

σ1

QFT(P + S)2

︸ ︷︷ ︸
I2

+ I3

(6.147)

where

QFT,k0=ωnk
= −g2 m2

(4π)4

(
6

ϵ2
+

S2

2m2ϵ

)
− g2

m2

(4π)4
6

ϵ

[
3

2
+ ψ(1) + log

(
4πµ2

m2

)]

+O(ϵ)

(6.148)

with S2 = ω2
nk

+ s2

Similarly

{g2µϵ}
∑

σ1

QFT(P + S) =
g2µϵ

(4π)2

∑

σ=±1

(∫ 1

0
dx log

[
4πµ2

[(iσϵp + ωnk
)2 + (p+ s)2]x(1− x) +m2

])

+
2g2µϵ

(4π)2

(
2

ϵ
+ ψ(1)

)
+O(ϵ)

(6.149)

Now combining the result we can write it as in the case of pole term. i.e.,

K
(

ITF

)
= K

(
QFT,k0=ωnk

)
+ 3S1(m,T ) K

(
QFT

)

= K
(

QFT,k0=ωnk

)
+ 3S1(m,T )

∂

∂m2
K
(

QFT

) (6.150)
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when ωnk = 0 and s ̸= 0 integral I3 is not analytical for some external momenta s
[13]. Similarly when external momentum S = 0 the whole result can be written as

ITF,S=0 = QFT,S=0 + 3S1(m,T ) K
(

QFT

)

︸ ︷︷ ︸
I2

+ 3S1(m,T )
g2µϵ

(4π)2

(
ψ(1)−

∫ 1

0
log
(
1− x+ x2

)
dx+ log

(
4πµ2

m2

))

︸ ︷︷ ︸
I2

+
3g2m2

32π4

∫ ∞

0

∫ ∞

0
U(x)U(y)G(x, y) dx dy

︸ ︷︷ ︸
I3

(6.151)

with

U(x) =
sinh(x)

exp (βm cosh(x))− 1

G(x, y) = ln

(
1 + 2 cosh(x− y)

1 + 2 cosh(x+ y)

1− 2 cosh(x+ y)

1− 2 cosh(x− y)

)

∫ 1

0
log
(
1− x+ x2

)
dx =

√
3π

3
− 2

(6.152)

6.3.5 Four-point function at two loop order: Diagram 1

One of the two loop order four-point function is . The expression of the
diagram in non-thermal QFT in terms of integral and diagrammatic representation
[10] is

QFT = −
(
1

λ

)[
λ2
∫

d4P

(2π)4

(
1

(P −K)2 +m2

) (
1

P 2 +m2

)]2

= −
(
1

λ

)[
QFT

]2 (6.153)

The corresponding diagram’s thermal form is

ITF = −
(
1

λ

)
λ2T

∞∑

np=−∞

∫
d3p

(2π)3

(
1

ϵ2p−k + ω2
np−nk

) (
1

ϵ2p + ω2
np

)

2

= −
(
1

λ

)[
ITF

]2

Using the results from Section 6.3.2,

= −
(
1

λ

)[
QFT + λ2W (r, nr)

]2
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(6.154)

with

W (r, nr) =
∑

σ,σ1=±1

∫
nB(βϵp)

2ϵpϵp+r

(
1

σ1ϵp + ϵp+r + iσωnr

)
d3p

(2π)3
(6.155)

Then

ITF = QFT,k0=ωnr
− 2gW (r, nr)

[
QFT,k0=ωnr

]

− g3W 2(r, nr)

(6.156)

If we take the results from [10], we can write

QFT,k0=ωnr
=− gµϵ

g2

(4π)4

(
4

ϵ2
+

4

ϵ
ψ(1)

)

− gµϵ
g2

(4π)4
4

ϵ

∫ 1

0
dx log

[
4πµ2

K2x(1− x) +m2

]
+O(ϵ0)

(6.157)

and K2 = ω2
nr

+ k2.
From Section 6.3.2,

QFT =
g2µϵ

(4π)2

(
2

ϵ
+ ψ(1) +

∫ 1

0
dx log

[
4πµ2

K2x(1− x) +m2

]
+O(ϵ)

)
(6.158)

6.3.6 Four-point function at two loop order: Diagram 2

The next four-point, two loop order diagram in non-thermal ϕ4 theory is

{−λ3} QFT = −λ3
∫

d4P

(2π)4

(
1

(P −K)2 +m2

) (
1

(P 2 +m2)2

)∫
d4Q

(2π)3

(
1

Q2 +m2

)

=

[
−
(
1

2

)
∂

∂m2

∫
d4P

(2π)4

(
1

(P −K)2 +m2

)
λ2

P 2 +m2

] [
−λ
∫

d3Q

(2π)4

(
1

Q2 +m2

)]

=

[
−1

2

∂

∂m2

(
{λ2} QFT

)][
{−λ} QFT

]

(6.159)
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Similar diagram in ITF can be written as

{−λ3} ITF = −λ3T 2
∞∑

np=−∞

∫
d3p

(2π)3

(
1

ϵ2p−k + ω2
np−nk

) (
1

(ϵ2p + ω2
np
)2

)

×
∞∑

nq=−∞

∫
d3q

(2π)3

(
1

ϵ2q + ω2
nq

)

=


−

(
1

2

)
∂

∂m2

∞∑

np=−∞

∫
d3p

(2π)3

(
1

ϵ2p−k + ω2
np−nk

)
λ2T

ϵ2p + ω2
np




×−λT
∞∑

nq=−∞

∫
d3q

(2π)3

(
1

ϵ2q + ω2
nq

)

=

[
−
(
1

2

)
∂

∂m2

(
{λ2} ITF

)][
{−λ} ITF

]

=

[
−
(
1

2

)
∂

∂m2

(
{λ2} QFT + λ2W (k, nk)

)]

×
[
{−λ} QFT − λS1(m,T )

]

(6.160)

On solving, we get

ITF = QFT,k0=ωnk
+
gS1(m,T )

2

∂

∂m2

[
QFT

]

− g2

2

∂ W (k, nk)

∂m2

[
QFT

]
+ g3

S1(m,T )

2

∂

∂m2
W (k, nk)

(6.161)

Using [10] and the results from Sections 6.3.1 and 6.3.2, we can write

QFT,k0=ωnk
= −gµϵ g2

(4π)4
2

ϵ

[∫ 1

0
dx

m2(1− x)

(K2x(1− x) +m2)
+O(ϵ)

]
(6.162)

and K2 = ω2
nk

+ k2,

∂

∂m2

[
QFT

]
= − g2µϵ

(4π)2

∫ 1

0

(
1

(K2x(1− x) +m2)2

)
dx (6.163)

[
QFT

]
=

m2g

(4π)2

[
2

ϵ
+ ψ(2) + ln

(
4πµ2

m2

)]
+O(ϵ) (6.164)
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6.3.7 Four-point function at two loop order: Diagram 3

The next diagram on the list is

ITF =
∞∑

n,θ=−∞

∫ (
−λ3

ω2
n + ε2p

)(
T 2

ω2
θ + ε2q

)(
1

ω2
n−α + ε2r

)(
(2π)6δ6

ω2
n−θ+η + ε2s

) ∏

Ω=p,q,r,s

[
d3Ω

(2π)3

]

(6.165)

where δ6 = δ3(r⃗ + p⃗ − k⃗1 − k⃗2) δ
3(s⃗ + q⃗ − p⃗ − k⃗3),

∞∑

n,θ=−∞
=

∞∑

n=−∞

∞∑

θ=−∞
and

∏

Ω=p,q,r,s

[
d3Ω

(2π)3

]
=

d3p

(2π)3
d3q

(2π)3
d3r

(2π)3
d3s

(2π)3
.

The corresponding expression in non-thermal QFT is

QFT =

∫ (
1

P 2 +m2

)(
1

Q2 +m2

)(
(2π)8

R2 +m2

)(
δ8(. . . )

S2 +m2

) ∏

Ω=P,Q,R,S

[
d4Ω

(2π)4

]

(6.166)

with δ8(. . . ) = δ4(R+ P −K1 −K2)δ
4(S +Q− P −K3).

