$\mathbb{C}[2809]$ (Pages: 16) Nam	ne
------------------------------------	----

Reg	No

U.G./P.G. ENTRANCE EXAMINATION, APRIL 2021 :

		APPLIED	СНЕ					
Time:	Two Ho			Maximum: 100 Marks				
	Answer all questions. Each question carries 1 mark.							
1.	The col	our of potassium dichromate is due	to:					
	(A)	d-d transition.						
	(B)	Transition in K ⁺ ions.						
	(C)	Ligand to metal charge transfer.						
	(D)	Metal to ligand charge transfer.						
2.		ic radii of Ca ²⁺ and F ⁻ are 100 p.m in the ionic solid will be :	. and	133 p.m. respectively. The co-ordination number				
	(A)	8.	(B)	6.				
	(C)	4.	(D)	2.				
3.		f-life of a radioactive nuclide is 20 y grations per minute today, its activ		If a sample of this nuclide has an activity of 6400 er 100 years would be :				
	(A)	850.	(B)	1,600.				
	(C)	200.	(D)	400.				
4.	Which a	among the following has an -O-O-	linka	ge:				
	(A)	$\mathrm{H_2S_2O_6}.$	(B)	$H_2S_2O_8$.				
	(C)	$\mathrm{H_2S_2O_3}$.	(D)	$H_2S_4O_6$.				
5.	Accordi	ng to K, Fajan's rule, polarization i	s high	n with:				
	(A)	Small cations and small anions.	(B)	Small cations and large anions.				
	(C)	Large cations and large anions.	(D)	Large cations and small anions.				
				Turn over				

6.	The ox	idation state of chlorine is +7 in:		
	(A)	$\mathrm{HClO_4}.$	(B)	ClO ₂ .
	(C)	HClO_3 .	(D)	HOCl.
7.	Oxygei	n is not evolved when ozone reacts	with:	:
	(A)	Potassium iodide.	(B)	Mercury.
	(C)	Sulfur dioxide.	(D)	Hydrogen peroxide.
8.	Inorga	nic benzene is :		
	(A)	BN.	(B)	$\mathrm{B_{3}N_{3}H_{6}}.$
	(C)	$\mathrm{B_{2}H_{6}}.$	(D)	$\mathrm{B_{3}O_{3}H_{6}}.$
9.	Copper	displaces the metal in the salt solu	ition c	of:
	(A)	Silver nitrate.	(B)	Zine sulfate.
	(C)	Ferrous sulfate.	(D)	Ferric sulfate.
10.	The sin	nilarity between Li and Mg is due t	ю:	
	(A)	Their high reactivity.	(B)	High electropositive nature.
	(C)	Similar ionic radii.	(D)	Low electronegative nature.
11.	The ge	ometry of XeF ₄ is:		
	(A)	Tetrahedral.	(B)	Triangular bipyramidal.
	(C)	Square planar.	(D)	Planar.
12.	The ran	re gas which shows the greatest che	emical	reactivity is:
	(A)	Neon.	(B)	Krypton.
	(C)	Xenon.	(D)	Argon.

13.	. Which of the following chloride is not hydrolyzed by water:				
	(A)	${\rm CCl_4}$.	(B)	TiCl_4 .	
	(C)	SiCl ₄ .	(D)	VCl ₄ .	
14.	H_3PO_2	is a:			
	(A)	Monobasic acid.	(B)	Dibasic acid.	
	(C)	Amphoteric.	(D)	Tribasic acid.	
15.	When g	glass is treated with HF ———— is	prod	uced.	
	(A)	NaF.	(B)	CaF ₂ .	
	(C)	H_2SiF_6 .	(D)	SiF ₆ .	
16.	The chi	ief raw material in the manufactur	e of ce	ement are :	
	(A)	Sand and limestone.	(B)	Gypsum and clay.	
	(C)	Sodium and calcium silicates.	(D)	Limestone and clay.	
17.	Sodalin	ne is :			
	(A)	CaO.	(B)	NaOH. CaO.	
	(C)	Ca (OH) ₂ .	(D)	${ m Na_2CO_3}.$	
18.	Variabl	le valency is exhibited by:			
	(A)	Strontium.	(B)	Beryllium.	
	(C)	Copper.	(D)	Aluminium.	
19.	Sodium	metal is obtained by the:			
	(A)	Electrolysis of aqueous NaCl.	(B)	Heating Na_2O with H_2 .	
	(C)	Heating fused NaCl.	(D)	Electrolysis of fused NaCl.	

