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ABSTRACT

The thesis is divided into 6 chapters. The first chapter is Intro-

duction. In this chapter the basic concepts of queuing models and

inventory queuing models are explained. In the second chapter we

give a brief outline of the related works in the area.

The third chapter is titled “An Explicit Solution for an Inventory

Model with Positive Lead Time and Backlogs”. Here we consider

an (s, S) inventory model in which customers arrive to a single server

counter according to a Poisson process where inventory served. Inven-

tory is replenished according to (s, S) policy, the replenishment time

being an exponential random variable. We assume negligible service

time for this model. The customers who join the queue when inven-

tory level drops to zero form a queue and remain in the system until

inventory replenishment is realized. The explicit expression for the

steady state probability vector has been derived. The expression for

expected waiting time of a customer in the queue has been derived.

A numerical study of the effect of parameters on the performance

measures has been done.

The fourth chapter is titled “An Explicit Solution for an Inven-

tory Model with Positive Lead Time and Server Interruptions”. In

this model we consider a single server queuing system with inventory.

Customers arrive according to a Poisson process and service times

follow exponential distribution. Inventory is replenished according

to (s, S) policy with positive lead time which follows exponential dis-

tribution. While the server serves a customer, the service may be

interrupted; the interruption time follows an exponential distribution.
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Following an interruption the service restarts after repair at an ex-

ponential rate. We assume that while the server is on interruption,

the customer being served waits there until his service is completed,

no inventory is lost due to interruption, no arrivals are allowed when

the server is on interruption and an order placed if any is cancelled.

Stability of the above system is analyzed and the steady state prob-

ability vector is calculated explicitly. Expressions for several system

performance measures such as expected number of customers in the

system, expected inventory level, expected interruption rate etc. are

obtained. Even though explicit expressions are obtained, a numerical

study of the effect of parameters on the performance measures has

been done. A cost analysis has also been done for the model.

The fifth chapter is titled “An Explicit Solution for an Inventory

Model with Server Interruption and Retrials”. In this model cus-

tomers enter into a single server queuing model in accordance with

a Poisson process where inventory is served. The inter service time

follows exponential distribution. Upon arrival, finding the server busy

the customers enter into an orbit from where they retry for service

at a constant retrial rate. While the server serves a customer the

service can be interrupted, the inter occurrence time of interruption

being exponentially distributed. Following a service interruption the

service restarts after an exponentially distributed time. Inventory is

replenished according to (s, S) policy, replenishment being instanta-

neous. For the model under discussion we assume that no inventory

is lost due to server interruption, the customer being served when

interruption occurs waits there until his service is completed and no
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arrivals are entertained and an order placed if any is cancelled while

the server is on interruption. Explicit expression for the steady state

probabilities is calculated and several performance measures are eval-

uated explicitly and numerically. Graphs which show the variation of

various performance measures with parameter values are also drawn.

In the sixth chapter we provide some recommendations about the

future work and extensions which can be done based on the models

discussed in the thesis.
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CHAPTER 1

Introduction

1.1 Description of the queuing problem

Here we study what happens when an individual or a group of people

come and join queues. We are quite familiar with queues in our day

to day life. Common examples are going to a doctor, going to a bar-

ber shop, customers waiting in a bank counter, patients waiting in a

hospital, airplanes waiting to take off or for landing etc. A queuing sys-

tem essentially happens when there are people or entities that arrive,

called arrivals, who require some kind of service from another entity,

called server. In most of the real life situations customers have to wait

in a queue for getting service. This waiting time can be reduced by

enhancing the service facilities. But this will result in additional cost

and so a drop in the profit. On the other hand if the queue length

is large it will result in lost sales. So the problem is to maximize

the profit by achieving a balance between the cost associated with

long queues and that associated with the reduction / prevention of
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Chapter 1. Introduction

waiting. Queuing theory is that branch of applied probability which

studies service systems of the above type.

The basic characteristics of any queuing model are the following.

Arrival pattern of customers

The manner in which customers arrive and join a queuing system is

described by the arrival pattern of customers. It is measured in terms

of average number of arrivals per unit time which is called the mean

arrival rate or the average time between successive arrivals which is

called the mean inter arrival time. This is often expressed by means

of a probability distribution.

Arrivals occur usually one by one, but there are also instances

where customers arrive together. This is termed as Batch arrivals. If

the queue is too long a customer may decide not to enter it upon

arrival. This is known as balking. Sometimes a customer may enter

the queue, but after some time lose patience and decide to leave. This

behavior of the customer is known as reneging. Another case is, when

there is more than one queue, customers may switch from one to

another which is called jockeying.

Service pattern of servers

The manner in which service is provided to the customer is described

by the service pattern of servers. It is measured in terms of average

number of services per unit time which is called the mean service

rate or the average time between successive services which is called

the mean inter service time. This is also expressed by means of a

probability distribution.

Service may also be in single or in batches. If there are no cus-

tomers in the system, we say the server is idle. The servers that be-

2



Chapter 1. Introduction

come idle may leave the system for a random period. This is known

as server vacation. These vacations may be utilized to perform addi-

tional work assigned to the servers. However in retrial queues with no

waiting space, each service is preceded and followed by an idle period.

Queue discipline

This specifies the manner in which the customers are selected for ser-

vice when a queue is formed. The most common disciplines are FIFO

(First in First out) and LIFO (Last in First out). SIRO (Service in

Random order) is also a queue discipline. Sometimes a few customers

are given priorities upon entering the system. The ones with higher

priorities are selected for service ahead of those with lower priorities.

Sometimes at the arrival of a high priority customer, the service of

a low priority customer is interrupted and the high priority customer

is taken for service. In other words high priority customers are never

allowed to wait in favor of a low priority customer. This is known as

a preemptive priority. On the other hand a non preemptive service

never interrupts an ongoing service whether it is of a high priority or

low priority customer.

Service channels

Service channels refer to the number of parallel service stations which

can provide identical service to the customers.

Stages of service

A service may have several stages. A customer may have to pass

through all these service stages before to leaving the system. Such

queues are known as tandem queues.

3



Chapter 1. Introduction

1.2 Description of inventory systems

By inventory we mean stock of goods, commodities and other re-

sources that are stored for the smooth conduct of business. In ad-

dition to usual features of queuing models, the availability of inven-

tory is also considered in inventory models. The time required to

replenish the inventory is called lead time. Instantaneous replenish-

ment is considered in some inventory queuing models. In such cases

we say lead time is zero. If the time required to serve the items to

the customers and time required to replenish the items (lead time)

are both negligible then no queue is formed except in the case when

order for replenishment is placed only when a number of back orders

accumulate. If either service time or lead time or both are taken to

be positive then a queue is formed.

There are several policies for replenishing the inventory. The most

commonly used is known as (s, S) inventory policy According to this

policy an order is placed when inventory level drops to s. The order

quantity is fixed as Q = S − s, where S is the maximum inventory

level. Such an inventory model is called (s, S) inventory model. In

(s, S) policy, s and S are control variables. Here s is called the reorder

level and S is called the maximum inventory level. Here we use (s, S)

policy in the sense defined in Stanfel and Sivazlian [1]: the on hand

inventory, on reaching the level s, an order for the fixed quantity S−s
of the item is placed. There are several other ordering policies. In an-

other policy, known as Order up to maximum S policy replenishment

order is placed at levels 0 ≤ i ≤ s, the replenishment quantity being

S–i when inventory level is i (0 ≤ i ≤ s) at replenishment epoch.

In random order quantity policy, the order quantity can be anything

between s+1 and S–s. Yet another ordering policy is to place replen-

4



Chapter 1. Introduction

ishment order when inventory level belongs to {0, 1, . . . ., s}.

1.3 Some basic concepts

Stochastic process

A stochastic process is defined as a family of random variables {X(t), t ∈
T}. That is for each t ∈ T , X(t) is a random variable and is defined in

some probability space. The parameter t is often referred to as time

and X(t) denotes the values taken by the random variable at time t.

The set T is called the index set of the process. If T is a countable set

then the stochastic process is said to be a discrete (time) stochastic

process. If T is continuous, that is an interval of the real line then

the stochastic process is said to be a continuous (time) process. For

instance, {Xn, n = 0, 1, . . .} is a discrete time stochastic process in-

dexed by the set of non negative integers, while {X(t), t ≥ 0} is a

continuous time process indexed by non negative real numbers. The

set of all values taken by X(t) for all values of t is known as the state

space of the process. The state space may also be discrete or continu-

ous. Thus a stochastic process can have a discrete or continuous state

space and may evolve at a discrete set of time points or continuously

in time. If the state space is discrete the process is referred to as a

chain.

Markov Process

A stochastic process whose conditional probability distribution func-

tion satisfies memory less property or Markov property is called a

Markov process. Thus we can define discrete time Markov chains

(DTMCs) and continuous time Markov chains (CTMCs) and also dis-

crete time Markov process and continuous time Markov process.

Formally a DTMC is a stochastic process {Xn : n = 0, 1, 2, . . .}

5



Chapter 1. Introduction

which satisfies the Markov property, namely Pr{Xn+1 = xn+1/Xn =

xn, . . . , X0 = x0} = Pr{Xn+1 = xn+1/Xn = xn}. Similarly a CTMC

is a stochastic process {X(t), t ∈ T} which satisfies the condition

Pr{X(tn) = xn/X(tn−1) = xn−1, X(tn−2) = xn−2, . . . , X(t0) = x0} =

Pr{X(tn) = xn/X(tn−1) = xn−1} for t0 < t1 < . . . < tn−1 < tn and

for every n; x0, x1, . . . , xn are elements of the state space. This means

that the distribution of any future occupancy depends only on the

present state but not on the past.

Exponential distribution

A continuous random variable X is said to follow exponential distri-

bution with parameter λ > 0 if its cumulative distribution function

is given by F (x) =

1− e−λx , x ≥ 0

0 , otherwise
. The nth moment of the

distribution is given by
n!

λn
. This is the only continuous distribution

which possess the memory less property; that is Pr(X > t + s/X >

t) = Pr(X > s) for all t, s ≥ 0. Exponential distribution is relatively

easy to work.

Renewal Process

Let X1, X2, . . . be a sequence of non negative independent random

variables having a common probability distribution function F (x) =

Pr(Xi ≤ x) i = 1, 2, . . .. The random variable Xn denotes the inte-

roccurrence time between the (n− 1)th and nth event in some specific

probability problem.

Letting Sn =
n∑

i=1

Xi, n = 1, 2, . . . ; S0 = 0, we have Sn is the epoch

at which the nth event occurs. Define N(t) = max{n : Sn ≤ t}. The
distribution of N(t) is given by P{N(t) = n} = Fn(t)−Fn+1(t), where

6
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Fn is the n-fold convolution of F with itself. The counting process

{N(t) : t ≥ 0} is called the renewal process. The Poisson process is a

renewal process where F is an exponential distribution.

Poisson Process

A renewal process {N(t), t ≥ 0} with interoccurrence timesX1, X2, . . .

is called a Poisson process if the interoccurrencs times have a common

exponential probability density function f(t) =

λe
−λt , t ≥ 0

0 , otherwise

A Poisson process is also defined as follows.

A renewal process {N(t), t ≥ 0} is said to be a Poisson process having

rate λ if

(i) N(0) = 0

(ii) The process has stationary and independent increments.

(iii) P{N(h) = 1} = λh+ o(h).

(iv) P{N(h) ≥ 2} = o(h).

Using the above postulates it can be proved that for all s, t ≥ 0,

P{(N(t + s) − N(s)) = n} = e−λt (λt)
n

n!
, n = 0, 1, . . .. For a Poisson

process having parameter λ the inter arrival time has an exponential

distribution with mean 1/λ.