As we follow the summation method using the idea of residue, we get

T 2
∞∑

n=−∞

∞∑

θ=−∞

(
1

ω2
n + ε2p

) (
1

ω2
θ + ε2q

) (
1

ω2
n−α + ε2r

) (
1

ω2
n−θ+η + ε2s

)

= T 2
∞∑

n=−∞

∞∑

θ=−∞

(
1

ω2
n + ε2p

) (
1

ω2
θ + ε2s

) (
1

ω2
n−α + ε2r

) (
1

ω2
n−θ+η + ε2q

)

=
T 1
s2 + T 2

s2 + T 3
s2

16εpεrεqεs

(6.167)
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T 1
s2 =

∑

σ=±1

(
1

εr + εp − iσωα

)(
1

εp + εq + εs + iσωη

)

+
∑

σ=±1

(
1

εr + εp + iσωα

)(
1

εr + εq + εs + iσωη+α

)

+
∑

σ=±1

(
1

εr + εq + εs + iσωα+η

)(
1

εp + εq + εs + iσωη

)

T 2
s2 = t21 + t22 + t23 + t24 + t25 + t26 + t27 + t28

Ts2
3 = t31 + t32 + t33 + t34 + t35

t21 =
∑

σ,σ1,σ2=±1

(
1

εr + σ1(εp − iσωα)

)(
1

εq + εs + σ2(εp + iσωη)

)
nB(βεp)

t22 =
∑

σ,σ1,σ2=±1

(
1

εp + σ1(εr + iσωα)

)(
1

εq + εs + σ2(εr + iσωη+α)

)
nB(βεr)

t23 =
∑

σ,σ2=±1

(
1

εs + εr + σ2εq + iσ(ωη+α)

)(
1

εp + εs + σ2εq + iσωη

)
nB(βεq)

t24 =
∑

σ,σ2=±1

(
1

εr + εp + iσωα

)(
1

εp + εs + σ2εq − iσωη

)
nB(βεq)

t25 =
∑

σ,σ2=±1

(
1

εr + εp + iσωα

)(
1

εr + εs + σ2εq + iσωη+α

)
nB(βεq)

t26 =
∑

σ,σ2=±1

(
1

εq + εr + σ2εs + iσωη+α

)(
1

εp + εq + σ2εs + iσωη

)
nB(βεs)

t27 =
∑

σ,σ2=±1

(
1

εr + εp + iσωα

)(
1

εp + εq + σ2εs − iσωη

)
nB(βεs)

t28 =
∑

σ,σ2=±1

(
1

εr + εp + iσωα

)(
1

εr + εq + σ2εs + iσωη+α

)
nB(βεs)

t31 =
∑

σ,σ1,σ2,σ3=±1

(
nB(βεp)

εr + σ1(εp − iσωα)

)(
nB(βεq)

εs + σ2εq + σ3(εp + iσωη)

)

t32 =
∑

σ,σ1,σ2,σ3=±1

(
nB(βεp)

εr + σ1(εp − iσωα)

)(
nB(βεs)

εq + σ2εs + σ3(εp + iσωη)

)

t33 =
∑

σ,σ1,σ2,σ3=±1

(
nB(βεr)

εp + σ1(εr + iσωα)

)(
nB(βεs)

εq + σ2εs + σ3(εr + iσωη+α)

)

t34 =
∑

σ,σ1,σ2,σ3=±1

(
nB(βεr)

εp + σ1(εr − iσωα)

)(
nB(βεq)

εs + σ2εq + σ3(εr − iσωη+α)

)

t35 =
∑

σ,σ1,σ2,σ3=±1

(
nB(βεs)

εp + σ2εs + σ1εq + iσωη

)(
nB(βεq)

εr + σ3(σ2εs + σ1εq + iσωη+α)

)

with

nB(x) = (ex − 1)−1

β = 1/T
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One can rewrite the summation as integral as shown below

t11
16εpεqεqεr

=

(
1

4π2

)∫ (
1

p20 + ε2p

)(
1

r20 + ε2r

)(
1

q20 + ε2q

)(
δ2

s20 + ε2s

) ∏

Ω=p0,r0,q0,s0

dΩ

(6.168)

with δ2 = δ(r0+ p0−ωα) δ(s0+ q0− p0−ωη) and
∏

Ω=p0,r0,q0,s0

dΩ = dp0 dr0 dq0 ds0.

t21
16εpεqεrεs

=
∑

σ=±1

nB(βεp)

4πεp

∫ (
1

r20 + ε2r

)(
1

q20 + ε2q

)(
δ2

s20 + ε2s

)
dr0 dq0 ds0|p0=−iσεp

(6.169)

t22
16εpεqεrεs

=
∑

σ=±1

nB(βεr)

4πεr

∫ (
1

p20 + ε2p

)(
1

q20 + ε2q

)(
δ2

s20 + ε2s

)
dp0 dq0 ds0

∣∣∣∣
r0=−iσεr

(6.170)

t23 + t24 + t25
16εpεqεrεs

=
∑

σ=±1

nB(βεq)

4πεq

∫ (
1

p20 + ε2p

)(
1

r20 + ε2r

)(
δ2

s20 + ε2s

)
dp0 dr0 ds0

∣∣∣∣
q0=iσεq

(6.171)

t26 + t27 + t28
16εpεqεrεs

=
∑

σ=±1

nB(βεs)

4πεs

∫ (
1

p20 + ε2p

)(
1

r20 + ε2r

)(
δ2

q20 + ε2q

)
dp0 dr0 dq0

∣∣∣∣
s0=iσεs

(6.172)

t31
16εpεqεrεs

=
∑

σ1,σ3=±1

nB(βεp)

2εp

nB(βεq)

2εq

∫ (
1

r20 + ε2r

)(
δ2

s20 + ε2s

)
dr0 ds0

∣∣∣∣p0=−iσ3εp,
q0=−iσ1εq

(6.173)

t32
16εpεqεrεs

=
∑

σ1,σ3=±1

nB(βεp)

2εp

nB(βεs)

2εs

∫ (
1

r20 + ε2r

)(
δ2

q20 + ε2q

)
dq0 dr0

∣∣∣∣p0=−iσ3εp,
s0=−iσ1εs

(6.174)
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t33
16εpεqεrεs

=
∑

σ1,σ3=±1

nB(βεr)

2εp

nB(βεs)

2εs

∫ (
1

p20 + ε2p

)(
δ2

q20 + ε2q

)
dq0 dp0

∣∣∣∣r0=−iσ3εr,
s0=−iσ1εs

(6.175)

t34
16εpεqεrεs

=
∑

σ1,σ3=±1

nB(βεr)

2εr

nB(βεq)

2εq

∫ (
1

p20 + ε2p

)(
δ2

s20 + ε2s

)
ds0 dp0

∣∣∣∣r0=−iσ3εr,
q0=−iσ1εq

(6.176)

t35
16εpεqεrεs

=
∑

σ1,σ3=±1

nB(βεs)

2εs

nB(βεq)

2εq

∫ (
1

p20 + ε2p

)(
δ2

r20 + ε2r

)
dr0 dp0

∣∣∣∣s0=−iσ3εs,
q0=−iσ1εq

(6.177)

The summation result can be connected with the integral equations as shown
below.

Iρκ =

∫
tρκ

16εpεqεrεs
(2π)6δ6

d3r

(2π)3
d3s

(2π)3
d3p

(2π)3
d3q

(2π)3
(6.178)

By combining Eqs. (6.169) and (6.178) by omitting λ for a moment, one can express

I21 =

∫
t21

16εpεqεrεs
(2π)6δ6

d3r

(2π)3
d3s

(2π)3
d3p

(2π)3
d3q

(2π)3

=

∫
d3p

(2π)3
nB(βεp)

2εp

(∑

σ=±1

∫ (
(2π)8

r20 + ε2r

)(
δ2δ6

q20 + ε2q

)(
1

s20 + ε2s

)) ∏

Ω=r,q,s

(
d3ΩdΩ0

(2π)4

) ∣∣∣∣
p0=−iσεp

(6.179)

with
∏

Ω=p,q,s

(
d3ΩdΩ0

(2π)4

)
=

d3r

(2π)3
d3q

(2π)3
d3s

(2π)3
dr0
2π

dq0
2π

ds0
2π

i.e.,

I21 =

∫
d3p

(2π)3
nB(βεp)

2εp

(∑

σ=±1

∫ (
(2π)8

r20 + ε2r

)(
δ6

s20 + ε2s

)(
δ2|p0=−iσεp

q20 + ε2q

)) ∏

Ω=R,Q,S

[
d4Ω

(2π)4

]

(6.180)
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with δ6δ2 = δ8 = δ4(R+ P −K1 −K2) δ
4(S +Q− P −K3)

R = [r0 , r⃗]

P = [p0 , p⃗]

K1 +K2 =
[
ωα , k⃗1 + k⃗2

]

K3 =
[
ωη , k⃗3

]
(6.181)

Now Eq. (6.180) becomes

I21 =

∫
d3p

(2π)3
nB(βεp)

