	2266	
\mathbf{C}	3366	

(Pages: 10)

Name.....

Reg. No.....

Ph.D. ENTRANCE EXAMINATION, APRIL 2021

CHEMISTRY

Time: Two Hours

Maximum: 100 Marks

Turn over

Date:

Answer all questions.

Section A

Answer the questions in a **separate** sheet (provided); **No negative mark for wrong** answers.

- 1. The more stable conformation of 2-amino ethanol is:
 - (A) Anti.

(B) Skew.

(C) Eclipsed.

- (D) Partially eclipsed.
- 2. The major product in the following reaction is:

3. The stable final product of the following photochemical reaction is:

4. Ortho - bromo anisole on treatment with KNH_2 in liquid ammonia gives :

- (A) Meta anisidine.
- (B) Ortho anisidine.
- (C) Para anisidine.
- (D) Mixture of meta and ortho anisidine.

5. The reaction shown below is:

- (A) $_{\pi}4_{s} + _{\pi}2_{s}$ cycloaddition.
- (B) $_{\pi}4_{s} + _{\pi}2_{a}$ cycloaddition.
- (C) $_{\pi}4_{a} + _{\pi}2_{s}$ cycloaddition.
- (D) $_{\pi}4_{a} + _{\pi}2_{a}$ cycloaddition.

6. The Reformatsky reaction is often used for the preparing of:

(A) α - hydroxyl ester.

(B) β - hydroxyl ester.

(C) α - halo ester.

(D) β - halo ester.

7. The oxy- Cope rearrangement is a:

- (A) [2, 3] sigmatropic rearrangement. (B) [3, 3] sigmatropic rearrangement.
- (C) [1, 3] sigmatropic rearrangement. (D) [1, 5] sigmatropic rearrangement.

8. The products A, B and C respectively in the reaction are:

- (A) 1, 3-cyclohexadiene, benzene, 1, 4-cyclohexadiene.
- (B) 1, 4-cyclohexadiene, benzene, 1, 3-cyclohexadiene.
- (C) 1, 3-cyclohexadiene, cyclohexane, 1, 4-cyclohexadiene.
- (D) 1, 4-cyclohexadiene, cyclohexane, 1, 3-cyclohexadiene.

- 9. Acetophenone can be converted to phenol by reaction with:
 - (A) *m*-CPBA followed by base catalysed hydrolysis.
 - (B) Conc. HNO₃.
 - (C) Iodine and NaOH.
 - (D) Singlet oxygen followed by base catalysed hydrolysis.
- 10. Which of the following molecule is aromatic in nature?

11. The following compound can be considered as a:

(A) Monoterpene.

(B) Sesquiterpene.

(C) Diterpene.

(D) Triterpene.

- 12. Zeta potential is also called:
 - (A) Electro-osmosis potential.
- (B) Electro kinetic potential.
- (C) Electro phoretic potential.
- (D) Sedimentation potential.
- 13. Quantum dots represent which type of nanomaterials?
 - (A) 0-D nanomaterials.

(B) 1-D nanomaterials.

(C) 2-D nanomaterials.

- (D) 3-D nanomaterials.
- 14. Which one of the following is a 'top-down approach' for the synthesis of nanomaterials?
 - (A) CVD.

(B) Laser Ablation.

(C) Sol-gel synthesis.

(D) Co-precipitation.

15.	AFM b	elongs to which type characterizati	on?	
	(A)	Optical Probe Methods.	(B)	Electron Probe Methods.
	(C)	Scanning Probe Methods.	(D)	Spectroscopic Methods.
16.	$\mathrm{C}_{59}\mathrm{N}$ is	sa:		
	(A)	Carbon allotrope.	(B)	Endohedral fullerene.
	(C)	Heterofullerene.	(D)	Exohedral fullerene.
17.	EDX- S	Spectrum is a plot of emitted X-ray	intens	sity against its:
	(A)	Energy.	(B)	Wavelength.
	(C)	Frequency.	(D)	Amplitude.
18.	The car	nonical ensembles are ensembles w	ith co	nstant values for :
	(A)	E, V and N.	(B)	E, V and μ .
	(C)	T, V and N.	(D)	T, V and μ.
19.	For a cl	nemical reaction, the half life of reac	tion is	s directly proportional to the initial concentration.
		ler of the reaction is :		
	(A)	1 st order.	(B)	Fractional order.
	(C)	2 nd order.	(D)	Zero order.
20.	$d\mathrm{P}/d\mathrm{T}$:	= $q/T(V_B - V_A)$. This is mathematic	al for	m of:
	(A)	Claussius - Claypeyron equation.		
	(B)	Kirchhoff's equation.		
	(C)	Clausius -Mossotti equation.		
	(D)	Gibbs-Duhem equation.		
21.	The the	ermogram in differential thermal ar	nalysi	s (DTA) is obtained by plotting :
	(A)	dw/dt versus temperature.		
	(B)	ΔT versus temperature.		
	(C)	ΔH versus temperature.		
	(D)	Temperature versus volume.		