Continuous-time Phase type (PH) distributions

Phase-type distributions were introduced by Neuts in 1975 as a gen-

eralization of the exponential distribution. A non negative random

variable X is said to follow phase type distribution (PH distribution)

if its distribution function is given by F (t) = 1− α exp (Tt)e, where

(i) e is a column vector of ones

7



Chapter 1. Introduction

(ii) α is a row vector of order m with all elements non negative and

αe ≤ 1.

(iii) T is a matrix of order m×m with all diagonal entries negative,

all off diagonal entries non negative and row sums non positive.

Also T is invertible.

Here T is called the generator and (α, T ) is called the phase type

representation of order m of the PH distribution. This may also be

defined in the following manner.

Consider a Markov process Ω with m+ 1 states {1, 2, . . . ,m+ 1}

and infinitesimal generator matrix Q =

[
T T 0

0 0

]
, where the matrix

T satisfies Tii < 0 for 1 ≤ i ≤ m and Tij ≥ 0 for i ̸= j; T 0 is an

m × 1 coloumn matrix such that Te + T 0 = 0, where e is a column

matrix of 1’s of appropriate order. Let (α, αm+1), where α is an 1×m
dimensional row vector and αm+1 is a scalar such that αe + αm+1 =

1, be the initial probability vector of Ω. Since the sojourn time of

state m + 1 is zero it is an absorbing state for the Markov chain

Ω. For eventual absorption into the absorbing state, starting from

the initial state, it is necessary and sufficient that T is non singular.

The probability distribution F (.) of time until absorption in the state

m + 1 corresponding to the initial probability vector (α, αm+1) can

be calculated as F (x) = 1 − αe(Tx)e, x ≥ 0. Thus a probability

distribution F (.) is a distribution of phase type if and only if it is

the distribution of time until absorption of a finite Markov process

described above. The moments about origin are given by E(Xk) =

µk = (−1)kk!(αT−ke) for k ≥ 0. When m = 1 and T = [−λ], the
underlying PH-distribution is exponential.

8
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PH-renewal process

A renewal process whose inter-renewal times have a PH distribu-

tion is called a PH-renewal process. To construct a PH-renewal pro-

cess we consider a continuous time Markov chain with state space

{1, 2, . . . ,m + 1} having infinitesimal generator Q =

[
T T 0

0 0

]
. The

matrix T is taken to be nonsingular so that absorption to the state

m + 1 occurs with probability 1 from any initial state. Let (α, 0) be

the initial probability vector. When absorption occurs in the above

chain we say a renewal has occurred. Then the process immediately

starts anew in one of the states {1, 2, . . . ,m} according to the proba-

bility vector α. Continuation of this process gives a non terminating

stochastic process called PH-renewal process.

Level Independent Quasi-Birth-Death (LIQBD) process

A level independent quasi birth and death process is a Markov process

on the state space E = {(i, j), i ≥ 0, 1 ≤ j ≤ m}. Its infinitesimal

generator matrix Q is given by

Q =



B0 A0

B1 A1 A0

A2 A1 A0

A2 A1 A0


(1.3.1)

We partition the state space E into levels {0̂, 1̂, 2̂, . . .}, where î =

{(i, j), i ≥ 0, 1 ≤ j ≤ m}. The states within the levels are called

9



Chapter 1. Introduction

phases. The matrix B0 denotes the transition rates within level 0̂, B1

the transition rates from level 1̂ to level 0̂. A2, A1 and A0 denote tran-

sition rates from level î to ( ˆi− 1), î to î and î to ˆ(i+ 1) respectively.

Matrix Analytic Method

Matrix analytic approach to stochastic models was introduced by M.F

Neuts to provide an algorithmic analysis for M/G/1 and G/M/1 type

of queuing models. The following brief discussion gives an account of

the method of solving an LIQBD using the matrix geometric method.

For a detailed description, we refer to Neuts [2], Latouchi and Ra-

maswami [3].

Let π = (π0, π1, π2, . . .) be the steady state vector of the QBD

process whose generator matrix is Q. Each πi can be partitioned as

πi = (π(i, 1), π(i, 2), . . . , π(i,m)) , m being the number of phases with

in levels. Let πi = π0R
i, i ≥ 1. Then from πQ = 0 we get

π0A0 + π1A1 + π2A2 = 0

π0A0 + π0RA1 + π0R
2A2 = 0

π0(A0 +RA1 +R2A2) = 0

Choose R such that R2A2 +RA1 + A0 = 0. We also have

π0B0 + π1B1 = 0

π0B0 + π0RB1 = 0

i.e., π0(B0 +RB1) = 0

First choose π0 as the steady state vector of B0 + RB1. Then πi, for

i ≥ 1 can be found using the formulae; πi = π0R
i for i ≥ 1. Now

the steady state probability distribution of the system is obtained by

10
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dividing each πi, with the normalizing constant [π0 + π1 + . . .]e =

(I −R)−1e.

The above discussion leads to the following theorem.

Theorem 1.3.1. The QBD with infinitesimal generator Q of the form

1.3.1 is positive recurrent if and only if the minimal non negative

solution R of the matrix quadratic equation R2A2 + RA1 + A0 = 0

has all its eigen values inside the unit disc and the finite system of

equations π0(B0 +RB1) = 0, π0(I −R)−1e = 1 has a unique solution

π0. If the matrix A = A0 + A1 + A2 is irreducible, then sp(R) < 1 if

and only if xA0e < xA2e, where x is the stationary probability vector

of A = A0+A1+A2. The stationary probability vector π = (π0, π1, . . .)

of Q is given by πi = π0R
i for i ≥ 1.

Level Dependent Quasi Birth Death (LDQBD) Process

A level dependent Quasi-Birth–Death process is a Markov process

on a state space E = {(i, j), i ≥ 0, 1 ≤ j ≤ ni} with infinitesimal

generator matrix Q given by

Q =



A10 A00

A21 A11 A01

A22 A12 A02

A23 A13 A03


(1.3.2)

The generator matrix Q is obtained in the above form by partitioning

the state space E into levels {0̂, 1̂, 2̂, . . .}. Here the transitions take

place only to the immediately preceding and succeeding levels for

11



Chapter 1. Introduction

i ≥ 1. However the transition rate depends on the level i, unlike in

the LIQBD, and therefore the spatial homogeneity of the associated

process is lost.

A special class of LDQBD’s is those which arise in retrial queueing

models. We have described some of the basic tools for the analysis

of queuing models. Now we provide a review of the work done in the

theme of the present thesis.

12



CHAPTER 2

Literature Review

2.1 Review of related works

The pioneers in the study of queueing inventory models are Melikov

and Molchano [4] and Sigman and Simchi- Levi [5]. In Sigman and

Simchi- Levi customers are allowed to join even when there is no

inventory in the system. They also discuss the case of non exponential

lead time distribution. Later Berman and et al. [6] considered an

inventory system where a processing time is required for serving the

inventory. Here they considered deterministic service time and the

model was discussed as a dynamic programming model. Berman and

Kim [7] and Berman and Sapna [8] later discussed inventory queuing

systems with exponential service time distribution and with arbitrary

distribution.

There are several papers on inventory queuing models by Krish-

namoorthy and his co-authors [9, 10, 11, 12, 13, 14, 15, 16, 17]. In [9]

the authors consider an inventory system with two parallel service fa-

13
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cilities and a certain number of customers are transferred from longer

to shorter queue whenever their difference reaches a prescribed quan-

tity. Along with this customer transfer, a certain quantity of inventory

is also transferred, depending on availability. In [12] the authors nu-

merically investigate a PH/PH/1 inventory model with reneging of

customers and finite shortage of items. They assume both arrival pro-

cess and service process to follow phase type renewal process. But

the lead-time is taken as zero. Reneging of customers is also con-

sidered. In [10] the authors consider a single commodity inventory

system operating under the (s, S) policy. There is a service time

associated with each demand. Here items are serviced even in the

absence of a demand and such processed items are stacked separately.

The server keeps processing the items. The total of processed and

unprocessed items cannot exceed S. Also when the total reaches s,

an order for replenishment is placed and the order materialization

takes place instantly. In [11] the authors consider an (s, S) retrial

inventory model where inter arrival times follow a Batch Markovian

arrival process. The demands enter into a buffer of finite capacity,

equal to the number of inventory in hand. When the buffer is full

the customers enter into an orbit from where they retry for service

at an exponential rate. The service times and lead times both follow

exponential distributions. In [12] the authors numerically investigate

a PH/PH/1 inventory model with reneging of customers and finite

shortage of items. Here arrivals occur according to a phase type re-

newal process and the service times are identically and independently

distributed random variables having common phase type distribution.

The lead-time is taken zero. Customers renege from the system at

a constant rate and shortage is also permitted. In [13] the authors

14



Chapter 2. Literature Review

consider an (s, S) inventory system with a positive lead-time and pos-

itive service time. Those customers, encountering an idle server and

positive inventory, are immediately taken into service and customers

who at the time of arrival find an idle server with zero inventory are

considered lost. A customer who finds the server busy, joins an orbit

of infinite capacity and from there retries for service, with inter-retrial

times exponentially distributed. At a service completion epoch, the

server, with a certain probability, makes a search in the orbit and

picks a customer, if any, randomly from the orbit, provided there is

at least one item left in the inventory for the next service. The search

time is assumed to be negligible. In [14] the authors introduce an

additional control policy called the N-policy into an (s, S) inventory

system with positive service time. Under specified interarrival and

service time distributions, which are independent of each other, they

obtain the necessary and sufficient condition for the system to be sta-

ble. They also obtain the optimal values of the control variables s, S,

and N . Numerical illustrations are provided and several measures of

performance of the system are evaluated. In [17] the authors consider

an (s, S) inventory model with random positive service time. Arrivals

are in accordance with a Markovian arrival process (MAP) and ser-

vice times have phase type distribution. Lead time for replenishment

of inventory follows a correlated process similar to the customer ar-

rival process. At a service completion epoch if no customer is waiting

or the inventory level is zero then the server goes on a vacation of

random duration. The vacation time is also phase type distributed.

On return from vacation if the server finds no customer waiting or

inventory level is zero, the server goes on another vacation of random

duration having the same phase type distribution as the earlier one.

15
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The customer arrival process is subject to balking. While waiting

for service, customers may become impatient and leave the system.

In [18] the authors look at an opportunistic-type inventory replenish-

ment in which there is an independent point process that is used to

model events that are called opportunistic for replenishing inventory.

When an opportunity (to replenish) occurs, a probabilistic rule that

depends on the inventory level is used to determine whether to avail it

or not. Assuming that the customers arrive according to a Markovian

arrival process, the demands for inventory occur in batches of varying

size, the demands require random service times that are modeled us-

ing a continuous-time phase-type distribution, and the point process

for the opportunistic replenishment is a Poisson process. We refer to

the papers [19, 20, 21] for a detailed description of several papers on

inventory queuing models.

Several types of service interruption models are included in the

literature. These include interruption due to server taking vacations,

server breakdown, server interruptions, arrival of a priority customer

etc. The first paper in this direction is due to White and Christie [22]

where they consider an M/M/1 queuing model with exponentially dis-

tributed service interruption durations. Later Jaiswal [23, 24], Gaver

[25], Keilson [26], Avi-Itzhak and Naor [27] and Thiruvengadom [28]

analyzed queuing models with service interruptions, assuming general

distribution for the service and interruption times. In all these papers

it is assumed that the arrival of a high priority customer interrupts

the service of a lower priority customer. Some other papers on service

interruption models are due to Ibe and Trivedi [29], Federgruen and

Green [30], Van Dijk [31] Takine and Sengupta [32], Masuyama and

Takine [33]. Kulkarni and Choi [34] studied two models with server
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breakdowns in a single server retrial queue. In the first model, the

customer whose service is interrupted, either leaves the system or re-

joins the orbit; whereas in the second model the interrupted service

is repeated after the repair is completed. Some other papers which

study retrial queues with an unreliable server include Aissani and Ar-

talejo [35], Artalejo and Gomez-Corral [36], Wang et al. [37], Sherman

and Kharoufeh [38], Sherman et al. [39]. In [40] Krishnamoorthy and

Ushakumari analyzed a queing model where disaster occur to the unit

undergoing service. Another model by Wang et al. [41] discuss one

with disaster and unreliable server.

