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CHAPTER

ONE

Introduction

The crux of the problems of probability theory is random variables (r.v.s) and

their distribution functions (d.f.s) or their asymptotic distributions. Since every

Borel measurable function of a r.v. is again a r.v. (Laha and Rohatgi, 1979,

Page 5, Remark 1.1.1.), there are several relationships among r.v.s. A r.v. may

be expressed as a function of one or more r.v.s. Some of the examples are:

if X ∼ N(0, 1), then Y = X2 ∼ χ2(1). If X1 ∼ Poisson (λ1), X2 ∼ Poisson

(λ2) and if X1 and X2 are independent, then their sum X1 + X2 ∼ Poisson

(λ1 + λ2). A negative binomial (n, p) r.v. with n = 1 is the geometric (p)

r.v. If X ∼ B(n, p), and if n is large and np approaches to λ > 0, then the

d.f. of X can be approximated by Poisson distribution. If {Xn}, is a sequence

of i.i.d. binomial r.v.s, then for Sn =
∑n

j=1
X
j
, the distribution of normalized

sequence of partial sums, approaches to Normal distribution. Some of the

relationships among the r.v.s which we discuss in this thesis are the partial

maxima and partial minima of sequence of independent r.v.s, {Xn}, defined

by Mn = max(X1 , X2 , . . . , Xn) and mn = min(X1 , X2 , . . . , Xn) respectively.
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Another measurable function of r.v.s X1 , X2 , . . . , Xn , we discuss in this thesis

are their corresponding ordered r.v.s, X1:n ≤ X2:n ≤ . . . ≤ Xn:n , known as

order statistics. Note that X1:n = mn and Xn:n = Mn . We also consider the

componentwise maxima and componentwise minima of bivariate sequence of

independent r.v.s {(Xn , Yn)}.

1.1 Objective and Summary of the Thesis

Tools for studying r.v.s are selected based on their compactness and ease of

use. The d.f., probability mass function (p.m.f.), probability density function

(p.d.f.), integral transforms like characteristic function (c.f.), moment gener-

ating function and probability generating function are some of the most com-

monly used tools in the study of r.v.s. When a sequence of r.v.s is independently

distributed, the d.f.s of partial maxima, Mn and partial minima, mn are in a

compact and explicit form, see for example David (1970). However, the c.f.s of

partial maxima and partial minima of a sequence of independent r.v.s, {Xn},

do not have a compact and explicit form in the literature. The main objective

of the thesis is to investigate the conditions under which the c.f.s of partial

maxima and partial minima of a sequence of independent r.v.s to be written in

a compact form. The restricted families of distributions for which the c.f.s can

be derived in compact form are discussed giving enough illustrative examples.

Sufficient conditions for d.f.s of r.v.s to belong to such classes of distributions

are obtained. Some important properties of these classes of distributions are

also discussed. The compact forms of the c.f.s of partial maxima and partial

minima of a sequence of independent r.v.s are also derived under the condi-

tions identified and the results corresponding to independent and identically

distributed (i.i.d.) sequence of r.v.s are derived as special cases. The results
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discussed for partial maxima and partial minima are then extended to rth or-

der statistic of a sequence of independent r.v.s for every fixed n and the results

corresponding to i.i.d. sequence is deduced as a particular case. An attempt is

also made to extend these results to the bivariate set up. Necessary and suffi-

cient conditions for a family of bivariate distributions to have closure property

under the minima or maxima are also obtained.

1.2 Organization of the Thesis

The thesis is organized into seven chapters. As discussed above, Chapter 1

of the thesis presents the problem addressed in the work in a gentle manner.

Section 1.2 describes the organization of other chapters of the thesis. The rest

of the thesis is organized as follows.

Chapter 2 introduces the basic concepts in probability theory which are

required to understand the later developments of the thesis. The measurable

functions of a sequence of r.v.s on a probability space, like partial sums, partial

maxima and partial minima are discussed in this chapter. We verify that, in

general the c.f.s of partial minima and partial maxima can not be written in

a compact form and identify some special families of distributions for which

one can write the c.f.s of partial maxima or partial minima in a compact form.

Section 2.1 reviews the basic concepts of probability theory required. This in-

cludes the probability space induced by a r.v., the d.f. of a r.v. and the c.f. of

a r.v., and the existence and interrelationship between d.f. of a r.v. and the

corresponding c.f. Section 2.2 is on the partial sums of independent r.v.s which

describes the representation of the exact distribution of partial sums as convo-

lutions and the c.f.s of partial sums as the product of the c.f.s of the underlying

distributions. This section also discusses the stability properties of a sequence
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of partial sums of independent r.v.s like the weak and strong laws of large num-

bers and the central limit theorem. These discussions are based on Billingsley

(1995) and Laha and Rohatgi (1979). Section 2.3 gives a review on the partial

minima and partial maxima. The representation of the d.f.s of partial maxima

and partial minima in terms of the d.f. of the underlying distribution for both

i.i.d. and independent non-identical r.v.s are discussed. Then the discussion

move on to the limiting distribution of a sequence of linearly normalized max-

ima (Embrechts et. al., 1997, Leadbetter et. al., 1983 and Resnick, 1987) and

non-linearly normalized maxima (Pancheva, 2010). The corresponding results

for the minima follow from the simple relationship between the maxima and

minima. In Section 2.3, we also observe that, in general, the c.f.s of minima and

maxima can not be expressed in terms of the c.f.s of the underlying distribution

in a simple form.

Chapter 3 of the thesis is on families of distributions closed under the min-

ima or maxima. These concepts are defined and illustrated with suitable ex-

amples. Some important properties of these families are also obtained in this

chapter. The results corresponding to sequences of i.i.d. r.v.s is based on

Aparna and Chandran (2017) and those corresponding to independent non-

identically distributed r.v.s is based on Aparna and Chandran (2018a). Section

3.1 discusses various types of closure properties of sets. Section 3.2 provides

the definitions of the concepts of closure under the minima and maxima of r.v.s

or corresponding families of distributions. This section gives suitable examples

to illustrate these concepts. Sufficient conditions for families of distributions to

have closure property under the minima or maxima are also derived in this sec-

tion. Section 3.3 is on how the closure property under the minima or maxima

changes under monotone transformations of the r.v.s closed under the minima
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or maxima. Section 3.4 discusses how the closure property under the minima

and maxima holds for truncated r.v.s.

Chapter 4 obtains the representations for the c.f.s of partial minima and

partial maxima of a sequence of independent r.v.s in terms of the c.f. of the

underlying distribution. Section 4.1 derives the representation for the d.f.s

of partial maxima in terms of the d.f.s of partial minima and vice-versa for a

sequence of independent r.v.s. From these representations, when the underlying

family of distributions is closed under the minima or maxima, we deduce the

representations for the d.f.s of partial minima and partial maxima in terms

of the d.f. of the underlying distribution. By the one to one correspondence

between the d.f.s and their integral transforms, we have similar representations

for the c.f.s and are discussed in Section 4.2. All other integral transforms like

moments, probability generating function etc. have similar representations,

whenever they exist. Representations for the moments are given in Section 4.3

and an application of this result is also discussed. The results corresponding

to a sequence of independent non-identical r.v.s is based on the discussions in

Aparna and Chandran (2018a) and the results deduced as a particular case,

corresponding to i.i.d. sequence, is discussed based on Aparna and Chandran

(2017).

Another measurable function of {Xn}, interested in mathematical statistics,

is the rth order statistic for a fixed integer n and any integer r between 1 and

n. The minima and maxima are special cases of this rth order statistic when

r takes the values 1 and n respectively. Chapter 5 extends the results derived

in Chapter 4 to other order statistics and is based on Aparna and Chandran

(2018b). Section 5.1 gives a brief introduction on order statistics. In Section

5.2, we see that, for every fixed n the d.f.s of order statistics of a sequence
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of independent r.v.s also have representation in terms of the d.f.s of partial

maxima and partial minima. Furthermore, when the r.v.s are closed under the

minima or maxima, the d.f.s of rth order statistic can be expressed in terms of

the d.f. of the underlying distribution and are discussed in this section. Section

5.3 introduces similar representations for the c.f.s of order statistics. Section

5.4 provides similar representations for the moments, whenever they exist, and

an application of this result is also discussed.

Chapter 6 extends the closure property under the minima and maxima dis-

cussed in Chapter 3 to bivariate case. Even though, our discussions are on the

two-dimensional random vectors (R.V.s), the results can be extended to higher

dimensional R.V.s. The chapter is based on Aparna and Chandran (2018c).

Section 6.1 reviews the basic probability theory of R.V.s. Section 6.2 intro-

duces the notions of the componentwise minima and componentwise maxima.

The function which uniquely identifies the joint d.f. with the marginal d.f.s are

called copulas, and is discussed in Section 6.3 with the help of Nelson (1999).

Section 6.4 defines families of bivariate distributions closed under the minima

and maxima. A necessary and sufficient condition for a family of bivariate dis-

tributions to have closure property under the minima or maxima is obtained.

In this section, copulas closed under extrema are defined and some examples

are given. Sections 6.5 deals with the changes in bivariate closure property un-

der the minima and maxima on the monotone transformations of the marginal

r.v.s. Section 6.6 describes how the bivariate closure property under the min-

ima and maxima changes, on the truncations of the marginal r.v.s. In Section

6.7 we see that the representations for the d.f.s of partial minima in terms

of the d.f.s of partial maxima and vice-versa can not be extended to the two

dimensional case.
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Chapter 7 summarises the overall content of this thesis work. Cited refer-

ences of the thesis are given at the end of the thesis.



CHAPTER

TWO

Preliminaries

In this chapter, we review some basic concepts in probability theory required

to understand this thesis. Measurable functions of a sequence of r.v.s like the

partial sums, partial minima and partial maxima are described. The exact and

limiting distributions of these measurable functions are also discussed. The

chapter also introduces the main problem addressed in this thesis.

The chapter is organized as follows: Section 2.1 introduces basic concepts

in probability theory. Section 2.2 is on partial sums. The exact distributions

of partial sums and their stability properties are discussed. Section 2.3 reviews

partial minima and partial maxima. Their exact distributions and the stability

property under linear and non-linear normalizations are discussed. In this

section, it is observed that the c.f.s of partial minima and partial maxima can

not be expressed in terms of the c.f. of the underlying distribution unless some

restrictions are imposed.

11
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2.1 Introduction

Probability theory, which deals with any bounded and normed measure is

mainly devoted to the study of random variables (r.v.s). To each outcome

of an experiment if we assign a number, then we define a measurable function

on the sample space called the r.v. Mathematically, if (Ω,A , P ) is a probability

space, a real valued A -measurable function on Ω is called a r.v. on (Ω,A , P ).

That is, if for every B ∈ B, the Borel σ-field in R,

X−1(B) = {ω ∈ Ω : X(ω) ∈ B} ∈ A , (2.1.1)

then X defines a r.v. on (Ω,A , P ). The r.v. X induces a probability measure

P
X

on the measurable space (R,B) given by

P
X
(B) = P (X−1(B)), ∀ B ∈ B, (2.1.2)

called the probability distribution of X. Hence, (R,B, P
X
) is a new probability

space called the probability space induced by the r.v. X on its range space.

The distribution function (d.f.) of a r.v. X is a mapping F
X

: R → R, which

can be derived from (2.1.2) as follows

F
X
(x) = P

X
((−∞, x]), ∀ x ∈ R

= P (X−1(−∞, x]), ∀ x ∈ R

= P (ω ∈ Ω : X(ω) ≤ x), ∀ x ∈ R

= P (X ≤ x), ∀ x ∈ R. (2.1.3)
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That is, corresponding to every r.v. X there is a d.f. F
X
. The d.f. is non-

decreasing, right-continuous and attains the value zero as x → −∞ and one

as x → +∞. Hence, more precisely we can say that, the d.f. of a r.v. is a

mapping from R to [0, 1] with these properties. Conversely, if F is a nonde-

creasing, right-continuous function on R satisfying lim
x→−∞

F (x) = F (−∞) = 0

and lim
x→+∞

F (x) = F (+∞) = 1, then by Theorem (1.1.2) of Laha and Rohatgi

(1979), there exists a probability measure P
F

on (R,B) determined uniquely

by the relation P
F
((−∞, x]) = F (x), for all x ∈ R. Hence, by Remark (1.1.3)

of Laha and Rohatgi (1979), there exist a r.v. X on some probability space

such that F is the distribution function of X. That is, consider the probability

space (R,B, P
F
) and let X(ω) = ω for all ω ∈ R. Now, this X induces a

probability measure P
X

on (R,B) given by P
X
(B) = P

F
(X−1(B)) = P

F
(B).

In particular, if B = (−∞, x], then F
X
(x) = F (x) for all x ∈ R. That is, F is

the d.f. of the r.v. X. Hence, corresponding to any d.f. F , there exists a r.v.

on some probability space with F as its d.f.

If X is a r.v. on some probability space, then the transformation given by

φ
X
(t) = E(eitX), t ∈ R (2.1.4)

=

∫
R

eitxdF
X
(x), (2.1.5)

is known as the characteristic function (c.f.) of the d.f. F
X

or the r.v. X.

If φ(t) is a c.f., it is a complex valued function and it satisfies the following

properties:

i) φ(0) = 1.

ii) φ(−t) = φ̄(t), the complex conjugate of φ(t).
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iii) |φ(t)| ≤ 1.

iv) φ(t) is uniformly continuous on R.

By Cramér (1946), (page 84, Section 7.4), any bounded and measurable func-

tion is integrable with respect to any d.f. over R, which assures the existence of

the c.f. for every d.f. There is a one to one correspondence between the d.f. of

a r.v. and its c.f. That is, two d.f.s F1 and F2 are identical if, and only if, their

c.f.s φ1 and φ2 are identical. This is the content of the uniqueness theorem of

the c.f. For an absolutely continuous r.v. X with p.d.f. f
X
, the c.f. is given by

φ
X
(t) =

∫
x

eitxf
X
(x)dx (2.1.6)

and for a discrete r.v. X with p.m.f. p
X

it can be expressed as

φ
X
(t) =

∑
x

eitxp
X
(x), (2.1.7)

where p
X
(x) = P (X = x). For more details of the above discussions see Laha

and Rohatgi (1979) and Lukacs (1960).

Suppose there are n r.v.s say X1 , X2 , . . . , Xn on (Ω,A , P ). Then the Borel

measurable functions of these r.v.s, like their sum, maximum and minimum are

defined by

Sn =
n∑
j=1

X
j

(2.1.8)

Mn = max(X1 , X2 , . . . , Xn) (2.1.9)

mn = min(X1 , X2 , . . . , Xn) (2.1.10)

and are also r.v.s on (Ω,A , P ) whose d.f.s are determined by the d.f. of
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X1 , X2 , . . . , Xn . Hence, the exact distributions of these functions are dealt in

probability theory. In many situations, the exact distributions of these statis-

tics may not be easy to handle or useful for further statistical treatments. In

such situations, generally the asymptotic distribution of the above mentioned

statistics are derived and applied in the statistics literature. The following sec-

tion provides a description of the d.f.s and c.f.s of partial sums of a sequence

of independent r.v.s.

2.2 Partial Sums

Let {Xn , n ≥ 1} be a sequence of independent r.v.s with X
j

having d.f. F
Xj

and c.f. φ
Xj

. Then {Sn} is the sequence of partial sums of {Xn}, where Sn

is as defined in (2.1.8) for every n ≥ 1. The d.f.s of Sn of independent r.v.s

are usually expressed as convolution of individual d.f.s. The convolution of two

d.f.s, say F1 and F2 is given by

G(z) =

∫ ∞

−∞

F1(z − x)dF2(x)

=

∫ ∞

−∞

F2(z − x)dF1(x)

= F1 ∗ F2 . (2.2.1)

If the d.f. G is the convolution of 3 d.f.s F1 , F2 , and F3 , then

G = (F1 ∗ F2) ∗ F3 = F1 ∗ (F2 ∗ F3)

= F1 ∗ F2 ∗ F3 . (2.2.2)
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Similarly, if the d.f. G is the convolution of n d.f.s F1 , F2 , . . . , Fn , then

G = F1 ∗ F2 ∗ . . . ∗ Fn . (2.2.3)

When these independent r.v.s are identically distributed as F , the representa-

tion in (2.2.3) reduces to G = F ∗n, the n-fold convolution of F . For details see

Feller (1966) and Lukacs (1960). Hence,

F
Sn

= F
X1
∗ F

X2
∗ . . . ∗ F

Xn
(2.2.4)

and for the i.i.d. sequence {Xn}

F
Sn

= F ∗n
X1
. (2.2.5)

From equation (2.1.4), we have for t ∈ R

φ
Sn

(t) =
n∏
j=1

φ
Xj

(t), n ≥ 1, (2.2.6)

and when the r.v.s are i.i.d. as X with c.f. φ
X
, (2.2.6) reduces to

φ
Sn

(t) = (φ
X
(t))n, n ≥ 1. (2.2.7)

We can see that the c.f. of Sn has more compact and useful representation

compared to that of its d.f. It is these explicit forms of φ
Sn

(t) that helps to

derive the stability properties of the sequence {Xn} of i.i.d. or independent

r.v.s in terms of the partial sum sequence {Sn}. For example, the central limit

theorem, the laws of large numbers and the laws of iterated logarithm of the

sequence {Xn} of r.v.s are derived in the probability literature with the help
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of (2.2.6) and (2.2.7). Even though, the expressions (2.2.4) and (2.2.5) appear

simple, it is not so. In general, the d.f. of the partial sum, Sn , does not have

an explicit form for either the i.i.d. or independent non-identical case. In such

situations, generally the asymptotic distribution of Sn is used in the literature.

If for a sequence of independent r.v.s, {Xn}, E(X2
n
) <∞, then

Sn − E(Sn)

n

P→ 0 as n→∞

and if they have common mean µ, then

Sn
n

P→ µ as n→∞.

The only condition for this convergence is that the variance, V
(

Sn
n

)
→ 0 as

n → ∞ and the condition of independence is not necessary and this is the

content of Chebychev’s weak law of large numbers. Khintchine’s weak law of

large numbers is a stronger result which says, if {Xn} is a sequence of i.i.d.

r.v.s with common mean µ,

Sn
n

P→ µ as n→∞.

We can see that, the weak laws of large numbers discuss the convergence in

probability of the sequence of partial sums. When the mode of convergence

changes to almost sure convergence, we have the strong laws of large numbers.

The Kolmogorov’s strong law of large numbers says,

Sn
n

a.s.→ µ as n→∞
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if, and only if, E|Xn| < ∞. For details, see Billingsley (1995) and Laha and

Rohatgi (1979).

Since convergence in probability and almost sure convergence imply con-

vergence in distribution, when normalized with n, the sequence of partial sums

converges to the mean in distribution. That is, Sn
n

converges to a d.f. de-

generated at the mean, which does not provide much information. But, if we

normalize Sn with
√
n and change to convergence in distribution, we get more

information about the stability of Sn√
n
. This is the main idea used in the central

limit theorems. The first attempt in this direction is on the convergence in

distribution of a sequence of i.i.d. Bernoulli r.v.s normalized with
√
n. If {Xn}

is a sequence of i.i.d. Bernoulli r.v.s with P (X
j

= 1) = p, 0 < p < 1, and

P (X
j
= 0) = 1− p = q, then for every x ∈ R,

P

(
Sn − np
√
npq

≤ x

)
→ 1√

2π

∫ x

−∞

e−u2/2du as n→∞.

This is the content of the Bernoulli’s central limit theorem, by DeMoivre and

Laplace. Later Lévy identified that this result holds not only for i.i.d. Bernoulli

r.v.s but also for any sequence of i.i.d. r.v.s. The Lévy central limit theorem

says that for a sequence {Xn} of i.i.d. r.v.s, if 0 < V (Xn) = σ2 <∞, for every

x ∈ R,

P

(
Sn − E(Sn)

σ
√
n

≤ x

)
→ 1√

2π

∫ x

−∞

e−u2/2du as n→∞.

This is the most useful version of the celebrated central limit theorem in the

i.i.d. case. By relaxing the identically distributed condition, Lindeberg ob-

tained a set of sufficient conditions for the convergence of suitably centered

and normalized Sn to the Normal r.v. These conditions were later proved to
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be necessary by Feller.

Theorem 2.2.1 (Lindeberg-Feller Central Limit Theorem). Let {Xn}

be a sequence of independent but not necessarily identically distributed r.v.s

with V (Xn) = σ2
n
<∞, n = 1, 2, . . .. Let E(Xn) = αn and Sn =

∑n

j=1
X
j
. Set

V (Sn) = B2
n
. Let Fn be the d.f. of Xn. Then the following two conditions:

i) lim
n→∞

max
1≤k≤n

(σ2
k
/B2

n
) = 0,

ii) lim
n→∞

P{[Sn − E(Sn)]/Bn ≤ x} = 1√
2π

∫ x

−∞
e−u2/2du,

for every x ∈ R, hold if, and only if, for every ε > 0 the condition

lim
n→∞

1

B2
n

n∑
k=1

∫
|x−α

k
|≥εBn

(x− α
k
)2dF

k
(x) = 0 (2.2.8)

is satisfied.

Lindeberg showed that (2.2.8) implies (ii) and Feller showed that (i) and

(ii) imply (2.2.8). For proof see Laha and Rohatgi (1979). In general, the

more precise content of the central limit theorem is, if there exists sequence of

constants {an} and {bn}, with bn > 0, such that the normalized sequence of

partial sums {Sn−an
bn

} converges in law to some non-degenerate r.v. Z whose

d.f. is G, then G is an α-stable distribution for some α > 0. A non-degenerate

r.v. X is stable if, and only if, for all n > 1, there exist constants an ∈ R and

bn > 0 such that

Sn
d
= bnX + an (2.2.9)

where X1 , X2 , . . . , Xn are independent, identical copies of X. A r.v. X is

strictly stable if, and only if, an = 0 for all n. Stable laws are also known as

α- stable or Lévy stable. The α- stable distributions require four parameters
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for complete description: an index of stability also known as the tail index,

tail exponent or characteristic exponent α ∈ (0, 2], a skewness parameter β ∈

[−1, 1], a scale parameter σ > 0 and a location parameter µ ∈ R. The normal

distribution arises as a special case of this when α = 2. This approximation is

extensively used in the statistics literature when the exact distribution of Sn

cannot be computed. For example, if the second moment of Xn exists for a

sequence of i.i.d. r.v.s, {Xn}, Sn has an asymptotic normal distribution. For

details, see Billingsley (1995), Feller (1966) and Laha and Rohatgi (1979).