2εp

(∑

σ=±1

∫
(2π)8δ8|p0=−iσεp

(R2 +m2)(Q2 +m2)(S2 +m2)

d4R

(2π)4
d4Q

(2π)4
d4S

(2π)4

)

(6.182)

If we define

J(K2) =

∫ (
1

P 2 +m2

)(
1

(P −K)2 +m2

)
d4P

(2π)4

=

∫ (
1

P 2 +m2

)(
1

(P +K)2 +m2

)
d4P

(2π)4

(6.183)

then integrating the variables R and Q will give

I21 =

∫
d3p

(2π)3
nB(βεp)

2εp

∑

σ=±1

I
(1)
21 (P,K)

∣∣∣∣
p0=−iσεp

=

∫
d3p

(2π)3
nB(βεp)

2εp

∑

σ=±1

[
J
[
(P +K3)

2
]

(P −K1 −K2)2 +m2

]

p0=−iσεp

(6.184)

with

I
(1)
21 (P,K) =

(
1

(P −K1 −K2)2 +m2

)∫ [(
1

(S − P −K3)2 +m2

)(
1

S2 +m2

)]
d4S

(2π)4

(6.185)

Similarly, combining Eqs. (6.170) and (6.178), one can express

I22 =

∫
d3r

(2π)3
nB(βϵr)

2ϵr

∑

σ=±1

I
(1)
22 (R,K)

∣∣∣∣
r0=−iσϵr

=

∫
d3r

(2π)3
nB(βϵr)

2ϵr

∑

σ=±1

[
J
[
(K1 +K2 +K3 −R)2

]

(R−K1 −K2)2 +m2

] (6.186)

with

I
(1)
22 =

(
1

(R−K1 −K2)2 +m2

)∫ [(
1

(S +R−K1 −K2 −K3)2 +m2

)(
1

S2 +m2

)]
d4S

(2π)4
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(6.187)

Combining Eqs. (6.171) and (6.178), we get

I23 + I24 + I25 =

∫
d3q

(2π)3
nB(βϵq)

2ϵq

∑

σ=±1

I
(2)
2 (R,K)

∣∣∣∣
q0=iσϵq

(6.188)

with

I
(2)
2 =

∫ [(
1

(R−K1 −K2)2 +m2

)(
1

R2 +m2

)(
1

(R+Q−K1 −K2 −K3)2 +m2

)
d4R

(2π)4

]

(6.189)

Similarly, combining Eqs. (6.172) and (6.178),

I26 + I27 + I28 =

∫
d3s

(2π)3
nB(βϵs)

2ϵs

∑

σ=±1

I
(3)
2

∣∣∣∣
s0=iσϵs

(6.190)

with

I
(3)
2 =

∫ (
1

(R−K1 −K2)2 +m2

)(
1

R2 +m2

)(
1

(R+ S −K1 −K2 −K3)2 +m2

)
d4R

(2π)4

(6.191)

Combining Eqs. (6.173) and (6.178),

I31 =

∫
d3p

(2π)3
nB(βϵp)

2ϵp

d3q

(2π)3
nB(βϵq)

2ϵq

∑

σ1,σ3=±1

I
(1)
31 (P,Q,K)

∣∣∣∣p0=iσ1εp,
q0=iσ3εq

(6.192)

with

I
(1)
31 (P,Q,K) =

[(
1

(P −K1 −K2)2 +m2

)(
1

(Q− P −K3)2 +m2

)]
(6.193)

Also, Eqs. (6.174) and (6.178), give

I32 =

∫
d3p

(2π)3
nB(βϵp)

2ϵp

d3s

(2π)3
nB(βϵs)

2ϵs

∑

σ1,σ3=±1

I
(1)
31 (P, S,K)

∣∣∣∣s0=iσ1εs,
p0=iσ3εp

(6.194)

Eqs. (6.175) and (6.178), give

I33 =

∫
d3s

(2π)3
nB(βϵs)

2ϵp

d3r

(2π)3
nB(βϵr)

2ϵs

∑

σ1,σ3=±1

I33
(1)(S,R,K)

∣∣∣∣s0=iσ1ϵs,
r0=iσ3ϵr

(6.195)

with

I33
(1)(S,R,K) =

(
1

(R−K1 −K2)2 +m2

)(
1

(S +R−K1 −K2 −K3)2 +m2

)
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(6.196)

Eqs. (6.176) and (6.178) leads to

I34 =

∫
d3p

(2π)3
nB(βϵr)

2ϵr

d3q

(2π)3
nB(βϵq)

2ϵq

∑

σ1,σ3=±1

I33
(1)(Q,R,K)

∣∣∣∣q0=iσ1εq ,
r0=iσ3εr

(6.197)

Using Eqs. (6.177) and (6.178), I35 becomes

I35 =

∫
d3s

(2π)3
nB(βϵs)

2ϵs

d3q

(2π)3
nB(βϵq)

2ϵq

∑

σ1,σ3=±1

I
(1)
35 (Q,S,K)q0=iσ1ϵq ,

s0=iσ3ϵs
(6.198)

I
(1)
35 (Q,S,K) =

(
1

(S +Q−K3)2 +m2

)(
1

(Q+ S +K1 +K2 −K3)2 +m2

)

(6.199)

Combining Eqs. (6.168) and (6.178), one can express the result as the same as

a corresponding QFT diagram QFT

∣∣∣∣
Ki︸ ︷︷ ︸

I11

with

K1 +K2 =
[
ωα , k⃗1 + k⃗2

]

K3 =
[
ωη , k⃗3

] (6.200)

Now if we look at the integral, we can find one thing: the first three terms
of the integral (I11, I21, I22) diverge, and the rest becomes a finite one. The sum
of the rest of the terms (I23 + I24 + I25 + · · · + I35) can be written as the sum
of finite terms (2IF1 + 2IF2 + 2IF3 + IF4) with

IF1 =

∫
d3q

(2π)3
nB(βεq)

2εq

∑

σ=±1

L(R−K1−K2, R,R+Q−K1−K2−K3)
d4R

(2π)4 q0=iσεq

(6.201)

IF2 =

∫
d3p

(2π)3
nB(βεp)

2εp

d3q

(2π)3
nB(βεq)

2εq

∑

σ1,σ3=±1

G(P −K1 −K2, Q− P −K3)|q0=iσ3εq
p0=iσ1εp

(6.202)
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IF3 =

∫
d3s

(2π)3
d3r

(2π)3
nB(βεs)nB(βεr)

4εsεr

∑

σ1,σ3=±1

I
(1)
F3(R,K)|r0=iσ3εr

s0=iσ1εs (6.203)

with

I
(1)
F3(R,K) = G(R−K1 −K2, S +R−K1 −K2 −K3) (6.204)

IF4 =

∫
d3q

(2π)3
d3s

(2π)3
nB(βεs)nB(βεq)

4εsεq

∑

σ1,σ3=±1

I
(1)
F4(S,Q,K)|s0=iσ3εs

q0=iσ1εq (6.205)

with

I
(1)
F4(S,Q,K) = G(S +Q−K3, Q+ S +K1 +K2 −K3) (6.206)

where

L(A,B,C) =

(
1

A2 +m2

)(
1

B2 +m2

)(
1

C2 +m2

)
(6.207)

and

G(A,B) =

(
1

A2 +m2

)(
1

B2 +m2

)
(6.208)

If we define the pole finding operator K, then by the structure, we can write

ITF = QFT︸ ︷︷ ︸
I11

+I21 + I22 + 2(IF1 + IF2 + IF3) + IF4 (6.209)

K

[
{−λ3} ITF

]
= K

[
{−λ3} QFT,k0=ωnk

]

−


λ

∫
d3p

(2π)3
nB(βεp)

2εp
×K


{λ2}

∑

σ=±1

(P +K3) + (−P +K1 +K2 +K3)

(P −K1 −K2)2 +m2
|p0=−iσεp






We rewrite
∫ 1

−1

d cos θ
∑

σ=±1

(
1

(P −K)2 +m2

)
=

∫ 1

−1

d cos θ
∑

σ=±1

(
1

(p− k)2 + (iσεp + ωα)2 +m2

)

=

∫ 1

−1

d cos θ
2(k2 − 2pk cos θ + ω2

α)

(k2 − 2pk cos θ + ω2
α)

2 + 4ε2pω
2
α

=

∫ 1

−1

d cos θ 2
(k2 + 2pk cos θ + ω2

α)

(k2 + 2pk cos θ + ω2
α)

2 + 4ε2pω
2
α
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W (r, nr) =

∫
d3p

(2π)3
2nB(βεp)

εp

r2 + 2pr cos θ + ω2
nr

(r2 + 2pr cos θ + ω2
nr
)2 + 4ε2pω

2
nr

(6.210)

We know that from Eq. (6.65)

K
(

QFT

)
=

g2µϵ

(4π)2

(
2

ϵ

)
(6.211)

and

K
[

ITF

]
= K

[
QFT,k0i=ωni

]

− gµϵ

(∫
d3p

(2π)3
2nB(βεp)

εp

(k2 + 2pk cos θ + ω2
α)

(k2 + 2pk cos θ + ω2
α)

2 + 4ε2pω
2
α

K
(

QFT

))

So the pole term relation can be written as

K
[

ITF

]
= K

[
QFT,k0i=ωni

]
− gµϵW (ki, nki)K

(
QFT

)
(6.212)

where

K
[

QFT

]
= gµϵ g2

(4π)4
2

ϵ2

(
1 +

ϵ

2
+ ϵ ψ(1)

)

− gµϵ g2

(4π)4
2

ϵ

∫ 1

0

dx ln

[
(K1 +K2)

2x(1− x) +m2

4πµ2

] (6.213)

with Ki = [ωnki
, k⃗i].