- 20. Bleaching action of SO_2 is due to its :
 - (A) Acidic nature.

(B) Oxidizing action.

(C) Reducing action.

- (D) Ability to hydrolysis.
- 21. Thermal rearrangement of the following compound will give:

(A)
$$CH_2$$

- 22. During Wittig reaction, a phosphorus ylide gets converted to:
 - (A) R_3P .

(B) $R_3P = O$

(\dot{C}) $R_3F^+HOH^-$.

- (D) $R_2P PR_2$
- 23. The major product obtained in the photochemical bromination of methyl cyclopentane is:

24.	Which among the following is the most stable carbocation?					
	(A)	$(CH_3)_3C^+.$	(B)	$(C_6H_5)_3C^+$.		
	(C)	${\rm (CH_3)_2CH^+}.$	(D)	$(C_6H_5)_2CH^+$.		
25.	The cat	talyst used in Rosenmund reduction	n is :			
	(A)	Zn/Hg.	(B)	Pd/BaSO ₄ .		
	(C)	${ m LiAlH_4}.$	(D)	${ m Na/C_2H_5OH}.$		
26.	Anti-M	arkownikoff addition of hydrogen l	nalide	s to unsymmetrical olefins occurs in the presence		
	of:					
	(A)	Diphenylamine.	(B)	Iodine.		
	(C)	Organic peroxides.	(D)	Anhydrous AlCl ₃ .		
27.	Oppena	nuer oxidation is the oxidation of:				
	(A)	Primary alcohol to aldehyde.	(B)	Secondary alcohol to ketone.		
	(C)	Ketones to acids.	(D)	Aldehydes to acids.		
28.	Which	among the following on reduction v	vith L	iAlH ₄ does not give a primary alcohol?		
	(A)	Carboxylic acid.	(B)	Ester.		
	(C)	Acid anhydride.	(D)	Ketone.		
29.	Grigna	rd when reagent reacts with ———		gives secondary alcohol.		
	(A)	Water.	(B)	Acetaldehyde.		
	(C)	Acyl chloride.	(D)	Ethylacetate.		
30.	Phenol	can easily be separated from benzo	oic aci	d effectively by the use of:		
	(A)	Sodium bicarbonate.	(B)	Sodium hydroxide.		
	(C)	Diethyl ether.	(D)	Hot water.		

31.	The ha	lide which does not give a precipita	ate wh	en warmed with alcoholic silver nitrate is
	(Å)	Allyl chloride.	(B)	Benzyl chloride.
	(C)	Chlorobenzene.	(D)	t-butyl chloride.
32.	The Sa	ndmeyar reaction of a diazonium s	alt is	the replacement of nitrogen (N_2) by :
	(A)	Hydrogen.	(B)	Halogen.
	(C)	Hydroxyl group.	(D)	Carbonyl group.
33.	The rec	duction product of a cyanide is a:		
	(A)	Primary amine.	(B)	Secondary amine.
	(C)	Tertiary amine.	(D)	Alkane.
34.	Benzen	e on treatment with chlorine in pre	esenco	e of sunlight gives :
	(A)	Ortho-dichlorobenzene.	(B)	2, 4, 6-trichlorobenzene.
	(C)	Chlorobenzene.	(D)	Benzene hexachloride.
35.	Phenol	on heating with Zinc powder gives	:	
	(A)	Benzene.	(B)	Cyclohexane.
	(C)	Cyclohexene.	(D)	Cyclohexanol.
36.	Picric a	cid is obtained by the nitration of:		
	(A)	Phenol.	(B)	Aniline.
	(C)	Nitrobenzene.	(D)	Cresol.
37.	Glucose	e on oxidation with bromine water	gives	
	(A)	Gluconic acid.	(B)	Glutaric acid.
	(C)	Glycolic acid.	(D)	Glycerol.