2.3 Partial Minima and Partial Maxima

Let {Xn , n ≥ 1} be a sequence of i.i.d. r.v.s. Then {Mn} and {mn} are the

corresponding sequences of partial maxima and partial minima, where Mn and

mn are as defined in (2.1.9) and (2.1.10) respectively. Unlike the d.f. of Sn , the

d.f. of Mn and mn of an i.i.d sequence {Xn} are expressible in explicit form

given by

F
Mn

(x) = (F
X
(x))n (2.3.1)

Fmn (x) = 1− (1− F
X
(x))n (2.3.2)

where F̄
X
(x) is the survival function of F

X
(x). When the sequence of r.v.s are

independent but not identically distributed, the d.f. of Mn and mn are given

by

F
Mn

(x) =
n∏
j=1

F
Xj

(x) (2.3.3)

Fmn (x) = 1−
n∏
j=1

(1− F
Xj

(x)) (2.3.4)
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For convenience, the expressions in (2.3.2) and (2.3.4) can be rewritten using

the survival function F̄ of F as

F̄mn (x) = (F̄
X
(x))n (2.3.5)

F̄mn (x) =
n∏
j=1

F̄
Xj

(x) (2.3.6)

respectively. These exact distributions are extensively used in the statistics

literature. For detailed account of the exact distributions of Mn , mn and other

Borel measurable functions of Mn and mn see David (1970).

As in the case of partial sums discussed in Section 2.2, in many situations

the limiting distribution of the normalized maxima will be more useful. Let us

look at the behavior of Mn as n→∞ for a sequence of i.i.d. r.v.s. Obviously,

as n increases, Mn increases. Hence, asymptotic behavior of Mn is related to

the d.f. of X at its right tail. Let x
F

be the right end point of the d.f. F . That

is,

x
F

= sup{x ∈ R : F
X
(x) < 1}.

Now,

F
Mn

(x) =

 F n(x), x < x
F

1, x ≥ x
F
.

Hence, as n→∞

F
Mn

(x)
d→ G(x) =

 0, x < x
F

1, x ≥ x
F
.

i.e., Mn converges to a r.v., degenerated at x
F
.

Example 2.3.1. Let {Xn} be a sequence of i.i.d. U(a, b) r.v.s. Then x
F

= b
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and F
X
(x) = x−a

b−a
, a < x < b. Now, for x < b, 0 ≤ F

X
(x) < 1 and hence

F
Mn

(x) → 0 as n→∞. For x ≥ b, b <∞, F
X
(x) = 1 and hence F

Mn
(x) → 1.

i.e.,

F
Mn

(x)
d→ G(x) =

 0, x < b

1, x ≥ b.

That is, sequence {Mn} of a sequence of i.i.d. U(a, b) r.v.s converges to a r.v.

degenerated at b.

When the distribution does not have a finite right end point, {Mn} con-

verges to a r.v. degenerated at a point mass x
F

near +∞. Convergence in

distribution to a degenerate r.v. implies convergence in probability and hence,

Mn

P→ x
F

as n→∞.

Since Mn is monotone increasing, the above convergence implies convergence

almost sure. That is,

Mn

a.s.→ x
F

as n→∞.

These convergence concepts are not much useful as they do not provide much

information. As discussed for the partial sum sequence {Sn}, the weak conver-

gence results of the centered and normalized maxima provides more insight into

the order of magnitude of the maxima. But, this need not exist always. One

needs certain continuity conditions at the right end point x
F

for the existence

of the limit of P
(

Mn−an
bn

≤ x
)

= P (Mn ≤ un) as n→∞, where un = bnx+an .

For example, if X follows Poisson distribution, P (Mn ≤ un) will never have

a limit in (0, 1) for any sequence {un}. That is, the normalized maxima of

i.i.d. Poisson r.v.s do not have a non-degenerate limit distribution. Here comes

the crucial difference between the sums and maxima. In the case of sums, the
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condition of the existence of the second moment assures the convergence to

Normal distribution and its failure leads to the class of other α-stable distribu-

tions (see, Section 2.2). The following theorem provides the limit distribution

of normalized maxima, whenever it exists.

Theorem 2.3.1. Let {Xn} be a sequence of i.i.d. r.v.s on (Ω,A , P ) having

d.f. F . If for some constants {an} and {bn > 0} P
(

Mn−an
bn

≤ x
)
→ H

ξ
(x),

then

H
ξ
(x) =

 e−(1+ξx)−1/ξ
, ξ 6= 0

e−e−x , ξ = 0

where (1 + ξx) ≥ 0.

H
ξ
(x) is known as the generalized extreme value (GEV) distribution. This

is the Jenkinson-Von Mises representation of the standard extreme value distri-

butions, where ξ = 0 corresponds to the standard Gumbel distribution (Type

I), ξ = α−1 > 0 corresponds to the standard Fréchet distribution (Type II)

and ξ = −α−1 > 0 corresponds to the standard Weibull distribution (Type III)

given by

Gumbel: Λ(x) = e−e−x , x ∈ R, (2.3.7)

Fréchet: Φα(x) =

 0, x ≤ 0

e−x−α , x > 0
, α > 0 (2.3.8)

Weibull: Ψα(x) =

 e−(−x)α , x ≤ 0

1, x > 0
, α > 0, (2.3.9)

which are the max-stable or standard extreme value distributions referred in

the fundamental Fisher-Tippett theorem. The three standard extreme value
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distributions are very different for the purpose of modeling, but in the mathe-

matical point of view they are closely linked. Suppose X is a positive valued

r.v., then

X ∼ Φα ⇔ lnX ∼ Λ ⇔ −X−1 ∼ Ψα .

The r.v.s corresponding to extreme value distributions are called extremal r.v.s.

For details, see Embrechts et. al. (1997), Leadbetter et. al. (1983) and Resnick

(1987).

There is a very nice mathematical relation between mn and Mn . We can

rewrite expression (2.1.10) as

mn = −max{−X1 ,−X2 , . . . ,−Xn} (2.3.10)

= −Mn

′, (2.3.11)

where Mn

′ = max{−X1 ,−X2 , . . . ,−Xn}. By this relation, the GEV distribu-

tion, G corresponding to the minima and H corresponding to the maxima are

related by

G(x) = 1−H(−x)

and hence, G is given by

G
ξ
(x) =

 1− e−(1−ξx)−1/ξ
, ξ 6= 0

1− e−ex , ξ = 0

the GEV distribution corresponding to minima, where (1 − ξx) ≥ 0 and the
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standard extremal types distributions for minima are given by

Gumbel: Λ(x) = 1− e−ex , x ∈ R. (2.3.12)

Fréchet: Φα(x) =

 1− e−(−x)−α , x < 0

1, x ≥ 0
, α > 0 (2.3.13)

Weibull: Ψα(x) =

 0, x < 0

1− e(−x)α , x ≥ 0
, α > 0, (2.3.14)

For more details, see Embrechts et. al. (1997), Leadbetter et. al. (1983) and

Resnick (1987).

Max-stability we discussed above is under affine transformations. But, do

the norming mappings have to be linear? The answer is ‘not’ and Theorem

2.1 of Pancheva (2010) gives three equivalent conditions which characterize

the generalized max-stable distributions on R under a more general normaliza-

tion. According to Pancheva (2010), any continuous strictly increasing d.f. is

max-stable and the corresponding version of the min-stability under non-linear

normalization is obtained by the relation (2.3.10). For details see Pancheva

(2010).

Does there exist any situation in which one can express the c.f.s of partial

maxima or partial minima or both of a sequence of independent r.v.s in an

explicit form? This natural curiosity is the motivation behind this work. From

equations (2.1.6) and (2.1.7), for t ∈ R, the c.f.s of Mn and mn can be expressed

as

φ
Mn

(t) =


∫
x
eitxf

Mn
(x)dx, if F is absolutely continuous∑

x
eitxP

Mn
(x), if F is discrete

(2.3.15)
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and

φmn (t) =


∫
x
eitxfmn (x)dx, if F is absolutely continuous∑
x
eitxPmn (x), if F is discrete

(2.3.16)

respectively. If the sequence of r.v.s are i.i.d., then (2.3.15) becomes

φ
Mn

(t) =


∫
x
eitxn[F

X
(x)](n−1)f

X
(x)dx, if F is absolutely continuous∑

x
eitx[[F

X
(x)]n − [F

X
(x−)]n], if F is discrete.

(2.3.17)

and (2.3.16) becomes

φmn (t) =


∫
x
eitxn[1− F

X
(x)](n−1)f

X
(x)dx, if F is absolutely continuous∑

x
eitx[[F̄

X
(x−)]n − [F̄

X
(x)]n], if F is discrete.

(2.3.18)

No further simplifications to the above integrals or sums in equations (2.3.15)

and (2.3.16) are possible unless or until we impose some restrictions over the

d.f. F . Let us try to evaluate these through some specific situations.

Example 2.3.2. Suppose {Xn} is a sequence of independent r.v.s such that

X
j
∼ exp(θ

j
). Therefore, F

X;θj
(x) = 1 − e−θjx, x > 0, θ

j
> 0. Then for all

n ≥ 1, the d.f.s of partial maxima, Mn are given by

F
Mn ;θ1 ,θ2 ,...,θn

(x) =
n∏
j=1

(1− e−θjx)

and the d.f.s of partial minima, mn are given by

F
mn ;θ1 ,θ2 ,...,θn

(x) = 1− e
−
∑n

j=1
θjx.

It is to be noted that minima of n independent exponential r.v.s with parameter
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θ
j
, j = 1, 2, . . . , n has an exponential distribution with parameter

∑n

j=1
θ
j
. Let

φ
X;θj

denote the c.f. of X
j
. Then φ

X;θj
(t) =

θj
θj−it

. Now, due to the one to

one correspondence between the d.f. and the c.f. of a r.v., the c.f.s of partial

minima, mn, are given by

φ
mn ;θ1 ,θ2 ,...,θn

(t) =

∑n

j=1
θ
j∑n

j=1
θ
j
− it

= φ
X;

∑n
j=1

θj
(t). (2.3.19)

In the above example, if the r.v.s are identically distributed with parameter

θ, then

φ
mn ;θ

(t) =
nθ

nθ − it
= φ

X;nθ
(t).

That is, the c.f. of mn of i.i.d. exponential r.v.s can be expressed in a very

compact form. Even for independent non-identical exponential r.v.s the c.f. of

mn is in a compact form. Does there exist a class of distributions for which the

c.f.s of partial minima or partial maxima can be expressed in a simple form?

The next chapter introduces such a new class of distributions and study their

properties.



CHAPTER

THREE

Families of Univariate Distributions Closed under the

Minima or Maxima

The discussions in this chapter is on families of distributions for which the d.f.s

of either the maxima or minima belong to the same family. The concept is

defined and described providing various examples. Sufficient conditions for a

family of distributions to have this property are obtained. Some properties of

such families are also discussed. The results corresponding to i.i.d. sequence

of r.v.s is based on Aparna and Chandran (2017) and those corresponding to

independent non-identical case is based on Aparna and Chandran (2018a).

The chapter is organized as follows: Section 3.1 discusses various types of

closure property of sets. Section 3.2 provides the definitions of the concepts of

closure under the minima and maxima providing suitable examples to illustrate

these concepts. Sufficient conditions for families of distributions to have closure

property under the minima or maxima are also obtained in this section. Section

3.3 is on how the closure property under the minima and maxima changes on

monotone transformations of the r.v.s. Section 3.4 discusses how the closure

28
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property under the minima and maxima changes on truncation of r.v.s.

3.1 Introduction

Let A be a set and ∗ a binary operation defined on that set. Let a1 and a2 be

any two elements of the set A. If a1 ∗a2 is also in A, then we say that A is closed

under the operation ∗. That is, a set is said to be closed under an operation if,

and only if, on applying that operation on any two or more elements of that set

provides another element of the same set. The basic operations in elementary

algebra are addition, subtraction, multiplication and division. Some examples

of sets having closure property with respect to these elementary operations are:

Example 3.1.1. The set of positive integers is closed under addition and mul-

tiplication and is not closed under subtraction and division.

Example 3.1.2. The set of integers is closed under addition, subtraction and

multiplication and is not closed under division.

Example 3.1.3. The set of real numbers is closed under addition, subtraction,

multiplication and division.

From the above examples one can see that, the set of positive integers, the

set of integers and the set of real numbers are all closed with respect to the

operations of addition and multiplication. The set of integers and the set of

real numbers are closed with respect to subtraction, while the set of positive

integers is not closed with respect to subtraction. Similarly, the set of real

numbers is closed with respect to division, while the set of integers and the set

of positive integers are not closed with respect to division. Closure property

of a set with respect to an operation does not necessarily imply closure on all

subsets and supersets.
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In some situations, the elements of a set will be again sets. Such sets are

called a class of sets. Some examples of the operations on these sets are; union,

intersection and complementation.

Example 3.1.4. A σ-field is a non-empty class of sets which is closed under

countable union, countable intersection and complementation. That is, if A is

a σ-field and A
j
, j ≥ 1 integer, are elements of A , then

⋃n

j=1
A
j

and
⋂n

j=1
A
j

are in A , and for any element A of A , Ac, the complement of A is also in A .

Let F be a family of distributions of independent r.v.s with same functional

form except for a parameter. One of the most common operations on such a set

is convolution of d.f.s. Such a family of distributions is said to be closed under

convolution, if the convolution of any two or more members of that family

belongs to the same family of distributions. A set of independent r.v.s are

said to be closed under addition if the corresponding family of distributions

are closed under convolution.

Example 3.1.5. The family of Binomial distributions with common probability

of success is closed under convolution.

Example 3.1.6. The family of Normal distributions is closed under convolu-

tion.

We have discussed different types of closure properties. In the following

section we are going to define families of distributions for which the d.f.s of

either the maxima or minima belong to the same family of distributions. Suf-

ficient conditions for a family of distributions to have these properties are also

obtained.
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3.2 Families of Distributions Closed under the Minima

or Maxima

In this section we first define the closure property under the minima as well

as maxima of a sequence of r.v.s or a family of distributions and provide

suitable examples. Let {Xn} be a sequence of independent r.v.s such that

X
j
∼ F

X;αj
∈ F

X;α
. Let us denote the collection of parameters (α1 , α2 , . . . , αn),

corresponding to X1 , X2 , . . . , Xn whose d.f.s belong to F
X;α

by
˜
αn , n ≥ 1.

Definition 3.2.1. A family of distributions, F
X;α

, is said to be closed under

the minima with respect to α, if for all n ≥ 1 and F
X;αj

∈ F
X;α

, j = 1, 2, . . . , n,

the d.f.s of minima, Fmn ;
˜
αn

= F
X;g(

˜
αn )

∈ F
X;α

with parameter g(
˜
αn) depending

on
˜
αn.

Remark 3.2.1. A set of r.v.s is said to be closed under the minima, if the

corresponding family of distributions is closed under the minima.

For a sequence of i.i.d. r.v.s, we can restate the above definition as follows.

Definition 3.2.2. Let X be a r.v. with d.f. F
X;α

involving a parameter α and

(X1 , X2 , . . . , Xn) be i.i.d. copies of X. Then F
X;α

is said to be closed under the

minima, with respect to the parameter α, if for every n ≥ 1, the d.f. of mn is

F
X;gn (α)

, for some gn(α) which is a function of n and the parameter α.

Remark 3.2.2. When the r.v.s are i.i.d. g(
˜
αn) coincides with gn(α) of Defi-

nition 3.2.2.

Example 3.2.1. Let X
j
, j = 1, 2, . . . , n be independent r.v.s such that, X

j
∼

F
X;θj

and F
X;θj

(x) = 1−e−θjx, x > 0, θ
j
> 0. Then F

mn ;
˜
θn

(x) = 1−e−
∑n

j=1
θjx =

F
X;g(

˜
θn )

(x), where g(
˜
θn) =

∑n

j=1
θ
j
. If X

j
s are i.i.d. with parameter θ, then

gn(θ) = nθ.
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Example 3.2.2. Suppose X
j
, j = 1, 2, . . . , n follows Pareto distribution with

d.f. F
X;αj

(x) = 1 − ( p
x
)αj , x > p, p > 0, α

j
> 0, then Fmn ;α(x) = 1 −

( p
x
)
∑n

j=1
αj = F

X;gn (
˜
αn )

(x), where g(
˜
αn) =

∑n

j=1
α
j

When the r.v.s are i.i.d.,

gn(α) = nα. i.e., the family of independent Pareto distributions is closed under

the minima.

Example 3.2.3. Let X
j
, j = 1, 2, . . . , n be independent r.v.s which follows the

Geometric distribution with parameter 0 < p
j
< 1, i.e.,

F
X;pj

(x) =

 0, x < 0

1− (1− p
j
)[x]+1, x ≥ 0,

where [x] denote the greatest integer less than or equal to x. Then the d.f.s of

the minima is given by

Fmn ;
˜
p(x) =

 0, x < 0

1−
∏n

j=1
(1− p

j
)
[x]+1

, x ≥ 0.

So, mn has Geometric distribution with parameter 0 < 1 −
∏n

j=1
(1 − p

j
) < 1.

Here, g(
˜
pn) = 1−

∏n

j=1
(1−p

j
). Therefore, the family of geometric distributions

is closed under the minima. If X
j
s are i.i.d. Geometric with parameter p, then

gn(p) = 1− (1− p)n.

Remark 3.2.3. The Geometric distribution with support on 1, 2, . . . is also

closed under the minima with g(
˜
pn) = 1−

∏n

j=1
(1− p

j
).

Example 3.2.4. Let F
X;θj

(x) = 1 − e
−
(
x
θj

)α
, x > 0, θ

j
> 0, α > 0 and X

j
,

j = 1, 2, . . . , n be independent r.v.s such that X
j

∼ F
X;θj

. Then F
mn ;

˜
θn

(x) =

1−e
−
∑n

j=1

(
x
θj

)α
= 1−e

−
(

x

(∑n

j=1

(
1
θj

)α)1/α
)α

. Therefore, the family of Weibull
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distributions is closed under the minima and g(
˜
θn) = 1(∑n

j=1

(
1
θj

)α)1/α . If X
j
s

are i.i.d. with parameter θ, then gn(θ) = θ
n1/α .

Definition 3.2.3. A family of distributions, F
X;α

, is said to be closed under

the maxima with respect to α, if for all n ≥ 1 and F
X;αj

∈ F
X;α

, j = 1, 2, . . . , n,

the d.f.s of maxima, F
Mn ;

˜
αn

= F
X;h(

˜
αn )

∈ F
X;α

with parameter h(
˜
αn) depending

on
˜
αn.

Remark 3.2.4. A set of r.v.s is said to be closed under the maxima, if the

corresponding family of distributions is closed under the maxima.

When the sequence of r.v.s are i.i.d. we can restate the above definition as

follows.

Definition 3.2.4. Let X be a r.v. with d.f. F
X;α

involving a parameter α and

(X1 , X2 , . . . , Xn) be a random sample of size n from F
X;α

. Then F
X;α

is said

to be closed under the maxima, with respect to the parameter α, if for every

n ≥ 1, the d.f. of Mn is F
X;hn (α)

, for some hn(α) which is a function of n and

the parameter α.

Remark 3.2.5. When the r.v.s are i.i.d. h(
˜
αn) coincides with hn(α) of Defi-

nition 3.2.4.

Example 3.2.5. Suppose X
j
, j = 1, 2, . . . , n are independent observations

having the power distribution with d.f. F
X;αj

(x) =
(

x
θ

)αj , 0 < x < θ, α
j
> 0.

Then F
Mn ;

˜
αn

(x) =
(

x
θ

)∑n

j=1
αj = F

X;h(
˜
αn )

(x). i.e., the family of power distribu-

tions is closed under the maxima with h(
˜
αn) =

∑n

j=1
α
j
. In the i.i.d. case with

parameter α, hn(α) = nα.

Example 3.2.6. If X
j
, j = 1, 2, . . . , n are independent inverse Weibull

r.v.s with corresponding d.f. F
X;θj

(x) = e
−
(
θj
x

)α
, x > 0, θ > 0, α > 0, then
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F
Mn ;

˜
θn

(x) = e
−
∑n

j=1

(
θj
x

)α
= F

X;hn (θ)
(x). Hence, inverse Weibull distribution is

closed under the maxima. In this case hn(θ) = n1/αθ.

Example 3.2.7. Suppose X
j
, j = 1, 2, . . . , n are independent r.v.s having the

generalized exponential distribution with d.f. F
X;αj

(x) = (1 − e−λx)αj , x > 0,

λ, α
j
> 0. Then F

Mn ;
˜
αn

(x) = (1−e−λx)
∑n

j=1
αj . Hence, the family of generalized

exponential distributions is closed under the maxima with h(
˜
αn) =

∑n

j=1
α
j
. If

X
j
s are i.i.d. with parameter α, then gn(α) = nα.

The next example describes a family of distributions which is closed under

both the minima and maxima.

Example 3.2.8. If X
j
j = 1, 2, . . . , n has independent Bernoulli r.v.s with

d.f.

F
X;pj

(x) =


0, x < 0

1− p
j
, 0 ≤ x < 1, 0 < p

j
< 1.

1, x ≥ 1

Then

Fmn ;
˜
pn

(x) =


0, x < 0

1−
∏n

j=1
p
j
, 0 ≤ x < 1, 0 < p

j
< 1

1, x ≥ 1

= F
X;g(

˜
pn )

(x),

where g(
˜
pn) =

∏n

j=1
p
j

and

F
Mn ;

˜
pn

(x) =


0, x < 0∏n

j=1
(1− p

j
), 0 ≤ x < 1, 0 < p

j
< 1

1, x ≥ 1

= F
X;h(

˜
pn )

(x).
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where h(
˜
pn) = 1−

∏n

j=1
(1− p

j
). Hence, the family of Bernoulli distributions is

closed under both the minima and maxima. When the r.v.s are i.i.d. gn(p) = pn

and hn(p) = 1− (1− p)n.

Remark 3.2.6. Every two point distribution is closed under both the minima

and maxima.

Remark 3.2.7. Families of max-stable (min-stable) distributions are closed

under the maxima (minima).

Remark 3.2.8. Exponential distribution is closed under minima, but is not

closed under maxima in the sense of Definition 3.2.4. However, exponential

distribution is max-stable and min-stable in the sense of Pancheva (2010).

Note 3.2.1. If a family of distributions is either closed under the maxima or

closed under the minima, we say that the family of distributions is closed under

extrema.

From the examples discussed above we can see that in most of the cases

g(
˜
αn) or h(

˜
αn) is equal to

∑n

j=1
α
j

and it is not so always. In the following

we will be looking into how the functional form of g(
˜
αn) or h(

˜
αn) is related

to the functional form of the s.f. or d.f. respectively. We can see that except

in Example (3.2.3) and Example (3.2.8), the parameter with respect to which

the family is closed is an exponent parameter, while in these two cases it is the

base parameter. The following theorem gives a sufficient condition for families

of distributions to have closure property under the minima with respect to the

exponent parameter.