6.4 Counter terms in Thermal ϕ4 theory

6.4.1 Counter term 1

From [10], the counter term for divergence for the four-point function derived
is

QFT = −µϵgc1g = −3

2
K
(

QFT

)
(6.214)

The corresponding diagram in imaginary time formalism is

ITF = −µϵgc1g = −3

2
K
(

ITF

)
(6.215)
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From the tadpole diagram result, one can find that the diverging term is
the same for the diagram in imaginary time formalism and non-thermal QFT;
thus, we can write

ITF = −3

2
K
(

QFT

)
(6.216)

= QFT = −µϵg
3g

(4π)2
1

ϵ

6.4.2 Counter term 2

From [10] Defining ∗ operator the substitution of the counter term −m2cm2 or
−µϵgcg, we can express counter terms as

QFT = QFT ∗ −1

2
K
[

QFT

]
(6.217)

= −gµϵ

(
−∂
∂m2 QFT

)(
1

2gµϵ

)(
K
[

QFT

])

We have from tadpole diagram result the relation

K
[

ITF

]
= K

[
QFT

]
(6.218)

So, for ITF, the corresponding derivation is

ITF = ITF ∗ −1

2
K
[

QFT

]
(6.219)

= −gµϵ

(
−∂
∂m2 ITF

)


K
[

QFT

]

2gµϵ




= −gµϵ

(
−∂
∂m2 QFT − gS0(m,T )

4π

)(
1

2gµϵ

)(
K
[

QFT

])

So

ITF = QFT +
g

4π

S0(m,T )

2
K
[

QFT

]

=
2m2g2

(4π)4

[
1

ϵ2
+
ψ(1)

2ϵ
− 1

2ϵ
ln

(
m2

4πµ2

)
+O(ϵ0)

]
+
g2m2S0(m,T )

(4π)3
1

ϵ
(6.220)

152



6.4.3 Counter term 3

From [10], the calculation proceeds as

QFT =
(

QFT

)(−1

gµϵ

)(
−µϵgc1g

)

=
(

QFT

)(−1

gµϵ

)(
−3

2
K
[

QFT

])
(6.221)

the corresponding diagram made with results from Sections 6.3.1 and 6.3.2 is

ITF = ITF

(
−1

gµϵ

)(
−3

2
K
[

ITF

])
(6.222)

=
(

QFT − gµϵS1(m,T )
)(−1

gµϵ

)(
−3

2
K
[

ITF

])

= QFT − 3

2
S1(m,T )K

(
ITF

)

= QFT − 3

2
S1(m,T )K

(
QFT

)

=
6m2g2

(4π)4

[
1

ϵ2
+
ψ(2)

2ϵ
− 1

2ϵ
ln

(
m2

4πµ2

)
+O(ϵ0)

]

− 3µϵg2

(4π)2
S1(m,T )

ϵ

6.4.4 Counter term 4

From [10], the diagram evaluated is

K
[ ]

QFT
= K

[
QFT ∗ −3

2
K
( )

QFT

]
(6.223)

Using the results of Section 6.3.2 corresponding diagram in ITF can be written
as

K
[ ]

ITF
= K

[
ITF ∗ −3

2
K
( )

ITF

]
(6.224)

= K
[ ]

QFT,k0=ωnk

+
3gW (k, nk)

2
K
( )

ITF

= K
[ ]

QFT,k0=ωnk

+W (k, nk)
3g3

(4π)2
1

ϵ

with

K
[ ]

QFT,k0=ωnk

=
µϵg3

(4π)4

[
6

ϵ2
+

3ψ(1)

ϵ
− 3

ϵ

∫ 1

0

ln

[
m2 +K2(x(1− x))

4πµ2

]
dx

]

(6.225)
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where K2 = k2 + ω2
nk

6.4.5 Counter term 5

From [10], one can derive the diagram as

IQFT
c = K

[
QFT

]
(6.226)

= K
[
−λ3

∫ (
1

(P 2 +m2)2

)(
1

(P −K)2 +m2

)
d4P

(2π)4
(
−m2c1m2

)(−1

gµϵ

)]

= K
[
λ

2

∂

∂m2
λ2
∫ (

1

(P 2 +m2)

)(
1

(P −K)2 +m2

)
d4P

(2π)4
(
−m2c1m2

)(−1

gµϵ

)]

= K
[
−gµϵ

(
−
(
1

2

)
∂

∂m2 QFT

)(
−1

µϵg

)(
−
(
1

2

)
K
[

QFT

])]

= K
[
− g2µϵ

(4π)2

[(
1

2

)∫ 1

0

(
1

K2x(1− x) +m2

)
dx

](
m2g

(4π)2

(
1

ϵ

))]

= −
(
1

2

)
K

[
QFT,k0=ωnk

]
(6.227)

The corresponding counter term in imaginary time formalism can be written
as

IITF
c = K

[
ITF

]
(6.228)

= K
[
(−gµϵ)

(
−
(
1

2

)
∂

∂m2 ITF

)(
−1

µϵg

)(
−
(
1

2

)
K
[

ITF

])]

(6.229)

= K
[
−gµϵ

(
−
(
1

2

)
∂

∂m2 QFT − g2

2

∂W (k, nk)

∂m2

)(
−1

µϵg

)(
−1

2
K
[

QFT

])]

= K

(
QFT,k0=ωnk

)
+

(
1

4

)
g2
(
∂W (k, nk)

∂m2

)
K
[

QFT

]

(6.230)

= −
(
1

2

)
K

(
ITF

)

It can be also derived using * operation [10] i.e,

K

[
ITF

]
= K

[
ITF ∗ −

(
1

2

)
K
[

ITF

]]
(6.231)
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6.5 Renormalization MS Scheme

6.5.1 One and Two loop Calculation

6.5.1. (a) Two-point function one loop calculation

We have to find the counter term for first order g, and if we follow the [10] as
the reference text, then the finite proper vertex function is

Γ̃(2)(k) = ( )−1
ITF −

(
1

2
ITF + + +O(g2)

)
(6.232)

where represents contribution of mass counter term, and repre-
sents field contribution.

= −m2c1m2 = −1

2
K
(

ITF

)

from Sec.(6.3.1)

= −1

2
K
(

QFT

)

= −m2 g

(4π)2
1

ϵ

(6.233)

The counter term that is proportional to K2 in first order is zero, so

−K2c1ϕ = = 0 (6.234)

Thus the renormalized proper vertex function, which is finite at ϵ→ 0,

Γ̃(2)(k) = ( )−1
ITF −

(
1

2
ITF − 1

2
K
(

ITF

)
+O(g2)

)

= ( )−1
ITF −

(
1

2
QFT − 1

2
K
(

QFT

)
− g

2
S1(m,T ) +O(g2)

)

(6.235)

6.5.1. (b) Four-point function one loop

Similar to two-point function, the corresponding four-point finite proper vertex
function can be derived as

Γ̃(4) = −
(

+
3

2
ITF + ITF

)
+O(g3) (6.236)
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with

ITF = −µϵgc1g = −3

2
K
(

ITF

)

from Section 6.4.1

= −3

2
K
(

QFT

)

= QFT = −µϵg
3g

(4π)2
1

ϵ

(6.237)

6.5.1. (c) Two loop calculation

Finite two-point function up to two loop order for ITF can be written as

Γ̃(2) = ( ITF)
−1 −

(
1

2
ITF + +

)

−


1

4
ITF +

1

2
ITF




−
(
1

6
ITF +

1

2
ITF

)
+O(g3)

(6.238)