Retrial queuing models are gaining more and more attention due

to their use in communication and other fields. We refer to the books

by Falin and Templeton [42] and Atralejo and Gomez Corral [43] for an

extensive analysis of both theory and applications on retrial queues.

Inventory queing model with positive lead time and retrial of cus-

tomers was first done by Artalejo et al. [44]. Ushakumari [40] arrived

at an analytic solution for the problem discussed in the above pa-

per. Following these, there were several papers in this direction. A

few among Krishnamoorthy and Islam [45, 46], Krishnamoorthy et al.

[47, 48] and Krishnamoorthy and Jose [49] are a few among them. In

[45] the authors consider a production inventory model with retrial of

customers. In [46] an analysis of a production inventory model with

random shelf times of the items with retrials of the orbiting customers

are considered. A study of inventory models with positive service time

and retrial of customers from an orbit with an intermediate buffer of

finite is done in [47], whereas a comparison of different (s, S) inven-

tory models with an orbit of infinite capacity, having / not having a

finite buffer is the content of [49]. Sivakumar B and his co authors
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[50, 51, 52, 50, 53] have published several papers in queuing inven-

tory models with retrials. In [50] the author considers a continuous

review perishable (s, S) inventory system with a finite number of ho-

mogeneous sources of demands. The life time of each item and the

lead times are assumed to be exponential. The author assumes that

the demands occurring when inventory level drops to zero enter into

the orbit. These orbiting demands retry for service at an exponential

rate. In [52] the author analyzes a two-commodity inventory system

under continuous review. It is assumed that primary demand for the

ith commodity is of unit size and primary demand time points form a

Poisson process. The lead time is assumed to be exponential. Both

the commodities are assumed to be substitutable in the sense that at

the time of zero stock of any one commodity, the other one is used to

meet the demand. When the inventory position of both commodities

is zero, any arriving primary demand enters into an orbit of infinite

size. The orbiting demands in the orbit send out signal to compete for

their demand which is distributed as exponential. In [54] the authors

consider a continuous review perishable (s, S) inventory system with

a service facility consisting of a waiting line of finite capacity and a

single server. Two types of customers, ordinary and negative, arrive

according to a Markovian Arrival Process (MAP). An ordinary cus-

tomer joins the queue and a negative customer removes some ordinary

customers from the queue. A negative customer at an arrival epoch

removes one or more ordinary waiting customers and the number of

removals is a random variable depending on the number of waiting

customers in the system. The life time of each item, the service time

and the lead time of the reorders are all assumed to have independent

exponential distributions.
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CHAPTER 3

An Explicit Solution for an Inventory

Model with Positive Lead Time and

Backlogs

3.1 Introduction

The first study on queueing inventory systems is due to (Melikov

and Molchano 1992) and (Sigman and Simchi- Levi 1992). Later in-

ventory systems where a processing time is required for serving the

inventory was done by Berman and et al. [6]. This was a deter-

ministic model. Berman and Kim [7] and Berman and Sapna [8]

were the first to discuss inventory with exponential distribution and

with arbitrary distribution respectively. Krishnamoorthy and his co-

authors used Matrix Analytic Methods to study a inventory models

[9, 10, 11, 12, 13, 14, 15, 16, 17], where service time for providing

the inventoried item is assumed. Padmavathi I et al. [55] studied

a finite source (s, S) inventory system with postponed demands and
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server vacation. Krishnamoorthy and Islam [56] considered an (s, S)

inventory system with postponed demands in which arrival follows a

Poisson distribution and lead time exponential distribution. Sivaku-

mar and Arivarignam [57] studied a perishable inventory system with

postponed demands in which the demands that occur during the stock

out period enter a pool with independent Bernoulli trial.

3.2 Model description

The system under consideration is described as follows. Customers

arrive to a queueing system which has only one server according to

a Poisson process of rate λ where inventory is served. Inventory is

replenished according to (s, S) policy, the replenishment time being an

exponential random variable with parameter δ. We assume negligible

service time for this model. Customers who join the queue when the

inventory level drops to zero form a queue and remains in the system

until inventory replenishment is realized.

Let N(t) be the number of customers in the system and S(t) be the

inventory level at time t. Then Ω = {X(t) : t ≥ 0} = {(N(t), S(t)) :

t ≥ 0} is a Markov chain with state space E = {(0, k) : 0 ≤ k ≤
S} ∪ {(i, 0) : i ≥ 1}. The state space of the Markov chain can be

partitioned into levels ĩ defined as 0̃ = {(0, 0), (0, 1), . . . , (0, S)} and

ĩ = {((i− 1)Q+ 1, 0) , ((i− 1)Q+ 2, 0) , . . . , ((i− 1)Q+Q, 0)} ; i ≥
1. This makes the Markov chain under consideration, a level indepen-

dent Quasi Birth Death(QBD) process. Here, S − s = Q, In denotes

an identity matrix of order n and e denotes a column vector of 1’s of

appropriate order. The infinitesimal generator matrix of the process
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Ω is

H =



B0 B1 0 0

B2 A1 A0 0 0

0 A2 A1 A0 0 0

0 0 A2 A1 A0 0


Here B0 = [bij](s+1)×(s+1), where

bij =



−(λ+ δ) : j = i; 1 ≤ i ≤ s+ 1

−λ : j = i; s+ 1 ≤ i ≤ S + 1

λ : j = i− 1; 2 ≤ i ≤ S + 1

δ : j = Q+ i; 1 ≤ i ≤ s+ 1

0 : otherwise

B1 = [bij](S+1)×Q, bij =

λ : i = j = 1

0 : otherwise

B2 = [bij]Q×(S+1), bij =

δ : i+ j = Q; 1 ≤ i ≤ Q

0 : otherwise

A2 = δIQ ; A0 = [aij]Q×Q; aij =

λ : i = Q, j = 1

0 : otherwise

A1 = [aij]Q×Q; aij =

−(λ+ δ) : i = j

λ : j = i+ 1; 1 ≤ i ≤ Q− 1
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3.3 Analysis of the Model

Stability condition:

Define A = A0 + A1 + A2 and let π = (π1, π2, . . . , πQ) be the steady

state vector of the generator matrix A. Then πA = 0 gives the follow-

ing equations

−λπ1 + λπQ = 0

−λπi+1 + λπi = 0 ; 1 ≤ i ≤ Q− 1

Hence π1 = π2 = . . . = πQ.

The QBD process with generator matrix H is stable if and only if the

rate of drift to the left is larger than rate of drift to the right; that is

πA0e < πA2e (see Neuts) that is if and only if
λ

Qδ
< 1.

Thus we have the following theorem for the stability of the system

under study.

Theorem 3.3.1. The Markov chain Ω is stable if and only if
λ

Qδ
< 1.

3.4 Computation of steady state vector

We find the steady state vector of Ω explicitly. Let π = (π0, π1, . . .)

be the steady state vector where π0 = (π0(0, 0), π0(0, 1), . . . , π0(0, S))

and

πi = (πi((i−1)Q+1, 0), πi((i−1)Q+2, 0), . . . , πi((i−1)Q+Q, 0)); i ≥ 1

.

πH = 0 =⇒ π0B0 + π1B2 = 0

π0B1 + π1A1 + π2A2 = 0

πiA0 + πi+1A1 + πi+2A2 = 0; i ≥ 1
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Since Ω is a level independent QBD process its steady state vector is

given by πi+1 = π1R
i ; i ≥ 1 (see Neuts), where R is the minimal non

negative solution of the matrix quadratic equation R2A2+RA1+A0 =

0. Since all the rows of A0 except the last are zeros so are that of R.

Assume that

R = [rij]Q×Q; rij =

rj, i = Q, 1 ≤ j ≤ Q

0, otherwise

Now R2A2 +RA1 + A0 = 0 gives us the following equations.

λ− (λ+ δ)r1 + δr1rQ = 0;

λr1 − (λ+ δ)r2 + δr2rQ = 0;

. . . . . . . . . . . . . . . . . . . . . . . . . . .

λrQ−2 − (λ+ δ)rQ−1 + δrQ−1rQ = 0;

λrQ−1 − (λ+ δ)rQ + δr2Q = 0

From the above equations we easily see that rj = rj for every j; r =

r1. Then any of the above equations gives λ − (λ + δ)r + δrQ+1 = 0.

Dividing by r − 1 we get δrQ + δrQ−1 + . . .+ δr − λ = 0. Let f(x) =

δxQ + δxQ−1 + . . . + δx − λ. Since f(0) and f(1) have opposite sign

f(x) has a root r between 0 and 1. Hence

R = [rij]Q×Q; rij =

r
j, i = Q, 1 ≤ j ≤ Q

0, otherwise

Now from πi+1 = π1R
i; i ≥ 1 we get π2 = (r, r2, . . . , rQ)π1(Q, 0); π3 =

(rQ+1, rQ+2, . . . , r2Q)π1(Q, 0) and so on. It remains to get π0 and π1
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in terms of π1(Q, 0).

π0(0, 0) =

{(
λ+ δ

λ

)Q

− r
δ

λ

(
1− rQ

(
λ+δ
λ

)Q
1− r

(
λ+δ
λ

) )}
π1(Q, 0)

π1(i, 0) =

{(
λ+ δ

λ

)Q−i

− ri+1 δ

λ

(
1− rQ−i

(
λ+δ
λ

)Q−i

1− r
(
λ+δ
λ

) )}
π1(Q, 0); 1 ≤ i ≤ Q− 1

π0(0, 1) =

(
λ+ δ

λ

)
π0(0, 0)−

δ

λ
π1(Q, 0)

π0(0, i+ 1) =

(
λ+ δ

λ

)
π0(0, i)−

δ

λ

{(
λ+ δ

λ

)i

− rQ−i+1 δ

λ

(
1− ri

(
λ+δ
λ

)i
1− r

(
λ+δ
λ

) )}π1(Q, 0); 1 ≤ i ≤ s

π0(0, i+ 1) = π0(0, i)−
δ

λ

{(
λ+ δ

λ

)i

− rQ−i+1 δ

λ

(
1− ri

(
λ+δ
λ

)i
1− r

(
λ+δ
λ

) )}π1(Q, 0); s+ 1 ≤ i ≤ Q− 1

π0(0, Q+ i+ 1) = π0(0, Q+ i)− δ

λ
π0(0, i); 0 ≤ i ≤ s− 1

Now π1(Q, 0) is got from the condition π0e1 +

( ∞∑
i=1

πi

)
e2 = 1 where

e1 and e2 are column vector of one’s of appropriate order.

3.5 System Performance Measures

The following system performance measures are calculated numeri-

cally.