Theorem 3.2.1. Let {X
j
} be a sequence of independent r.v.s such that X

j
∼

F
X;αj

∈ F
X;α

and χ be a one-one onto function from R+ to R+. The fam-
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ily F
X;α

is closed under the minima with respect to the exponent parame-

ter if for every j and all x ∈ R, F̄
X;αj

(x) = (F̄
X;1

(x))χ(αj ), then g(
˜
αn) =

χ−1{
∑n

j=1
χ(α

j
)}.

Proof. Let F̄
X;αj

(x) = (F̄
X;1

(x))χ(αj ) for every j and all x ∈ R. Then

F̄mn ;
˜
αn

(x) =
n∏
j=1

(F̄
X;αj

(x))

= (F̄
X;1

(x))
∑n

j=1
χ(αj )

= (F̄
X;1

(x))
χ(χ−1{

∑n

j=1
χ(αj )})

= F̄
X;χ−1{

∑n
j=1

χ(αj )}
(x)

= F̄
X;g(

˜
αn )

(x),

where g(
˜
αn) = χ−1{

∑n

j=1
χ(α

j
)}.

Corollary 3.2.1. If X
j
, j = 1, 2, . . . , n are i.i.d. as X with F̄

X;α
(x) =

(F̄
X;1

(x))χ(α), then g(
˜
αn) = χ−1{nχ(α)}.

Example 3.2.9. Consider Example 3.2.1, since F̄
X;θj

(x) = e−θjx = (e−x)θj

Theorem 3.2.1 can be applied. Therefore, χ(θ
j
) = θ

j
and χ−1(θ

j
) = θ

j
. Hence,

g(
˜
θn) = χ−1

(∑n

j=1
χ(θ

j
)
)

=
∑n

j=1
θ
j
.

Example 3.2.10. From Example 3.2.4, F̄
X;θj

(x) = e
−
(
x
θj

)α
. Hence, by Theo-

rem 3.2.1, g(
˜
θn) =

 1∑n

j=1

(
1
θj

)α
1/α

.

The next theorem, similar to the previous one, gives a sufficient condition

for families of distributions to be closed under the maxima with respect to the

exponent parameter.
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Theorem 3.2.2. Let {X
j
} be a sequence of independent r.v.s such that X

j
∼

F
X;αj

∈ F
X;α

and χ be a one-one onto function from R+ to R+. The fam-

ily F
X;α

is closed under the maxima with respect to the exponent parame-

ter, if for every j and all x ∈ R, F
X;αj

(x) = (F
X;1

(x))χ(αj ), then h(
˜
αn) =

χ−1{
∑n

j=1
χ(α

j
)}.

Proof. The proof is similar to that of Theorem 3.2.1.

Corollary 3.2.2. If X
j
, j = 1, 2, . . . , n are i.i.d. as X with F

X;α
(x) =

(F
X;1

(x))χ(α), then h(
˜
αn) = χ−1{nχ(α)}.

The following theorem gives a sufficient condition for a family of distribu-

tions to be closed under the minima with respect to the base parameter.

Theorem 3.2.3. Let {X
j
} be a sequence of independent r.v.s such that X

j
∼

F
X;αj

∈ F
X;α

and χ be a one-one onto function from (0, 1) to (0, 1). The family

F
X;α

is closed under the minima with respect to the base parameter, if for every

j and all x ∈ R, F̄
X;pj

(x) = (χ(p
j
))ω(x), then g(

˜
pn) = χ−1(

∏n

j=1
χ(p

j
)).

Proof. Let F̄
X;pj

(x) = (χ(p
j
))ω(x) for every j and all x ∈ R. Then

F̄mn ;
˜
pn

(x) =
n∏
j=1

(F̄
X;pj

(x))

= (
n∏
j=1

χ(p
j
))ω(x)

= (χ{χ−1(
n∏
j=1

χ(p
j
))})ω(x)

= F̄
X;χ−1(

∏n
j=1

χ(pj ))
(x)

= F̄
X;g(

˜
pn )

(x),

where g(
˜
pn) = χ−1(

∏n

j=1
χ(p

j
)).
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Corollary 3.2.3. If X
j
, j = 1, 2, . . . , n are i.i.d. as X with F̄

X;p
(x) =

(χ(p))ω(x), then g(
˜
pn) = χ−1(χn(p)).

Example 3.2.11. Consider Example 3.2.3 where F̄
X;pj

(x) = (1−p
j
)[x]+1. This

is of the form (χ(p
j
))ω(x) with ω(x) = [x]+1, χ(p

j
) = 1−p

j
and χ−1(p

j
) = 1−p

j
.

Hence, by Theorem 3.2.3, g(
˜
pn) = χ−1(

∏n

j=1
χ(p

j
)) = 1−

∏n

j=1
(1− p

j
).

Sufficient conditions for a family of distributions to be closed under the

maxima with respect to the base parameter is given in the following theorem.

Theorem 3.2.4. Let {X
j
} be a sequence of independent r.v.s such that X

j
∼

F
X;αj

∈ F
X;α

and χ be a one-one onto function from (0, 1) to (0, 1). The family

F
X;α

is closed under the maxima with respect to the base parameter, if for every

j and all x ∈ R, F
X;pj

(x) = (χ(p
j
))ω(x), then g(

˜
pn) = χ−1(

∏n

j=1
χ(p

j
)).

Proof. The proof is similar to that of Theorem 3.2.3.

Corollary 3.2.4. If X
j
, j = 1, 2, . . . , n are i.i.d. as X with F

X;p
(x) =

(χ(p))ω(x), then h(
˜
pn) = χ−1(χn(p)).

From Example 3.2.4 we can see that the Weibull distribution is closed under

the minima with respect to the scale parameter. Dose it have closure property

under extrema with respect the shape parameter? The answer is ‘no’ and is

illustrated in the following example.

Example 3.2.12. Let F̄
X1

(x) = e
−
(
x
θ1

)α1

and F̄
X2

(x) = e
−
(
x
θ2

)α2

. Then the

d.f.s of their minima, given by F̄m2
(x) = e

−
(
x
θ1

)α1−
(
x
θ2

)α2

is not Weibull.

Remark 3.2.9. The Family of Weibull distributions does not have closure

property under the minima with respect to the shape parameter.
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The above examples of families of distributions or corresponding set of r.v.s

which are closed under the minima or maxima are of standard distributions.

Given an arbitrary distribution F , can one construct families of distributions

having closure property under the maxima or minima? The answer is YES, and

is as follows: consider an arbitrary distribution F , the family of distributions

Fα = {Fα;α > 0} is closed under the maxima with respect to α with h(
˜
αn) =∑n

j=1
α
j

and the family of distributions Fα = {1 − (1 − F )α;α > 0} is closed

under the minima with respect to α with g(
˜
αn) =

∑n

j=1
α
j
.

So we have gone through some sufficient conditions for the families of dis-

tributions to be closed under the minima or maxima. The next section is

on strictly monotone Borel measurable transformations of a set of r.v.s closed

under extrema.

3.3 Monotone Transformations and Closure Property

under Extrema

Let X be a r.v. on a probability space (Ω,A , P ) and ξ(X) be any Borel mea-

surable function of X. Then ξ(X) is also a r.v. on (Ω,A , P ) and the d.f.

of ξ(X) is determined by that of X (Laha and Rohatgi (1979), Page 5, Re-

mark 1.1.1.). In this section, we discuss the closure property under extrema

of strictly increasing or strictly decreasing Borel measurable transformations

of the elements of a set of r.v.s closed under extrema. Some examples of such

transformations are; ξ(X) = lnX, ξ(X) = −X and ξ(X) = 1
X

, with some re-

strictions on the support ofX. We observe that closure property under extrema

is invariant under strictly increasing transformations and they interchange un-

der strictly decreasing transformations. Let us denote the range of a r.v. X by
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RanX. Then we have the following theorem for strictly increasing measurable

transformations.

Theorem 3.3.1. Let the family F
X;α

be closed under extrema with respect to

α and ξ be a Borel measurable and strictly increasing function on RanX. Let

G
ξ(X);α

is the family of distributions of ξ(X). Then the following results hold.

i) If F
X;α

is closed under the maxima, then so is G
ξ(X);α

.

ii) If F
X;α

is closed under the minima, then so is G
ξ(X);α

.

Furthermore, the corresponding g(
˜
αn) or h(

˜
αn) for both the families will be

same.

Proof. Let Y
j
= ξ(X

j
) and G

Y ;αj
be the d.f. of Y

j
. Since ξ is strictly increasing,

we have

G
Y ;αj

(x) = Pαj (ξ(X) ≤ x)

= Pαj (X ≤ ξ−1(x))

= F
X;αj

(ξ−1(x)).

Let F
X;α

be closed under the maxima. Then for all F
X;αj

, j = 1, 2, . . . , n

belonging to F
X;α

;

F
Mn ;

˜
αn

(x) = F
X;h(

˜
αn )

(x).

Hence,

G
Mn ;

˜
αn

(x) =
n∏
j=1

G
Y ;αj

(x)

=
n∏
j=1

F
X;αj

(ξ−1(x))
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= F
X;h(

˜
αn )

(ξ−1(x))

= G
Y ;h(

˜
αn )

(x).

i.e., G
ξ(X);α

is closed under the maxima with h(
˜
αn) of F

X;α
. Now, let F

X;α

be closed under the minima. Then for all F
X;αj

, j = 1, 2, . . . , n, belonging to

F
X;α

;

Fmn ;
˜
αn

(x) = F
X;g(

˜
αn )

(x).

Hence,

Ḡmn ;
˜
αn

(x) =
n∏
j=1

Ḡ
Y ;αj

(x)

=
n∏
j=1

F̄
X;αj

(ξ−1(x))

= F̄
X;g(

˜
αn )

(ξ−1(x))

= Ḡ
Y ;g(

˜
αn )

(x).

i.e., G
ξ(X);α

is closed under the minima with g(
˜
αn) of F

X;α
. Hence the proof.

The following results provide particular cases of strictly increasing Borel

measurable transformations of X.

Result 3.3.1. Let the family F
X;α

, X > 0 a.s., be closed under the minima

(maxima) with respect to α and ξ(X) = lnX. Then the family G
lnX;α

is closed

under the minima (maxima) with respect to α.

Result 3.3.2. Closure property under extrema is invariant under change of

scale and origin.

The next theorem is on strictly decreasing measurable transformations.
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Theorem 3.3.2. Let the family F
X;α

be closed under extrema with respect to

α and ξ be Borel measurable and strictly decreasing on RanX. Let G
ξ(X);α

is

the family of distributions of ξ(X). Then the following results hold.

i) If F
X;α

is closed under the maxima, then the family G
ξ(X);α

is closed under

the minima with corresponding g(
˜
αn) = h(

˜
αn) of F

X;α
.

ii) If F
X;α

is closed under the minima, then G
ξ(X);α

is closed under the maxima

with corresponding h(
˜
αn) = g(

˜
αn) of F

X;α
.

Proof. Let G
Y ;αj

be the d.f. of Y
j

= ξ(X
j
). Since ξ is strictly decreasing, −ξ

is strictly increasing. Hence, by Theorem 3.3.1 and the relation (2.3.10),

Ḡmn ;
˜
αn

(x) = P
˜
αn

(min(ξ(X1), ξ(X2), . . . , ξ(Xn)) > x)

= P
˜
αn

(−max(−ξ(X1),−ξ(X2), . . . ,−ξ(Xn)) > x)

= P
˜
αn

(max(−ξ(X1),−ξ(X2), . . . ,−ξ(Xn)) < −x)

= P
h(

˜
αn )

(−ξ(X) < −x)

= P
h(

˜
αn )

(ξ(X) > x)

= Ḡ
Y ;h(

˜
αn )

(x).

i.e., G
ξ(X);α

is closed under the minima with g(
˜
αn) = h(

˜
αn) of F

X;α
. Similarly,

by Theorem 3.3.1 and the relation (2.3.10), we have

G
Mn ;

˜
αn

(x) = P
˜
αn

(max(ξ(X1), ξ(X2), . . . , ξ(Xn)) ≤ x)

= P
˜
αn

(−min(−ξ(X1),−ξ(X2), . . . ,−ξ(Xn)) ≥ x)

= P
˜
αn

(min(−ξ(X1),−ξ(X2), . . . ,−ξ(Xn)) ≤ −x)

= P
g(

˜
αn )

(−ξ(X) ≤ −x)
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= P
g(

˜
αn )

(ξ(X) ≥ x)

= G
Y ;g(

˜
αn )

(x).

i.e., G
ξ(X);α

is closed under the maxima with h(
˜
αn) = g(

˜
αn) of F

X;α
. Hence the

proof.

The following results are particular cases of strictly decreasing Borel mea-

surable transformations of X.

Result 3.3.3. Let the family F
X;α

be closed under the minima (maxima) with

respect to α and ξ(X) = −X. Then G−X,α is closed under the maxima (minima)

with respect to α.

Result 3.3.4. Let the family F
X;α

, P (X 6= 0) = 1, be closed under the minima

(maxima) with respect to α and ξ(X) = 1
X

. Then the family G 1
X
,α

is closed

under the maxima (minima) with respect to α.

Result 3.3.5. Let the family F
X;α

be closed under the minima (maxima) with

respect to α and ξ(X) = Xγ. Then

1. the family G
Xγ,α

, X ≥ 0, a.s., is closed under the minima (maxima) with

respect to α, for γ > 0, a constant.

2. the family G
Xγ,α

, X > 0, a.s., is closed under the maxima (minima) with

respect to α, for γ < 0, a constant.

3.4 Truncation and Closure Property under Extrema

Truncated distributions are obtained by restricting the domain of a probability

distribution. The restriction can be either on the left side of the domain or the

right side of the domain or both. The probability distribution of X, conditional
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on X > a, is called “the left-truncated distribution of X, truncated at a” and

the probability distribution of X, conditional on X < b, is called “the right-

truncated distribution of X, truncated at b”. If X has a p.d.f. or p.m.f., then

the truncated distribution also has a p.d.f. or p.m.f. respectively and is equal

to that of X restricted to x > a or X < b or a < X < b and normalized to

have total mass 1. The d.f. of X truncated at both ends, or doubly truncated,

is denoted by F
X
T (a,b)

and is given by

F
X
T (a,b)

(x) =
F
X
(x)− F

X
(a)

F
X
(b)− F

X
(a)

(3.4.1)

with corresponding s.f.

F̄
X
T (a,b)

(x) =
F̄
X
(x)− F̄

X
(b)

F̄
X
(a)− F̄

X
(b)

(3.4.2)

for xa ≤ a < x < b ≤ x
b
, where xa and x

b
are respectively the left and the

right end points of the support of X. If a = xa and b < x
b
, we get a right

truncated distribution. Similarly, if a > xa and b = x
b

we get a left truncated

distribution. Hence, the d.f. of a right truncated distribution truncated at b is

given by

F
X
T (b)

(x) =
F
X
(x)

F
X
(b)

(3.4.3)

and the s.f. of a left truncated distribution truncated at a is given by

F̄
X
T (a)

(x) =
F̄
X
(x)

F̄
X
(a)

. (3.4.4)

For details, see page 62 of Johnson et. al. (2005).

In this section, we see how truncation affects the closure property under

extrema of a set of r.v.s closed under extrema. From (3.4.1) and (3.4.2) we can
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easily say that the closure under extrema is not preserved under truncation

at both the ends. Let us denote the family of distributions truncated at b on

the right side of the support of r.v.s whose d.f.s belong to F
X;α

, a family of

distributions closed under extrema, by F
X
T (b)

;α
. The next theorem is on closure

property under the maxima of F
X
T (b)

;α
.

Theorem 3.4.1. Let the family F
X;α

be closed under the maxima. Then the

right truncated family, F
X
T (b)

;α
, is also closed under the maxima.

Proof. Since F
X;α

closed under minima, we have F
Mn ;

˜
αn

(x) = F
X;h(

˜
αn )

. Then

F
MnT (b)

;
˜
αn

(x) =
n∏
j=1

F
X
T (b)

;αj
(x)

=
n∏
j=1

F
X;αj

(x)

F
X;αj

(b)

=
F
X;h(

˜
αn )

(x)

F
X;h(

˜
αn )

(b)

= F
X
T (b)

;h(
˜
αn )

(x).

Hence the proof.

We have seen that closure property under the maxima is invariant under

the truncation at the right side of the support of the family of distributions.

Let us denote the family of distributions truncated at a on the left side of the

support of r.v.s having d.f.s belonging to F
X;α

, a family of distributions closed

under extrema, by F
X
T (a)

;α
. The next theorem is on closure property under

the minima of F
X
T (a)

;α
.

Theorem 3.4.2. Let the family F
X;α

be closed under the minima. Then the

left truncated family F
X
T (a)

;α
is also closed under the minima.
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Proof. Since F
X;α

closed under minima, we have F̄mn ;
˜
αn

(x) = F
X;g(

˜
αn )

. Then

in the same line of the proof of Theorem 3.4.1, we get F̄mnT (b)
;
˜
αn

(x) =

F̄
X
T (a)

;g(
˜
αn )

(x). Hence, F
X
T (a)

;α
is closed under the minima.

The theorem says that closure under the minima is invariant under the left

truncation of r.v.s closed under the minima.

Example 3.4.1. Let X
j
, j = 1, 2, . . . , n be distributed as in Example 3.2.1.

Then the s.f. of mn is given by F̄
mn ;

˜
θn

(x) = e
−
∑n

j=1
θjx. The s.f. of X

j

left truncated at ‘a’ is given by F̄
X
T (a)

;θj
= e−θj (x−a), j = 1, 2, . . . , n. Hence

the s.f. corresponding to the minimum of X
j
T (a)

, j = 1, 2, . . . , n is given by

F̄
mnT (b)

;
˜
θn

(x) = e
−
∑n

j=1
θj (x−a)

= F
X
T (a)

;
∑n
j=1

θj
(x). Therefore, the left truncated

family of exponential distributions is also closed under minima.

In this chapter, we introduced the concepts of a family of distributions or

corresponding set of r.v.s being closed under extrema. Sufficient conditions for

families of distributions to have closure under extrema are discussed. After

that we discussed how closure property under extrema changes under strictly

monotone transformations and truncations, of the r.v.s closed under extrema.
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FOUR

Characteristic Functions of Extrema

In Example 2.3.2, we have seen that partial minima of a sequence of indepen-

dent exponential r.v.s are also exponential and hence we can express the c.f.s of

these partial minima in terms of the c.f. of the underlying distribution, which

is exponential. In Chapter 3, we saw that there exist a class of distributions

having the property, closure under extrema. Hence, similar result hold for all

other members of this class and is stated as a theorem later. What about

the c.f.s of partial maxima in Example 2.3.2? In this Chapter, we raise the

question; whether one can represent the c.f.s of partial maxima of a sequence

of independent r.v.s in terms of the c.f.s of the underlying distribution, closed

under the minima? Similarly, is it possible to represent the c.f.s of partial min-

ima of a sequence of independent r.v.s in terms of the c.f.s of the underlying

distribution, closed under the maxima? These problems are addressed in this

chapter. The results corresponding to a sequence of independent non-identical

r.v.s are based on Aparna and Chandran (2018a) and that corresponding to a

sequence of i.i.d. r.v.s are based on Aparna and Chandran (2017).
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The chapter is organized as follows: Section 4.1 obtains the representations

for the d.f.s of partial maxima in terms of the d.f.s of partial minima for a

sequence of independent r.v.s. From these representations, when the sequence

of r.v.s is closed under the minima, one can represent the d.f.s of partial max-

ima in terms of the d.f. of the underlying distribution. Similarly, when the

sequence of r.v.s is closed under the maxima, one can represent the d.f.s of

partial minima in terms of the d.f. of the underlying distribution. The results

corresponding to i.i.d. sequence of r.v.s are deduced as particular cases. By the

one to one correspondence between the d.f.s and their integral transforms, one

can obtain similar representations for the c.f. and other integral transforms,

whenever they exist and is discussed in Section 4.2. Section 4.3 provides sim-

ilar representations for the moments of partial extrema of r.v.s closed under

extrema. An application of this result is also discussed.

4.1 Distributions of Extrema

In this section we derive the relationships between the d.f.s of partial maxima

and partial minima, of a sequence of independent r.v.s. The d.f.s of partial

maxima can be represented in terms of the d.f.s of partial minima and the d.f.s

of partial minima can be represented in terms of the d.f.s of partial maxima.

This has special significance when the sequence of r.v.s is closed under extrema.

The p.d.f. and p.m.f. also have similar representations, whenever they exist.

Let us first introduce some notations.

Let {Xn} be a sequence of independent non-identically distributed

r.v.s such that X
j
∼ F

Xj
. Let D

k
, 1 ≤ k ≤ n, represents the set of

all subsets of {1, 2, . . . , n} having cardinality k. We denote an element

of D
k

by d
k

= (j1 , j2 , . . . , jk). Let m
d
k

= min(X
j1
, X

j2
, . . . , X

j
k
) and
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M
d
k

= max(X
j1
, X

j2
, . . . , X

j
k
) (i.e., the minimum and maximum of r.v.s

corresponding to d
k
) with corresponding d.f.s Fm

d
k

(x) and F
M
d
k

(x). We

denote the collection of parameters (α
j1
, α

j2
, . . . , α

j
k
) of (X

j1
, X

j2
, . . . , X

j
k
)

corresponding to an d
k

by
˜
α
d
k
. i.e.,

˜
α
d
k

= (α
j1
, α

j2
, . . . , α

j
k
). Note that

˜
αn =

˜
α
dn

.

Lemma 4.1.1. Let {Xn} be a sequence of independent r.v.s and X
j
∼ F

Xj
.

Then the d.f.s of partial maxima, Mn and partial minima, mn have the repre-

sentations given by

F
Mn

(x) =
n∑
k=1

(−1)k−1
∑
d
k
∈D

k

Fm
d
k

(x) (4.1.1)

and

Fmn (x) =
n∑
k=1

(−1)k−1
∑
d
k
∈D

k

F
M
d
k

(x). (4.1.2)

Proof. From (2.3.3), we have the d.f. of Mn given by

F
Mn

(x) =
n∏
j=1

F
Xj

(x)

=
n∏
j=1

(1− F̄
Xj

(x))

= 1−
∑

1≤j1≤n

F̄
Xj1

(x) +
∑

1≤j1<j2≤n

F̄
Xj1

(x)F̄
Xj2

(x)− . . .

+(−1)k
∑

1≤j1<...<jk≤n

F̄
Xj1

(x) . . . F̄
Xj
k

(x) + . . .