As per Section 6.3.3, the diagram in ITF can be expanded as

1

4
K


 ITF


 =

1

4
K


 QFT


− g

4π
S0(m,T )

1

4
K
[

QFT

]

+
gS1(m,T )

4

∂

∂m2
K
(

QFT

)
(6.239)

As per Section 6.3.4,

1

6
K
(

ITF

)
=

1

6
K
(

QFT,k0=ωnk

)
+

1

2
S1(m,T ) K

(
QFT

)

=
1

6
K
(

QFT,k0=ωnk

)
+
g

2
S1(m,T )

∂

∂m2
K
(

QFT

) (6.240)

As per Section 6.4.2,

1

2
ITF =

1

2
QFT +

g

4π

S0(m,T )

4
K
[

QFT

]
(6.241)
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From Section 6.4.3,

1

2
ITF =

1

2
QFT − 3

4
S1(m,T ) K

(
QFT

)

=
1

2
QFT − 3g

4
S1(m,T )

∂

∂m2
K
(

QFT

) (6.242)

6.5.1. (d) Two loop renormalization two-point functions

It is interesting that the sum of pole terms in the above diagrams in ITF is
the same as that of Non-thermal QFT up to two loop orders for two-point
functions.
i.e.,

S = K


1

2
ITF +

1

4
ITF +

1

6
ITF +

1

2
ITF +

1

2
ITF




= K


1

2
QFT +

1

4
QFT +

1

6
QFT,k0=ωnk

+
1

2
QFT +

1

2
QFT




(6.243)

All other terms cancel with each other. So from [10]

+ = −S = −
[

g

(4π)2
m2

ϵ
+

g2

(4π)4

(
2m2

ϵ2
− m2

2ϵ
− K2

12ϵ

)]
(6.244)

with K2 = ω2
nk

+ k⃗2 = K2.
i.e., In ITF, if we follow the textbook procedure [10], then the counter terms
are the same as those of QFT, with k0 = ±ωnk

. When K2 = 0, both ITF and
QFT will be in the same form. Now if we extract polynomials with coefficients
m2 and K2, then one can write ([10])

m2(c1m2 + c2m2) = m2

[
g

(4π)2
1

ϵ
+

g2

(4π)4

(
2

ϵ2
− 1

2ϵ

)]
(6.245)

For field renormalization, we have to consider the term proportional to K2,

K2c2ϕ =
1

6
K
(

QFT

)
|m=0,k0=ωnk

= −K2 g2

(4π)4
1

12ϵ
(6.246)
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6.5.1. (e) Two loop Renormalization of four-point function

Γ̃(4) =−
(

+
3

2
ITF + ITF

)

−

(
3 +

3

4
ITF +

3

2
ITF + 3 ITF + 3 ITF

)

−O(g4)

(6.247)

From counter terms section, one can verify the above results with complete
derivation. Taking those results now we can write from Section 6.3.7

3K
(

ITF

)
= 3K

(
QFT,k0=ωnk

)
− 3 g W (r, nr) K

(
QFT

)

(6.248)

similarly Section 6.3.5 gives

3

4
K
(

ITF

)
=

3

4
K
(

QFT,k0=ωnk

)
− 3

2
g W (r, nr) K

(
QFT

)

(6.249)

and Section 6.3.6 gives

3

2
K

(
ITF

)
=

3

2
K

(
QFT,k0=ωnk

)
− 3g2

4

∂ W (r, nr)

∂m2
K
[

QFT

]

(6.250)

From Section 6.4.4,

3K
(

ITF

)
= 3K

(
QFT,k0=ωnk

=0

)
+

9

2
g W (r, nr) K

(
QFT

)

(6.251)

From Section 6.4.5,

3K

(
ITF

)
= 3K

(
QFT,k0=ωnk

)
+

3

4
g2
(
∂W (r, nr)

∂m2

)
K
[

QFT

]

(6.252)
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Thus one can write

Zg(g, ϵ
−1) = 1 +

1

gµϵ

[
3

2
K
(

ITF

)
+ 3K

(
ITF

)
+

3

4
K
(

ITF

)]

+
1

gµϵ

[
3

2
K

(
ITF

)
+ 3K

(
ITF

)
+ 3K

(
ITF

)]

= 1 +
1

gµϵ

[
3

2
K
(

QFT

)
+ 3K

(
QFT

)
+

3

4
K
(

QFT

)]

+
1

gµϵ

[
3

2
K

(
QFT

)
+ 3K

(
QFT

)
+ 3K

(
QFT

)]
|k0=ωnk

= 1 + cg

Thus referring from [10],

= 1 +
3g

(4π)2
1

ϵ
+

g2

(4π)4

(
9

ϵ2
− 3

ϵ

)

(6.253)

Similarly, from Eq. (6.243) and Sections 6.3.1, 6.5.1. (c) and 6.5.1. (d)

Zm2 = 1 +
1

m2


1
2
K
(

ITF

)
+

1

4
K


 ITF


+

1

6
K
(

ITF,K2=0

)



+
1

m2

[
1

2
K

(
ITF

)
+

1

2
K
(

ITF

)]

= 1 +
1

m2


1
2
K
(

QFT

)
+

1

4
K


 QFT


+

1

6
K
(

QFT,k2=0

)



+
1

m2

[
1

2
K

(
QFT

)
+

1

2
K
(

QFT

)]

= 1 + cm2

From [10],

= 1 +
g

(4π)2
1

ϵ
+

g2

(4π)4

(
2

ϵ2
− 1

2ϵ

)

(6.254)
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From Section 6.5.1. (d) and Eq. (6.246),

Zϕ =1 +
1

K2

1

6
K
(

QFT

)
|m2=0,k0=ωnk

=1 + cϕ

Thus from [10]

=1− g2

(4π)4
1

12ϵ

(6.255)

6.6 Renormalization constants

We have from [10],

γ(g) = −Zϕ,1 = −ϵcϕ (6.256)

γm(g) =
1

2

g

(4π)2
− 1

2

g2

(4π)4
+ γ(g) (6.257)

β(g) = −ϵg + 3g2

(4π)2
− 6g3

(4π)4
+ 4gγ(g) (6.258)

6.6.1 Case 1: K ̸= 0

In this case, as per Eq. (6.88)

K2cϕ = − g2

(4π)4
K2

12

1

ϵ
(6.259)

So, Eqs. (6.256) to (6.258) becomes

γ(g) =
g2

(4π)4
1

12
(6.260)

γm(g) =
1

2

g

(4π)2
− 5

12

g2

(4π)4
(6.261)

β(g) = −ϵg + 3g2

(4π)2
− 17g3

3(4π)4
(6.262)

6.6.2 Case 2: K = 0

Now Eqs. (6.256) to (6.258) changes because of

K2cϕ = 0 (6.263)
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So,

γ(g) = 0 (6.264)

γm(g) =
1

2

g

(4π)2
− 1

2

g2

(4π)4
(6.265)

β(g) = −ϵg + 3g2

(4π)2
− 6g3

(4π)4
(6.266)

6.6.3 Relation

We can relate them as

γ(g)k=0 = γ(g)k ̸=0 −
g2

(4π)4
1

12
= 0 (6.267)

γm(g)k=0 = γm(g)k ̸=0 −
g2

(4π)4
1

12
(6.268)

β(g)k=0 = β(g)k ̸=0 −
1

3

g3

(4π)4
(6.269)

6.7 Same Mass scale and Coupling (SMC) ap-

proximation

In the following section, we introduce a new scheme, in which the coupling
constant and mass scale for thermal and non-thermal ϕ4 theory considered to
be equal and same. The one to one correspondence with the RGE parameters
and renormalization constants has lead us to this scheme of approximation.
The similarity between the underlying mathematical structure also supports
such a scheme. The details can be found in the upcoming sections.

1. Up to two loop order, we have seen that any two-point, one-loop ITF
diagram can be expressed as a combination of a QFT diagram with
thermal factors.

2. The same is true for the two loop approximation, where one component of
the external momenta of QFT is approximated with those of the thermal
one.

3. Even though the same kind of diagram in two different formalisms (ITF
and QFT at k0 = ωnk

), is different, the renormalization constants
(Zm2 , Zg, ...cm2 , cg) are in the same form.
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4. Thus, if we make the assumption that QFT and ITF at external momen-
tum zero have the same coupling constant and mass scale, then one can
write,

Γ̃
(2)ITF
K=0 = Γ̃

(2)QFT
K=0 + Γdiff (6.270)

where Γ̃(2) = Γ(2) −K
(
Γ(2)
)

5. Thus any renormalization group equation which is true for both ITF, and
QFT, will also be true for their differences (Γdiff = Γ(2)ITF − Γ(2)QFT).