3.5.1 Expected waiting Time in the System

For computing the expected waiting time in the queue of a tagged cus-

tomer, who joins as the lth customer in the queue, (k− 1)Q < l ≤ kQ

we consider a Markov process ψ = (N̂(t)), where N̂(t) denotes the

rank, which is the position of the customer in the queue. The state

space of the Markov chain is given by Ê = {1, 2, . . . , k} ∪∆, where ∆

is an absorbing state which corresponds to the tagged customer being

taken for service. The infinitesimal generator matrix of the process

ψ is given by Q̂ =

[
T T 0

0 0

]
, where T 0 is a k × 1 matrix such that
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T 0(i, 1) =

δ; i = k

0; otherwise
and T =



−δ δ 0 0 0 0

0 −δ δ 0 0 0

0 0 −δ δ 0 0

0 0

0 0 0

0 0 0 0 −δ


. Now

the waiting time W k of the tagged customer is the time until absorp-

tion of the Markov process which is given by W k = −α(T )−1e, where

α = (1, 0, . . . , 0, 0) and e is a column vector of ones of appropriate or-

der. Since T−1 =



−1
δ

−1
δ

−1
δ

−1
δ

0 −1
δ

−1
δ

−1
δ

0 0 −1
δ

−1
δ

0 0 0 −1
δ

−1
δ

0 0 −1
δ


, we haveW k =

k

δ
. Hence

the expected waiting time of a general customer is given by

E(WL) =

( ∞∑
k=1

k

δ
πk

)
e =

λ

δ2

(
2

1− rQ
+

rQ

(1− rQ)2

)
π1(Q, 0)+

λ

δ2
π0(0, 0).

In a similar manner, we can find the second moment of the waiting

time of a customer as

E(W 2
L) =

∞∑
k=1

W k
2 πk =

2λ

δ3

[
(1− rQ)−3 − 1

rQ

]
π1(Q, 0) +

2λ

δ3
π0(0, 0),

where W k
2 = 2α(T−2)e = k(k+1)

δ2 .
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3.5.2 Other Performance Measures

1. The expected number of customers in the system is given by

E(N) =

Q∑
j=1

∞∑
i=0

(iQ+ j)πi+1(iQ+ j, 0).

2. The expected inventory level is given by E(I) =
S∑

j=1

jπ0(0, j).

3. The expected replenishment rate ERR = δ

(
1−

S∑
j=s+1

π0(0, j)

)
.

4. The probability that inventory level is zero

P (I = 0) =

(
1−

S∑
j=1

π0(0, j)

)
.

5. The probability that inventory level is greater than s

P (I > s) =
S∑

j=s+1

π0(0, j).

3.6 Numerical Illustration

In this section we provide numerical illustration of the system perfor-

mance measures as underlying parameters vary.

3.6.1 Effect of reorder level s on various performance mea-

sures

In table 3.1 we see that as s increases the expected inventory level

increases, expected number of customers in the system decreases and

expected replenishment rate increases. The increase in expected in-

ventory level E(I) is as expected for orders are placed early. The

decrease in expected number of customers in the system E(N) is due

to the fact that as expected inventory level increases more customers
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leave the system after getting served. The increase in expected replen-

ishment rate ERR is obvious since as s increases there will be lesser

number of states where order is not placed. This is clear from the

formula ERR = δ

(
1−

S∑
j=s+1

π0(0, j)

)
.

Table 3.2 shows a decrease in waiting time of a customer with an

increase in s. As reorder level increases, with the maximum inventory

level being the same, the time between two order placements decreases.

Hence it becomes less probable for a customer to encounter shortage

of inventory. This leads to a decrease in waiting time of the customer.

The decrease in waiting time variance with increase in s is also in

favor of the system performance.

Table 3.1: Effect of s on the various performance measures

λ = 1 δ = 2 S = 25

s E(I) E(N) P (I = 0) ERR P (I > s)

5 13.52575 0.02635 0.01318 0.1 0.9

6 14.0176 0.0185 0.00925 0.10526 0.89474

7 14.51167 0.01303 0.00651 0.11111 0.88889

8 15.00717 0.00921 0.0046 0.11765 0.88235

9 15.50347 0.00653 0.00327 0.125 0.875

10 16.00004 0.00466 0.00233 0.13333 0.86667

11 16.49637 0.00335 0.00167 0.14286 0.85714
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Table 3.2: Variation of waiting time with re order level s

λ = 1 δ = 2 S = 25

s E(WL) E(W 2
L) V (WL)

5 0.00879 0.01758 0.017503

6 0.00617 0.01235 0.012312

7 0.00435 0.0087 0.008681

8 0.00307 0.00615 0.006141

9 0.00218 0.00437 0.004365

10 0.00156 0.00312 0.003118

11 0.00112 0.00225 0.002249

3.6.2 Effect of maximum reorder level S on various perfor-

mance measures

In table 3.3 we see that as S increases the expected inventory level

increases, expected number of customers in the system decreases and

expected replenishment rate also decreases. The increase in expected

inventory level E(I) is as expected for the order quantity S − s in-

creases as S increases. The decrease in expected number of customers

in the system E(N) is due to the fact that as expected inventory level

increases more customers leave the system after getting served. The

decrease in expected replenishment rate ERR is obvious since as S in-

creases there will be more number of states where order is not placed.

This is just the reverse to that with increase in s. This is clear from

the formula ERR = δ

(
1−

S∑
j=s+1

π0(0, j)

)
.

Table 3.4 shows a decrease in waiting time of a customer with

an increase in S. As maximum inventory level increases, with the re
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order level being the same, even though the time between two order

placements increases, the order quantity S− s increases. Hence more

customers will be served with each replenishment. This leads to a

decrease in waiting time of the customer. It is also seen that the

variance of waiting time also decreases with increase in S.

Table 3.3: Effect of S on the various performance measures

λ = 1 δ = 2 s = 5

S E(I) E(N) P (I = 0) ERR P (I > s)

11 6.37214 0.10702 0.05289 0.3333 0.66667

12 6.94287 0.08514 0.04226 0.28571 0.71429

13 7.4823 0.07122 0.03544 0.25 0.75

14 8.00485 0.06156 0.03069 0.22222 0.77778

15 8.51776 0.05444 0.02716 0.2 0.8

16 9.02499 0.04893 0.02443 0.18182 0.81818

17 9.5288 0.04452 0.02224 0.16667 0.83333
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Table 3.4: Variation of waiting time with maximum inventory level
S

λ = 1 δ = 2 s = 5

S E(WL) E(W 2
L) V (WL)

11 0.03984 0.09237 0.090783

12 0.03056 0.06651 0.065576

13 0.02494 0.05246 0.051838

14 0.0212 0.04375 0.043301

15 0.01854 0.03782 0.037476

16 0.01655 0.03351 0.033236

17 0.01498 0.03021 0.029986

3.6.3 Effect of replenishment rate δ on various performance

measures

Table 3.5 shows that the expected inventory level in the system E(I)

increases, expected number of customers in the system E(N) de-

creases and the expected replenishment rate ERR remains constant

as replenishment rate increases. The increase in E(I) is obvious and

decrease in expected number of customers in the system is due to fact

that as δ increases, E(I) increases as stated earlier and so more cus-

tomers leave the system getting served. The expected replenishment

rate is independent of replenishment rate for ERR =
λ

(S − s)
.

Table 3.6 shows that a decrease in expected waiting time which is

expected. The variance of waiting time is also found to decrease as

replenishment rate δ increases.
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Table 3.5: Effect of δ on the various performance measures

λ = 1 s = 5 S = 11
δ E(I) E(N) P (I = 0) ERR P (I > s)
1 6.37214 0.10702 0.05289 0.3333 0.6667
1.2 6.76228 0.05091 0.03025 0.3333 0.72222
1.4 7.02939 0.02659 0.01847 0.3333 0.7619
1.6 7.22392 0.0149 0.01185 0.3333 0.79167
1.8 7.37208 0.00882 0.00789 0.3333 0.81481
2 7.48883 0.00545 0.00543 0.3333 0.83333
2.2 7.58329 0.00349 0.00383 0.3333 0.84848

Table 3.6: Variation of waiting time with replenishment rate δ

λ = 1 s = 5 S = 11
δ E(WL) E(W 2

L) V (WL)
1 0.03984 0.09237 0.090783
1.2 0.01717 0.03118 0.030885
1.4 0.00825 0.01243 0.012362
1.6 0.0043 0.00557 0.005552
1.8 0.00238 0.00271 0.002704
2 0.00139 0.00141 0.001408
2.2 0.00084 0.00078 0.000779

Figure 3.1: Reorder level verses Expected Inventory level
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Figure 3.2: Reorder level verses Expected Number of Customers in
the System

Figure 3.3: Reorder level verses Expected Waiting Time
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Figure 3.4: Maximum Inventory level verses Expected Inventory
Level

Figure 3.5: Maximum Inventory level verses Expected Number of
customers in the System
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Figure 3.6: Maximum Inventory level verses Expected waiting time

Figure 3.7: Replenishment Rate verses Expected Inventory Level
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Figure 3.8: Replenishment Rate verses Expected Number of Cus-
tomer in the System

Figure 3.9: Replenishment rate verses Waiting time
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Conclusion

We studied a single server queueing model with negligible service time

and backlogs. We wish to extend this model to one with positive

service time which may have many practical applications.
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CHAPTER 4

An Explicit Solution for an Inventory

Model with Positive Lead Time and

Server Interruptions

4.1 Introduction

The pioneers in the study of queueing inventory models are Melikov

and Molchanov [4] and Sigman and Simchi- Levi [5]. In Sigman and

Simchi- Levi customers are allowed to join even when there is no

inventory in the system. They also discuss the case of non exponential

lead time distribution. Later Berman and et al. [6] considered an

inventory system where a processing time is required for serving the

inventory. Here they considered deterministic service time and the

model was discussed as a dynamic programming model. Berman and

Kim [7] and Berman and Sapna [8] later discussed inventory queueing

systems with exponential service time distribution and with arbitrary

distribution.
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There are several papers on inventory queueing models by Krish-

namoorthy and his co-authors [9, 10, 11, 12, 13, 14, 15, 16, 17]. They

mainly used Matrix Analytic Methods to study these models. In

most of the models service time for providing the inventoried item is

assumed. Schwarz et al. [58] considered a queueing inventory model

with Poisson arrivals and exponentially distributed service and lead

times. They could obtain a product form solution for the system

steady state. But they assumed that no customers join the system

when the inventory level is zero.

4.2 Mathematical Model

The system under consideration is described as below. There is a

single server counter where inventory is served to which customers

arrive for service. The number of arrivals by time t follows a Poisson

process with parameter λ. The service times are independently and

identically distributed exponential random variables with parameter

µ. Inventory is replenished according to (s, S) policy, in the sense that

whenever inventory level drops to s an order is placed, order quantity

being fixed as Q = S−s. The replenishment times follow exponential

distribution with parameter η. While a customer is being served by

the server, the service may be interrupted, the interruption rate being

exponential with rate δ1. Following a service interruption the service

restarts at an exponential rate δ2.

We make the following assumptions for the model under consider-

ation.

i) There is no loss of inventory due to a service interruption.

ii) The customer being served when interruption occurs waits there

until his service is completed.
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iii) No arrival is entertained when the inventory level is zero.

iv) An order placed if any is cancelled while the server is on inter-

ruption.

v) We also assume that there are no arrivals while the server is on

interruption.

We denote by N(t) the number of the customers in the system includ-

ing the one being served (if any), L(t) the inventory level and S(t)

the server status at time t.

Let S(t) =


0 if the server is idle

1 if the server is busy

2 if the server is on interruption

Then Ω = X(t) = ((N(t), S(t), L(t)) will be a Markov chain. The

state space of this Markov chain can be described as

E = {(0, 0, k) : 0 ≤ k ≤ S} ∪ {(i, 0, 0) : i ≥ 1} ∪ {(i, j, k) :

i ≥ 1, j = 1, 2; 1 ≤ k ≤ S}. The above state space can be partitioned

into levels L(i) where L(0) = ((0, 0, 0), (0, 0, 1), . . . , (0, 0, S)) and

L(i) = ((i, 0, 0), (i, 1, 1), (i, 1, 2), . . . , (i, 1, S), (i, 2, 1), (i, 2, 2), . . . , (i, 2, S)) ;

i ≥ 1. The Markov chain Ω described above is a level independent

quasi birth death process whose infinitesimal generator matrix is given
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by

T =



B0 B1 0 0 . . .