+(−1)n
∑

1≤j1<...<jn≤n

F̄
Xj1

(x) . . . F̄
Xjn

(x)
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= 1−
(
n

1

)
+ . . .+ (−1)(k)

(
n

k

)
+ . . .+ (−1)(n)

(
n

n

)
+
∑

1≤j1≤n

(1− F̄
Xj1

(x))−
∑

1≤j1<j2≤n

(1− F̄
Xj1

(x)F̄
Xj2

(x)) + . . .

+(−1)k−1
∑

1≤j1<...<jk≤n

(1− F̄
Xj1

(x) . . . F̄
Xj
k

(x)) + . . .

+(−1)n−1
∑

1≤j1<...<jn≤n

(1− F̄
Xj1

(x) . . . F̄
Xjn

(x))

=
∑

1≤j1≤n

(1− F̄
Xj1

(x))−
∑

1≤j1<j2≤n

(1− F̄
Xj1

(x)F̄
Xj2

(x)) + . . .

+(−1)k−1
∑

1≤j1<...<jk≤n

(1− F̄
Xj1

(x) . . . F̄
Xj
k

(x)) + . . .

+(−1)n−1
∑

1≤j1<...<jn≤n

(1− F̄
Xj1

(x) . . . F̄
Xjn

(x))

=
∑

1≤j1≤n

(1− (1− F
Xj1

(x)))−
∑

1≤j1<j2≤n

(1−
2∏
l=1

(1− F
Xj
l

(x))) + . . .

+(−1)k−1
∑

1≤j1<...<jk≤n

(1−
k∏
l=1

(1− F
Xj
l

(x))) + . . .

+(−1)n−1
∑

1≤j1<...<jn≤n

(1−
n∏
l=1

(1− F
Xj
l

(x)))

=
∑
d1∈D1

Fm
d1

(x)−
∑
d2∈D2

Fm
d2

(x) + . . .+ (−1)k−1
∑
d
k
∈D

k

Fm
d
k

(x)

+ . . .+ (−1)n−1
∑
dn∈Dn

Fm
dn

(x)

=
n∑
k=1

(−1)k−1
∑
d
k
∈D

k

Fm
d
k

(x).

Similarly, from (2.3.4), we have the d.f. of mn as:

Fmn (x) = 1−
n∏
j=1

(1− F
Xj

(x)).
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On expanding and simplifying, we get

Fmn (x) =
n∑
k=1

(−1)k−1
∑
d
k
∈D

k

F
M
d
k

(x).

Hence the proof.

When the sequence of r.v.s are i.i.d., we have F
Xj

(x) = F
X
(x), ∀ j.

Hence, for all d
k
∈ D

Fm
d
k

(x) = Fm
k
(x).

and

F
M
d
k

(x) = F
M
k
(x).

Number of elements of D
k

=
(

n
k

)
, which is the number of subsets of {1, 2, . . . , n}

having cardinality k. Therefore,

∑
d
k
∈D

k

Fm
d
k

(x) =

(
n

k

)
Fm

k
(x).

Hence, from (4.1.1), we have

F
Mn

(x) =
n∑
k=1

(−1)(k−1)

(
n

k

)
Fm

k
(x). (4.1.3)

Similarly, ∑
d
k
∈D

k

F
M
d
k

(x) =

(
n

k

)
F
M
k
(x).

Hence, from (4.1.2), we have

Fmn (x) =
n∑
k=1

(−1)(k−1)

(
n

k

)
F
M
k
(x). (4.1.4)
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When the r.v.s are absolutely continuous with respect to the Lebesgue mea-

sure, we have the next corollary.

Corollary 4.1.1. Let {Xn} be a sequence of independent r.v.s with X
j
∼ F

Xj

having p.d.f. f
Xj

. Then the p.d.f.s of partial maxima, Mn and partial minima,

mn are given by

f
Mn

(x) =
n∑
k=1

(−1)k−1
∑
d
k
∈D

k

fm
d
k

(x) (4.1.5)

and

fmn (x) =
n∑
k=1

(−1)k−1
∑
d
k
∈D

k

f
M
d
k

(x). (4.1.6)

Proof. Since the p.d.f. exists, the proof follows from Lemma 4.1.1.

When {Xn} is a sequence of i.i.d. r.v.s, the expression (4.1.5) reduces to

f
Mn

(x) =
n∑
k=1

(−1)(k−1)

(
n

k

)
fm

k
(x)

and (4.1.6) reduces to

fmn (x) =
n∑
k=1

(−1)(k−1)

(
n

k

)
f
M
k
(x).

When the r.v.s are absolutely continuous with respect to the counting mea-

sure, the next corollary follows.

Corollary 4.1.2. Let {Xn} be a sequence of independent r.v.s with X
j
∼ F

Xj

having p.m.f. p
Xj

. Then the p.m.f.s of partial maxima, Mn and partial minima,
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mn are given by

p
Mn

(x) =
n∑
k=1

(−1)k−1
∑
d
k
∈D

k

pm
d
k

(x) (4.1.7)

and

pmn (x) =
n∑
k=1

(−1)k−1
∑
d
k
∈D

k

p
M
d
k

(x). (4.1.8)

Proof. Since the p.m.f. exists, the proof follows from Lemma 4.1.1.

When {Xn} is a sequence of i.i.d. r.v.s, the expression (4.1.7) reduces to

p
Mn

(x) =
n∑
k=1

(−1)(k−1)

(
n

k

)
pm

k
(x)

and (4.1.8) reduces to

pmn (x) =
n∑
k=1

(−1)(k−1)

(
n

k

)
p
M
k
(x).

Now, if {Xn} is a sequence of independent r.v.s closed under extrema, we

have the following theorem.

Theorem 4.1.1. Let {Xn} be a sequence of independent r.v.s having d.f. be-

longing to F
X;α

. If F
X;α

is closed under the minima with respect to α, then

F
Mn ;

˜
αn

(x) =
n∑
k=1

(−1)k−1
∑
d
k
∈D

k

F
X;g(

˜
α
d
k

)
(x) (4.1.9)
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and if F
X;α

is closed under the maxima with respect to α, then

Fmn ;
˜
αn

(x) =
n∑
k=1

(−1)k−1
∑
d
k
∈D

k

F
X;h(

˜
α
d
k

)
(x). (4.1.10)

Proof. Suppose F
X;α

is closed under the minima with respect to α. Then

Fm
d
k

(x) = F
X;g(

˜
α
d
k

)
(x) ∀ d

k
∈ D

k
.

Hence, we have the representation given in equation (4.1.9). Similarly, if F
X;α

is closed under the maxima with respect to α, then

F
M
d
k

(x) = F
X;h(

˜
α
d
k

)
(x) ∀ d

k
∈ D

k
.

Hence, the representation given in equation (4.1.10) follows.

If {Xn} is a sequence of i.i.d. r.v.s whose d.f. belongs to a family of

distributions having closure property under the minima, then (4.1.9) becomes

F
Mn ;α

(x) =
n∑
k=1

(−1)(k−1)

(
n

k

)
F
X;g

k
(α)

(x) (4.1.11)

and if the family is closed under the maxima, then (4.1.10) becomes

Fmn ;α(x) =
n∑
k=1

(−1)(k−1)

(
n

k

)
F
X;h

k
(α)

(x). (4.1.12)

If F
X;α

is a family of absolutely continuous distributions closed under ex-

trema, then we have the following corollary.
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Corollary 4.1.3. Let {Xn} be a sequence of independent r.v.s having d.f. be-

longing to F
X;α

, with X
j

having p.d.f. f
X;αj

. If F
X;α

is closed under the

minima with respect to α, then

f
Mn ;

˜
αn

(x) =
n∑
k=1

(−1)k−1
∑
d
k
∈D

k

f
X;g(

˜
α
d
k

)
(x) (4.1.13)

and if F
X;α

is closed under the maxima with respect to α, then

fmn ;
˜
αn

(x) =
n∑
k=1

(−1)k−1
∑
d
k
∈D

k

f
X;h(

˜
α
d
k

)
(x). (4.1.14)

Proof. Since the p.d.f. exists, the proof follows from Theorem 4.1.1.

Suppose {Xn} is a sequence of i.i.d. continuous r.v.s having d.f. belonging

to F
X;α

. Then, if F
X;α

is closed under minima, (4.1.13) reduces to

f
Mn ;α

(x) =
n∑
k=1

(−1)(k−1)

(
n

k

)
f
X;g

k
(α)

(x)

and if F
X;α

is closed under maxima, from (4.1.14), we have

fmn ;α(x) =
n∑
k=1

(−1)(k−1)

(
n

k

)
f
X;h

k
(α)

(x).

When F
X;α

is a family of discrete distributions closed under extrema, we

have the next corollary.

Corollary 4.1.4. Let {Xn} be a sequence of independent r.v.s having d.f. be-

longing to F
X;α

, with X
j

having p.m.f. p
X;αj

. If F
X;α

is closed under the
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minima with respect to α, then

p
Mn ;

˜
αn

(x) =
n∑
k=1

(−1)k−1
∑
d
k
∈D

k

p
X;g(

˜
α
d
k

)
(x) (4.1.15)

and if F
X;α

is closed under the maxima with respect to α, then

pmn ;
˜
αn

(x) =
n∑
k=1

(−1)k−1
∑
d
k
∈D

k

p
X;h(

˜
α
d
k

)
(x). (4.1.16)

Proof. Since the p.m.f. exists, the proof follows from Theorem 4.1.1.

Suppose {Xn} is a sequence of i.i.d. discrete r.v.s having d.f. belonging to

F
X;α

. Then, if F
X;α

is closed under the minima, (4.1.15) reduces to

p
Mn ;α

(x) =
n∑
k=1

(−1)(k−1)

(
n

k

)
p
X;g

k
(α)

(x)

and if F
X;α

is closed under the maxima, from (4.1.16), we have

pmn ;α(x) =
n∑
k=1

(−1)(k−1)

(
n

k

)
p
X;h

k
(α)

(x).

Now, we have derived the expressions for the d.f.s of partial maxima in

terms of the d.f. of the underlying distribution, closed under the minima and

the d.f.s of partial minima in terms of the d.f. of the underlying distribution,

closed under the maxima. In Chapter 2, we have discussed the one to one cor-

respondence between the d.f. of a r.v. and its c.f. Due to this correspondence,

we have similar representations for the c.f.s. of extrema and are discussed in

the next section.
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4.2 Characteristic Functions of Extrema

We have seen from equations (2.3.15) and (2.3.16) that, in general, the c.f.s of

partial maxima and partial minima do not have a compact form in terms of

the c.f.s of the underlying distribution. However, in Example 2.3.2, we have

seen that the c.f.s of partial minima of a sequence of independent exponential

r.v.s, with X
j
, having parameter θ

j
, j = 1, 2, . . . , n, is same as the c.f. of

an exponential r.v. with parameter
∑n

j=1
θ
j
, which is in compact form. In

this section, we derive the c.f.s of partial minima in terms of the c.f. of the

underlying distribution, when the r.v.s are closed under the maxima and the

c.f.s of partial maxima in terms of the c.f. of the underlying distribution, when

the r.v.s are closed under the minima. If {Xn} is a sequence of independent

r.v.s closed under extrema, we have the following theorem for the c.f.s of partial

extrema.

Theorem 4.2.1. Let {Xn} be a sequence of independent r.v.s with X
j
∼ F

Xj
∈

F
X;α

and let the c.f. of X
j

be φ
X;αj

. If F
X;α

is closed under the minima with

respect to α, then

φmn ;
˜
αn

(t) = φ
X;g(

˜
αn )

(t) (4.2.1)

and

φ
Mn ;

˜
αn

(t) =
n∑
k=1

(−1)k−1
∑
d
k
∈D

k

φ
X;g(

˜
α
d
k

)
(x), (4.2.2)

If F
X;α

is closed under the maxima with respect to α, then

φ
Mn ;

˜
αn

(t) = φ
X;h(

˜
αn )

(t) (4.2.3)
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and

φmn ;
˜
αn

(t) =
n∑
k=1

(−1)k−1
∑
d
k
∈D

k

φ
X;h(

˜
α
d
k

)
(x). (4.2.4)

Proof. Suppose F
X;α

is closed under the minima. Then

Fmn ;
˜
αn

(X) = F
X;g(

˜
αn )

(x).

Hence, by the one to one correspondence between the d.f. and the c.f. of a r.v.,

we have (4.2.1). Now, from Theorem 4.1.1 and the one to one correspondence

between the d.f. and the c.f. of a r.v., we have(4.2.2). Similarly, if F
X;α

is

closed under the maxima similar arguments give (4.2.3) and (4.2.4).

Example 4.2.1. In Example 3.2.1, φ
X;θj

(t) =
(
1− it

θj

)−1

, then

φ
mn ;

˜
θ
(t) =

(
1− it∑n

j=1
θ
j

)−1

and

φ
Mn ;

˜
θ
(t) =

n∑
k=1

(−1)k−1
∑
d
k
∈D

k

(
1− it∑k

l=1
θ
j
l

)−1

.

Example 4.2.2. If X
j

are distributed as in Example 3.2.5, then φ
X;αj

(t) =

α
j

∑∞
s=0

(itθ)s

s!(αj+s)
. Hence, the c.f.s of partial maxima is given by

φ
Mn ;

˜
αn

(t) =
n∑
j=1

α
j

∞∑
s=0

(itθ)s

s!(
∑n

j=1
α
j
+ s)
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and that of partial minima by

φmn ;
˜
αn

(t) =
n∑
k=1

(−1)k−1
∑
d
k
∈D

k

k∑
l=1

α
j
l

∞∑
s=0

(itθ)s

s!(
∑k

l=1
α
j
l
+ s)

.

If {Xn} is a sequence of i.i.d. r.v.s whose d.f. belongs to a family of

distributions closed under minima, (4.2.1) becomes

φmn ;α(t) = φ
X;gn (α)

(t) (4.2.5)

and (4.2.2) becomes

φ
Mn ;α

(t) =
n∑
k=1

(−1)k−1

(
n

k

)
φ
X;g

k
(α)

(t). (4.2.6)

Example 4.2.3. In Example 4.2.1 if the r.v.s are i.i.d. with F
X;θ

(x) = 1−e−θx,

then φ
X;θ

(t) = θ
θ−it

. Hence, the c.f.s of minima,

φ
mn ;θ

(t) =
nθ

nθ − it

and the c.f.s of maxima is

φ
Mn ;θ

(t) =
n∑
k=1

(−1)k−1

(
n

k

)
kθ

kθ − it
.

Example 4.2.4. Suppose X has Weibull distribution with d.f. F
X;θ

(x) = 1 −

e−(xθ )
α

, x > 0, θ > 0, α > 0 and c.f. φ
X;θ

(t) =
∑∞

s=0

(itθ)s

s!
Γ(1 + s

α
). Then the

c.f.s of mn is

φ
mn ;θ

(t) =
∞∑
s=0

(itθ)s

ns/αs!
Γ(1 +

s

α
)
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and hence, that of Mn is

φ
Mn ;θ

(t) =
n∑
k=1

(−1)k−1

(
n

k

) ∞∑
s=0

(itθ)s

ks/αs!
Γ(1 +

s

α
).

If {Xn} is a sequence of i.i.d. r.v.s whose d.f. belongs to a family of

distributions closed under maxima, (4.2.4) becomes

φ
Mn ;α

(t) = φ
X;hn (α)

(t) (4.2.7)

and (4.2.3) becomes

φmn ;α(t) =
n∑
k=1

(−1)k−1

(
n

k

)
φ
X;h

k
(α)

(t). (4.2.8)

Example 4.2.5. If Example 4.2.2, if the r.v.s are i.i.d. as F
X;α

(x) =
(

x
θ

)α
,

0 < x < θ, α > 0, then φ
X;α

(t) = α
∑∞

s=0

(itθ)s

s!(α+s)
. Hence,

φ
Mn ;α

(t) = nα
∞∑
s=0

(itθ)s

s!(nα + s)

and

φmn ;α(t) =
n∑
k=1

(−1)k−1

(
n

k

)
kα

∞∑
s=0

(itθ)s

s!(kα+ s)
.

The c.f. is a particular case of integral transform with kernal eitx. The

kernel of an integral transform k(t, x) is a function of the variable x and also

have a parameter t. The parameter can be either discrete or continuous. The

integral transform is given by

∫ ∞

−∞

k(t, x)dF (x), (4.2.9)
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provided the integral (4.2.9) exist. The kernels which are useful in the study

of d.f.s are:

i) K(t, x) = xt

ii) K(t, x) = |x|t

iii) K(t, x) = x(t) = x(x− 1)(x− 2) . . . (x− t+ 1), where x(0) = 1

iv) K(t, x) = etx

v) K(t, x) = tx

vi) K(t, x) = eitx where i =
√
−1.

In (i), (ii) and (iii) the parameter t can take values on non-negative integers. To

emphasis this discrete character we replace t by k. And hence by substituting

(i), (ii) and (iii) in (4.2.9) we will obtain the kth moment denoted by E(Xk),

kth absolute moment and kth factorial moment of F (x) respectively. In (iv),

(v) and (vi) the parameter t takes real values. By putting (iv) in (4.2.9) we get

the moment generating function of F (x) given by

M(t) =

∫ ∞

−∞

etxdF (x). (4.2.10)

The kernel (v) is used when F (x) is a d.f. of a discrete r.v. and this integral

transform is called the probability generating function given by

Q(t) =

∫ ∞

−∞

txdF (x) =
∞∑
j=0

tjp
j
, (4.2.11)

where p
j
> 0 are the probabilities that x takes the value j and

∑∞
j=0

p
j

= 1.

On substituting the kernel (vi) in (4.2.9) we get the c.f. For details see Lukacs

(1960).
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As in the case of the c.f., there is a one to one correspondence between a

d.f. and all other integral transforms of that d.f. But unlike the c.f., the other

integral transforms need not exist always. If an integral transform exists, then

we have the corresponding representations for that integral transform of partial

maxima and partial minima of a sequence of r.v.s closed under extrema, as that

of the c.f.s in Theorem 4.2.1. The next section gives the representations for the

kth moment, that is, the integral transform (i) of partial maxima and partial

minima and its application in reliability theory.

4.3 Moments of Extrema and their Applications

In this section we obtain the moments of partial extrema (whenever they exist)

of a sequence of independent r.v.s closed under extrema. An application of the

result is also discussed. The sth moments of partial extrema of a sequence of

r.v.s closed under extrema exist, if the sth moment of the underlying distribu-

tion exists. The following results hold true under the assumption that the sth

moments of the r.v.s corresponding to the family of distributions exist.

Theorem 4.3.1. Let {Xn}, be a sequence of independent r.v.s whose d.f.s are

from F
X;α

and the sth moment of the family exists. If F
X;α

is closed under the

minima with respect to α, then

Emn ;
˜
αn

(ms
n
) = E

X;g(
˜
αn )

(Xs) (4.3.1)

and

E
Mn ;

˜
αn

(M s
n
) =

n∑
k=1

(−1)k−1
∑
d
k
∈D

k

E
X;g(

˜
α
d
k

)
(Xs). (4.3.2)



63

If F
X;α

is closed under the maxima with respect to α, then

E
Mn ;

˜
αn

(M s
n
) = E

X;h(
˜
αn )

(Xs) (4.3.3)

and

Emn ;
˜
αn

(ms
n
) =

n∑
k=1

(−1)k−1
∑
d
k
∈D

k

E
X;h(

˜
α
d
k

)
(Xs). (4.3.4)

Proof. Since the sth moment exist, the proof follows on the similar lines of the

proof of Theorem 4.2.1, from Theorem 4.1.1.

Suppose {Xn} is a sequence of i.i.d. r.v.s whose d.f.s are from F
X;α

and

the sth moment of the family exists. Then (4.3.1) reduces to

Emn ;α(m
s
n
) = E

X;gn (α)
(Xs) (4.3.5)

and (4.3.2) becomes

E
Mn ;α

(M s
n
) =

n∑
k=1

(−1)k−1

(
n

k

)
E
X;g

k
(α)

(Xs), (4.3.6)

if F
X;α

is closed under the minima. Similarly, (4.3.3) becomes

E
Mn ;α

(M s
n
) = E

X;hn (α)
(Xs) (4.3.7)

and (4.3.4) becomes

Emn ;α(m
s
n
) =

n∑
k=1

(−1)k−1

(
n

k

)
E
X;h

k
(α)

(Xs), (4.3.8)
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when F
X;α

is closed under the maxima.

Suppose that the expectations of the r.v.s corresponding to F
X;α

exists.

Then we have the following corollary.

Corollary 4.3.1. Let {Xn}, be a sequence of independent r.v.s whose d.f.s are

from F
X;α

and the expectation of the r.v.s exist. If F
X;α

is closed under the

minima with respect to α, then

Emn ;
˜
αn

(mn) = E
X;g(

˜
αn )

(X) (4.3.9)

and

E
Mn ;

˜
αn

(Mn) =
n∑
k=1

(−1)k−1
∑
d
k
∈D

k

E
X;g(

˜
α
d
k

)
(X). (4.3.10)

If F
X;α

is closed under the maxima with respect to α, then

E
Mn ;

˜
αn

(Mn) = E
X;h(

˜
αn )

(X) (4.3.11)

and

Emn ;
˜
αn

(mn) =
n∑
k=1

(−1)k−1
∑
d
k
∈D

k

E
X;h(

˜
α
d
k

)
(X). (4.3.12)

Proof. Since the expectation of X exist, substituting s = 1 in the proof of

Theorem 4.3.1, the corollary follows.

Suppose {Xn} is sequence of i.i.d. r.v.s whose expectation exists. If the

d.f.s of the r.v.s belong to a family of distributions closed under the minima,
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from (4.3.9) we get

Emn ;α(mn) = E
X;gn (α)

(X) (4.3.13)

and from (4.3.10), we have

E
Mn ;α

(Mn) =
n∑
k=1

(−1)k−1

(
n

k

)
E
X;g

k
(α)

(X). (4.3.14)

Similarly, if the d.f.s of the r.v.s belong to a family of distributions closed under

the maxima, from (4.3.11), we have

E
Mn ;α

(Mn) = E
X;hn (α)

(X) (4.3.15)

and from (4.3.12) we get

Emn ;α(mn) =
n∑
k=1

(−1)k−1

(
n

k

)
E
X;h

k
(α)

(X). (4.3.16)

Suppose that the second moment of the r.v.s corresponding to the d.f.s of

the family F
X;α

exists. Then we have the following corollary for the variance

of partial maxima and the partial minima of a sequence of independent r.v.s

closed under extrema.