6. Thus if we assume that the Callan Symanzik Equation is true for ITF
and QFT for the same mass scale and coupling (since both have the same
renormalization constants), then in that particular case

d

d(lnµ)
Γ̃(n) (m, g, T, µ) = 0

[
µ
∂

∂µ
+ β(g)

∂

∂g
− nγ(g) + γmm

∂

∂m

]
Γ̃(n) (m, g, T, µ) ≈TLA 0

(6.271)

[
µ
∂

∂µ
+ β(g)

∂

∂g
− 2γ(g) + γmm

∂

∂m

]
Γ̃
(2)
QFT (m, g, T, µ) ≈TLA 0 (6.272)

[
µ
∂

∂µ
+ β(g)

∂

∂g
− 2γ(g) + γmm

∂

∂m

]
Γ̃
(2)
ITF (m, g, T, µ) ≈TLA 0 (6.273)

Subtracting Eq. (6.272) from Eq. (6.273) we get

[
µ
∂

∂µ
+ β(g)

∂

∂g
− 2γ(g) + γmm

∂

∂m

]
Γdiff (m, g, T, µ) ≈TLA 0 (6.274)

dg

d ln(µ)
= β(g) ≈ β2g

2 + β3g
3

d ln(m(µ))

d ln(µ)
= γm(g) ≈ γm1g + γm2g

2

γ(g) ≈ γ2g
2

(6.275)

Subscript TLA means two loop approximation.
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We have already shown that both ITF and QFT have the same structure
renormalization constants, so we can approximate both having the same
β(g), γ(g) and γm(g) under same mass scale and same coupling (SMC)
assumption as given in Section 6.6.2

γ(g)k=0 = γ(g)k ̸=0 −
g2

(4π)4
1

12
= 0

γm(g)k=0 = γm(g)k ̸=0 −
g2

(4π)4
1

12
=

1

2

g

(4π)2
− 1

2

g2

(4π)4

β(g)k=0 = β(g)k ̸=0 −
1

3

g3

(4π)4
= −ϵg + 3g2

(4π)2
− 6g3

(4π)4

(6.276)

with

Γ̃(2) = ( )−1 − 1

2

[
−K

( )]
(6.277)

− 1

4


 −K










− 1

6

[
−K

( )]

i.e., The two-point proper function is made finite by subtracting out the di-
verging terms, the mathematical compensation is done via renormalization
constants and β(g), γ(g), γm(g) functions. Let us define an operator

∆(A) = AITF |k,ωnk
=0 −K (AITF ) |k,ωnk

=0 − AQFT |k0,k=0 +K (AQFT ) |k0,k=0

(6.278)

where A represents the appropriate diagram. Since we defined Γdiff
nk ,⃗k=0

=

Γ(2)ITF|nk,k=0 − Γ(2)QFT|k0,k=0 we get

−Γdiff
nk ,⃗k=0

=
1

2
∆
( )

+
1

4
∆





+

1

6
∆
( )

(6.279)

From Sec.(6.3.1),

1

2
∆
( )

= −g
2
S1(m,T ) (6.280)
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From Sec.(6.3.3), we get

1

4
∆





 =

g2

16π
S0(m,T )S1(m,T )

− g2m2

4(4π)3
S0(m,T )

[
ψ(2) + ln

(
4πµ2

m2

)]

+
g2

4(4π)2
S1(m,T )

[
ψ(1) + ln

(
4πµ2

m2

)]

(6.281)

From Sec.(6.3.4), we get

1

6
∆
( )

=
g2

2(4π)2
S1(m,T )

(
ψ(1) + ln

(
4πµ2

m2

)
+ 2−

√
3π

3

)

+
g2m2

64π4
Y (m,T )

(6.282)

with

Y (m,T ) =

∫ ∞

0

∫ ∞

0

U(x)U(y)G(x, y) dx dy (6.283)

U(x) =
sinh(x)

exp (βm cosh(x))− 1
(6.284)

G(x, y) = ln

(
1 + 2 cosh(x− y)

1 + 2 cosh(x+ y)

1− 2 cosh(x+ y)

1− 2 cosh(x− y)

)
(6.285)

Therefore on combining above results, we get

Γdiff
nk ,⃗k=0

=
g

2
S1(m,T )−

3g2

4

S1(m,T )

(4π)2

[
ψ(1) + ln

(
4πµ2

m2

)]

− g2

4(4π)
S0(m,T )S1(m,T ) +

g2m2

4(4π)3
S0(m,T )

[
ψ(2) + ln

(
4πµ2

m2

)]

− g2m2

64π4
Y (m,T )− g2

32π2
S1(m,T )

[
2− π√

3

]

(6.286)

6.8 Coupling constant calculation

The coupling constant derivation using RGE equations and Γdiff can be solved
as shown below.
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Re writing the function with coefficients of g,

Γdiff
nk ,⃗k=0

= gT1 + g2T2

∂

∂ lnµ
Γdiff
nk ,⃗k=0

= gT1,lnµ + g2T2,lnµ

∂

∂ lnm
Γdiff
nk ,⃗k=0

= gT1,lnm + g2T2,lnm

(6.287)

with

SN(m,T ) =
1

π

∞∑

n=1

(
m

2πnβ

)N

KN(nmβ)

T1 =
1

2
S1(m,T )

T2 = V1(m,T ) + V2(m,T ) ln(µ)

(6.288)

T1,lnµ = 0 (6.289)

T1,lnm =
−m2

4π
S0(m,T ) (6.290)

T2,lnµ = V2(m,T ) (6.291)

T2,lnm = V1,lnm + V2,lnm lnµ (6.292)

V1(m,T ) =
m2

4(4π)3
S0(m,T )

[
ψ(2) + ln

(
4π

m2

)]

− 3

4

S1(m,T )

(4π)2

[
ψ(1) + ln

(
4π

m2

)]

− 1

4(4π)
S0(m,T )S1(m,T )−

m2

64π4
Y (m,T )

− S1(m,T )

32π2

[
2−

√
3π

3

]

V2(m,T ) =

(
m2

2(4π)3
S0(m,T )−

3S1(m,T )

2(4π)2

)

V2,lnm =
4m2S0(m,T )

(4π)3
− m4S−1(m,T )

(4π)4

(6.293)
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V1,lnm =
2m2

(4π)3
S0(m,T )

[
ψ(1) + ln

(
4π

m2

)]

− m4

2(4π)4
S−1(m,T )

[
ψ(2) + ln

(
4π

m2

)]

+
3

2

S1(m,T )

(4π)2
+
m2S2

0(m,T )

2(4π)2
+

m2

2(4π)2
S1(m,T )S−1(m,T )

+
m2S0(m,T )

(4π)3

[
2−

√
3π

3

]
− m2

32π4
Y (m,T )− m4

32π4

∂Y (m,T )

∂m2

(6.294)

Defining operator R̂GE as,

d

d lnµ
= R̂GE = µ

∂

∂µ
+ β(g)

∂

∂g
− nγ(g) + γmm

∂

∂m
(6.295)

with

β(g) = β2g
2 + β3g

3

γ(g) = γ2g
2

γm(g) = γm1g + γm2g
2

(6.296)

In the two loop approximation,

R̂GE Γdiff (m, g, T, µ) ≈TLA 0. (6.297)

The results can be expressed in terms of polynomial in g.

β(g)
∂

∂g
Γdiff
nk ,⃗k=0

=g4 {2β3T2}+ g3 {2β2T2 + β3T1}

+ g2 {β2T1}
(6.298)

γm(g)
∂

∂ lnm
Γdiff
nk ,⃗k=0

=g4 {γm2T2,lnm}+ g3 {γm1T2,lnm + γm2T1,lnm}

+ g2 {γm1T1,lnm}
(6.299)

−2γ(g)Γdiff
nk ,⃗k=0

= g4 {−2γ2T2}+ g3 {−2γ2T1} (6.300)

∂

∂ lnµ
Γdiff
nk ,⃗k=0

= g2T2,lnµ + gT1,lnµ (6.301)
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R̂GE Γdiff
nk ,⃗k=0

= g4 {2 (β3 − γ2)T2 + γm2T2,lnm}

+ g3 {2β2T2 + (β3 − 2γ2)T1 + γm1T2,lnm + γm2T1,lnm}
+ g2 {β2T1 + γm1T1,lnm + T2,lnµ}+ gT1,lnµ

Applying the Eqs. (6.288) to (6.291) to the above equation, it is clear that
terms that have coefficient g, and g2 are zero.