- 38. When benzaldehyde on heating with concentrated NaOH gives?
 - (A) Benzyl alcohol + sodium phenolate.
 - (B) Benzoic acid + sodium phenolate.
 - (C) Benzyl alcohol + sodium benzoate.
 - (D) Sodium phenolate + sodium benzoate.
- 39. Aniline is prepared by the:
 - (A) Reaction of benzene with ammonia.
 - (B) Reduction of nitrobenzene with Sn/HCl.
 - (C) Dehydrogenation of nitrobenzene.
 - (D) Reaction of nitrobenzene with I₂/NaOH.
- 40. The major product in the following reaction is:

- 41. The pH of a 1×10^{-8} M HCl is close to :
 - (A) 8.0.

(B) 7.1.

(C) 6.9.

(D) 6.0.

42.	When 100 g of water is reversible he (JK^{-1}) of the universe is:	ted from 50°C to 75°C at 1.0 atm, the change in	entropy
	(A) 0.	(B) 0.31.	
	(C) -2.31 .	(D) 3.1	
43.	The maximum number of phases system is:	hat can co-exist in equilibrium for a one con	mponent
	(A) 1.	(B) 2.	
	(C) 3.	(D) 4.	
44.	The work done during the process wh	n one mole of gas is allowed to expand freely into) vacuum
	is		
	(A) 1.	(B) 0.	
	(C) 3.	(D) 4.	
45 .	The dissociation constant of a substitution of its sodium salt is:	ted benzoic acid is 1.0×10^{-4} (at 25° C). The pH of	a 0.01 M
	(A) 8.	(B) 6.	
	(C) 4.	(D) 5.	
46.	The unit of rate constant (k) for a zero	order reaction is :	
	(A) s^{-1} .	(B) L Mole ⁻¹ s^{-1} .	
	(C) s.	(D) Mole $L^{-1} s^{-1}$.	
47.	Copper crystallize in 'fcc' with a unit of	ell length of 361 pm. The radius of copper atom is	:
	(A) 181 pm.	(B) 108 pm.	
	(C) 127 pm.	(D) 157 pm. ·	
4 8.	In the case of an ideal gas undergoing	isothermal transformation, its energy:	
	(A) Increases as pressure increase	s. (B) Decreases as volume decreases.	
	(C) Decreases as pressure increas	s. (D) Decreases as volume increases.	

- 49. For two moles of an ideal gas:
 - (A) $C_p C_p = R$.

(B) $C_p - C_v = R/2$.

(C) $C_v - C_P = -2R$.

- (D) $C_p C_v = O$.
- 50. Attractive forces and size effects in a gas become negligible:
 - (A) At low pressure and high temperature.
 - (B) At high pressure and high temperature.
 - (C) When both temperature and pressure are low.
 - (D) When both temperature and pressure are high.
- 51. The average speed of a molecule is:
 - (A) Directly proportional to the square of temperature.
 - (B) Directly proportional to the square root of temperature.
 - (C) Directly proportional to the temperature.
 - (D) Independent of the temperature.
- 52. The amount of gas absorbed on charcoal increases with:
 - (A) Temperature and pressure.
 - (B) Temperature.
 - (C) Temperature decrease and pressure increase.
 - (D) Temperature and decrease with pressure.
- 53. Viscosity of a gas is:
 - (A) Independent of pressure at constant temperature.
 - (B) Invariably proportional to the mean free path.
 - (C) Decrease with temperature.
 - (D) Independent of temperature.
- 54. The surface tension of a liquid has the dimensions of:
 - (A) Work per unit area.
- (B) Force per unit area.
- (C) Work per unit length.
- (D) Force per unit length.