B2 A1 A0 0 0 . .

0 A2 A1 A0 0 . 0

0 0 A2 A1 A0 0 .

. . .

. . .


Here B0, B1, B2 are matrices of orders (S+1)×(S+1), (S+1)×(2S+1)

and (2S + 1) × (S + 1) respectively. All other matrices are square

matrices of order 2S + 1. The different transitions in the Markov

chain Ω = X(t) = ((N(t), S(t), L(t)) are given below.

i) Transitions due to arrival of customers

(i, j, k)
λ−→ (i+ 1, j, k); i ≥ 0, 0 < k ≤ S, j = 0, 1

ii) Transitions due to service completion of customers

(i, j, k)
µ−→ (i− 1, j, k − 1); i > 0, 0 < k ≤ S, j = 1

iii) Transitions due to replenishment of inventory

(i, j, k)
η−→ (i, j, k +Q); i ≥ 0, 0 ≤ k ≤ S, j = 0, 1

iv) Transitions due to server interruption

(i, 1, k)
δ1−→ (i, 2, k); i ≥ 1, 0 < k ≤ S

v) Transitions due to restart of service after a service interruption

(i, 2, k)
δ2−→ (i, 1, k); i ≥ 1, 0 < k ≤ S

The matrix B0 contains the transition rates within level L(0), B1

records the transition rates from L(0) level to L(1) and B2 that from

L(1) to L(0). Similarly the matrices A0.A1, A2 contains the transitions

from levels L(i) to L(i+1), L(i) to itself and L(i+1) to L(i) for i ≥ 1.
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4.3 Analysis of the Model

Stability condition

Define A = A0 + A1 + A2 and

π = (π(0, 0), π(1, 1), π(1, 2), . . . , π(1, S), π(2, 1), π(2, 2), . . . , π(2, S)) be

the steady state vector of A. We know the QBD process with gener-

ator matrix T is stable if and only if πA0e < πA2e [2]. That is if and

only if

λ [π(1, 1) + π(1, 2) + . . .+ π(1, S)] < µ [π(1, 1) + π(1, 2) + . . .+ π(1, S)],

that is if and only if λ < µ.

Thus we have the following theorem for the stability of the system

under study.

Theorem 4.3.1. The Markov chain is stable if and only if λ < µ.

4.4 Computation of steady state vector

We first consider a system identical to the above system except for

service time is negligible. For this system Ω̃ = X̃(t) = (S(t), L(t))

will be a Markov chain where S(t) and L(t) are as defined for the orig-

inal system. The state space of this Markov chain can be described

as Ẽ = {(0, 0), (1, 1), (1, 2) . . . , (1, S), (2, 1), (2, 2), . . . , (2, S)}. The in-

finitesimal generator matrix of the process is given by T̃ =

[
B̃0 B̃1

B̃2 B̃3

]
,

where B̃1 =

[
0

δ1Is

]
(S+1)×S

, B̃2 =
[
0 δ2Is

]
S×(S+1)

, B̃3 = −δ2Is,

B̃0 =

[
C1 C2

C3 C4

]
. Here

C1 =

[
−η 0

0 −(λ+ η + δ1)Is−1

]
(s+1)×(s+1)

+

[
0 0

λIs−1 0

]
(s+1)×(s+1)
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C4 = −(λ+ δ1)IQ +

[
0 0

λIQ−1 0

]
Q×Q

, C3 =

[
0 λ

0 0

]
Q×(s+1)

,

C2 =
[
0 ηIs+1

]
(s+1)×Q

.

Let x = (x(0, 0), x(1, 1), . . . , x(1, S), x(2, 1), . . . , x(2, S)) be the steady

state probability vector of the process Ω̃. Then xT̃ = 0 and xe = 1

gives

x(1, i) =
η

λ

(
η + λ

λ

)i−1

x(0, 0) ; 1 ≤ i ≤ s+ 1

x(1, s+ 1) = x(1, s+ 2) = . . . = x(1, Q)

x(1, Q+ i) = x(1, Q)− x(1, i) ; 1 ≤ i ≤ s

x(2, i) =
δ1
δ2
x(1, i) ; 1 ≤ i ≤ S

where x(0, 0) =

[
1 +Q

η

λ

(
η + λ

λ

)s(
δ1 + δ2
δ2

)]−1

.

Let π = (π0, π1, π2, . . .) be the steady state probability vector of the

process Ω, where π0 = (π(0, 0, 0), π(0, 0, 1), . . . , π(0, 0, S) and

πi = (π(i, 0, 0), π(i, 1, 1), π(i, 1, 2), . . . , π(i, 1, S), π(i, 2, 1), π(i, 2, 2), . . . ,

π(i, 2, S)); i ≥ 1. Then π satisfies πT = 0 and πe = 1. We have the

equations

π0B0 + π1B2 = 0

π0B1 + π1A1 + π2A2 = 0

πiA0 + πi+1A1 + πi+2A2 = 0; i ≥ 1

All the above equations are satisfied by taking

π0 = ζ(x(0, 0), x(1, 1), x(1, 2), . . . , x(1, S))
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πi = ζ

(
λ

µ

)i(
x(0, 0), x(1, 1), x(1, 2), . . . ,

x(1, S),
δ1
δ2
x(1, 1),

δ1
δ2
x(1, 2), . . . ,

δ1
δ2
x(1, S)

)
; i ≥ 1

The value of ζ is obtained from πe = 1 as ζ =
(µ− λ)δ2

δ2µ+ δ1λ[1− x(0, 0)]

4.5 System Performance Measures

4.5.1 Expected waiting time of a customer in the queue

First we compute the expected waiting time of a customer who joins

the queue as the rth person. For that consider a Markov process

ψ = (N̂(t), S(t), L(t)), where N̂(t) represent the rank of the customer

in the queue, S(t) the server status and L(t) the inventory level. The

state space of the above Markov chain is Ê = {(i, 0, 0), 1 ≤ i ≤
r − 1} ∪ {(i, j, k), 1 ≤ i ≤ r − 1; j = 1, 2; 1 ≤ k ≤ S} ∪ {(r, 1, k), 1 ≤
k ≤ S} ∪ ∆, where ∆ correspond to the state, the rth customer is

taken for service. The generator matrix of the Markov chain is given

by Q̂ =

[
T T 0

0 0

]
, where T 0 is an (r(S + 1)− (S + 1)) × 1 matrix

where T 0(i, 1) = µ; 2 ≤ i ≤ S + 1 and

T =



B 0 0 0

A2 B 0 0

0 A2 B 0 0

0 0 A2 B

0 0 Â2 B̂


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The different transitions in T are as follows.

i) (i, 0, k)
η−→ (i, 1, k +Q); 1 ≤ i ≤ r; 0 ≤ k ≤ s

ii) (i, j, k)
η−→ (i, j, k +Q); 1 ≤ i ≤ r; j = 1; 0 ≤ k ≤ s

iii) (i, 1, k)
δ1−→ (i, 2, k); 1 ≤ i ≤ r; 1 ≤ k ≤ S

iv) (i, 2, k)
δ2−→ (i, 1, k); 1 ≤ i ≤ r; 1 ≤ k ≤ S

v) B̂(i, j) = B(i+ 1, j); Â(i, j) = A2(i+ 1, j); 1 ≤ i ≤ S

Now the waiting time of the customer who joins as the rth customer

is given by W r = ÎS(−T−1e), where ÎS =
[
0 IS

]
S×(r(2S+1)−(S+1))

.

So the expected waiting time of a general customer is given by

E(WL) =
∞∑
r=1

π̂rW
r, where π̂r(i) = πr(i+ 1). Similarly the variance of

waiting time of a general customer is also calculated numerically.

4.5.2 Expected number of interruptions encountered by a

customer

For computing expected number of interruptions encountered by a

customer we consider a Markov process

{Y (t), t ≥ 0} = {(N1(t), S1(t)), t ≥ 0},

where N1(t) denotes the number of interruptions that has occurred up

to time t; S1(t) = 0 or 1 according as the service is under interruption

or not at time t. The state space of the process is {0, 1, 2, . . .} ×
{0, 1} ∪ {∆}, where ∆ is an absorbing state which corresponds to
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service completion. The infinitesimal generator of the process is

V̂ =



0 0 0 0 0

Ĉ00 B̂00 B̂01 0 0

B̂2 0 B̂1 B̂0 0

B̂2 0 0 B̂1 B̂0

B̂2 0 0 0 B̂1 B̂0


,

where Ĉ00 =
[
µ
]
, B̂00 =

[
−(µ+ δ1)

]
, B̂01 =

[
δ1 0

]
, B̂2 =

[
0

µ

]
,

B̂1 =

[
−δ2 δ2

0 −(µ+ δ1)

]
and B̂0 =

[
0 0

δ1 0

]
. If yk is the probability

that absorption occurs with exactly k interruptions, then

y0 = −B̂−1
00 Ĉ00 =

µ

µ+ δ1

yk = (−B̂−1
00 B̂01)(−B̂−1

1 B̂0)
k−1(−B̂−1

1 B̂2) =
µ

µ+ δ1

(
δ1

µ+ δ1

)k

,

k = 1, 2, 3, . . ..

The expected number of interruptions before absorption is given by

E1 =
∞∑
k=0

kyk = (−B̂−1
00 B̂01)

[
I2 − (−B̂−1

1 B̂0)
]−1

e =
δ1
µ
.

4.5.3 Other performance Measures

1. The expected number of customers in the system,

Ls =
∞∑
i=1

S∑
j=1

i {π(i, 1, j) + π(i, 2, j)}+
∞∑
i=1

iπ(i, 0, 0)

= ζ
λ

µ

(
µ

µ− λ

)2 [
1 +

δ1
δ2
(1− x(0, 0))

]
.
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2. The expected inventory level in the system,

INVmean =
∞∑
i=1

S∑
j=1

j{π(i, 1, j) + π(i, 2, j)}+
S∑

j=1

jπ(0, 0, j)

= ζ
λ

µ
Q

{
1 +

δ1
δ2

λ

µ

}(
(S + s+ 1)

2

η

λ

(
η + λ

λ

)s

+

[
1−

(
η + λ

λ

)s])
x(0, 0).

3. The expected rate of ordering, Eor =
∞∑
i=1

µπ(i, 1, s+ 1).

4. The expected replenishment rate,

REPmean =
∞∑
i=0

s∑
j=0

η {π(i, 0, j) + π(i, 1, j)} .

5. The expected interruption rate, INTmean =
∞∑
i=1

S∑
j=1

δ1π(i, 1, j) =

δ1P (busy).

6. The loss rate of customers,

LOSSmean =
∞∑
i=0

λπ(i, 0, 0)+
∞∑
i=1

S∑
j=1

λπ(i, 2, j) = λξ
µ

µ− λ
x(0, 0)+

λP (int).

7. The probability that the server is busy,

Pbusy =
∞∑
i=1

S∑
j=1

π(i, 1, j) =
δ2

δ2µ+ δ1(1− x(0, 0))

λ

µ− λ
Q
η

λ

(
η + λ

λ

)s

.