R̂GE Γdiff = 0 =⇒ g =
A(m,T ) lnµ+B(m,T )

C(m,T ) lnµ+D(m,T )
(6.302)

and

A = [−γm1V2,lnm − 2β2V2(m,T )]

C = [2(β3 − γ2)V2 + γm2V2,lnm]

B = (2γ2 − β3)T1 − 2β2V1(m,T )− γm1V1,lnm − γm2T1,lnm

D = 2(β3 − γ2)V1 + γm2V1,lnm

(6.303)

Combining beta coupling relation with mass scale as,

dg(µ)

d ln(µ)
= β2g

2 + β3g
3 (6.304)

give rise to the result,

ln(µ) =

∫ g 1

β2t2 + β3t3
dt = − 1

β2 g
+
β3
β2
2

ln

(
β3 +

β2
g

)
+ lnµ0 (6.305)

The corresponding running mass and coupling relation is

d ln(m)

d ln(µ)
= γm(g) (6.306)

Combining with the above relation

∂ ln(m)

∂g

dg

d ln(µ)
= γm(g) =⇒ ∂ ln(m)

∂g
=
γm(g)

β(g)
(6.307)

Solving by substituting

∂ ln(m)

∂g
=
γm1 + γm2g

β2g + β3g2
(6.308)

ln

(
m

m0

)
= χ2 +

γm1

β2
ln(g) +

(
γm2

β3
− γm1

β2

)
ln(β3 g + β2) (6.309)

The integral constants are ln(µ0), m0 and χ2. We have three equations con-
taining coupling constant g, running mass m, and mass scale µ. Therefore
solving Eqs. (6.302), (6.305) and (6.309) simultaneously, we get temperature
dependent running mass and coupling constant.
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6.8.1 Coupling g Limit Case T → 0

Consider the limit case β → ∞, i.e., T → 0 when m ̸= 0. In order to find
the coupling nature of µ at T ≈ 0, βm → ∞, we have to find the rate of
convergence of A(m,T ), B(m,T ), C(m,T ) and D(m,T ) as T → 0, since

g =
A(m,T ) lnµ+B(m,T )

C(m,T ) lnµ+D(m,T )
(6.310)

Here

lim
βm→∞

SN(m,T ) → 0 (6.311)

Because both the numerator and denominator of Eq. (6.310) contain SN(m,T )
with varying N. The rate of convergence of the ratios is important. So

lim
βm→∞

SN+1(m,T )

SN(m,T )
→ 0 (6.312)

As N rises, the rate of SN(m,T ) convergence also grows. The convergence of
Y (m,T ) can be derived as

Y (m,T ) =

∫ ∞

0

∫ ∞

0

U(x)U(y)G(x, y) dx dy

U(x) =
sinh(x)

[exp (βm cosh(x))− 1]

G(x, y) = ln

(
1 + 2 cosh(x− y)

1 + 2 cosh(x+ y)

2 cosh(x+ y)− 1

2 cosh(x− y)− 1

)

SN(m,T ) =
1

π

∞∑

j=1

(
m

2πjβ

)N

KN(jβm)

(6.313)

The limit of G(x, y) can be found from its logarithmic expression, which is
G(x, y) < ln(3). So,

Y (m,T ) < ln(3)

[∫ ∞

0

sinh(x)

[exp(βm cosh(x))− 1]
dx

]2

< ln(3)

[
2π

m
S 1

2
(m,T )

]2 (6.314)

Therefore

lim
βm→∞

Y (m,T )

S−1(m,T )
→ 0 (6.315)
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Dividing both the numerator and denominator by S−1(m,T ) in g gives

lim
βm→∞

g = lim
βm→∞

A(m,T )
S−1(m,T )

lnµ+ B(m,T )
S−1(m,T )

C(m,T )
S−1(m,T )

lnµ+ D(m,T )
S−1(m,T )

≈ −
(
γm1

γm2

)
(6.316)

where

lim
βm→∞

A(m,T )

S−1(m,T )
≈− γm1

(
−m4

2(4π)4

[
ψ(2) + ln

(
4π

m2

)])

lim
βm→∞

B(m,T )

S−1(m,T )
≈− γm1

(
−m4

(4π)4

)

lim
βm→∞

C(m,T )

S−1(m,T )
≈γm2

(
−m4

2(4π)4

[
ψ(2) + ln

(
4π

m2

)])

lim
βm→∞

D(m,T )

S−1(m,T )
≈γm2

(
−m4

(4π)4

)

(6.317)

We have equations connecting µ and g as

ln

(
µ

µ0

)
=

−1

β2g
+
β3
β2
2

ln

(
β3 +

β2
g

)
(6.318)

Applying the result of Eq. (6.316) to the above equations, we get

lim
βm→∞

ln

(
µ

µ0

)
=

γm2

β2γm1

+
β3
β2
2

ln

(
β3 −

γm2β2
γm1

)
(6.319)

The RHS of Eq. (6.319) changes to a complex number at the zero momentum
limit in this approximation. One can still make µ(T ≈ 0) a real number if we
choose µ0 in LHS appropriately (i.e., to a complex number or complex function
approximation at T ≈ 0).

The relation between running mass m and coupling relation g at T → 0 is
approximated as

lim
βm→∞

ln

(
m

m0

)
= χ2+

γm1

β2
ln

(
−γm1

γm2

)
+

(
γm2

β3
− γm1

β2

)
ln

(
β2 −

γm1β3
γm2

)

(6.320)

At this approximation, one can choose the running mass m(T ≈ 0) as real or
complex by intentionally choosing χ2 and lnµ0 accordingly.
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6.8.2 Pressure P Limit Case T → 0

In Fig. 3, we have selected different values as T0, P0, χ2, lnµ. All those results
show a similar trend. i.e., T → ∞, P → PIdeal, irrespective of the initial value.

The energy density of a quasiparticle with zero chemical potential, obey-
ing the relativistic Bose-Einstein distribution, can be derived from standard
statistical mechanics.

⟨ε⟩ =
∫ √

p2 +m2

(
exp
(
β
√
p2 +m2

)
− 1
) d3p

(2π)3 (6.321)

⟨ε⟩ = 1

2π2

∫ ∞

0

p2
√
p2 +m2

exp
(
β
√
p2 +m2

)
− 1

dp

Put p = m sinhx

=
m4

16π2

∫ ∞

0

[cosh(4x)− 1]

[exp(βm cosh(x))− 1]
dx

(6.322)

At T → 0,
i.e., βm→ ∞, we have

lim
βm→∞

⟨ε⟩ = m4

16π2

∫ ∞

0

(cosh(4x)− 1) exp[−βm cosh(x)]dx

=
m4

16π2
(K4(βm)−K0(βm))

(6.323)

We have

lim
x→∞

K(N, x) → 0 ∴ lim
βm→∞

⟨ε⟩ = 0 (6.324)

The equation connecting pressure with energy is

P (T ) =
T

T0
P0 + T

∫ T

T0

ε(T )

T 2
dT (6.325)

In Eq. (6.325) as T → T0, the integration part goes to zero. (Integral becomes
a zero width integral). So at T → T0, P → P0. P0 can have negative or
positive or zero values depending upon the initial conditions we impose on it.
But in the plot of pressure vs. temperature we have shown that irrespective
of value of P0, the pressure goes to the ideal limit.
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In the case of the integrand ε(T )/T 2 at zero temperature limit, assume
m ̸= 0, and T → 0 =⇒ βm→ ∞, according to Eq. (6.323),

lim
βm→∞

(βm)2KN(βm) → 0 (6.326)

Because the energy density at the temperature limits of zero achieves values
of zero. The value of pressure at a point can be made negative at some points
if one chooses P0 as negative at appropriate T0. In our case, we found that it
reaches the ideal value at a high-temperature limit, irrespective of the initial
value of P0.

6.9 Quasiparticle Model

Combining these results with the quasiparticle model of Bannur [14, 15, 16],
we get an expression for energy density and pressure as

ε(T ) =

∫
d3p

(2π)3

[
εp

exp (βεp)− 1

]

= gf
m4

2π2

∞∑

n=1

[
3K2(

nm
T
)

(nm
T
)2

+
K1(

nm
T
)

nm
T

]

= gf
m4

16π2

∞∑

n=1

[
K4

(nm
T

)
−K0

(nm
T

)]
(6.327)

with εp =
√
p2 +m2, and

P

T
− P0

T0
=

∫ T

T0

ε(m(T ), T )

T 2
dT (6.328)

6.10 Results and Discussion

In order to derive the equation of state for the quasiparticle model in ther-
mal ϕ4 theory, we need the running mass, which is a function of the coupling
constant and mass scale. In thermal and non thermal ϕ4 theory, the renor-
malization constants and coupling constant relations are not enough to derive
the thermal dependent coupling constant and running mass. So we introduce
a new scheme known as the same mass scale and coupling scheme, in which
thermal and non-thermal theory are combined on the basis of the same math-
ematical structure. In this work, each thermal diagram is written in terms of
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Figure 6.1: Two loop coupling constant results. g against T/m0 plotted with
varying values of integration constants lnµ0 and χ2 with m0 ≈ 1

its corresponding non-thermal diagram, which has coefficients that are tem-
perature dependent.