55. The inversion temperature of a gas is:

	(A)	Lower than the critical temperature.						
	(B)	Higher than the critical temperature.						
	(C)	Depends on the nature of the gas.						
	(D)	Equal to the critical temperature.						
56.	In the	colloidal state, the particle size rang	es fro	om Å.				
	(A)	1 to 20.	(B)	20 to 50.				
	(C)	50 to 2000.	(D)	Above 2000.				
57.	The inc	luctance cell is platinized to :						
	(A)	Prolong its service.	(B)	Avoid temperature effects.				
	(C)	Avoid capacitance of the cell.	(D)	Avoid polarization effects.				
58.		llision theory is satisfactory for ——		reactions.				
56.	THE CO	mision theory is satisfactory for ——		reactions.				
	(A)	Bimolecular.	(B)	Uni-molecular.				
	(C)	Zero order.	(D)	Fractional order.				
59.	Total n	umber of variables defining a system	m of '	C' components with 'P' phases is:				
	(A)	C (P - 1).	(B)	C-P+2.				
	(C)	C + P + 2.	(D)	P(C-1) + 1.				
60.	Fluidit	y is defined as :						
	(A)	Reciprocal of surface tension.	(B)	Reciprocal of viscosity.				
	(C)	Square of surface tension.	(D)	Square of viscosity.				
61.	For a p	article in a cubic box, the total num	ıber o	of quantum numbers needed to specify the states				
	are:							
	(A)	1.	(B)	2.				
	(C)	3.	(D)	9.				

62.	The fundamental particle responsible for keeping the nucleus together is:				
	(A)	Meson.	(B)	Hyperon.	
	(C)	Positron.	(D)	Muon.	
63.		— Series of lines in the atomic spec	trum (of hydrogen is in the visible region.	
	(A)	Lyman.	(B)	Paschen.	
	(C)	Balmer.	(D)	Pfund.	
64.	The Bo	hr concept of the electron orbit in a	n ator	n contradicts:	
	(A)	De Broglie Relation.	(B)	Uncertainty Principle.	
	(C)	Plank's Hypothesis.	(D)	Coulomb's Law.	
6 5.	The ph	oto-electric effect is an example of t	he :		
	(A)	Wave nature of electrons.	(B)	Wave nature of light.	
	(C)	Particle nature of electrons.	(D)	Particle nature of light.	
66.	The ne	utral atoms of all of the isotopes of	the sa	me element have :	
	(A)	Different numbers of protons.	(B)	Equal numbers of neutrons.	
	(C)	The same number of electrons.	(D)	The same mass numbers.	
67.	The em	nission spectrum of gold shows a lin	ne of v	wavelength 2.676×10^{-7} m. How much energy is	
	emitted	as the excited electron falls to the	lower	energy level?	
	(A)	$7.43 \times 10^{-19} \text{ J}.$	(B)	$5.30 \times 10^{-20} \text{ J}.$	
	(C)	$6.05 \times 10^{-19} \text{ J}.$	(D)	$3.60 \times 10^{-20} \text{ J}.$	
68.	All of t	the following properties of the all	kaline	e earth metals increase going down the group	
	(A)	Atomic radius.	(B)	First ionization energy.	
	(C)	Ionic radius.	(D)	Atomic volume.	