8. The probability that the server is on interruption,

Pint =
∞∑
i=1

S∑
j=1

π(i, 2, j) =
δ1
δ2
P (busy).
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4.5.4 Cost analysis

We considered the following Cost function

Cost = CI×INVmean+CN×Ls+CR×EINTR+(K+(S−s)K1)×EOR+CL×Lossmean,

where

CI : Cost of holding Inventory

CN : Cost of holding customers

CR : Cost incurred due to interruption of service

K : Fixed cost of ordering

K1 : Cost of a single inventory

CL : Cost incurred due to loss of customers when inventory level

drops to zero.

The effect of various parameters on the cost were studied.

4.6 Numerical Illustration

Eventhough we have explicit expressions for most of the system per-

formance measures we provide numerical illustration of the effect of

different parameters on the system performance measures in this sec-

tion.

4.6.1 Effect of arrival rate λ

In table 4.1 we see that as arrival rate increases, there is an increase in

both P (busy), P (int) and Ls. The increase in server busy probability

is as expected since when arrival rate increases the mean number of

customers in the system obviously increases and so the probability

that server is busy increases. P (int) is also seen to increase which

may be due to the fact that an interruption to service occurs only

when the server is busy. Also the decrease in INVmean is due to the

fact that the more customers get service when P (busy) increases. Also
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notice the increase in mean waiting of a customer in the system due

to increase in mean number of customers in the system.

4.6.2 Effect of service rate µ

In table 4.2 we see that as service rate increases, P (busy), P (int) , Ls

and WAITmean all decrease. As the service rate increases, customers

leave the system after getting service at a faster rate. Hence the mean

waiting time in the system clearly decreases. Also the probability that

the server is idle increases with increase in service rate and so P (busy),

P (int) and Ls all decrease. It is seen from the tables that µ has no

effect on INVmean.

4.6.3 Effect of interruption rate δ1

In table 4.3 we see that as interruption rate increases, P (busy) in-

creases whereas P (int), WAITmean and Ls decrease. The reason for

decrease in the mean number of customers in the system is due to

our assumption that when the server is on interruption no arrivals

are entertained. The decrease in mean waiting time of a customer in

the system is due to the increase in P (busy). Also as mean number

of customers in the system decreases, probability that server is idle

increases and so P (int) decreases. The interruption rate seems to

have no effect on average inventory level in the system.

4.6.4 Effect of reorder level s

In table 4.4 we see that s has no considerable effect on the system

performance measures P (busy), P (int) and LS. The expected inven-

tory level in the system increases with increase in re order level is as

expected since orders are placed early with increase in s.
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Table 4.1: Effect of arrival rate on various performance measures

µ = 10 η = 2 δ1 = 6 δ2 = 7 s = 5 S = 12
λ P (busy) P (int) INVmean REPmean Ls EOR WAITmean WAITvar

2 0.18749 0.06249 8.7142 0.2678 0.3125 0.2678 0.1597 0.0675

2.2 0.20496 0.06832 8.6856 0.2928 0.3504 0.2928 0.1643 0.0715

2.4 0.2222 0.074 8.6571 0.3174 0.3899 0.3174 0.1693 0.0761

2.6 0.2392 0.0797 8.6284 0.3417 0.4311 0.3417 0.1747 0.0812

2.8 0.2561 0.0853 8.5999 0.3658 0.4742 0.3658 0.1806 0.0868

3 0.2726 0.0909 8.5713 0.3895 0.5194 0.3895 0.187 0.0931

Table 4.2: Effect of service rate on various performance measures

λ = 3 η = 2 δ1 = 6 δ2 = 7 s = 5 S = 12
µ P (busy) P (int) INVmean REPmean Ls EOR WAITmean WAITvar

9 0.2999 0.0999 8.5713 0.3856 0.5999 0.3856 0.2191 0.1256

9.2 0.2941 0.098 8.5713 0.3865 0.5819 0.3865 0.2118 0.1178

9.4 0.2884 0.0961 8.5713 0.3873 0.5649 0.3873 0.205 0.1107

9.6 0.2829 0.0943 8.5713 0.388 0.5489 0.3881 0.1986 0.1043

9.8 0.2777 0.0926 8.5713 0.3888 0.5337 0.3888 0.1927 0.0984

10 0.2727 0.0909 8.5713 0.3896 0.5195 0.3895 0.187 0.0931

Table 4.3: Effect of interruption rate on various performance mea-
sures

λ = 3 µ = 9 η = 2 δ2 = 7 s = 5 S = 12
δ1 P (busy) P (int) INVmean REPmean Ls EOR WAITmean WAITvar

6 0.2726 0.1818 8.5714 0.3506 0.6818 0.3506 0.2918 0.2219

6.2 0.2743 0.1769 8.5714 0.3526 0.6769 0.3526 0.2862 0.2128

6.4 0.2758 0.1723 8.5714 0.3546 0.6723 0.3546 0.281 0.2044

6.6 0.2772 0.168 8.5714 0.3564 0.668 0.3564 0.2761 0.1968

6.8 0.2786 0.1639 8.5714 0.3582 0.6639 0.3582 0.2716 0.1898

7 0.2799 0.1599 8.5714 0.3599 0.6599 0.3599 0.2673 0.1833
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Table 4.4: Effect of re orer level on various performance measures

λ = 3 µ = 9 η = 2 δ1 = 6 δ2 = 7 S = 21
s P (busy) P (int) INVmean REPmean Ls EOR WAITmean WAITvar

5 0.2999 0.0999 13.071 0.1687 0.5999 0.1687 0.2197 0.1265

6 0.2999 0.0999 13.571 0.1799 0.5999 0.1799 0.2197 0.1265

7 0.2999 0.0999 14.071 0.1928 0.5999 0.1928 0.2196 0.1264

8 0.2999 0.0999 14.571 0.2076 0.5999 0.2076 0.2196 0.1263

9 0.2999 0.0999 15.071 0.2249 0.5999 0.2250 0.2195 0.1262

10 0.2999 0.0999 15.571 0.2454 0.5999 0.2454 0.2195 0.1261

Table 4.5: Effect of arrival rate on Cost

CI = 40 CN = 30 CR = 75 K = 500 K1 = 35 CZ = 750

µ = 10 η = 2 δ1 = 6 δ2 = 7 s = 5 S = 12

λ 2 2.2 2.4 2.6 2.8 3

Cost 566 586 605 624 643 662

Table 4.6: Effect of service rate on Cost

CI = 40 CN = 30 CR = 75 K = 500 K1 = 35 CZ = 750

λ = 3 η = 2 δ1 = 6 δ2 = 7 s = 5 S = 12

µ 9 9.2 9.4 9.6 9.8 10

Cost 663.47 663.26 663.06 662.89 662.73 662.59
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Table 4.7: Effect of interruption rate on Cost

CI = 40 CN = 30 CR = 75 K = 500 K1 = 35 CZ = 750

λ = 3 η = 2 µ = 9 δ2 = 7 s = 5 S = 12

δ1 6 6.2 6.4 6.6 6.8 7

Cost 663.47 663.87 664.26 664.62 664.96 665.29

Table 4.8: Effect of repair rate on Cost

CI = 40 CN = 30 CR = 75 K = 500 K1 = 35 CZ = 750

λ = 3 η = 2 µ = 9 δ1 = 6 s = 5 S = 12

δ2 6 6.2 6.4 6.6 6.8 7

Cost 663.47 663.91 664.34 664.74 665.12 665.49

Table 4.9: Effect of reorder level on Cost

CI = 40 CN = 30 CR = 75 K = 500 K1 = 35 CZ = 750

λ = 3 η = 2 µ = 9 δ1 = 6 δ2 = 7 S = 21

s 5 6 7 8 9 10

Cost 734 760 786 814 842 873
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Figure 4.1: Arrival rate versus Cost

Figure 4.2: Service rate versus Cost
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Figure 4.3: Interruption rate versus Cost

Figure 4.4: Repair rate versus Cost
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Figure 4.5: Reorder level versus Cost

Conclusion

We studied a single server queueing model with positive service time,

positive lead time and service interruptions. We could arrive at an

explicit expression for the steady state probability vector. We wish

to extend this model by considering retrials as well.
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CHAPTER 5

An Explicit Solution for an Inventory

Model with Server Interruption and

Retrials

Introduction

Melikov and Molchano [4] and Sigman and Simchi-Levi [5] were pio-

neers in the study of queueing inventory models. Customers could join

the system in the Sigman and Simchi-Levi systems even when there is

no product available. They also talk about the non-exponential lead

time distribution scenario. Later, Berman and et al. [6] examined an

inventory system where a processing time is needed for serving the in-

ventory. Here, they took into account deterministic service time, and

the paradigm was treated as a dynamic programming model. Later,

inventory queueing systems with arbitrary distribution and exponen-

tial service time distribution were addressed by Berman and Kim [7]

and Berman and Sapna [8].
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Several studies on inventory queueing models have been published

by Krishnamoorthy and his co-authors [9, 10, 11, 13, 14, 16, 15, 12].

To analyse these models, they largely used matrix analytic methods.

The majority of models presume that the stocked item will be pro-

vided with service which require some time. An exponentially dis-

tributed service and lead time model with Poisson arrivals was taken

into consideration by Schwarz et al. They got a product-form solu-

tion for the steady state of the system. But they assumed that no

new users would sign up for the system once the inventory level was

zero. For a detailed description of papers in inventory queuing mod-

els we refer to the papers [20, 21]. Melikov et a1. [59] studied a

Queuing-Inventory System with Two Supply Sources and Destructive

Customers. Melikov et a1. [60] also carried out a numerical analysis

and long run total cost optimization of a perishable queuing inventory

systems with delayed feedback. They also did a long run total cost

optimization for the problem.

Retrial queuing models are widely used in communication and

other fields. Hence they are gaining more and more attention. We re-

fer to the books by Falin and Templeton [42] and Atralejo and Gomez

Corral [43] for an extensive analysis of both theory and applications

on retrial queues.

The first study of an inventory queing model with positive lead

time and retrial of customers was made by Artalejo et al. [44]. An-

alytical solution to the problem discussed there could be found in

Ushakumari [40]. Following these, several papers in this direction

emerged. A few among them are the papers by Krishnamoorthy and

Islam [45, 46], Krishnamoorthy et al. [47, 48] and Krishnamoorthy

and Jose [49]. These papers are studies on a production inventory
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model with retrial of customers, analysis of a production inventory

model with random shelf times of the items with retrials of the orbit-

ing customers, study of inventory models with positive service time

and retrial of customers from an orbit with an intermediate buffer

of finite and comparison of different (s, S) inventory models with an

orbit of infinite capacity, having/ not having a finite buffer.

5.1 Mathematical Model

The system under consideration is described as below. We consider

a single server queuing model where inventory is served to which cus-

tomers arrive for service. The number of arrivals of by time t follows a

Poisson process with parameter λ. Inventory is replenished according

to (s, S) policy, replenishment being instantaneous. Service times fol-

low exponential distribution with parameter µ. Upon arrival, finding

the server busy the customers enter into an orbit from where they retry

for service at a constant retrial rate. The time between two successive

retrials also follow exponential distribution with parameter θ. While

the server serves a customer the service can be interrupted, the inter

occurrence time of interruption being exponentially distributed with

parameter δ1. Following a service interruption the service restarts

after an exponentially distributed time with parameter δ2. For the

model under study the following assumptions are made.

i) No inventory is lost due to server interruption.

ii) The customer being served when interruption occurs waits there

until his service is completed.

iii) No arrivals are entertained when the server is on interruption.

iv) An order placed if any is cancelled while the server is on inter-
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ruption.