Applying the Renormalization Group Equation simultaneously to the finite
proper vertex function in both non-thermal and thermal ϕ4 theory under SMC
[17] has produced a new coupling constant equation, as shown in Eq. (6.302).
This new equation, in addition to the already existing renormalization equa-
tions, is sufficient to produce the temperature dependent coupling constant and
running mass. This is achieved in this work by solving Eqs. (6.302), (6.305)
and (6.309) simultaneously.

We have plotted the results in Figs. 6.1 to 6.4 with different integration
constants. The two loop coupling constant is plotted against the temperature
in Fig. 6.1. It is qualitatively in agreement with the predicted behaviour. i.e.,
as the temperature goes to infinity, the coupling constant goes to zero. The
running mass per temperature is plotted in Fig. 6.2, and it also goes to zero
as the temperature tends to infinity. In Fig. 6.3, the scaled pressure is plotted,

where the pressure is divided by an ideal pressure value of
π2

90
T 4. The ideal
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Figure 6.2: Two loop running mass results. The difference between the curves
is due to the different integration constants, as shown in the figure.

pressure value is the pressure value that corresponds to a free particle under the
Bose-Einstein distribution. It has been observed in Fig. 6.3 that, irrespective
of the initial value, the pressure reaches its ideal behaviour as the temperature
goes to infinity. The mass scale against the temperature is plotted in Fig. 6.4
for various integration constants.

When lattice data becomes available in the future, we hope to compare this
work with those lattice data. We hope the extension of this SMC model from
ϕ4 to QCD might lead us to some new insights on new methods in the future.
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Chapter 7

Summary and Future Plans

In Chapter 1, we have given a general introduction to quark-gluon plasma and

some phenemenological models. Phenemenological models are good tools for

predicting the equation of state of quark-gluon plasma. The phenemenological

models mentioned include the MIT Bag model, the relativistic harmonic oscil-

lator model, and quasiparticle models. The quasiparticle models [1, 2, 3, 4, 5]

approximate mass as a function of coupling constants, which are functions of

temperature. Many of the coupling constant-dependent models predict the

equation of state, which is in good agreement with the lattice data for the

temperature range T/Tc > 1 [3, 4]. The relation between quasiparticle mass

and coupling constant can be approximated as

m2(T ) = g2(T )T 2 = 4παs(T )T
2

αs(T ) =
6π

(33− 2nf ) ln

(
T/ΛT

)
[
1− 3(153− 19nf )

(33− 2nf )2

ln

(
2 ln

(
T/ΛT

))

ln

(
T/ΛT

)
]

(7.1)
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where ΛT is the QCD scale factor. In many published works, ΛT is represented

as a multiple of critical temperature Tc.

The coupling constants both in one loop and two loop order have factors of

ln(T/ΛT ). Thus, when T goes to ΛT or less than ΛT , the mass goes complex,

negative, or even towards divergence, depending on the value of T/ΛT .

In the magnetic field regime, the coupling constant still depends on ln(T/ΛT )

and ln((T 2 + |eB|)/Λ2
T ). Thus, this makes the model deviate from the lattice

data for low values of T. So the coupling constant independent pheneomeno-

logical model has an upper hand in the regime of T < ΛT or T = ΛT .

In 1995, Vishnu Mayya Bannur combined the work of Balescu [6], which was

based on Mayer’s cluster expansion (MCE) for charged particles, with the

quark number density [7]. Using Cornell potential, Bannur successfully fitted

the derived equation of state with lattice data for T > Tc. The model extended

by Udayanandan and Bannur [8] involves the gluon contribution to the EoS.

The model used Cornell potential for both quarks and gluons.

In Chapter 2, we describe Mayer’s cluster expansion for the lowest order step

by step. We also described how the correction factor works between distin-

guishable particle integrals and indistinguishable particle integrals with differ-

ent indistinguishable particle species. The equations of state corresponding to

pressure and energy density were also described. We have studied the statis-

tical mechanics and thermodynamics of interacting systems using the cluster

expansion method in both the presence and absence of a magnetic field.
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In Chapter 3, we introduced the modified liquid drop model in QGP. Fourier

transforms of central potential functions (i.e., polynomials in radial coordi-

nates) are studied. Previous published work on these topics involving MCE

is covered. Various integrals involved in the formulation of our model are

discussed. The poles in the integral equations are removed by introducing an

infinitesimal imaginary term in the integrand. The contour integration method

is used for this purpose. In the proposed modified liquid drop model, the ef-

fective terms in the potential are linear, volume, and Coulomb. The energy

density, pressure, entropy and number density is calculated for zero magnetic

field. It is found that the model does fit with the available lattice data for

certain parameters.

In Chapter 4, the liquid drop model extended to magnetic field environ-

ment. The idea of a harmonic oscillator is used with a magnetic vector poten-

tial, giving rise to modifications in the integral equation. A new integral table

with the modified integrating technique in the presence of a magnetic field is

also derived. The model was concentrated heavily on quarks in Chapter 4, and

we have shown that the data is in good agreement with the expected behavior

in both quantitative and qualitative terms.

In Chapter 5, we have used quasi particle model of VM Bannur [9] in

presence of magnetic field to study the behaviour of quarks with finite chemical

potential at zero temperature. We have taken a neutron star case in which,

due to high pressure at the core, the quarks became deconfined and resulted in

a quark star. Chapter is entirely different from Chapters 3 and 4. The QPM
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equations [9] are changed to accommodate the magnetic field effects. The EoS

results are compared with that of free particles.

In Chapter 6, the equation of state of the thermal and non-thermal ϕ4

theories are discussed. We have developed a new method for resolving the

beta function pole problem in the RGE equation. The method is known as the

SMC method, where simultaneously the thermal and non-thermal quantum

field theory proper vertex functions up to two loop orders are solved by the

assumption of the same coupling and mass scale. This method works, and we

get a coupling constant and running mass that are in qualitative agreement

with the expected behaviour of the equation of state of ϕ4 theory.

7.1 Future Plan

It is important to study the transport coefficients of QGP in the presence of

a magnetic field to find the non-ideal behaviour of QGP in the presence of

external forces. Chapters 3 and 4 can be extended in this way to find the

transport coefficient by using Boltzmann transport equations for relativistic

particles.

In Chapter 5, the longitudinal pressure of quarks causes an asymmetry of pres-

sure in different directions. Thus, TOV cannot be applied to find the radius of

a quark star under the present QPM model. So we have to use an asymmetric

pressure equation for TOV to further explore the properties of QGP.

The method used in Chapter 3 and 4 works with a constant density at an

infinite volume. The density is constant only with respect to the volume, but

180



it can still be a function of temperature and magnetic field. If one uses the

above concept in the context of cosmology, i.e., the Big Bang, space-time, and

the idea of atoms of spacetime [10], one could possibly make the density of the

space-time particles a function of some parameters. The quasiparticle model

of Bannur [3] can also be rearranged to accommodate the idea of a spacetime

atom.

We hope the rules of statistical mechanics for atoms in spacetime can be

derived using these approaches. We will have to proceed towards accomplish-

ing these goals in the future.

The SMC method we introduced in Chapter 6, is qualitatively in good

agreement with the expected behaviour. Once lattice data is available, we

would like to compare our model with it. We hope the extension of this SMC

model from ϕ4 to QCD might lead us to some new insights into QGP.
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Recommendations

The study of matter in its diverse forms has played a profoundly significant

role throughout human history. Our comprehension of fundamental particles

has provided us with invaluable insights into the nature of the universe. While

it is impossible to journey back in time to gain direct knowledge about the

behavior of matter during different phases of the universe’s expansion, we can

leverage high-energy experimental findings and theoretical models based on

such experiments to investigate and simulate those specific periods.

In our study to examine the equation of state of quark gluon plasma, we

have devised a model that agrees with the equation of state obtained from

lattice data. The model, namely the modified liquid drop model developed

in this study, enable us to make predictions about the equation of state of

quark gluon plasma across a wide range of temperatures and magnetic fields.

Furthermore, the same mass and coupling method we have developed can be

extended for further applications across other domains of physics.
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