69.	A neutral molecule having the general formula AB_3 has two unshared pair of electrons on What is the hybridization of A ?						
	(A)	sp^2 .	(B)	sp^3 .			
	(C)	sp^3d^2 .	(D)	sp^3d .			
70.	Antibo	nding molecular orbitals are produc	ced by	: ()			
	(A)	Constructive interaction of atomic	orbita	als.			
	(B)	Destructive interaction of atomic of	rbital	S.			
	(C)	The overlap of the atomic orbitals	of two	o negative ions.			
	(D)	The overlap of the atomic orbitals	of two	positive ions.			
71.	Which	among the following does not cause	e hard	ness of water ?			
	(A)	CaCl_2 .	(B)	MgCl_2 .			
	(C)	CaSO ₄ .	(D)	${ m Na_2SO_4}.$			
72.	In the l	Bronsted-Lowry system, a base is d	efined	las:			
	(A)	A proton donor.	(B)	A hydroxide donor.			
	(C)	A proton acceptor.	(D)	An electron-pair acceptor.			
73.	The vol		liters	at 35°C and 740 torr. What volume will it occupy			
	(A)	5.18 L.	(B)	51.8 L.			
	(C)	0.518 L.	(D)	1.36 L.			
74.	A real g	gas most closely approaches the bel	ıaviou	er of an ideal gas under conditions of :			
	(A)	High pressure and low temperature	re.				
	(B)	Low pressure and high temperatu	re.				
	(C)	Low pressure and temperature.					
	(D)	High pressure and temperature.					

75.	What i	s the freezing point of an aqueous I	l.00 m	n. NaCl solution ?			
	$(K_f = 1.86 \text{ °C/m.})$ (Assume complete dissociation of the salt.)						
	(A)	– 1.86°C.	(B)	– 3.72°C.			
	(C)	+ 1.86°C	(D)	– 0.93°C.			
76.	The eq	uilibrium constant for a reaction th	at ha	s a ΛG°value of - 41.8 kJ at 100°C is			
	(A)	13.5.	(B)	7.1×10^5 .			
	(C)	- 5.87.	(D)	1.4×10^{-6} .			
77.	Which	of the following combinations cann	ot pro	duce a buffer solution ?			
	(A)·	$\mathrm{HClO_4}$ and $\mathrm{NaClO_4}$.	(B)	HNO ₂ and NaNO ₂ .			
	(C)	$\mathrm{NH_3}$ and $\mathrm{(NH_4)_2SO_4}$.	(D)	$\mathrm{NH_3}$ and $\mathrm{NH_4Br}$.			
7 8.	In the p	process known as 'roasting,'	– is c	hemically converted to ——.			
	(A)	A sulfide; an oxide.	(B)	A carbonate; an oxide.			
	(C)	A sulphate; an oxide.	(D)	A phosphate; a phosphide.			
79.	The "m	agic numbers" for atoms are :					
	(A)	Numbers of electrons that confer a	tomic	estability.			
	(B)	Numbers of protons and/or neutro	ns th	at confer nuclear stability.			
	(C)	Atomic masses that confer nuclear	stabi	lity.			
	(D)	Atomic masses that indicate fissile	isotoj	pes.			
80.	"Oil of	mirbane" is the most common name	of w	hich among the following?			
	(A)	Phenol.	(B)	Toluene.			
	(C)	Phenolphthalein.	·(D)	Nitrobenzene.			
81.	Rose m	etal is an alloy of :					
	(A)	Nickel, Tin and Palladium.	(B)	Bismuth, Copper and Zinc.			
	(C)	Palladium, Tin and Lead.	(D)	Bismuth, Tin and Lead.			

82.	Which of the following is the purest form of Iron?						
	(A)	Pig iron.	(B)	Cast iron.			
	(C)	Wrought iron.	(D)	Steel.			
83.	What is the probability of finding an electron at a point within an atom?						
	(A)	Proportional to the square of the	orbita	l wave function.			
	(B)	Proportional to the orbital wave f	unctio	n.			
	(C)	Proportional to the twice of the orbital wave function.					
	(D)	Proportional to the cube of the or	bital v	vave function.			
84.	The catalyst used in Ziengler-Natta process is:						
	(A)	AlCl ₃ .	(B)	V_2O_5 .			
	(C)	Ni.	(D)	${ m TiCl_4}$ and ${ m Et_3Al}$.			
85.	The acid added in permanganate titration is:						
	(A)	Sulfuric acid.	(B)	Nitric acid.			
	(C)	Oxalic acid.	(D)	Hydrochloric acid.			
86.	Sodium bismathate is used for testing:						
	(A)	Co.	(B)	Ni.			
	(C)	Mn.	(D)	Al.			
87.	In the flame test, concentrated hydrochloric acid is added to:						
	(A)	Dissolve the solid sample.					
	(B)	Form volatile chlorides.					
	(C) Oxidize the anionic component present in the sample.						
	(D)	Reduce the anionic component pre	esent i	n the sample.			