We denote by N(t) the number of the customers in the orbit, I(t) the

inventory level and S(t) the server status at time t. Let

S(t) =


0 if the server is idle

1 if the server is busy

2 if the server is on interruption

Then Ω = X(t) = (N(t), S(t), I(t)) will be a Markov chain. The

state space of this Markov chain can be described as E = {(i, j, k) :
i ≥ 0; j = 0, 1, 2; s + 1 ≤ k ≤ S}. The above state space can be

partitioned into levels L(i) where

L(i) = ((i, j, k); j = 0, 1, 2; k = s+ 1, s+ 2, . . . , S) ; i ≥ 0 in the lex-

icographic ordering. The Markov chain Ω described above is a level

independent quasi birth death process whose infinitesimal generator

matrix is given by T =



B0 A0 0 0

A2 A1 A0 0 0

0 A2 A1 A0 0 0 0

0 0 A2 A1 A0 0


. Here all the ma-

trices are of order 3Q×3Q where Q = S−s. The different transitions
in the Markov chain Ω = X(t) = (N(t), S(t), I(t)) are given below.

i) Transitions due to arrivals

(i, 0, k)
λ−→ (i, 1, k), (i, 1, k)

λ−→ (i+ 1, 1, k); i ≥ 0, s+ 1 ≤ k ≤ S

ii) Transitions due to service completion of customers

(i, 1, k)
µ−→ (i− 1, 0, k − 1); i ≥ 0, s+ 2 ≤ k ≤ S

(i, 1, s+ 1)
µ−→ (i− 1, 0, S); i ≥ 0
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iii) Transitions due to retrials (i, 0, k)
θ−→ (i− 1, 1, k); i ≥ 1

iv) Transitions due to interruptions (i, 1, k)
δ1−→ (i, 2, k); i ≥ 0

v) Transitions due to repairs (1, 2, k)
δ2−→ (i, 1, k); i ≥ 0

The diagonal entries of B0 and A1 are such that each row sum of

T is zero. The matrix B0 contains the transition rates within level.

Similarly the matrices A0, A1, A2 contains the transitions from levels

L(i) to L(i+ 1), L(i) to L(i) and L(i) to L(i− 1) respectively.

5.2 Analysis of the Model

5.2.1 Stability condition

DefineA = A0+A1+A2 and π = (π(0, s+1), . . . , π(0, S), π(1, s+ 1), . . . ,

π(1, S), π(2, s + 1), . . . , π(2, S)) be the steady state vector of A. We

know the QBD process with generator matrix T is stable if and

only if πA0e < πA2e (see Neuts). Since A0 =


0 0 0

0 λIQ 0

0 0 0

 and

A2 =


0 θIQ 0

0 0 0

0 0 0

, the stability condition reduces to

λ [π(1, s+ 1) + . . .+ π(1, S)] < θ [π(0, s+ 1) + . . .+ π(0, S)],

that is λ

(
λ+ θ

µ

)
< θ. Thus we have the following theorem for the

stability of the system under study.

Theorem 5.2.1. The Markov chain is stable if and only if

λ

θ

(
λ+ θ

µ

)
< 1
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5.2.2 Computation of steady state vector

We compute the steady state vector of the model explicitly. Let π =

(π0, π1, π2, . . .) be the steady state probability vector of the process

Ω, where πi = (π(i, 0, s+ 1), . . . , π(i, 0, S), π(i, 1, s+ 1), . . . , π(i, 1, S),

π(i, 2, s + 1), . . . , π(i, 2, S)); i ≥ 0. Then π satisfies πT = 0 and

πe = 1. We have the equations

π0B0 + π1A2 = 0

πiA0 + πi+1A1 + πi+2A2 = 0; i ≥ 0

We first consider a system identical to the above system expect for

no inventory is served. This system Ω̃ = X̃(t) = (N(t), S(t)) will

be a Markov chain where N(t) and S(t) is as defined for the original

system. The state space of this Markov chain can be described as

Ẽ = {(i, 0), (i, 1), (i, 2)}; i ≥ 0. The infinitesimal generator matrix of

the process is given by T̃ =



B̃0 Ã0 0 0

Ã2 Ã1 Ã0 0 0

0 Ã2 Ã1 Ã0 0 0 0

0 0 Ã2 Ã1 Ã0 0


, where

B̃0 =


−λ λ 0

µ −(λ+ µ+ δ1) δ1

0 δ2 −δ2

, Ã1 =


(λ+ θ) λ 0

µ −(λ+ µ+ δ1) δ1

0 δ2 −δ2

,

Ã0 =


0 0 0

0 λ 0

0 0 0

 and Ã2 =


0 θ 0

0 0 0

0 0 0

. Let x = (x0, x1, . . .), where

xi = (x(i, 0), x(i, 1), x(i, 2)) be the steady state probability vector of
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the process Ω̃. The steady state equations are given by xT̃ = 0.

− λx(0, 0) + µx(0, 1) = 0 (5.2.1)

λx(0, 0)− (λ+ µ+ δ1)x(0, 1) + δ2x(0, 2) + θx(1, 0) = 0 (5.2.2)

δ1x(0, 1)− δ2x(0, 2) = 0 (5.2.3)

− (θ + λ)x(i, 0) + µx(i, 1) = 0; i ≥ 1 (5.2.4)

λx(i− 1, 1) + λx(i, 0)− (λ+ µ+ δ1)x(i, 1) + δ2x(i, 2)+

θx(i+ 1, 0) = 0; i ≥ 1 (5.2.5)

δ1x(i, 1)− δ2x(i, 2) = 0; i ≥ 1 (5.2.6)

We know that xi = xi−1R; i ≥ 1, where the matrix R satisfies R2A2+

RA1 + A0 = 0. Since the first and third rows of A0 are zeros, so are

that of R. From R2A2 +RA1 + A0 = 0, we obtain


0 0 0

0 r1r2θ 0

0 0 0

+


0 0 0

−(λ+ θ)r1 + µr2 λr1 − (λ+ µ+ δ1)r2 + δ2r3 r2δ1 − r3δ2

0 0 0

+


0 0 0

0 λ 0

0 0 0

 = 0

We have the following equations.

µr2 = (λ+ θ)r1

δ1r2 = δ2r3

λr1 − (λ+ µ)r2 + r1r2θ + λ = 0

From the above 3 equations we obtain a quadratic in r2 as µθr22 −
(λ2 + µθ + λθ)r2 + λ(λ + θ) = 0. Clearly the roots of this equation

are 1 and
λ(λ+ θ)

θµ
. It may be noted that the stability condition was
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λ(λ+ θ)

θµ
< 1. Hence R =


0 0 0
λ

θ

λ(λ+ θ)

θµ

λ(λ+ θ)δ1
θµδ2

0 0 0

. Now from

x0B̃0 + x1Ã2 = 0, we have the equations

−λx(0, 0) + µx(0, 1) = 0

δ1x(0, 1)− δ2x(0, 2) = 0

Hence x0 = (x(0, 0), x(0, 1), x(0, 2)) =

(
1,
λ

µ
,
λδ1
µδ2

)
x(0, 0) and from

the normalizing condition x0(I − R)−1e = 1, where I is the identity

matrix of order 3 and e is column vector of ones we get

x(0, 0) =

1− λ(λ+ θ)

θµ

1 +
δ1λ

δ2µ

.

Now the equations πT = 0 are given by

−λπ(0, 0, i) + µπ(0, 1, i+ 1) = 0; s+ 1 ≤ i ≤ S − 1

−λπ(0, 0, S) + µπ(0, 1, s+ 1) = 0
(5.2.7)

λπ(0, 0, i)−(λ+µ+δ1)π(0, 1, i)+δ2π(0, 2, i)+θπ(1, 0, i) = 0; s+1 ≤ i ≤ S

(5.2.8)

δ1π(0, 1, i)− δ2π(0, 2, i) = 0; s+ 1 ≤ i ≤ S (5.2.9)

−(λ+ θ)π(i, 0, j) + µπ(i, 1, j + 1) = 0; i ≥ 1, s+ 1 ≤ i ≤ S − 1

−(λ+ θ)π(i, 0, S) + µπ(i, 1, s+ 1) = 0; i ≥ 1

(5.2.10)
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λπ(i− 1, 0, i) + λπ(i, 0, i)− (λ+ µ+ δ1)π(i, 1, i)+

δ2π(i, 2, i) + θπ(i+ 1, 0, i) = 0; i ≥ 1, s+ 1 ≤ i ≤ S

(5.2.11)

δ1π(i, 1, j)− δ2π(i, 2, j) = 0; i ≥ 1, s+ 1 ≤ j ≤ S (5.2.12)

We assume π(i, j, k) =
1

Q
x(i, j); s + 1 ≤ k ≤ S. Then the first

Q equations of π0B0 + π1A2 = 0 reduces to the first equation of

x0B̃0 + x1Ã2 = 0; the next Q equations of π0B0 + π1A2 = 0 reduces

to the second equation of x0B̃0 + x1Ã2 = 0 and the last Q equations

of π0B0 + π1A2 = 0 reduces to the last equation of x0B̃0 + x1Ã2 = 0.

Similarly the first Q equations of π0A0 + π1A1 + π2A2 = 0 reduces to

the first equation of x0Ã0 + x1Ã1 + x2Ã2 = 0; the next Q equations

of π0A0 + π1A1 + π2A2 = 0 reduces to the second equation of x0Ã0 +

x1Ã1 + x2Ã2 = 0 and the last Q equations of π0A0 + π1A1 + π2A2 = 0

reduces to the last equation of x0Ã0+x1Ã1+x2Ã2 = 0. The intuition

behind this is that since the replenishment is instantaneous there is an

equal probability for each inventory level to be visited. It is verified

that the above values satisfy πT = 0.

5.3 System Performance Measures

5.3.1 Expected number of interruptions encountered by a

customer

For computing expected number of interruptions encountered by a cus-

tomer we consider a Markov process {X1(t), t ≥ 0} = {(N1(t), S1(t)) ,

t ≥ 0}, where N1(t) denotes the number of interruptions that has oc-

curred up to time t ; S1(t) = 0 or 1 according as the service is under

interruption or not at time t . The Markov process {X1(t), t ≥ 0}
has state space {0, 1, 2, . . .} × {0, 1} ∪ {∆}, where ∆ is an absorb-

ing state which denotes service completion. The infinitesimal genera-
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tor of the process is given by Û =



0 0 0 0 0 . . .

B̂00 Â00 Â01 0 0 . . .

Â2 0 Â1 Â0 0 . . .

Â2 0 0 Â1 Â0 . . .

Â2 0 0 0 Â1 Â0 . .

. . . . . .

. . . . .

. . . .


,

B̂00 = [µ], Â00 = [− (µ+ δ1)] , Â01 = [δ1 0], Â2 =

[
0

µ

]
,

Â1 =

[
−δ2 δ2

0 −(µ+ δ1)

]
and Â0 =

[
0 0

δ1 0

]
. If yk is the probability

that absorption occurs with exactly k interruptions, then

y0 = −Â−1
00 B̂00 =

µ

µ+ δ1

yk = (−Â−1
00 Â01)(−Â1

−1
Â0)

k−1(−Â1
−1
Â2) =

µ

µ+ δ1

(
δ1

µ+ δ1

)k

, k =

1, 2, 3, . . .. The expected number of interruptions before absorption

is given by

E1 =
∞∑
k=0

kyk =
(
−Â−1

00 Â01

) [
I2 −

(
−Â1

−1
Â0

)]−1

e =
δ1
µ

5.3.2 Expected duration of an interrupted service

Here we calculate the average duration of an interrupted service. The

service process with interruption can be viewed as a Markov process

with two transient states 0 and 1, which denote whether the server

is interrupted or is busy respectively, and a single absorption state

∆. Let X̂(t) = {0, 1,∆} be the corresponding process. The infinitesi-

mal generator matrix of the process is given by Ĥ =
[
B̂ B̂0

]
, where

B̂ =

[
−δ2 δ2

δ1 −(µ+ δ1)

]
and B̂0 =

[
0

µ

]
. The probability distribution of
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T , the time until absorption is given by F (x) = 1− ζ exp(B̂x)e, x ≥ 0,

where ζ = (0, 1). Its density function F ′(x) given by F ′(x) = ζ exp(B̂x)B̂0.