Corollary 4.3.2. Let {Xn}, be a sequence of independent r.v.s whose d.f.s are

from F
X;α

and the 2nd moment of the family exists. If F
X;α

is closed under

the minima with respect to α, then

Vmn ;
˜
αn

(mn) = V
X;g(

˜
αn )

(X) (4.3.17)
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and

V
Mn ;

˜
αn

(Mn) =
n∑
k=1

(−1)k−1
∑
d
k
∈D

k

V
X;g(

˜
α
d
k

)
(X). (4.3.18)

If the family F
X;α

is closed under the maxima with respect to α, then

V
Mn ;

˜
αn

(Mn) = V
X;h(

˜
αn )

(X) (4.3.19)

and

Vmn ;
˜
αn

(mn) =
n∑
k=1

(−1)k−1
∑
d
k
∈D

k

V
X;h(

˜
α
d
k

)
(X). (4.3.20)

Proof. Since the 2nd moment X exist, the 1st moment also exist. Hence, the

proof follows from Theorem 4.1.1.

Suppose {Xn} is a sequence of i.i.d. r.v.s whose second moment exists. If

the d.f.s of the r.v.s belong to a family of distributions closed under the minima,

from (4.3.17) we get

Vmn ;α(mn) = V
X;gn (α)

(X) (4.3.21)

and from (4.3.18), we have

V
Mn ;α

(Mn) =
n∑
k=1

(−1)k−1

(
n

k

)
V
X;g

k
(α)

(X). (4.3.22)

Similarly, if the d.f.s of the r.v.s belong to a family of distributions closed under
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the maxima, from (4.3.19), we have

V
Mn ;α

(Mn) = V
X;hn (α)

(X) (4.3.23)

and from (4.3.20) we get

Vmn ;α(mn) =
n∑
k=1

(−1)k−1

(
n

k

)
V
X;h

k
(α)

(X). (4.3.24)

The next two examples provide an illustration of the results in this section.

Example 4.3.1. Consider a parallel system consisting of 3 components each

having the Weibull distribution with shape parameter α and scale parameters

θ1 , θ2 and θ3 respectively for components 1, 2 and 3. What will be the expected

life time of the system?

The life time of the jth component, j = 1, 2, 3 is distributed as F
X;θj

(x) =

1− e
−( x

θj
)α

. Since this is a parallel system, it functions as long as at least one

of the component functions. So the life of the system is distributed as

F
M3 ;

˜
θ
(x) =

3∏
j=1

(
1− e

−( x
θj

)α
)
.

Since the Weibull distribution is closed under the minima when the shape pa-

rameter α is fixed, we have

F
m
k

;
˜
θd
k
(x) = F

X;g(
˜
θ
d
k

)
(x),

where d
k
∈ D

k
, k = 1, 2, 3. Here, D1 = {1, 2, 3}, D2 = {(1, 2), (1, 3), (2, 3)} and

D3 = {(1, 2, 3)}. From Example 3.2.4, we have g(
˜
θ
d
k
) =

(∑k

l=1

(
1

θj
l

)α)−1/α

.
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The expected value of X
j

is given by

E
X;θj

(X) = θ
j
Γ (1 + 1/α) .

Hence,

E
m
k

;
˜
θ
d
k

(m
k
) = E

X;g(
˜
θ
d
k

)
(X)

=
Γ (1 + 1/α)(∑k

l=1

(
1

θj
l

)α) 1
α

.

Therefore,

E
M3 ;

˜
θ
(M3) =

3∑
k=1

(−1)k−1
∑
d
k
∈D

k

E
X;g(

˜
θ
d
k

)
(X)

=
3∑
k=1

(−1)k−1
∑
d
k
∈D

k

Γ(1 + 1/α)(
Σk
l=1

(
1

θj
l

)α)1/α

=
∑
d1∈D1

Γ(1 + 1/α)(
Σ1
l=1

(
1

θj
l

)α)1/α
−
∑
d2∈D2

Γ(1 + 1/α)(
Σ2
l=1

(
1

θj
l

)α)1/α
+
∑
d3∈D3

Γ(1 + 1/α)(
Σ3
l=1

(
1

θj
l

)α)1/α

= Γ(1 + 1/α)

(
θ1 + θ2 + θ3 −

θ1θ2

(θα
1

+ θα
2
)1/α

− θ2θ3

(θα
2

+ θα
3
)1/α

− θ1θ3

(θα
1

+ θα
3
)1/α

+
θ1θ2θ3

(θ1θ2)
α + (θ2θ3)

α + (θ1θ3)
α)1/α

)
.

Example 4.3.2. Consider a parallel system consisting of 5 components each

having life distribution F
X;θ

(x) = 1 − e−θx, x > 0, θ > 0. What will be the

expected life time of the system?
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A parallel system fails if all of its components fail. So the lifetime of the

system is given by F
M5 ;θ

(x) = P (M5 ≤ x) = (P (X ≤ x))5. Since exponential

distribution is closed under the minima, F
m
k

;θ
(x) = F

X;g
k

(θ)
(x) = F

X;kθ
(x) =

1− e−kθx, k = 1, 2, . . . , 5 and E
m
k

;θ
(m

k
) = E

X;g
k

(θ)
(X) = 1

kθ
. Therefore,

E
M5 ;θ

(M5) =
5∑
k=1

(−1)k−1

(
5

k

)
E
X;g

k
(θ)

(X)

=
5∑
k=1

(−1)k−1

(
5

k

)
1

kθ

=
137

60θ
.

In this chapter, we saw that if the r.v.s are independently distributed and

are closed under the minima or maxima we can represent the distributions and

integral transforms, whenever they exist, in terms of that of the underlying

distribution. In particular, one can express the c.f.s of the partial minima and

maxima in terms of the c.f. of the underlying distribution.



CHAPTER

FIVE

Characteristic Functions of Order Statistics

In the last chapter we saw that, the d.f.s of partial maxima can be expressed

in terms of the d.f.s of underlying distribution, when the underlying family of

distributions is closed under the minima. Similarly, the d.f.s of partial minima

can be expressed in terms of the d.f.s of the underlying distribution, when

the underlying family of distributions is closed under the maxima. Similar

representations hold for the p.d.f.s and p.m.f.s according as the sequence of r.v.s

are absolutely continuous with respect to the Lebesgue measure or counting

measure respectively. We also saw that, due to the one to one correspondence

between the d.f.s and c.f.s, the c.f.s of partial maxima can be expressed in

terms of the c.f.s of the underlying distribution, when the underlying family of

distributions is closed under the minima. Similarly, the c.f.s of partial minima

can be expressed in terms of the c.f.s of the underlying distribution, when the

underlying family of distributions is closed under the maxima. We have similar

representations for all other integral transforms, whenever they exist. Another

measurable function of r.v.s, (X1 , X2 , . . . , Xn), is the rth order statistic, for

70
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r = 1, 2, . . . , n. When r is equal to 1, we get the minimum, mn and when r

is equal to n, we get the maximum, Mn . Suppose that, the underlying family

of distributions is closed under the minima or maxima (i.e., the maxima or

minima). Can one express the c.f.s of other order statistics (for r = 2, 3, . . . , n−

1) in terms of the c.f.s of the underlying family of distributions? This is the

problem investigated in this chapter. The chapter is based on the results in

Aparna and Chandran (2018b).

The organization of this chapter is as follows: Section 5.1 defines order

statistics of r.v.s X1 , X2 , . . . , Xn and reviews their d.f.s. This section also de-

scribes some applications of order statistics. In Section 5.2 we obtain the

representation for the d.f. of Xr:n in terms of the d.f.s of partial maxima and

the partial minima for independent sequence r.v.s. When these r.v.s are closed

under the minima or maxima, the representations for the d.f. of order statis-

tics in terms of the d.f. of the underlying family are also obtained. The results

corresponding to the i.i.d. sequence of r.v.s are deduced as special cases. In

Section 5.3 the representations for the c.f. of Xr:n in terms of the c.f.s of the

underlying distributions is obtained. Section 5.4 discusses some applications of

the results we proved.

5.1 Introduction

Let {Xn , n ≥ 1} be a sequence of r.v.s on a probability space (Ω,A , P ) with

X
j

having d.f. F
Xj

(x) and c.f. φ
Xj

(t). Then for a fixed integer n, the order
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statistics of (X1 , X2 , . . . , Xn) are defined as follows:

Xn:n = max(X1 , X2 , . . . , Xn)

Xn−1:n = max({X1 , X2 , . . . , Xn} − {Xn:n})
...

Xr:n = max({X1 , X2 , . . . , Xn} − {Xn:n , Xn−1:n , . . . , Xr+1:n})
...

X1:n = max({X1 , X2 , . . . , Xn} − {Xn:n , Xn−1:n , . . . , X2:n}) = min(X1 , X2 , . . . , Xn).

The above order statistics are Borel measurable functions ofX1 , X2 , . . . , Xn and

hence are r.v.s on (Ω,A , P ). That is, if X1 , X2 , . . . , Xn are r.v.s on (Ω,A , P ),

then X1:n ≤ X2:n ≤ . . . ≤ Xn:n , the corresponding order statistics are also

r.v.s on the same probability space, (Ω,A , P ). The r.v. Xr:n is known as

the rth order statistic of X1 , X2 , . . . , Xn for r = 1, 2, . . . , n. Even if the r.v.s

are independently distributed, order statistics are dependent r.v.s due to the

ordering relation among them. The properties and applications of these ordered

r.v.s and their measurable functions are studied under the head ‘order statistics’

in probability theory. The minima and the maxima are particular cases of order

statistics. When r = 1, we have X1:n = min(X1 , X2 , . . . , Xn) = mn and when

r = n, we have Xn:n = max(X1 , X2 , . . . , Xn) = Mn .

Some important Borel measurable functions of these order statistics which

are quite frequently seen in the statistics literature are; the range, W =

Xn:n−X1:n , which provides a quick estimator of standard deviation, has tremen-

dous applications in quality control and other areas of applied statistics. The

extreme deviate from the sample mean, Xn:n − X̄ is another basic tool which

is used for identifying outliers. The linear functions of order statistics can be
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used systematically for the estimation of location and scale parameters. Order

statistics are of key importance for ranking treatment means in the analysis of

variance. Another field of application of order statistics is in the study of relia-

bility theory. Suppose that a machine works on n batteries and it works as long

as r batteries work or it fails when any of the (n− r+ 1) batteries fail. Hence,

this is an r−out−of −n : G (G-good) system or (n− r+1)−out−of −n : F

(F-fail) system. Then we will be interested in knowing the distribution of order

statistics Xr:n or Xn−r+1:n .

Let {Xn} be a sequence of i.i.d. r.v.s. Then for a fixed n, the d.f. of the

rth order statistic Xr:n is given by

F
Xr:n

(x) =
n∑
i=r

(
n

i

)
(F

X
(x))i(1− F

X
(x))n−i (5.1.1)

and corresponding s.f. is given by

F̄
Xr:n

(x) =
n∑

i=n−r+1

(
n

i

)
(F̄

X
(x))i(1− F̄

X
(x))n−i. (5.1.2)

When the r.v.s are independent non-identically distributed, the d.f. of Xr:n is

given by

F
Xr:n

(x) =
n∑
i=r

∑
Pi

i∏
l=1

F
Xj
l

(x)
n∏

l=i+1

(1− F
Xj
l

(x)) (5.1.3)

and the corresponding s.f. is given by

F̄
Xr:n

(x) =
n∑

i=n−r+1

∑
Pi

i∏
l=1

F̄
Xj
l

(x)
n∏

l=i+1

(1− F̄
Xj
l

(x)), (5.1.4)

where summation P
i

extends over all permutations (j1 , j2 , . . . , jn), of
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(1, 2, . . . , n) for which j1 < . . . < j
i
and j

i+1
< . . . < jn . For a detailed review

on order statistics, their measurable functions, d.f.s and other properties see

the monograph by David (1970).

5.2 Distributions of Order Statistics

In this section, using (5.1.3) to (5.1.4) of Section 5.1, we obtain the d.f.s of

the rth order statistic, Xr:n , r = 1, 2, . . . , n, in terms of the d.f.s of partial

maxima and the partial minima, for sequence of independent r.v.s and a fixed

integer n. These representations have great significance when the underlying

r.v.s is closed under extrema. From these representations we deduce the rep-

resentations for the d.f.s of the rth order statistic in terms of the d.f. of the

underlying distribution, when the underlying family of distributions is closed

under extrema, as defined in Section 3.2. The representations corresponding

to a sequence of i.i.d. r.v.s are given as special cases.

Let {Xn} be a sequence of independent r.v.s such that X
j
∼ F

Xj
. Let P

i
be

the set of all permutations, (j1 , j2 , . . . , jn), of {1, 2, . . . , n} for which j1 < . . . <

j
i

and j
i+1

< . . . < jn . Each such permutation, partition the set {1, 2, . . . , n}

into two sets d
i
= {j1 , j2 , . . . , ji} and d′

i
= {j

i+1
, j

i+2
, . . . , jn}. Let us denote the

collection of all d
i
by D

i
, which is the set of all subsets of {1, 2, . . . , n} having

cardinality i, 1 ≤ i ≤ n. Let A
k,d′

i

be the set of all subsets of d′
i
having cardinal-

ity k, 1 ≤ k ≤ (n− i). We denote an element of A
k,d′

i

by a
k,d′

i

= {j∗
1
, j∗

2
, . . . , j∗

k
}.

Let m
d
k

= min(X
j1
, X

j2
, . . . , X

j
k
) and M

d
k

= max(X
j1
, X

j2
, . . . , X

j
k
) with

corresponding d.f. Fm
d
k

and F
M
d
k

. Let ma
k,d′

i

= min(X
j∗
1
, X

j∗
2
, . . . , X

j∗
k

) and

Ma
k,d′

i

= max(X
j∗
1
, X

j∗
2
, . . . , X

j∗
k

) with corresponding d.f. Fma
k,d′

i

and F
Ma

k,d′
i

.

Note that, for a particular d
i
, the set {d

i
∪ a

k,d′
i

} = D
i+k

and hence the prod-
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uct,
∑

di∈Di
F
M
di

(x)
∑

A
k,d′

i

F
Ma

k,d′
i

(x), is equal to
∑

d
i+k

∈D
i+k

F
M
d
i+k

(x). We denote

the collection of parameters (α
j1
, α

j2
, . . . , α

j
k
) of X

j1
, X

j2
, . . . , X

j
k

correspond-

ing to a d
k

by
˜
α
d
k

(i.e.,
˜
α
d
k

= (α
j1
, . . . , α

j
k
)). Note that dn ={1, 2, . . . , n} and

˜
α
dn

=
˜
αn . With these notations, the next lemma provides the d.f. of the rth

order statistic in terms of the d.f.s of partial maxima.

Lemma 5.2.1. Let {Xn} be a sequence of independent r.v.s such that, X
j

∼

F
Xj

(x). Then for fixed n and r = 1, 2, . . . , n, the d.f. of the rth order statistic,

Xr:n, in terms of the d.f.s of the partial maxima, M
d
k
, k = r, (r + 1), . . . , n, is

given by

F
Xr:n

(x) =
n∑
k=r

(−1)k−r

(
k − 1

r − 1

) ∑
d
k
∈D

k

F
M
d
k

(x). (5.2.1)

Proof. We have,

Fr:n(x) =
n∑
i=r

∑
Pi

i∏
l=1

F
j
l
(x)

n∏
l=i+1

(1− F
j
l
(x))

=
n∑
i=r

∑
Pi

i∏
l=1

F
j
l
(x)

1−
∑

ji+1≤j
∗
1
≤jn

F
j∗
1
(x)

+
∑

ji+1≤j
∗
1
<j∗

2
≤jn

F
j∗
1
(x)F

j∗
2
(x)− . . .

+(−1)k
∑

ji+1≤j
∗
1
<...<j∗

k
≤jn

F
j∗
1
(x) . . . F

j∗
k

(x) + . . .

+ (−1)n−i
∑

ji+1≤j
∗
1
<...<j∗

n−i≤jn

F
j∗
1
(x) . . . F

j∗
n−i

(x)


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=
n∑
i=r

∑
Pi

F
M
di

(x)

1−
∑
A

1,d′
i

F
Ma

1,d′
i

(x) +
∑
A

2,d′
i

F
Ma

2,d′
i

(x)− . . .

+(−1)k
∑
A
k,d′

i

F
Ma

k,d′
i

(x) + . . .+ (−1)n−i
∑

A
n−i,d′

i

F
Ma

n−i,d′
i

(x)


=

∑
Pr

F
M
dr

(x)−
∑
Pr

F
M
dr

(x)
∑
A

1,d′
r

F
Ma

1,d′
r

(x) + . . .

+(−1)k
∑
Pr

F
M
dr

(x)
∑
A
k,d′r

F
Ma

k,d′r

(x) + . . .

+(−1)n−r
∑
Pr

F
M
dr

(x)
∑

A
n−r,d′r

F
Ma

k,d′
i

(x)



+

∑
Pr+1

F
M
dr+1

(x)−
∑
Pr+1

F
M
dr+1

(x)
∑

A
1,d′
r+1

F
Ma

1,d′
r+1

(x) + . . .

+(−1)k
∑
Pr+1

F
M
dr+1

(x)
∑

A
k,d′

r+1

F
Ma

k,d′
r+1

(x) + . . .

+(−1)n−r−1
∑
Pr+1

F
M
dr+1

(x)
∑

A
n−r−1,d′

r+1

F
Ma

n−r−1,d′
r+1

(x)

+ . . .

+

∑
P
r+k

F
M
d
r+k

(x)−
∑
P
r+k

F
M
d
r+k

(x)
∑

A
1,d′
r+k

F
Ma

1,d′
r+k

(x) + . . .

+(−1)k
∑
P
r+k

F
M
d
r+k

(x)
∑

A
k,d′

r+k

F
Ma

k,d′
r+k

(x) + . . .

+(−1)n−r−k
∑
P
r+k

F
M
d
r+k

(x)
∑

A
n−r−k,d′

r+k

F
Ma

n−r−k,d′
r+k

(x)

+ . . .

+
∑
Pn

F
M
dn

(x)
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=
∑
Pr

F
M
dr

(x) +

∑
Pr+1

F
M
dr+1

(x)−
∑
Pr

F
M
dr

(x)
∑
A

1,d′
r

F
Ma

1,d′
r

(x) + . . .



+

∑
P
r+k

F
M
d
r+k

(x)−
∑

P
r+k−1

F
M
d
r+k−1

(x)
∑

A
1,d′
r+k−1

F
Ma

1,d′
r+k−1

(x) + . . .

+(−1)k
∑
Pr

F
M
dr

(x)
∑
A
k,d′

r

F
Ma

k,d′
r

(x)

+ . . .

+

∑
Pn

F
M
dn

(x)−
∑
Pn−1

F
Mjn−1

(x)
∑

A
1,d′
n−1

F
Ma

1,d′
n−1

(x) + . . .

+(−1)n−r
∑
Pr

F
M
dr

(x)
∑

A
n−r,d′r

F
Ma

n−r,d′r

(x)


=

∑
dr∈Dr

F
M
dr

(x) +
∑

dr+1∈Dr+1

F
M
dr+1

(x)

(
1−

(
r + 1

1

))
+ . . .

+
∑

d
r+k

∈D
r+k

F
M
d
r+k

(x)

(
1−

(
r + k

1

)
+

(
r + k

2

)
− . . . (−1)k

(
r + k

k

))
+ . . .

+
∑
Pn

F
M
dn

(x)

(
1−

(
n

1

)
+

(
n

2

)
− . . . (−1)n−r

(
n

n− r

))

=
∑
dr∈Dr

F
M
dr

(x)−
∑

dr+1∈Dr+1

(
r

1

)
F
M
dr+1

(x) +
∑

dr+2∈Dr+2

(
r + 1

2

)
F
M
dr+1

(x) + . . .

+(−1)k
∑

d
r+k

∈D
r+k

(
r + k − 1

k

)
F
M
d
r+k

(x) + . . .

+(−1)n−r
∑
dn∈Dn

(
n− 1

n− r

)
F
M
dn

(x)

=
n−r∑
k=0

(−1)k
∑

d
r+k

∈D
r+k

(
r + k − 1

k

)
F
M
d
r+k

(x)

=
n−r∑
k=0

(−1)k

(
r + k − 1

r − 1

) ∑
d
r+k

∈D
r+k

F
M
d
r+k

(x)
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=
n∑
k=r

(−1)k−r

(
k − 1

r − 1

) ∑
d
k
∈D

k

F
M
d
k

(x).

Hence the proof is complete.

When {Xn} is a sequence of independent r.v.s whose d.f.s are absolutely

continuous, the following corollary holds.

Corollary 5.2.1. Let {Xn} be a sequence of independent r.v.s and X
j
∼ F

Xj

with corresponding p.d.f. f
Xj

(x). Then for fixed n and r = 1, 2, . . . , n, the

p.d.f. of the rth order statistic, Xr:n, in terms of the p.d.f.s partial maxima

M
d
k
, k = r, (r + 1), . . . , n, is given by

f
Xr:n

(x) =
n∑
k=r

(−1)k−r

(
k − 1

r − 1

) ∑
d
k
∈D

k

f
M
d
k

(x). (5.2.2)

Proof. Since the p.d.f.s of the r.v.s exist, the proof follows from Lemma 5.2.1.

When {Xn} is a sequence of independent r.v.s whose d.f.s are absolutely

continuous with respect to the counting measure, we have the next corollary.

Corollary 5.2.2. Let {Xn} be a sequence of independent r.v.s and X
j
∼ F

Xj

with corresponding p.m.f. p
X;αj

(x). Then for fixed n and r = 1, 2, . . . , n, the

p.m.f. of he rth order statistic, Xr:n in terms of the partial maxima M
d
k
,

k = r, (r + 1), . . . , n, is given by

p
Xr:n

(x) =
n∑
k=r

(−1)k−r

(
k − 1

r − 1

) ∑
d
k
∈D

k

p
M
d
k

(x). (5.2.3)

Proof. Since the p.m.f.s of the r.v.s exist, the proof follows from Lemma 5.2.1.
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If {Xn} is a sequence of i.i.d. r.v.s, then (5.2.1) reduces to

F
Xr:n

(x) =
n∑
k=r

(−1)k−r

(
k − 1

r − 1

)(
n

k

)
F
M
k
(x),

(5.2.2) reduces to

f
Xr:n

(x) =
n∑
k=r

(−1)k−r

(
k − 1

r − 1

)(
n

k

)
f
M
k
(x)

and (5.2.3) becomes

p
Xr:n

(x) =
n∑
k=r

(−1)k−r

(
k − 1

r − 1

)(
n

k

)
p
M
k
(x).

Now, if {Xn} is a sequence of independent r.v.s closed under the maxima,

then the d.f. of Xr:n have the representations given in the following theorem.