88.	Lead nitrate on heating leaves an yellow residue. The residue is:						
	(A)	${ m PbO}_2$.	(B)	PbO.			
	(C)	$\mathrm{Pb_3O_4}.$	(D)	$\mathrm{HPbO_4}.$			
89.	EDTA:	is ——— ligand.					
	(A)	An octa-dentate.	(B)	A tetra-dentate.			
	(C)	A bi-dentate.	(D)	A hexa-dentate.			
90.	A sinte	red glass crucible is used for :					
	(A)	Filtration under suction.	(B)	Filtering colloidal substances.			
	(C)	Drying precipitate.	(D)	Igniting precipitate.			
91.	Which	of the following is used both in acid	l-base	and red-ox titrations?			
	(A)	Potassium hydroxide.	(B)	Potassium dichromate.			
	(C)	Acetic acid.	(D)	Oxalic acid.			
92.	Which	among the following is a primary standard?					
	(A)	Sodium thiosulfate.	(B)	Sodium hydroxide.			
	(C)	Sodium carbonate.	(D)	Potassium permanganate.			
93.	Thin La	Layer Chromatography is used to:					
	(A)	Determine the molecular weight of compounds.					
	(B)	Identify the number of compounds.					
	(C)	Analyses the compounds.					
	(D)	Separate the compounds.					
94.	94. Which among the following will form a picrate?						
	(A)	Urea.	(B)	Glucose.			
	(C)	Naphthalene.	(D)	Acetone.			

95.	Alkalir	ne KMnO ₄ solution is known as :		
	(A)	Baeyer's reagent.	(B)	Borsches reagent.
	(C)	Luca's reagent.	(D)	Schiff's reagent.
96.	A subs	A substance containing N and S, on fusion with Na give a Lassaigne's solution containing.		
	(A)	Na ₂ S and NaCN.	(B)	NaCNS only.
	(C)	NaCN and CS ₂ .	(D)	NaNH_2 and $\mathrm{NaS}.$
97.	Among the solvents used in the laboratory, the most inflammable is:			
	(A)	·Carbon tetrachloride.	(B)	Acetone.
	(C)	Diethyl ether.	(D)	Benzene.
98.	The composition of 'golden spangles' is:			
	(A)	$\mathrm{As}_2\mathrm{S}_3$.	(B)	PbCrO ₄ .
	(C)	BaCrO ₄ .	(D)	$\mathrm{PbI}_{2}.$
99.	Mohr's	Mohr's salt is:		
	(A)	$(\mathrm{NH_4})_2$ Fe $(\mathrm{SO_4})_2$. $6\mathrm{H_2O}$.	(B)	$\mathrm{NH_4}.\ \mathrm{Fe}\ (\mathrm{SO_4})_2.\ 6\mathrm{H_2O}.$
	(C)	$(NH_4)_2$ Fe $(SO_4)_2$. 24 H_2O .	(D)	$\mathrm{NH_4}$ Fe $(\mathrm{SO_4})_2$. $\mathrm{5H_2O}$.
100. The indicator phenolphthalein changes colour at pH - 9.0. This is not suitable				r at pH - 9.0. This is not suitable for accurate
	determ	ination of the end point in the titra	tion o	f:
	(A)	CH ₃ COOH with NaOH.	(B)	HCl with NH ₄ OH.
	(C)	HCl with NaOH.	(D)	HCl with KOH.