The Laplace-Stieltjes transform f(s) is f(s) = ζ(sI − B̂)−1B̂0. The

expected time Es for service completion is given by Es = ζ(−B̂)−1e =
δ1 + δ2
µδ2

5.3.3 Other Performance Measures

1. The probability that the server is busy

PSB =
∞∑
i=0

S∑
k=s+1

π(i, 1, k) =

[
λθ

θµ− λ2 − λθ

]
x(0, 0)

2. The probability that the server is on interruption

PSI =
∞∑
i=1

S∑
k=s+1

π(i, 2, k) =

(
δ1
δ2

)
PSB

3. The probability that the server is idle

PSID =
∞∑
i=0

S∑
k=s+1

π(i, 0, k) =

[
1 +

λ2

θµ− λ2 − λθ

]
x(0, 0)

4. The expected inventory level in the system

EIL =
∞∑
i=1

2∑
j=0

S∑
k=s+1

kπ(i, j, k) =
S + s+ 1

2

5. The expected number of customers in the orbit

ENCO =
∞∑
i=0

2∑
j=0

S∑
k=s+1

iπ(i, j, k)

6. The expected rate of ordering, ERO =
∞∑
i=1

µπ(i, s+ 1)

5.4 Numerical Illustration

In this section we provide numerical illustration of the system perfor-

mance measures as underlying parameters vary.
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5.4.1 Effect of regular arrival rate on the various perfor-

mance measures

In table 5.1 we see that as regular arrival rate increases, probabil-

ity that server is busy increases and the probability that server is

idle decreases which is obvious. The probability that server is on

interruption also increases. This is due to the fact that the server

gets interrupted while serving a customer and so probability of server

interruption increases with server busy probability. The expected in-

ventory level is independent of arrival rate. The increase in expected

number of customers in the system is as expected and the increase in

expected rate of ordering is due to the fact that, more the server is

busy, inventory level drops to s at a faster rate.

Table 5.1: Effect of regular arrival rate on the various performance
measures

µ = 9 θ = 5 δ1 = 2 δ2 = 3 s = 5 S = 11

λ PSB PINT PIDL EIL ENCO ERO

3 0.4545 0.1818 0.3637 8.5 0.8701 0.1928

3.2 0.479 0.1916 0.3294 8.5 1.1112 0.2143

3.4 0.5029 0.2011 0.296 8.5 1.4354 0.2364

3.6 0.5274 0.2109 0.2617 8.5 1.9167 0.2603

3.8 0.5562 0.2201 0.2237 8.5 2.6055 0.2837

4 0.5603 0.2241 0.2156 8.5 3.0369 0.2943

4.2 0.5932 0.2372 0.1696 8.5 5.7195 0.3307

4.4 0.6145 0.2458 0.1397 8.5 10.9939 0.3555

4.6 0.6353 0.2541 0.1106 8.5 52.0843 0.3808
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5.4.2 Effect of retrial rate on the various performance mea-

sures

In table 5.2 we see that the retrial rate has no effect on server busy

probability, probability that server is on interruption and probability

that server is idle. This is due to the fact that in our model no arrivals

or retrials are entertained when the server is on interruption. It is seen

that the expected number of customers in the system decreases and

so the expected reorder rate decreases with increase in retrial rate.

The expected inventory level depends only on s and S.

Table 5.2: Effect of retrial rate on the various performance measures

λ = 3 µ = 9 δ1 = 2 δ2 = 3 s = 5 S = 11

θ PSB PINT PIDL EIL ENCO ERO

4 0.4545 0.1818 0.3637 8.5 1.1272 0.241

4.2 0.4545 0.1818 0.3637 8.5 1.0575 0.229

4.4 0.4545 0.1818 0.3637 8.5 1.0031 0.2191

4.6 0.4545 0.1818 0.3637 8.5 0.953 0.2096

4.8 0.4545 0.1818 0.3637 8.5 0.909 0.2008

5 0.4545 0.1818 0.3637 8.5 0.8701 0.1928

5.2 0.4545 0.1818 0.3637 8.5 0.8353 0.1854

5.4 0.4545 0.1818 0.3637 8.5 0.8041 0.1785

5.6 0.4545 0.1818 0.3637 8.5 0.7759 0.1721

5.4.3 Effect of interruption rate on the various performance

measures

In table 5.3 we see that as interruption rate increases probability

that server is busy and probability that server is on interruption both

increases. As interruption rate increases, probability that server is on
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interruption obviously increases and since PSB = δ2
δ1
PSI, probability

that server is busy also increases. The expected number of customers

in the system is seen to increase. This is due to the fact that since

probability that server is busy increases more arriving customers has

to go into the orbit. The table also shows that the expected rate of

ordering decreases with increase in interruption rate.

Table 5.3: Effect of interruption rate on the various performance
measures

λ = 3 µ = 9 θ = 5 δ2 = 3 s = 5 S = 11

δ1 PSB PINT PIDL EIL ENCO ERO

1 0.3999 0.0999 0.5002 8.5 0.8429 0.2076

1.2 0.4117 0.1176 0.4707 8.5 0.8487 0.2045

1.4 0.423 0.1346 0.4424 8.5 0.8543 0.2014

1.6 0.4339 0.1509 0.4152 8.5 0.8598 0.1985

1.8 0.4444 0.1666 0.389 8.5 0.865 0.1956

2 0.4545 0.1818 0.3637 8.5 0.8701 0.1928

2.2 0.4642 0.1964 0.3394 8.5 0.8749 0.1901

2.4 0.4736 0.2105 0.3159 8.5 0.8796 0.1875

2.6 0.4827 0.2241 0.2932 8.5 0.8842 0.1849

5.4.4 Effect of repair rate on the various performance mea-

sures

In table 5.4 we see that as interruption rate increases probability

that server is busy and probability that server is on interruption both

decreases. As repair rate increases, probability that server is on in-

terruption obviously decreases and since PSI = δ1
δ2
PSB, probability

that server is busy also decreases. The expected number of customers

in the system is seen to decrease. This is due to the fact that since
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probability that server is busy decreases less arriving customers has

to go into the orbit. The table also shows that the expected rate of

ordering increases with increase in repair rate.

Table 5.4: Effect of repair rate on the various performance measures

λ = 3 µ = 9 θ = 5 δ1 = 2 s = 5 S = 11

δ2 PSB PINT PIDL EIL ENCO ERO

3 0.4545 0.1818 0.3637 8.5 0.8701 0.1928

3.2 0.4482 0.1724 0.3794 8.5 0.8669 0.1945

3.4 0.4426 0.1639 0.3935 8.5 0.8641 0.1961

3.6 0.4374 0.1562 0.4064 8.5 0.8616 0.1975

3.8 0.4328 0.1492 0.418 8.5 0.8592 0.1988

4 0.4285 0.1428 0.4287 8.5 0.8571 0.1999

4.2 0.4246 0.1369 0.4385 8.5 0.8551 0.201

4.4 0.421 0.1315 0.4475 8.5 0.8533 0.202

4.6 0.4177 0.1266 0.4557 8.5 0.8517 0.2029

5.4.5 Effect of service rate on the various performance mea-

sures

In table 5.5 we see that as service rate increases probability that server

is busy decreases and since PSI = δ1
δ2
PSB probability that server is

on interruption also decreases. This is due to the fact that as service

rate increases, probability that server is idle obviously increases since

the server completes its job at a faster rate. , probability that server is

busy also decreases. The expected number of customers in the system

is seen to decrease. This is due to the fact that since probability that

server is busy decreases less arriving customers has to go into the orbit.

The table also shows that the expected rate of ordering increases with

increase in service rate.
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Table 5.5: Effect of service rate on the various performance measures

λ = 3 θ = 5 δ1 = 2 δ2 = 3 s = 5 S = 11

µ PSB PINT PIDL EIL ENCO ERO

8 0.4999 0.1999 0.3002 8.5 1.1999 0.1846

8.2 0.4901 0.196 0.3139 8.5 1.1176 0.1863

8.4 0.4807 0.1923 0.327 8.5 1.0448 0.188

8.6 0.4716 0.1886 0.3398 8.5 0.9801 0.1897

8.8 0.4629 0.1851 0.352 8.5 0.9222 0.1913

9 0.4545 0.1818 0.3637 8.5 0.8701 0.1928

9.2 0.4464 0.1785 0.3751 8.5 0.823 0.1943

9.4 0.4385 0.1754 0.3861 8.5 0.7803 0.1958

9.6 0.431 0.1724 0.3966 8.5 0.7413 0.1972

5.4.6 Effect of reorder level on the various performance

measures

In table 5.6 we see that as reorder level the expected inventory level

in the system increases since its value is S+s+1
2 . The expected reorder

rate also increases with increase in reorder level which due to the fact

that orders are placed early. The table shows that the reorder level

doesn’t have much effect on the other performance measures.
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Table 5.6: Effect of reorder level on the various performance mea-
sures

λ = 3 µ = 9 θ = 5 δ1 = 2 δ2 = 3 S = 21

s PSB PINT PIDL EIL ENCO ERO

3 0.3333 0.1818 0.4849 12.5 0.8701 0.0642

4 0.3582 0.1818 0.46 13 0.8701 0.068

5 0.3863 0.1818 0.4319 13.5 0.8701 0.0723

6 0.4181 0.1818 0.4001 14 0.8701 0.0771

7 0.4545 0.1818 0.3637 14.5 0.8701 0.0826

8 0.4545 0.1818 0.3637 15 0.8701 0.089

9 0.4545 0.1818 0.3637 15.5 0.8701 0.0964

10 0.4545 0.1818 0.3637 16 0.8701 0.1056

5.5 Graphical Illustration
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5.6 Conclusion

In this paper we could derive an explicit expression for the steady

state probability vector of an inventory queuing model with retrial

and server interruptions. Several other performance measures such as

expected waiting time of a customer in the orbit, average duration

of an interrupted service and so on can be calculated explicitly. An

optimisation of a cost function may be done. We wish to extend this

paper by considering positive lead time as well which may have several

applications in real life situations. We also intend to do the transient

analysis of this model and its extensions.
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Recommendations

In this thesis we have derived explicit expressions for the steady state

probability vector of three inventory queuing models.

In the first model we considered a single server queuing model with

negligible service time and backlogs. Several extensions of the model

are possible. A simple extension of this model is the one identical

to this model but with positive service time. We can also consider

the same model or its extension with more general distributions for

arrival, service and replenishment of inventory.

In the second model we considered a single server queuing model

with positive service time, positive lead time and server interruptions.

In this model we have assumed that no arrivals take place when the

server is on interruption and the orders for inventory placed if any are

cancelled. We can extend this model by relaxing one or both of the

constraints and look for if any explicit solution can be obtained for the

steady state probability vector. More generally we can think of con-
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sidering the arrival process to be follow a Phase type distribution or

MAP. Similarly for the service process also more general distributions

can be considered.

In the third model we could arrive at an explicit expression for the

steady state probability vector for an inventory model with retrials

and server interruptions. Here we considered a constant retrial rate in

the sense that a queue is formed in the orbit. Instead one can consider

the same model with the classical retrial policy and look for explicit

expressions for the steady state probability. We can also think of

relaxing the assumption of no retrials are entertained when the server

is on interruption and still look for explicit expressions for the steady

state probability. Considering distributions other than exponential

for arrival, service and retrials is another option.
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