Theorem 5.2.1. Let {Xn} be a sequence of independent r.v.s and X
j
∼ F

X;αj
∈

F
X;αj

. If F
X;αj

is closed under the maxima with respect to α, then for fixed n

and r = 1, 2, . . . , n,

F
Xr:n ;

˜
αn

(x) =
n∑
k=r

(−1)k−r

(
k − 1

r − 1

) ∑
d
k
∈D

k

F
X;h(

˜
α
d
k

)
(x), (5.2.4)

where D
k

is the class of all subsets of {1, 2, . . . , n} having cardinality k and

h(
˜
α
d
k
) is as in Definition 3.2.3.

Proof. Since the d.f.s of the r.v.s belong to a family of distributions closed

under the maxima, the theorem follows from Lemma 5.2.1.

If the family of distributions, F
X;α

, is absolutely continuous and closed

under the maxima, we have the next corollary.
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Corollary 5.2.3. Let {Xn} be a sequence of independent r.v.s and X
j
∼

F
X;αj

∈ F
X;αj

. Let f
X;αj

be the p.d.f. corresponding to F
X;αj

. If F
X;αj

is

closed under the maxima with respect to α, then for fixed n and r = 1, 2, . . . , n,

f
Xr:n ;

˜
αn

(x) =
n∑
k=r

(−1)k−r

(
k − 1

r − 1

) ∑
d
k
∈D

k

f
X;h(

˜
α
d
k

)
(x), (5.2.5)

where D
k

is the class of all subsets of {1, 2, . . . , n} having cardinality k and

h(
˜
α
d
k
) is as in Definition 3.2.3.

Proof. Since the p.d.f.s of the r.v.s exist, the proof follows from Theorem 5.2.1.

If the family of distributions, F
X;α

, is a discrete family of distributions and

is closed under the maxima, we have the following corollary.

Corollary 5.2.4. Let {Xn} be a sequence of independent r.v.s and X
j
∼

F
X;αj

∈ F
X;αj

. Let p
X;αj

be the p.m.f. corresponding to F
X;αj

. If F
X;αj

is

closed under the maxima with respect to α, then for fixed n and r = 1, 2, . . . , n,

p
Xr:n ;

˜
αn

(x) =
n∑
k=r

(−1)k−r

(
k − 1

r − 1

) ∑
d
k
∈D

k

p
X;h(

˜
α
d
k

)
(x), (5.2.6)

where D
k

is the class of all subsets of {1, 2, . . . , n} having cardinality k and

h(
˜
α
d
k
) is as in Definition 3.2.3.

Proof. Since the p.m.f.s of the r.v.s exist, the proof follows from Theorem

5.2.1.

When {Xn} is a sequence of i.i.d. r.v.s, from expressions (5.2.4), (5.2.5)
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and (5.2.5) reduces to

F
Xr:n ;α

(x) =
n∑
k=r

(−1)k−r

(
k − 1

r − 1

)(
n

k

)
F
X;h

k
(α)

(x), (5.2.7)

f
Xr:n ;α

(x) =
n∑
k=r

(−1)k−r

(
k − 1

r − 1

)(
n

k

)
f
X;h

k
(α)

(x),

and

p
Xr:n ;α

(x) =
n∑
k=r

(−1)k−r

(
k − 1

r − 1

)(
n

k

)
p
X;h

k
(α)

(x),

respectively, where h
k
(α) is as in Definition 3.2.4.

The following Lemma is on the representation of the d.f. of the rth order

statistic in terms of the d.f. of the partial minima.

Lemma 5.2.2. Let {Xn} be a sequence of independent r.v.s and X
j
∼ F

X;αj
.

Then for fixed n and r = 1, 2, . . . , n, the d.f. of the rth order statistic, Xr:n, in

terms of the d.f.s of the partial minima, m
d
k
, k = (n−r+1), (n−r+2), . . . , n,

is given by

F
Xr:n

(x) =
n∑

k=n−r+1

(−1)k−(n−r+1)

(
k − 1

n− r

) ∑
d
k
∈D

k

Fm
d
k

(x). (5.2.8)

Proof. Starting from (5.1.4), on expanding and simplifying as in the proof of

Lemma 5.2.1, we have

F̄
Xr:n

(x) =
n∑

k=n−r+1

(−1)k−(n−r+1)

(
k − 1

n− r

) ∑
d
k
∈D

k

F̄m
d
k

(x). (5.2.9)
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Now, by replacing F̄ by 1− F , we have

F
Xr:n

(x) =
n∑

k=n−r+1

(−1)k−(n−r+1)

(
k − 1

n− r

) ∑
d
k
∈D

k

Fm
d
k

(x).

Hence the proof.

If {Xn} is a sequence of independent r.v.s whose d.f.s are absolutely con-

tinuous, then the following corollary holds.

Corollary 5.2.5. Let {Xn} be a sequence of independent r.v.s having p.d.f.

f
X;αj

.Then for fixed n and r = 1, 2, . . . , n, the p.d.f. of the rth order statistic,

Xr:n, in terms of the p.d.f.s of the partial minima m
d
k
, k = (n − r + 1), (n −

r + 2), . . . , n, is given by

f
Xr:n

(x) =
n∑

k=n−r+1

(−1)k−(n−r+1)

(
k − 1

n− r

) ∑
d
k
∈D

k

fm
d
k

(x). (5.2.10)

Proof. Since the p.d.f.s of the r.v.s exist, the proof follows from Lemma 5.2.2.

When {Xn} is a sequence of independent discrete r.v.s, the next corollary

holds.

Corollary 5.2.6. Let {Xn} be a sequence of independent r.v.s r.v.s having

p.m.f. p
X;αj

. Then for fixed n and r = 1, 2, . . . , n, the p.m.f. of he rth order

statistic, Xr:n in terms of the p.m.f.s of the partial minima, m
d
k
, k = (n− r+

1), (n− r + 2), . . . , n, is given by

p
Xr:n

(x) =
n∑

k=n−r+1

(−1)k−(n−r+1)

(
k − 1

n− r

) ∑
d
k
∈D

k

pm
d
k

(x). (5.2.11)
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Proof. Since the p.m.f.s of the r.v.s exist, the proof follows from Lemma 5.2.2.

When the sequence of r.v.s are i.i.d. the expressions (5.2.8), (5.2.10) and

(5.2.11) becomes

F
Xr:n

(x) =
n∑

k=n−r+1

(−1)k−(n−r+1)

(
k − 1

n− r

)(
n

k

)
Fm

k
(x),

f
Xr:n

(x) =
n∑

k=n−r+1

(−1)k−(n−r+1)

(
k − 1

n− r

)(
n

k

)
fm

k
(x).

and

p
Xr:n

(x) =
n∑

k=n−r+1

(−1)k−(n−r+1)

(
k − 1

n− r

)(
n

k

)
pm

k
(x).

respectively.

Now, if the sequence, {Xn}, of independent non-identically distributed r.v.s

have d.f.s belonging to a family of distributions closed under the minima, the

d.f. of Xr:n have the representations given in the following theorem.

Theorem 5.2.2. Let {Xn} be a sequence of independent r.v.s with X
j
∼

F
X;αj

∈ F
X;αj

. If F
X;αj

is closed under the minima with respect to α, then for

fixed n and r = 1, 2, . . . , n,

F
Xr:n ;

˜
αn

(x) =
n∑

k=n−r+1

(−1)k−(n−r+1)

(
k − 1

n− r

) ∑
d
k
∈D

k

F
X;g(

˜
α
d
k

)
(x), (5.2.12)

where D
k

is the class of all subsets of {1, 2, . . . , n} having cardinality k and

g(
˜
α
d
k
) is as in Definition 3.2.1.
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Proof. Since the r.v.s are from a family of distributions closed under the min-

ima, the theorem follows from Lemma 5.2.2.

If the family of distributions, F
X;α

, is a family of absolutely continuous

d.f.s, we have the next corollary.

Corollary 5.2.7. Let {Xn} be a sequence of independent r.v.s and X
j
∼

F
X;αj

∈ F
X;α

. Let f
X;αj

be the p.d.f. corresponding to F
X;αj

. If F
X;α

is

closed under the minima with respect to α, then for fixed n and r = 1, 2, . . . , n,

f
Xr:n ;

˜
αn

(x) =
n∑

k=n−r+1

(−1)k−(n−r+1)

(
k − 1

n− r

) ∑
d
k
∈D

k

f
X;g(

˜
α
d
k

)
(x), (5.2.13)

where D
k

is the class of all subsets of {1, 2, . . . , n} having cardinality k and

g(
˜
α
d
k
) is as in Definition 3.2.1.

Proof. Since the p.d.f.s of the r.v.s exist, the proof follows from Theorem 5.2.2.

If the family of distributions, F
X;α

, is a family of discrete distributions, we

have the following corollary.

Corollary 5.2.8. Let {Xn} be a sequence of independent r.v.s and X
j
∼

F
X;αj

∈ F
X;α

. Let p
X;αj

be the p.m.f. corresponding to F
X;αj

. If F
X;α

is

closed under the minima with respect to α, then for fixed n and r = 1, 2, . . . , n,

p
Xr:n ;

˜
αn

(x) =
n∑

k=n−r+1

(−1)k−(n−r+1)

(
k − 1

n− r

) ∑
d
k
∈D

k

p
X;g(

˜
α
d
k

)
(x), (5.2.14)

where D
k

is the class of all subsets of {1, 2, . . . , n} having cardinality k and

g(
˜
α
d
k
) is as in Definition 3.2.1.
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Proof. Since the p.m.f.s of the r.v.s exist, the proof follows from Theorem

5.2.2.

If {Xn} is a sequence of i.i.d. r.v.s whose d.f.s are from F
X;α

, then from

(5.2.12), we have

F
Xr:n ;α

(x) =
n∑

k=n−r+1

(−1)k−(n−r+1)

(
k − 1

n− r

)(
n

k

)
F
X;g

k
(α)

(x), (5.2.15)

from (5.2.13), we have

f
Xr:n ;α

(x) =
n∑

k=n−r+1

(−1)k−(n−r+1)

(
k − 1

n− r

)(
n

k

)
f
X;g

k
(α)

(x),

and from (5.2.14), we have

p
Xr:n ;α

(x) =
n∑

k=n−r+1

(−1)k−(n−r+1)

(
k − 1

n− r

)(
n

k

)
p
X;g

k
(α)

(x),

respectively, where g
k
(α) is as in Definition 3.2.2.

From the above discussions we conclude that, if the sequence of independent

r.v.s have d.f.s belonging to a family of distributions closed under the maxima,

then for every fixed n, we can represent the d.f.s of the order statistics in terms

of the d.f.s of the partial maxima. Similarly, if the sequence of independent

r.v.s have d.f.s belonging to a family of distributions closed under the minima,

then for every fixed n, we can represent the d.f.s of the order statistics in terms

of the d.f.s of the partial minima.
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5.3 Characteristic Functions of Order Statistics

In this section, we obtain the c.f.s of order statistics, for fixed n, of a sequence

of independent r.v.s closed under extrema.

Theorem 5.3.1. Let {Xn} be a sequence of independent r.v.s with X
j
∼

F
X;αj

∈ F
X;α

. If F
X;α

is closed under the maxima with respect to α, then

φ
Xr:n

˜
αn

(t) =
n∑
k=r

(−1)k−r

(
k − 1

r − 1

) ∑
d
k
∈D

k

φ
X;h(

˜
α
k

)
(t) (5.3.1)

and if the family is closed under the minima with respect to α. Let φ
X;αj

be the

c.f. corresponding to F
X;αj

, then

φ
Xr:n ;

˜
αn

(t) =
n∑

k=n−r+1

(−1)k−(n−r+1)

(
k − 1

n− r

) ∑
d
k
∈D

k

φ
X;g(

˜
α
k

)
(t). (5.3.2)

where D
k

is the class of all subsets of {1, 2, . . . , n} having cardinality k, and

g(
˜
α
d
k
) and h(

˜
α
d
k
) are as in Definitions 3.2.1 and 3.2.3 respectively.

Proof. By the one to one correspondence between the d.f. and the c.f. of a r.v.,

(5.3.1) follows from Theorem 5.2.1 and (5.3.2) follows from Theorem 5.2.2.

Now, when {Xn}, is a sequence of i.i.d. r.v.s closed under the maxima,

(5.3.1) reduces to

φ
Xr:n ;α

(t) =
n∑
k=r

(−1)k−r

(
k − 1

r − 1

)(
n

k

)
φ
X;h

k
(α)

(t) (5.3.3)

and if the r.v.s are closed under the minima (5.3.2) reduces to

φ
Xr:n ;α

(t) =
n∑

k=n−r+1

(−1)k−(n−r+1)

(
k − 1

n− r

)(
n

k

)
φ
X;g

k
(α)

(t), (5.3.4)
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respectively, where g
k
(α) and h

k
(α) are as in Definitions 3.2.2 and 3.2.4 respec-

tively.

Hence, if the sequence of independent r.v.s are closed under extrema, for

fixed n, we can represent the c.f.s of order statistics in terms of the c.f. of

underlying family of distributions. The following example gives an illustration

of the above results.

Example 5.3.1. Let {Xn} be a sequence of independent r.v.s and X
j
∼ F

X;θj
=

1 − e−θjx. For fixed n, from Example 3.2.1, we know that the corresponding

family of distributions is closed under the minima with respect to θ and g(
˜
θ) =∑n

j=1
θ
j
. Then mn ∼ F

X;
∑n
j=1

θj
. From Example 4.2.1, we have

φ
mn ;

˜
θ
(t) =

(
1− it∑n

j=1
θ
j

)−1

.

Hence,

φ
Xr:n ;

˜
θ
(t) =

n∑
k=n−r+1

(−1)k−(n−r+1)

(
k − 1

n− r

) ∑
d
k
∈D

k

φ
X;g(

˜
θ
d
k

)
(t)

=
n∑

k=n−r+1

(−1)k−(n−r+1)

(
k − 1

n− r

) ∑
d
k
∈D

k

g(
˜
θ
d
k
)

g(
˜
θ
d
k
)− it

,

where g(
˜
θ
d
k
) = θ

j1
+ . . .+θ

j
k
. Now, let us obtain the expression for fixed values

of n and r.

If we fix n = 4 and r = 2, we get

φ
X2:4 ;

˜
θ
(t) =

4∑
k=3

(−1)k−3

(
k − 1

2

) ∑
d
k
∈D

k

φ
X;g(

˜
θ
d
k

)
(t)
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=
4∑
k=3

(−1)k−3

(
k − 1

2

) ∑
d
k
∈D

k

g(
˜
θ
d
k
)

g(
˜
θ
d
k
)− it

=
∑
d3∈D3

g(
˜
θ
d3

)

g(
˜
θ
d3

)− it
− 3

∑
d4∈D4

g(
˜
θ
d4

)

g(
˜
θ
d4

)− it

=
θ1 + θ2 + θ3

θ1 + θ2 + θ3 − it
+

θ1 + θ2 + θ4

θ1 + θ2 + θ4 − it

+
θ1 + θ3 + θ4

θ1 + θ3 + θ4 − it
+

θ2 + θ3 + θ4

θ2 + θ3 + θ4 − it

− 3
θ1 + θ2 + θ3 + θ4

θ1 + θ2 + θ3 + θ4 − it
.

If we denote
∑4

k=1
θ
k

= θ and
∑4

k=1

k 6=j

θ
k

= θj, we have

φ
X2:4 ;

˜
θ
(t) =

θ4

θ4 − it
+

θ3

θ3 − it
+

θ2

θ2 − it
+

θ1

θ1 − it
− 3

θ

θ − it
. (5.3.5)

In the above example if we consider X
j
, j = 1, 2, . . . , n to be i.i.d. exp(θ),

the expression (5.3.5) reduces to

4× 3θ

3θ − it
− 3× 4θ

4θ − it
=

12θ2

(3θ − it)(4θ − it)
(5.3.6)

and if they are i.i.d. exp(1), then (5.3.6) reduces to

4× 3

3− it
− 3× 4

4− it
= 12× 4− it− 3 + it

(4− it)(3− it)

=
12

(4− it)(3− it)
.

When the r.v.s are i.i.d. exp(θ), from David (1970, page 18), we have

Xr:n

d
=

1

θ

 r∑
j=1

Z

n− j + 1

 , r = 1, 2, . . . , n, (5.3.7)
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where Z ∼ exponential(1). Hence, for r = 2 and n = 4, from (5.3.7), we have

φ
X2:4 ;θ

(t) = φ
X,4θ

(t)φ
X,3θ

(t)

=
12θ2

(3θ − it)(4θ − it)
.

which is same as the expression obtained in (5.3.6).

5.4 Moments of Order Statistics and their Applications

In this section we discuss some applications of the results proved in the previous

sections. In Section 4.2, we have already discussed the one to one correspon-

dence between d.f.s and their integral transforms. The sth moment of order

statistics of r.v.s closed under extrema exist whenever the sth moment of the

underlying r.v.s exists. The following results hold under the assumption that

the sth moment of the underlying r.v.s exists.

Theorem 5.4.1. Let {Xn} be a sequence of independent r.v.s and X
j
∼ F

X;αj

from a family F
X;α

and the sth moment of the family exists. If F
X;α

is closed

under the maxima with respect to α, then the sth moment of Xr:n is given by

E
Xr:n ;

˜
αn

(Xs
r:n

) =
n∑
k=r

(−1)k−r

(
k − 1

r − 1

) ∑
d
k
∈D

k

E
X;h(

˜
α
d
k

)
(Xs) (5.4.1)

and if F
X;α

is closed under the minima with respect to α, then

E
Xr:n ;

˜
αn

(Xs
r:n

) =
n∑

k=n−r+1

(−1)k−(n−r+1)

(
k − 1

n− r

) ∑
d
k
∈D

k

E
X;g(

˜
α
d
k

)
(Xs), (5.4.2)

where D
k

is the class of all subsets of {1, 2, . . . , n} having cardinality k and

g(
˜
α
d
k
) and h(

˜
α
d
k
) are as in Definitions 3.2.1 and 3.2.3 respectively.
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Proof. By the one to one correspondence between the d.f. and the c.f. of a r.v.,

(5.4.1) follows from Theorem 5.2.1 and (5.4.2) follows from Theorem 5.2.2.

If the sequence of r.v.s are i.i.d., then from (5.4.1), we have

E
Xr:n ;α

(Xs
r:n

) =
n∑
k=r

(−1)k−r

(
k − 1

r − 1

)(
n

k

)
E
X;h

k
(α)

(Xs) (5.4.3)

and from (5.4.2), we have

E
Xr:n ;α

(Xs
r:n

) =
n∑

k=n−r+1

(−1)k−(n−r+1)

(
k − 1

n− r

)(
n

k

)
E
X;g

k
(α)

(Xs). (5.4.4)

The following is the corollary for the expected value of the rth order statistic

of a sequence of independent r.v.s closed under extrema.

Corollary 5.4.1. Let {Xn} be a sequence of independent r.v.s and X
j
∼ F

X;αj

from a family F
X;α

whose expectation exist. If F
X;α

is closed under the maxima

with respect to α, then the expectation of Xr:n is given by

E
Xr:n ;

˜
αn

(Xr:n) =
n∑
k=r

(−1)k−r

(
k − 1

r − 1

) ∑
d
k
∈D

k

E
X;h(

˜
α
d
k

)
(X), (5.4.5)

and if F
X;α

is closed under the minima with respect to α, then

E
Xr:n ;

˜
αn

(Xr:n) =
n∑

k=n−r+1

(−1)k−(n−r+1)

(
k − 1

n− r

) ∑
d
k
∈D

k

E
X;g(

˜
α
d
k

)
(X), (5.4.6)

where D
k

is the class of all subsets of {1, 2, . . . , n} having cardinality k, and

g(
˜
α
d
k
) and h(

˜
α
d
k
) are as in Definitions 3.2.1 and 3.2.3 respectively.

Proof. Since the expectation of the family of distributions exist, the proof fol-

lows from Theorem 5.4.1 by substituting s = 1.
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When the sequence of r.v.s are i.i.d., (5.4.5) reduces to

E
Xr:n ;α

(Xr:n) =
n∑
k=r

(−1)k−r

(
k − 1

r − 1

)(
n

k

)
E
X;h

k
(α)

(X) (5.4.7)

and (5.4.6) reduces to

E
Xr:n ;α

(Xr:n) =
n∑

k=n−r+1

(−1)k−(n−r+1)

(
k − 1

n− r

)(
n

k

)
E
X;g

k
(α)

(X). (5.4.8)

The following is an example for the application of results in this section.

Example 5.4.1. Consider a machine that works on 4 batteries whose lives are

exponentially distributed with parameter θ. Suppose that the machine works as

long as 2 of its components work. What will be the expected life time of the

machine?

Here the system fails when any of the 3 batteries fails. So we want to calculate

the expected value of the 3rd order statistic. We know that for exp(θ)

E
X;θ

(X) =
1

θ
and E

X;g
k

(θ)
(X) =

1

kθ
.

Hence, from (5.4.8), we have

E
X3:4 ;θ

(X
(3)

) =
4∑
k=2

(−1)k−2

(
k − 1

1

)(
4

k

)
E
X;g

k
(α)

(X)

=
4∑
k=2

(−1)k−2(k − 1)

(
4

k

)
1

kθ

=
6

2θ
− 8

3θ
+

3

4θ

=
13

12θ
.

In this chapter, we derived the d.f.s of order statistics of a sequence of



92

independent r.v.s, for fixed n, closed under extrema in terms of the d.f.s of the

underlying distribution. By the one to one correspondence between d.f.s and

their integral transforms like c.f., similar results hold for the corresponding c.f.s

and all other integral transforms whenever they exist.



CHAPTER

SIX

Families of Bivariate Distributions Closed under Extrema

Till now all our discussions were on univariate r.v.s. In many situations, one

may be interested in multivariate r.v.s or random vectors (R.V.s). This chapter

extents the concept of closure property under extrema of univariate distribu-

tions to multidimensional distributions. Even though our discussions are on

two-dimensional R.V.s, the results hold true for all n-dimensional R.V.s. Some

properties of such classes of distributions are also discussed. The chapter is

based on Aparna and Chandran (2018c).

The chapter is organized as follows: Section 6.1 introduces basics of two-

dimensional R.V.s. Section 6.2 defines the concepts of componentwise max-

ima and componentwise minima. Section 6.3 discusses some basic concepts

in copula theory. In Section 6.4 we define bivariate distributions closed under

extrema. The necessary and sufficient conditions for a family of bivariate distri-

butions to be closed under extrema are obtained and the copulas closed under

extrema are defined in Section 6.4. In Section 6.5, the discussion is on how the

bivariate closure property changes under strictly monotone transformations of

93
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marginal r.v.s. The changes in bivariate closure property under extrema on

truncation of the marginal r.v.s are discussed in Section 6.6. Section 6.7 is on

c.f.s of componentwise extrema.