22.	The Debve-	Huckel limiting	law can	be mathematica	lly represented as:	
 .	THE DED,	TIUCITOI IIIIIIIII	ian cai	DC IIIddiidiiddia	ily roprobolition as .	

(A)
$$\log \gamma \pm = -0.509 |z + z - | I^{1/2}$$
.

(B)
$$\log \gamma \pm = -0.509 |z + z - A^{1/2}$$

(C)
$$\log \gamma \pm = -0.509 |z + z - | c^{1/2}$$
.

(D)
$$\log \gamma \pm = -0.509 |z + z - | \gamma^{1/2}$$
.

23. In which polymer of propene, configuration of substituted carbon atom alternates regularly?

(A) Atactic.

(B) Isotactic.

(C) Syndiotactic.

(D) None of these.

24. The ground state term symbol for Ce³⁺ ion is:

(A) ${}^{2}F_{5/2}$.

(B) ${}^{3}\mathrm{H}_{4}$.

(C) ${}^{7}F_{0}$.

(D) $^{6}\text{H}_{5/2}$

25. The value of the commutator [x, d/dx] is :

(A) 1.

(B) -1

(C) 0.

(D) 2.

26. The degree of degeneracy for a rigid rotor in an energy level with quantum number J is equal to:

(A) J.

(B) 2J.

(C) 2J - 1.

(D) 2J + 1.

27. Which of the following is an inverse spinel?

(A) $MgAl_2O_4$.

(B) Mn_3O_4 .

(C) $FeCr_2O_4$.

(D) NiFe₂O₄.

			6	C 3366
28.	Accord	ing to the HMO treatment, the reso	onanc	e energy of cyclobutadiene is :
	(A)	Zero.	(B)	4.472 β.
	(C)	0.472β.	(D)	$4\alpha + 4.472 \beta$.
29.	The slo		Γfor t	he reaction is – 5841 K. Then correct mathematical
	(A)	Ea/2.303 R = -5841 K.	(B)	- Ea/2.303 = -5841.
	(C)	Ea = 5841/2.303 R.	(D)	- Ea/2.303R = -5841.
30.		tal number of fine and hyperfine E sively (I = $5/2$ for Mn) :	PR lii	nes expected for high spin Mn (II) complexes are
	(A)	3 and 30.	(B)	5 and 33.
	(C)	5 and 30.	(D)	4 and 24.
31.	The PN	AR spectrum of [18]- annulene show	vs:	
	(A)	Only one peak at δ 7.2 (18H).		
	(B)	Only one peak at δ 5.0 (18H).		
	(C)	Two peak at δ 9.0 (12H) and δ 3.0	(6H)	
	(D)	Two peak at δ 9.0 (6H) and δ 3.0 ((12H)	
32.	The ¹⁹ F	F NMR spectrum of PF $_5$ at room tem	perat	ture (coupled with ³¹ P) consists of :
	(A)	Triplet.	(B)	Quintet.
	(C)	Doublet.	(D)	Singlet.
33.	According be:	ing to Woodward -Fieser rules, the	theor	retical value of λ_{max} for the given molecule will

(B) 254 nm.

(D) 234 nm.

(A) 229 nm.

(C) 245 nm.

34.	The number of fundamental vibrations of CO_2 is :				
	(A)	Five.	(B)	Two.	
	(C)	Three.	(D)	Four.	
35.	Emissio	on of a second electron after high en	nergy	X-rays removes a core electron is known as:	
	(A)	Photovoltaic effect.	(B)	Zeeman effect.	
	(C)	Debye-Falkenhagen effect.	(D)	Auger effect.	
36.	The ter	m Doppler velocity is associated wi	th wh	ich spectral method ?	
	(A)	ESR spectroscopy.	(B)	NQR spectroscopy.	
	(C)	Môssbauer spectroscopy.	(D)	Auger electron spectroscopy.	
37.	The poi	nt group symmetry of the molecule	e ferro	ocene in the staggered form is :	
	(A)	C_3v .	(B)	$\mathrm{D}_4 h$.	
	(C)	D_{5h} .	(D)	\mathbf{D}_{5d} .	
38.	In DEF	PT 135 spectrum, which of the follow	wing i	s correct?	
	(A)	Produce signals for all protonated	l carb	on atoms.	
	(B)) CH and CH_3 peaks are positive and CH_2 peaks are negative.			
	(C)	(C) CH and CH_3 peaks are negative and CH_2 peaks are positive.			
	(D)	Only CH peaks are visible.			
39.	The su	lphur-nitrogen compound that exh	ibits	lifferent colours with temperature is :	
	(A)	$S_4N_4H_4$.	(B)	S_2N_2 .	
	(C)	$S_4N_4H_4$. S_4N_4 .	(D)	$(SN)_X$.	