6.1 Introduction

Random vectors (R.V.s) are multivariate generalisation of r.v.s. such that, each

component of a R.V. is a univariate r.v. on the same probability space say,

(Ω,A , P ). We can define a R.V.
˜
X = (X1 , X2 , . . . , Xn) as a mapping from Ω

to Rn such that, if Bn ∈ Bn , the Borel sigma-field over Rn ,

˜
X−1(Bn) = {ω ∈ Ω :

˜
X(ω) ∈ Bn} ∈ A .

= {ω ∈ Ω : (X1(ω), X2(ω), . . . , Xn(ω)) ∈ Bn} ∈ A .

As in the univariate case, the R.V.
˜
X induces a probability measure P

˜
X

on the

measurable space (Rn ,Bn) given by

P
˜
X
(Bn) = P (

˜
X−1(Bn)), ∀ Bn ∈ Bn

= P (ω ∈ Ω :
˜
X(ω) ∈ Bn). (6.1.1)

Then (Rn ,Bn , P
˜
X
) is the probability space induced by the R.V.

˜
X. Note that,

if
˜
X is an n-dimensional R.V. and g : Rn → R

k
is measurable, then g(

˜
X) is

a k-dimensional R.V. (see, Laha and Rohatgi (1979), page 20). Now, let us

concentrate on 2-dimensional R.V.s.
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Let (X, Y ) be a two-dimensional R.V. Hence, it is a mapping from Ω to R2

such that, if B2 ∈ B2 , the Borel sigma-field over R2 ,

(X, Y )−1(B2) = {ω ∈ Ω : (X(ω), Y (ω)) ∈ B2} ∈ A . (6.1.2)

Then (6.1.1) can be written as:

P
X,Y

(B2) = P (ω ∈ Ω : (X(ω), Y (ω)) ∈ B2), B2 ∈ B2 , (6.1.3)

known as the probability space induced by the R.V. (X, Y ). Then the function

H on R2 defined by

H
X,Y

(x, y) = P
X,Y
{(−∞, x]× (−∞, y]}, ∀ (x, y) ∈ R2

= P (X−1(−∞, x], Y −1(−∞, y]), ∀ (x, y) ∈ R2

= P{ω ∈ Ω : X(ω) ≤ x, Y (ω) ≤ y}, ∀ (x, y) ∈ R2

= P (X ≤ x, Y ≤ y), ∀ (x, y) ∈ R2 (6.1.4)

is called the joint d.f. of the R.V. (X, Y ). The joint d.f. H satisfies the following

conditions:

i) lim
x→−∞

H(x, y) = H(−∞, y) = 0 = lim
y→−∞

H(x, y) = H(x,−∞).

ii) H
x,y→+∞

(x, y) = H(+∞,+∞) = 1.

iii) H is right continuous in each of its arguments.

iv) For every x1 , x2 , y1 , y2 ∈ I such that x1 ≤ x2 and y1 ≤ y2 ,

H(x2 , y2)−H(x2 , y1)−H(x1 , y2) +H(x1 , y1) ≥ 0. (6.1.5)
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Conversely, any function satisfying the above conditions uniquely determines a

probability measure P
H

on B2 . The conditions (i) and (iv) above implies that

H is non-decreasing in each of its arguments. Unlike the s.f. of a r.v., the joint

s.f. of a R.V., denoted by H̄, is not the compliment of H. For all (x, y) ∈ R2 ,

the joint s.f. of a R.V. (X, Y ) is given by

H̄
X,Y

(x, y) = P (X > x, Y > y)

= 1− P (X ≤ x)− P (Y ≤ y) + P (X ≤ x, Y ≤ y)

= 1− F
X
(x)−G

Y
(y) +H

X,Y
(x, y). (6.1.6)

For a R.V. (X, Y ) on some probability space, the transformation given by

φ
(X,Y )

(t1 , t2) = E
(
ei(t1X+t2Y )

)
, t1 , t2 ∈ R (6.1.7)

=

∫
R2

ei(t1x+t2y)dH
X,Y

(x, y) (6.1.8)

is called the c.f. of the R.V. (X, Y ).

6.2 Componentwise Minima and Componentwise Max-

ima

Let {(Xn , Yn)}∞n=1
be a sequence of independent pairs of r.v.s with (X

j
, Y

j
) ∼

H
Xj ,Yj

(x, y) and joint s.f. H̄
Xj ,Yj

(x, y). Let F
Xj

(x) be the marginal d.f. of X
j

and G
Yj

(y) that of Y
j
. Let us denote X

Mn
= max{X1 , X2 , . . . , Xn} and Y

Mn
=

max{Y1 , Y2 , . . . , Yn}. Then the sequence {(X
Mn
, Y

Mn
)} is called the sequence

of componentwise maxima. Similarly, let Xmn
= min{X1 , X2 , . . . , Xn} and

Ymn = min{Y1 , Y2 , . . . , Yn}. Then the sequence {(Xmn
, Ymn )} is known as the

sequence of componentwise minima. From the discussions on the d.f.s and the
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s.f.s of partial maxima and partial minima in Section 2.3, we have the d.f. of

X
Mn

and Y
Mn

given by

F
X
Mn

(x) = (F
X
(x))n

G
Y
Mn

(y) = (G
Y
(y))n

and the s.f. of Xmn
and Ymn given by

F̄
Xmn

(x) = (F̄
X
(x))n

Ḡ
Ymn

(y) = (Ḡ
Y
(y))n.

The joint d.f. of componentwise maxima, (X
Mn
, Y

Mn
), n ≥ 1 is given by

H
X
Mn

,Y
Mn

(x, y) = P (X
Mn
≤ x, Y

Mn
≤ y)

=
n∏
j=1

H
Xj ,Yj

(x, y) (6.2.1)

and when the R.V.s are i.i.d., we have

H
X
Mn

,Y
Mn

(x, y) = (H
X,Y

(x, y))n (6.2.2)

The joint s.f. of componentwise minima, (Xmn
, Ymn ), n ≥ 1 is given by

H̄
Xmn

,Ymn
(x, y) = P (Xmn

> x, Ymn > y)

=
n∏
j=1

H̄
Xj ,Yj

(x, y) (6.2.3)
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and when the R.V.s are i.i.d., we have

H̄
Xmn

,Ymn
(x, y) = (H̄

X,Y
(x, y))n. (6.2.4)

For a given bivariate distribution we can uniquely identify the marginal d.f.s.

But the converse is not unique. That is, for a pair of univariate distributions

the joint d.f. is not unique.

Example 6.2.1. Consider the following two bivariate d.f.s with support x ≥ 0,

y ≥ 0 and parameters α > 0, β > 0 and 0 ≤ θ ≤ 1.

H1
X,Y

(x, y) = (1− e−αx)(1− e−βx) (6.2.5)

H2
X,Y

(x, y) = 1− e−αx − e−βy + e−(αx+βy+θαβxy) (6.2.6)

Both (6.2.5) and (6.2.6) have marginals as X ∼ exp(α) and Y ∼ exp(β)

but the joint distributions are different. Copulas are functions which connects

a joint d.f. and the corresponding marginal d.f.s. i.e., copula evaluated at the

margins gives the corresponding joint d.f. This is the content of Sklar’s theorem

(Sklar 1959). Hence, the marginal distributions along with a copula uniquely

determines a joint distribution. We can also view this as a joint d.f. whose

one dimensional margins are uniform (0,1). It is also referred in the literature

as uniform representation and dependence function. It is a scale free measure

of dependence and a starting point of construction of bivariate or multivariate

distributions.
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6.3 Copulas

In this section, with the help of Nelson (1999), we review the basic concepts in

copula theory that we require in the subsequent sections. The statements given

in the previous section about copulas are not actual definitions. The definition

of copulas is as follows.

Definition 6.3.1. A two-dimensional copula is a function C from [0, 1] ×

[0, 1] → [0, 1] satisfying the following conditions:

i) For every u, v ∈ I,

C(u, 0) = 0 = C(0, v) (6.3.1)

and

C(u, 1) = u and C(1, v) = v. (6.3.2)

ii) For every u1 , u2 , v1 , v2 ∈ I such that u1 ≤ u2 and v1 ≤ v2,

C(u2 , v2)− C(u2 , v1)− C(u1 , v2) + C(u1 , v1) ≥ 0. (6.3.3)

The conditions (6.3.1), (6.3.2) and (6.3.3) above means that; C is grounded,

C has marginals and C is 2-increasing respectively. The Sklar’s theorem, a

celebrated theorem in the literature of copula theory, sheds light on the rela-

tionship between multivariate d.f.s and their univariate marginal d.f.s. It is

stated below, for the bivariate case.

Theorem 6.3.1 (Sklar’s Theorem). Let H
X,Y

be a joint d.f. with marginal

d.f.s F
X

and G
Y
. Then there exists a copula C such that for all x, y in R (the
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extended real line),

H
X,Y

(x, y) = C(F
X
(x), G

Y
(y)). (6.3.4)

If F
X

and G
Y

are continuous d.f.s, then the copula C is unique; otherwise, C

is uniquely determined on RangeF × RangeG. Conversely, if C is a copula and

F
X

and F
Y

are d.f.s, then the function H
X,Y

defined by (6.3.4) is a joint d.f.

with marginal d.f.s F
X

and G
Y
.

Proof. See Nelson(1999).

Survival copulas are copulas that joins the joint s.f. to their one dimen-

sional marginal s.f.s. The joint s.f. of a bivariate R.V. (X, Y ) with joint d.f.

H
X,Y

(x, y) = C(F
X
(x), G

Y
(y)) is given by

H̄
X,Y

(x, y) = F̄
X
(x) + Ḡ

Y
(y)− 1 + C(1− F̄

X
(x), 1− Ḡ

Y
(y)). (6.3.5)

The function Ĉ is defined from I × I → I by Ĉ(u, v) = u+v−1+C(1−u, 1−v)

is a copula. Then we have

H̄
X,Y

(x, y) = Ĉ(F̄
X
(x), Ḡ

Y
(y)) (6.3.6)

and Ĉ is called the survival copula of (X, Y ). Survival copula couples the joint

s.f.s to its univariate marginal s.f.s. The following theorem gives the copula of

componentwise maxima of i.i.d. bivariate R.V.s having copula C.

Theorem 6.3.2. If C is a copula and n a positive integer, then the function

C
Mn

given by

C
Mn

(u, v) = Cn(u1/n, v1/n), for u, v ∈ I (6.3.7)

is a copula. Furthermore, if (X
j
, Y

j
), j = 1, 2, . . . , n are i.i.d. pairs of r.v.s
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with copula C, then C
Mn

is the copula of X
Mn

and Y
Mn

.

Proof. See Nelson(1999).

Now, if (X
j
, Y

j
), j = 1, 2, . . . , n are i.i.d. pairs of r.v.s with survival copula

Ĉ, then

Ĉmn
(u, v) = Ĉn(u1/n, v1/n), for u, v ∈ I (6.3.8)

is the survival copula of Xmn
and Ymn .

Let (X1 , Y1), (X2 , Y2), . . . , (Xn , Yn) be i.i.d. pairs of r.v.s having a common

copula C. Let C
Mn

be the copula of componentwise maxima. From (6.3.7), we

have C
Mn

(u, v) = Cn(u1/n, v1/n). limit of the sequence, {C
Mn

(u, v)} leads to

the notion of extreme value copula. If there exists a copula C such that

Cn

n→∞
(u1/n, v1/n) = C∗(u, v), (6.3.9)

then C∗ is known as the extreme value copula or max-stable copula. Further-

more, C is said to be in the MDA of C∗. Some examples of extreme valu

copulas are:

i) C(u, v) = uv

ii) C(u = v) = min(u, v)

iii) C(u, v) = e(−[(− ln u)θ+(− ln v)θ]1/θ), θ ∈ [1,∞)

iv) C(u, v) = min(u1−αv, uv1−β), 0 < α, β < 1.

In this section, we reviewed the concept ‘copula’. How this function connects a

joint d.f. to its marginal d.f.s is discussed. The copulas (survival copulas) cor-

responding to the componentwise maxima (minima) and extreme value copulas

are also discussed.
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6.4 Families of Bivariate Distributions Closed under

Extrema

In this section we extend the concept of ‘closure under extrema’ of a family of

univariate distributions to a family of bivariate distributions. The necessary

and sufficient conditions for R.V.s to be closed under extrema are also obtained.

Let H
X,Y ;α,β,θ

be a family of independent bivariate distributions. Let F
X;α

and G
Y ;β

be the corresponding families of marginal distributions and θ be the

dependence parameter. The following is the definition of family of bivariate

distributions closed under the minima.

Definition 6.4.1. A family of bivariate distributions, H
X,Y ;α,β,θ

, is said

to be closed under the minima with respect to (α,β,θ), if for every

H
X,Y ;αj ,βj ,θj

∈ H
X,Y ;α,β,θ

, j = 1, 2, . . . , n, n ≥ 1, the joint d.f.s of component-

wise minima, H
Xmn

,Ymn
;
˜
αn,

˜
βn,

˜
θn

= H
X,Y ;g(

˜
αn ),g∗(

˜
βn ),η(

˜
θn )

belong to H
X,Y ;α,β,θ

with

parameter (g(
˜
αn), g

∗(
˜
βn), η(

˜
θn)) depending on (

˜
αn ,

˜
βn ,

˜
θn).

Remark 6.4.1. A set of R.V.s is said to be closed under the minima, if the

corresponding family of bivariate distributions is closed under the minima.

Remark 6.4.2. When the bivariate r.v.s are i.i.d., we denote g(
˜
αn) = gn(α),

g∗(
˜
βn) = g∗

n
(β) and η(

˜
θn) = ηn(θ) respectively, which are functions of n and

the corresponding parameters.

Remark 6.4.3. If X
j

and Y
j
, j = 1, 2, . . . , n are identically distributed then

α=β and gn(α) = g∗
n
(β).

Example 6.4.1. Let (X
j
, Y

j
) j = 1, 2, . . . , n follows bivariate exponential dis-
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tribution (Gumbel (1960)) with joint d.f.

H
X,Y ;αj ,βj ,θj

(x, y) = 1− e−αjx − e−βj y + e−αjx+βj y+θjαjβjxy,

α
j
> 0, β

j
> 0, 0 ≤ θ

j
≤ 1.

Then

H
Xmn

,Ymn
;
˜
αn,

˜
βn,

˜
θn

(x, y) = 1− e
−
∑n

j=1
αjx − e

−
∑n

j=1
βj y + e

−
∑n

j=1
(αjx+βj y+θjαjβjxy)

= H
X,Y ;g(

˜
αn ),g∗(

˜
βn ),η(

˜
θn )

(x, y), (6.4.1)

where g(
˜
αn) =

∑n

j=1
α
j
, g∗(

˜
βn) =

∑n

j=1
β
j

and η(
˜
θn) =

( ∑n

j=1
αjβj θj∑n

j=1
αj
∑n

j=1
βj

)
.

In the above example if the R.V.s are i.i.d., then gn(α) = nα, g∗
n
(β) = nβ

and ηn(θ) = θ
n
.

Next, we have the definition of family of bivariate distributions closed under

the maxima.

Definition 6.4.2. A family of bivariate distributions, H
X,Y ;α,β,θ

, is said to be

closed under the maxima with respect to (α,β,θ), if for every H
X,Y ;αj ,βj ,θj

∈

H
X,Y ;α,β,θ

, j = 1, 2, . . . , n, n ≥ 1, the joint d.f.s of componentwise maxima,

H
X
Mn

,Y
Mn

;
˜
αn,

˜
βn,

˜
θn

= H
X,Y ;h(

˜
αn ),h∗(

˜
βn ),ν(

˜
θn )

belong to H
X,Y ;α,β,θ

with parameters

(h(
˜
αn), h

∗(
˜
βn), ν(

˜
θn)) depending on (

˜
αn ,

˜
βn ,

˜
θn).

Remark 6.4.4. A set of R.V.s is said to be closed under the maxima, if the

corresponding family of bivariate distributions is closed under the maxima.

Remark 6.4.5. When the bivariate r.v.s are i.i.d., h(
˜
αn) = hn(α), h∗(

˜
βn) =

h∗
n
(β) and ν(

˜
θn) = νn(θ), which are functions of n and the corresponding pa-

rameters.
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Remark 6.4.6. If X
j

and Y
j
, j = 1, 2, . . . , n are identically distributed then

α=β and hn(α) = h∗
n
(β).

Remark 6.4.7. Definition 6.4.1 and Definition 6.4.2 hold true even if we

replace d.f.s by corresponding s.f.s.

So for the sake of convenience, we will be using joint and marginal d.f.s while

discussing closure under maxima and joint and marginal s.f.s will be used while

discussing closure under minima.

The following theorem gives the necessary condition for a family of bivariate

distributions to be closed under the minima.

Theorem 6.4.1. If a family of bivariate distributions is closed under the min-

ima, then so are its marginal families of distributions.

Proof. Suppose H̄
Xmn

,Ymn
;α,β,θ

(x, y) = H̄
X,Y ;gn (α),g∗n (β),ηn (θ)

(x, y). Then

F̄
Xmn

;α
(x) = H̄

Xmn
,Ymn

;α,β,θ
(x,∞)

= H̄
X,Y ;gn (α),g∗n (β),ηn (θ)

(x,∞)

= F̄
X;gn (α)

(x).

Hence, X is closed under the minima with respect to α. Similarly, Y is closed

under the minima with β. Hence the proof.

A necessary condition for a family of bivariate distributions to be closed

under the maxima is given in the next theorem.

Theorem 6.4.2. If a family of bivariate distribution is closed under the max-

ima, then so are its marginal families of distributions.

Proof. The proof is similar to that of Theorem 6.4.1.
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The conditions given in Theorem 6.4.1 and Theorem 6.4.2 are not sufficient

for a family of bivariate distributions to be closed under the minima or maxima

respectively.

Let (X1 , Y1), (X2 , Y2), . . . , (Xn , Yn) be i.i.d. R.V.s. Then consider the fol-

lowing examples.

Example 6.4.2. For the s.f.s F̄
X;α

(x) = e−αx, x > 0, α > 0 and Ḡ
Y ;β

(x) =

e−βy, y > 0, β > 0, the bivariate exponential distribution (Gumbel (1960)) have

joint s.f. given by

H̄
X,Y ;α,β,θ

(x, y) = e−(αx+βy+θαβxy), 0 ≤ θ ≤ 1. (6.4.2)

Hence,

H̄
Xmn

,Ymn
;α,β,θ

(x, y) = e−n(αx+βy+θαβxy)

= H̄
X,Y ;nα,nβ, θn

(x, y).

The survival copula corresponding to the joint s.f. in Example 6.4.1 is given

by

Ĉ
θ
(u, v) = uve−θ ln u ln v, 0 ≤ θ ≤ 1. (6.4.3)

For this copula,

Cn
θ
(u1/n, v1/n) = uve−

1
n

θ ln u ln v = C
θ
n

(u, v).

Now, for the same marginal s.f.s as in Example 6.4.1, consider the joint s.f.

given in the following example.
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Example 6.4.3. Consider the bivariate distribution with joint s.f. given by

H̄
X,Y ;α,β,θ

(x, y) =
e−(αx+βy)

1− θ(1− e−αx)(1− eβy)
. (6.4.5)

Then

H̄
Xmn

,Ymn
;
˜
αn,

˜
βn,

˜
θn

(x, y) =
e
−(
∑n

j=1
αjx+

∑n

j=1
βj y)∏n

j=1
(1− θ

j
(1− e−αjx)(1− eβj y))

is not of the form H̄
X,Y ;g(

˜
αn ),g∗(

˜
βn ),η(

˜
θn )

(x, y).

Here marginal distributions are exponential which have closure property

under the minima by Example 3.2.1, but the joint d.f. is not so. So the

converse of Theorem 6.4.1 and Theorem 6.4.2 need not be true. i.e, marginal

distributions are closed under the minima (maxima) need not imply that the

joint distribution is closed under the minima (maxima). Hence, we need some

additional conditions on how they are dependent. Here comes the importance of

‘Copula’. Recall that, the bivariate exponential distribution given in Example

6.4.1 is closed under the minima.

The copula corresponding to Example 6.4.3 is

Ĉ
θ
(u, v) =

uv

1− θ(1− u)(1− v)
, −1 ≤ θ ≤ 1, (6.4.6)

known as the Ali-Mikhail-Haq family of copulas (Hutchinson and Lai (1990)).

For this copula,

Cn
θ
(u1/n, v1/n) =

uv

(1− θ(1− u1/n)(1− v1/n))
n 6= C

η(θ)
(u, v).

Let us consider another example.



107

Example 6.4.4. Consider the copula in (6.4.3) and the marginal s.f.s given

by F̄
X;α

(x) = 1 − (x
λ
)α, 0 < x < λ, λ > 0, α > 0 and Ḡ

X;α
(y) = 1 − ( y

γ
)β,

0 < x < γ, γ > 0, β > 0. Then the corresponding joint s.f. is

H̄
X,Y ;α,β,θ

(x, y) = (1− (x/λ)α)(1− (y/γ)β)e−θ ln(1−( xλ)
α
) ln(1−( yγ )

β
). (6.4.8)

Hence,

H̄
Xmn

,Ymn
;α,β,θ

(x, y) = (1− (x/λ)α)n(1− (y/γ)β)ne−nθ ln(1−( xλ)
α
) ln(1−( yγ )

β
)

6= H̄
Xmn

,Ymn
;gn (α),g∗n (β),ηn (θ)

(x, y).

The above example shows that even if the copula satisfies the condition

Cn
θ
(u1/n, v1/n) = C

η(θ)
(u, v) (here ηn(θ) = θ/n), the joint s.f. is not closed

under the minima when the marginal s.f.s are not so (see Example 3.2.5). The

following theorem gives a necessary and sufficient conditions for a family of

bivariate distributions to be closed under the minima.

Theorem 6.4.3. Let H
X,Y ;α,β,θ

be a family of bivariate distributions with corre-

sponding families of marginal distributions F
X;α

and G
Y ;β

, and copula C
θ
(u, v).

Then H
X,Y ;α,β,θ

is closed under the minima with respect to (α, β, θ) if, and only

if, F
X;α

is closed under the minima with respect to α, G
Y ;β

is closed under the

minima with respect to β and Ĉn
θ
(u1/n, v1/n) = Ĉ

ηn (θ)
(u, v).

Proof. Suppose that H
X,Y ;α,β,θ

is closed under the minima with respect to

(α, β, θ). Then by Theorem 6.4.1, F
X;α

is closed under the minima with re-

spect to α, G
Y ;β

is closed under the minima with respect to β. i.e., F̄
Xmn

;α
(x) =
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F̄
X;gn (α)

(x) and Ḡ
Ymn

;β
(y) = Ḡ

Y ;g∗n (β)
(y).

H̄
Xmn

,Ymn
;α,β,θ

(x, y) = H̄
X,Y ;gn (α),g∗

n
(β),ηn (θ)

(x, y)

⇒ Ĉn
θ

(
F̄ 1/n
Xmn

;α
(x), Ḡ1/n

Ymn
;β
(y)
)

= Ĉ
ηn (θ)

(
F̄
X,gn (α)

(x), Ḡ
Y ;g∗

n
(β)

(y)
)

⇒ Ĉn
θ
(u1/n, v1/n) = Ĉ

ηn (θ)
(u, v).

To prove the converse, suppose that F̄
Xmn

;α
(x) = F̄

X;gn (α)
(x), Ḡ

Ymn
;β
(y) =

Ḡ
Y ;g∗n (β)

(y) and Ĉn
θ
(u1/n, v1/n) = Ĉ

ηn (θ)
(u, v). Now, substituting u = F̄

Xmn
and

v = Ḡ
Ymn

, we have

Ĉn
θ

(
F̄ 1/n
Xmn

;α
(x), Ḡ1/n

Ymn
;β
(y)
)

= Ĉ
ηn (θ)

(
F̄
Xmn

;α
(x), Ḡ

Ymn
;β
(y)
)

= Ĉ
ηn (θ)

(
F̄
X,gn (α)

(x), Ḡ
Y ;g∗n (β)

(y)
)

which implies

H̄
Xmn

,Ymn
;α,β,θ

(x, y) = H̄
X,Y ;gn (α),g∗n (β),ηn (θ)

(x, y).

Hence the proof.

The necessary and sufficient condition for a family of bivariate distributions

to be closed under the maxima is given in the next theorem.

Theorem 6.4.4. Let H
X,Y ;α,β,θ

be a family of bivariate distributions with corre-

sponding families of marginal distributions F
X;α

and G
Y ;β

, and copula C
θ
(u, v).

Then H
X,Y ;α,β,θ

is closed under the maxima with respect to (α, β, θ) if, and only

if, F
X;α

is closed under the maxima with respect to α, G
Y ;β

is closed under the

maxima with respect to β and Cn
θ
(u1/n, v1/n) = C

ηn (θ)
(u, v).

Proof. Suppose that H
X,Y ;α,β,θ

is closed under the maxima with respect to
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(α, β, θ). Then by Theorem 6.4.2, F
X;α

is closed under the maxima with respect

to α, G
Y ;β

is closed under the maxima with respect to β. i.e., F
Xmn

;α
(x) =

F
X;gn (α)

(x) and G
Ymn

;β
(y) = G

Y ;g∗
n

(β)
(y).

H
mn ;α,β,θ

(x, y) = H
X,Y ;gn (α),g∗n (β),ηn (θ)

(x, y)

⇒ Cn
θ

(
F 1/n
Xmn

;α
(x), G1/n

Ymn
;β
(y)
)

= C
ηn (θ)

(
F
X,gn (α)

(x), G
Y ;g∗

n
(β)

(y)
)

⇒ Cn
θ
(u1/n, v1/n) = C

ηn (θ)
(u, v)

To prove the converse, suppose that F̄
Xmn

;α
(x) = F̄

X;gn (α)
(x), Ḡ

Ymn
;β
(y) =

Ḡ
Y ;g∗n (β)

(y) and Cn
θ
(u1/n, v1/n) = C

ηn (θ)
(u, v). Now, on substituting u = F̄

Xmn

and v = Ḡ
Ymn

, we have

Cn
θ

(
F 1/n
Xmn

;α
(x), G1/n

Ymn
;β
(y)
)

= C
ηn (θ)

(
F
Xmn

;α
(x), G

Ymn
;β
(y)
)

= C
ηn (θ)

(
F
X,gn (α)

(x), G
Y ;g∗n (β)

(y)
)

which implies

H
Xmn

,Ymn
;α,β,θ

(x, y) = H
X,Y ;gn (α),g∗n (β),ηn (θ)

(x, y).

Hence the proof.

Now, we define the closure under extrema for a copula C.

Definition 6.4.3. A copula satisfying the condition Cn
θ
(u1/n, v1/n) =

C
ηn (θ)

(u, v) for all n ≥ 1, integer, is called ‘copula closed under extrema’.

Remark 6.4.8. The set of extreme value copulas discussed in Section 6.3 is a

subset of copulas closed under extrema.

The following table gives some examples of copulas closed under extrema.
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C
θ
(u,v) Cn

θ
(u1/n,v1/n) η(θ) Range of θ

uv uv

min(u,v) min(u,v)

e(−[(− lnu)θ+(− ln v)θ ]1/θ) e(−{(− lnu)θ+(− ln v)θ}1/θ) θ [1,∞)

[max(u−θ+v−θ−1,0)]−1/θ [max(u−θ/n+v−θ/n−1,0)]−n/θ θ/n [1,∞)\{0}

uv/[1+(1−uθ)(1−vθ)]1/θ uv/[1+(1−uθ/n)(1−vθ/n)]n/θ θ/n (0,1]

(u−1/θ+v−1/θ−1)−θ (u−1/nθ+v−1/nθ−1)−nθ nθ (0,∞)

Table 6.1: Examples of Copulas Closed under Extrema

6.5 Monotone Transformations and Bivariate Closure

Property under Extrema

In Section 3.3, we discussed how the closure property under extrema of uni-

variate r.v.s changes under strictly increasing or strictly decreasing measurable

transformations. In this section, we extend this to bivariate case and discuss

how closure property under extrema of R.V.s changes under strictly increasing

or strictly decreasing measurable transformations of marginal r.v.s.

Theorem 6.5.1. Let the family H
X,Y ;α,β,θ

be closed under extrema with respect

to (α,β,θ) and, ξ and ψ be Borel measurable and strictly increasing on RanX

and RanY respectively. Suppose G
ξ(X),ψ(Y );α,β,θ

is the family of distributions of

(ξ(X), ψ(Y )). Then the following results hold.

i) If H
X,Y ;α,β,θ

is closed under the maxima, then so is G
ξ(X),ψ(Y );α,β,θ

.

ii) If H
X,Y ;α,β,θ

is closed under the minima, then so is G
ξ(X),ψ(Y );α,β,θ

.

Furthermore, the corresponding (g(
˜
αn), g

∗(
˜
βn), η(

˜
θn)) or (h(

˜
αn), h

∗(
˜
βn), ν(

˜
θn))

for both the families will be the same.

Proof. Let G
ξ(X),ψ(Y );αj ,βj ,θj

be the joint d.f. of (ξ(X), ψ(Y )). Since ξ and ψ are
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strictly increasing, we have

G
ξ(X),ψ(Y );αj ,βj ,θj

(x, y) = P
αj ,βj ,θj

(ξ(X) ≤ x, ψ(Y ) ≤ y)

= P
αj ,βj ,θj

(X ≤ ξ−1(x), Y ≤ ψ−1(y))

= H
X,Y ;αj ,βj ,θj

(ξ−1(x), ψ−1(y)).

Let H
X,Y ;α,β,θ

be closed under maxima. Then for all H
X,Y ;αj ,βj ,θj

, j = 1, 2, . . . , n

belonging to H
X,Y ;α,β,θ

; H
X
Mn

,Y
Mn

;
˜
αn,

˜
βn,

˜
θn

= H
X,Y ;h(

˜
αn ),h∗(

˜
βn ),ν(

˜
θn )

. Hence,

G
ξ(X)

Mn
,ψ(Y )

Mn
;
˜
αn,

˜
βn,

˜
θn

(x, y) =
n∏
j=1

G
ξ(X),ψ(Y );αj ,βj ,θj

(x, y)

=
n∏
j=1

H
X,Y ;αj ,βj ,θj

(ξ−1(x), ψ−1(y))

= H
X,Y ;h(

˜
αn ),h∗(

˜
βn ),ν(

˜
θn )

(ξ−1(x))

= G
ξ(X),ψ(Y );h(

˜
αn ),h∗(

˜
βn ),ν(

˜
θn )

(x, y).

i.e., G
ξ(X),ψ(Y );α,β,θ

is closed under the maxima with (h(
˜
αn), h

∗(
˜
βn), ν(

˜
θn)) of

H
X,Y ;α,β,θ

. Let H
X,Y ;α,β,θ

be closed under minima. Then for all H
X,Y ;αj ,βj ,θj

,

j = 1, 2, . . . , n belonging to H
X,Y ;α,β,θ

; H
Xmn

,Ymn
;
˜
αn,

˜
βn,

˜
θn

= H
X,Y ;g(

˜
αn ),g∗(

˜
βn ),η(

˜
θn )

.

Hence,

Ḡ
ξ(X)

Mn
,ψ(Y )

Mn
;
˜
αn,

˜
βn,

˜
θn

(x, y) =
n∏
j=1

Ḡ
ξ(X),ψ(Y );αj ,βj ,θj

(x, y)

=
n∏
j=1

H̄
X,Y ;αj ,βj ,θj

(ξ−1(x), ψ−1(y))

= H̄
X,Y ;g(

˜
αn ),g∗(

˜
βn ),η(

˜
θn )

(ξ−1(x))

= Ḡ
ξ(X),ψ(Y );g(

˜
αn ),g∗(

˜
βn ),η(

˜
θn )

(x, y).
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i.e., G
ξ(X),ψ(Y );α,β,θ

is closed under the minima with (g(
˜
αn), g

∗(
˜
βn), η(

˜
θn)) of

H
X,Y ;α,β,θ

. Hence the proof.

Theorem 6.5.2. Let the family H
X,Y ;α,β,θ

be closed under extrema with respect

to (α,β,θ) and, ξ and ψ be Borel measurable and strictly decreasing on RanX

and RanY respectively. Suppose G
ξ(X),ψ(Y );α,β,θ

is the family of distributions of

(ξ(X), ψ(Y )). Then the following results hold.

i) If H
X,Y ;α,β,θ

is closed under the maxima, then G
ξ(X),ψ(Y );α,β,θ

is

closed under the minima with corresponding (g(
˜
αn), g

∗(
˜
βn), η(

˜
θn)) =

(h(
˜
αn), h

∗(
˜
βn), ν(

˜
θn)) of H

X,Y ;α,β,θ
.

ii) If H
X,Y ;α,β,θ

is closed under the minima, then G
ξ(X),ψ(Y );α,β,θ

is

closed under the maxima with corresponding (h(
˜
αn), h

∗(
˜
βn), ν(

˜
θn)) =

(g(
˜
αn), g

∗(
˜
βn), η(

˜
θn)) of H

X,Y ;α,β,θ
.

Proof. Since ξ and ψ are strictly decreasing, −ξ and −ψ is strictly increasing.

Hence, by Theorem 6.5.1 and the relation

(Xmn
, Ymn ) = (−max{−X1 ,−X2 , . . . ,−Xn},−max{−Y1 ,−Y2 , . . . ,−Yn})

The proof follows on the similar lines of Theorem 3.3.2.

Result 6.5.1. Let the family H
X,Y ;α,β,θ

, P (X 6= 0) = 1 and P (Y 6= 0) = 1, be

closed under componentwise minima (maxima) with respect to (α,β,θ). Then

the family H 1
X
, 1
Y

;α,β,θ
is closed under the maxima (minima) with respect to

(α,β,θ).

Result 6.5.2. Let the family H
X,Y ;α,β,θ

be closed under componentwise minima

(maxima)with respect to (α,β,θ). Then the family H−X,−Y ;α,β,θ
is closed under

the maxima (minima) with respect to (α,β,θ).
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Result 6.5.3. Closure under componentwise maxima (minima) is invariant

under change of origin and scale.

Result 6.5.4. Let the family H
X,Y ;α,β,θ

be closed under componentwise minima

(maxima)with respect to (α,β,θ). Then

1. the family H
Xγ,Y δ ;α,β,θ

, X ≥ 0, Y ≥ 0 a.s., is closed under the minima

(maxima) with respect to α,β,θ, for γ > 0, δ > 0 constants.

2. the family H
Xγ,Y δ ;α,β,θ

, X > 0, Y > 0 a.s., is closed under the maxima

(minima) with respect to α,β,θ, for γ > 0, δ > 0 constants.

6.6 Truncation and Bivariate Closure Property under

Extrema

Recall that, in Section 3.4, we have seen that truncated distributions are ob-

tained by restricting the domain of a probability distribution. We also discussed

how closure property under extrema of r.v.s changes on truncation. In this sec-

tion, we are going to discuss how closure property under extrema changes on

the truncation of marginal r.v.s. The probability distribution of (X, Y ) condi-

tioned on X > a, Y > c is called left-truncated distribution of (X, Y ) truncated

at (a, c) and the probability distribution of (X, Y ) conditioned on X < b, Y < d

is called right-truncated distribution of (X, Y ) truncated at (b, d). The joint

d.f. of (X, Y ) truncated at both ends, or doubly truncated, is denoted by

H
X
T (a,b)

,Y
T (c,d)

and is given by

H
X
T (a,b)

,Y
T (c,d)

(x, y) =
H
X,Y

(x, y)−H
X,Y

(x, c)−H
X,Y

(a, y) +H
X,Y

(a, c)

H
X,Y

(b, d)−H
X,Y

(b, c)−H
X,Y

(a, d) +H
X,Y

(a, c)

(6.6.1)
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with corresponding joint s.f.

H̄
X
T (a,b)

,Y
T (c,d)

(x, y) =
H̄
X,Y

(x, y)− H̄
X,Y

(x, d)− H̄
X,Y

(b, y) + H̄
X,Y

(b, d)

H̄
X,Y

(a, c)− H̄
X,Y

(a, d)− H̄
X,Y

(b, c) + H̄
X,Y

(b, d)
.

(6.6.2)

for xa ≤ a < x < b ≤ x
b
, where xa and x

b
are the end points of the support

of X and yc ≤ c < y < d ≤ y
d
. If a = xa , b < x

b
, c = yc and d < y

d
we get

a right truncated distribution. Similarly, if a > xa , b = x
b
, c > yc and d = y

d

we get a left truncated distribution. Hence, the joint d.f. of a right truncated

distribution truncated at (b, d) is given by

H
X
T (b)

,Y
T (d)

(x, y) =
H
X,Y

(x, y)

H
X,Y

(b, d)
(6.6.3)

and the joint s.f. of a left truncated distribution truncated at (a, c) is given by

H̄
X
T (a)

,Y
T (c)

(x, y) =
H̄
X,Y

(x, y)

H̄
X,Y

(a, c)
. (6.6.4)

In this section we see how the closure property changes under right and left

truncation of bivariate distributions. From (6.6.1) and (6.6.2) we can easily

say that closure under extrema is not preserved under truncation at both the

ends. But, from (6.6.3) and (6.6.4) we observe that closure under the maxima

is invariant under right truncation and closure under the minima is invariant

under left truncation respectively. This is the content of the following two

theorems.

Theorem 6.6.1. Let the family H
X,Y ;α,β,θ

be closed under the maxima. Then

the right truncated family H
X
T (b)

,Y
T (d)

;α,β,θ
is also closed under the maxima.
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Proof. We have H
X
Mn

,Y
Mn

;α,β,θ
(x, y) = H

X,Y ;hn (α),h∗n (β),ν(θ)
. Then

H
X
T (b)

Mn

,Y
T (d)

Mn

;α,β,θ
(x, y) =

n∏
j=1

H
X
T (b)

,Y
T (d)

;α,β,θ
(x, y)

=
n∏
j=1

(
H
X,Y ;α,β,θ

(x, y)

H
X,Y ;α,β,θ

(b, d)

)

=
H
X,Y ;hn (α),h∗

n
(β),ν(θ)

(x, y)

H
X,Y ;hn (α),h∗

n
(β),ν(θ)

(b, d)

= H
X
T (b)

,Y
T (d)

;hn (α),h∗n (β),ν(θ)
(x, y).

Hence the proof.

Theorem 6.6.2. Let the family H
X,Y ;α,β,θ

be closed under the minima. Then

the left truncated family H
X
T (b)

,Y
T (d)

;α,β,θ
is also closed under the minima.

Proof. We have H̄
Xmn

,Ymn
;α,β,θ

(x, y) = H
X,Y ;gn (α),g∗n (β),η(θ)

. Then from

H̄
X
T (b)

Mn

,Y
T (d)

Mn

;α,β,θ
(x, y) on simplification we get H̄

X
T (b)

,Y
T (d)

;gn (α),g∗n (β),η(θ)
(x, y).

Hence the proof.

6.7 Characteristic Functions of Componentwise Ex-

trema

Let {(Xn , Yn)} be a sequence of independent bivariate r.v.s. Due to the one

to one correspondence between the joint d.f. and the joint c.f, if the joint d.f.

of R.V.s belong to a family of bivariate distributions closed under the minima,

then one can represent the joint c.f.s of componentwise minima in terms of the

joint c.f. of the underlying distribution.

Theorem 6.7.1. Let {Xn , Yn} be a sequence of independent bivariate r.v.s with

(X
j
, Y

j
) ∼ H

Xj ,Yj
(x, y) ∈ H

X,Y ;α,β,θ
and let the c.f. (X

j
, Y

j
) be φ

X,Y ;αj ,βj ,θj
.



116

i) If H
X,Y ;α,β,θ

is closed under the componentwise minima with respect to

(α,β,θ), then φ
Xmn

,Ymn
;
˜
αn,

˜
βn,

˜
θn

= φ
X,Y ;g(

˜
αn ),g∗(

˜
βn ),η(

˜
θn )
∈ H

X,Y ;α,β,θ
.

ii) f H
X,Y ;α,β,θ

is closed under the componentwise maxima with respect to

(α,β,θ), then φ
X
Mn

,Y
Mn

;
˜
αn,

˜
βn,

˜
θn

= φ
X,Y ;h(

˜
αn ),h∗(

˜
βn ),ν(

˜
θn )
∈ H

X,Y ;α,β,θ
.

Can one represent the joint c.f.s of componentwise maxima in terms of the

joint c.f. of the underlying family of distributions? This will be possible if one

can represent the joint d.f. of componentwise maxima in terms of the joint

d.f. of the underlying family of distributions. Similar question exists, when

a family bivariate of distributions is closed under the maxima. This is the

problem addressed in this section.

Suppose (X1 , Y1) ∼ H1(x, y) and (X2 , Y2) ∼ H2(x, y) are independently

distributed. Then the joint d.f. of their maxima is given by

H
X
M2

,Y
M2

(x, y) =
2∏
j=1

P (X
j
≤ x, Y

j
≤ y)

=
2∏
j=1

(1− F̄
Xj

(x)− Ḡ
Yj

(y) + H̄
Xj ,Yj

(x, y))

= 1− F̄
X1

(x)− F̄
X2

(x)− Ḡ
Y1

(y)− Ḡ
Y2

(y)

+H̄
X1 ,Y1

(x, y) + H̄
X2 ,Y2

(x, y)

+F̄
X1

(x)F̄
X2

(x) + Ḡ
Y1

(y)Ḡ
Y2

(y) + H̄
X1 ,Y1

(x, y)H̄
X2 ,Y2

(x, y)

+F̄
X1

(x)Ḡ
Y2

(y) + F̄
X2

(x)Ḡ
Y1

(x)

−F̄
X1

(x)H̄
X2 ,Y2

(x, y)− F̄
X2

(x)H̄
X1 ,Y1

(x, y)

−Ḡ
Y1

(y)H̄
X2 ,Y2

(x, y)− Ḡ
Y2

(y)H̄
X1 ,Y1

(x, y). (6.7.1)
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Now, if (X1 , Y1) and (X2 , Y2) are i.i.d. having joint d.f. H
X,Y

(x, y), then (6.7.1)

becomes

H
X
M2

,Y
M2

(x, y) = 1− 2F̄ (x)− 2Ḡ(y) + 2H̄(x, y)

+F̄ 2(x) + Ḡ2(y) + H̄2(x, y) + 2F̄ (x)Ḡ(y)

−2F̄ (x)H̄(x, y)− 2Ḡ(y)H̄(x, y).

= 1− 2F̄
Xm1

(x)− 2Ḡ
Ym1

(y) + 2H̄
Xm1

,Ym1

(x, y)

+F̄
Xm2

(x) + Ḡ
Ym2

(y) + H̄
Xm2

,Ym2

(x, y) + 2F̄
Xm1

(x)Ḡ
Ym1

(y)

−2F̄
Xm1

(x)H̄
Xm1

,Ym1

(x, y)− 2Ḡ
Ym1

(y)H̄
Xm1

,Ym1

(x, y).

= 2H
Xm1

,Ym1

(x, y)−H
Xm2

,Ym2

(x, y)

+2H̄
Xm2

,Ym2

(x, y) + 2F̄
Xm1

(x)Ḡ
Ym1

(y)

−2F̄
Xm1

(x)H̄
Xm1

,Ym1

(x, y)− 2Ḡ
Ym1

(y)H̄
Xm1

,Ym1

(x, y).(6.7.2)

From (6.7.1) and (6.7.2), we conclude that in the bivariate case, the joint

d.f.s of componentwise maxima does not have a representation in terms of

the partial joint d.f.s of componentwise minima. Similarly, the joint d.f.s of

componentwise minima does not have a representation in terms of the partial

joint d.f.s of componentwise maxima. Hence, the corresponding joint c.f.s does

not have similar representations.



CHAPTER

SEVEN

Conclusion

The d.f.s of partial maxima and partial minima of a sequence of independent

r.v.s can be represented in terms of the d.f. of underlying distribution. But

in many situations they are hard to handle. However, when the sequence of

r.v.s have closure property under extrema, the study of partial minima, partial

maxima, and all other order statistics for every fixed n, reduces to the study of

underlying distribution. In this case it is possible to express the distributions,

c.f.s and other integral transforms in terms of that of underlying distribution.

That is, if the sequence of r.v.s is closed under the minima or maxima, then the

study of these statistics reduces to the study of underlying distribution. The

thesis identifies the class of distributions closed under extrema.

In the case of bivariate or multivariate r.v.s, the concept can not be extended

completely. That is, even if the sequence of R.V.s is closed under the minima

it is not possible to express the joint d.f. of componentwise maxima in terms of

the partial joint d.f. of componentwise minima. Hence, similar representations

does not exist for joint c.f.s and other integral transforms, even if they exist.
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Similar is the case when the sequence of R.V.s is closed under the maxima.

‘Copulas closed under extrema’ can be used as a starting point for construction

of families of bivariate distributions closed under the minima or maxima. By

joining the d.f.s of univariate distributions having closure property under the

maxima using a copula closed under extrema we get a bivariate distribution

belonging to a family closed under the maxima. Similarly, by joining s.f.s

of univariate distributions having closure property under the minima using a

copula closed under extrema, we get a bivariate distribution belonging to a

family closed under the minima.
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