			_	
40.	In $ino\ s$	ilicates, number of oxygen shared	oetwe	en silicon atoms will be :
	(A)	1.	(B)	2.
	(C)	3.	(D)	4.
41.	Which a	among the following metallocenes i	s hav	ing highest oxidizing power?
	(A)	$\left[\left(\eta^5-\mathrm{Cp}\right)_{\!2}\mathrm{Fe}\right]\!.$	(B)	$\left[\left(\eta^{5}-Cp\right)_{2}Co\right].$
	(C)	$\Big[\Big(\eta^5-Cp\Big)_2\;Mn\Big].$	(D)	$\Big[\Big(\eta^5-Cp\Big)_2\; Ni\Big].$
42.	The sty	$x \text{ code of B}_4 \text{H}_{10} \text{ is :}$		
	(A)	4120.	(B)	4220.
	(C)	4012.	(D)	3203.
43.	The tot	al electron count (TEC) and struct	are of	the carbonyl cluster $[{ m Os}_5{ m C} \left({ m CO} ight)_{15}]$ is :
	(A)	74 and closo.	(B)	74 and <i>nido</i> .
	(C)	70 and closo.	(D)	70 and arachno.
44.	The W-	W bond order in $[W_2(OPh)_6]$ is :		
	(A)	1.	(B)	2.
	(C)	3.	(D)	4.
45.	In solid	l state the molecule $\mathrm{Co_2(CO)_8}$ has :		
	(A)	All terminals CO groups and two	Co-Co	bonds.
	(B)	Terminal CO groups , two bridging	ıg CO	groups one Co-Co bond.
	(C)	Terminal CO groups , one bridging	g CO	groups one Co-Co bond.
	(D)	Terminal CO groups, three bridgi	ng C(O groups two Co-Co bonds.

46.	The number of labile sulphur atoms present in 1 Fe-ferredoxin is:			
	(A)	1.	(B)	2.
	(C)	3.	(D)	0.
47.	An elen	nent X emits successiv nd atomic number of t	ely two β-particles, he element are dec	one α –particle one positron and one neutron. The reased by :
	(A)	4 and 1.	(B)	5 and 1.
	(C)	3 and 2.	(D)	3 and 1.
48.	For the takes p	e reaction [Fe (CN) $_6$] 4 lace by :	$^{-}$ + [Mo(CN ₈) ^{3−} \rightarrow	[Fe $(CN_6)^{3-}$ + [Mo $(CN)_8$] $^{4-}$ the electron transfer
	(A)	Outer sphere reactio	n.	
	(B)	Inner sphere reaction	n.	
	(C)	Induced electron trai	nsfer reaction.	
	(D)	Excited state inner s	phere mechanism.	
49.	The oxi	dation state of the cer	ntral metal iron in o	oxy-hemoglobin is :
	(A)	+ 4.	(B)	+ 3.
	(C)	0.	(D)	+ 2.
50.	Which	of the following is not	a blue protein ?	
	(A)	Azurin.	(B)	Plastocyanin.
	(C)	Tyrosine.	(D)	Umecyanin.
				$(50 \times 1 = 50 \text{ marks})$
			Section	В
			Each question carr	ies 5 marks.
1.	State and explain the selection rules governing electronic transitions.			
2.	Explain the use of infrared spectroscopy in the study of co-ordination compounds.			
3.	Describe the synthesis, structure and bonding of [Re ₂ Cl ₈] ²⁻ .			

Discuss the Marcus theory of outer sphere electron transfer reactions.

 $5. \ \ \, Briefly \, explain \, the \, elimination-addition \, mechanism \, in \, aromatic \, nucleophilic \, substitution.$

Turn over

- 6. Write short note on aromatic, non-aromatic and anti-aromatic molecules based on Huckel theory.
- 7. Outline a reasonable mechanism for the following transformation:

- 8. Apply Schrödinger wave equation to a particle in 1D box problem.
- 9. Briefly explain Joule-Thomson effect. Obtain expression for Joule-Thomson co-efficient.
- 10. Discuss the stoichiometric point defects shown by crystalline solids.

 $(10 \times 5 = 50 \text{ marks})$