C 3365			(Pages:	16) Na:	me			
				\mathbf{Re}_{i}	g. No			
		Ph.D. ENTRANCE	EXAMI	NATION, APRII	2021			
			BOTAN	ſΥ				
Time: Two	o I	Hours			Maximum : 100 Marks			
	Attempt Questions carefully. Put tick mark against the correct answer. Do not mark more than one answer for the MCQs. All questions carry one mark each. 1 mark will be deducted for each wrong answer.							
1. Inter	rna	tional Biological programme w	as initiate	ed in :				
а	a)	1957.	b)	1964.				
C	c)	1973.	d)	1986.				
2. Fried	$_{ m dre}$	ich Ataxia is a genetic conditio	n due to tl	he anticipation of the	e trinucleotide :			
а	a)	AGC.	b)	GAA.				
(c)	CAG.	d)	CGG.				
3. Whic	ch d	of the following statement is CO	ORRECT :	?				
а	a)	Gain of function of proto onco	gene lead	s to cancer.				
b	o)	Loss of function of proto oncog	gene leads	s to cancer.				
C	c)	Gain of function of tumor sup	pressor ge	ene leads to cancer.				
Ċ	d)	All of the above.						
4. Dear	nir	nation of cytosine produce :						
а	a)	Xanthin.	b)	2,4 dioxo pyramidii	ne.			

d) Inosine.

b) Oxygen.

d) All of the above.

ί.

c) 2,6 dioxo purine.

c) a-ketoglutarate.

5. Co factor of Alk-B:

a) Fe²⁺.

6.	Dioxin	is an ———— cause	es gene muta	ation.
	a)	Intercalating agent.	b)	Alkylating agent.
	c)	Cross linking agent.	d)	Oxidizing agent.
7.	UvrB is	sa:		
	a)	Polymerase.	b)	Ligase.
	c)	Primase.	d)	Helicase.
8.	IPTG is	s a gratituitous inducer of :		
	a)	Transacetylase.	b)	β galactocidase.
	c)	lac permease.	d)	None of the above.
9.	Nitroge	en fixing symbiont of Saccha	rum officina	rum:
	a)	Azospirillum.	b)	Acetobacter.
	c)	Azorhizobium.	d)	Azotobacter.
10.	Synthe	tic auxin		
	a)	NAA.	b)	2, 4-D.
	c)	Dicamba.	d)	All of the above.
11.	The cor	nversion-inter conversion pro	perty of Phy	rtochrome :
	a)	Photochromism.	b)	Photoirradiation.
	c)	Photoperiodism.	d)	None of the above.
12.	Digitox	in is extracted from the leav	es of :	
	a)	Acanthus.	b)	Monkey face.
	c)	Fox glove.	d)	Cryptomeria.
13.	A net w	ork of microtubules and F ac	ctins that for	med during late cytokinesis :
	a)	Spindle.	b)	Plasmodesmata.
	c)	Tubulin.	d)	Phragmoplast.
14.	Cyclin	A level increase at the onset	of:	
	a)	G1 phase.	b)	S phase.
	c)	G2 phase.	d)	M phase.

15.	Plant g	ene specific to nodules are called :			
	a)	Nodulation genes.	b)	Nodule genes.
	c)	Nodulin genes.	d)	Nod genes.
16.	Non β-l	actam antibiotic :			
	a)	Cephamycin.	b)	Penicillin.
	c)	Vancomycin.	d)	Cephalosporin.
17.	Match	the following :			
	I. Scl	ero protein	A.	A	lbumin.
	II. Co	onjugated protein	В.	С	ollagen.
	III. Ba	asic protein	C.	Η	listone.
	IV. Glo	obular protein	D.	L	ipoprotein.
	a)	I-A, II-D, III-C, IV-B.			
	b)	I-D, II-B, III-A, IV-C.			
	c)	I-B, II-D, III-C, IV-A.			
	, d)	I-C, II-B, III-A, IV-D.			
18.	Securir	n inactivates:			
	a)	APC.			
	b)	Cohesin cleaving enzyme.			
	c)	Cyclin A.			
	d)	None of the above.			
19.	Largest	t phase of cell cycle :			
	a)	G1.	b)	S.
	c)	G2.	d	.)	M.
20.	Sleepin	g beauty is a ———.			
	a)	Pseudogene.	b)	LTR.
	c)	RNA transposon.	ď)	DNA transposon.

21.	The pro	ocess of aligning chromosomes on t	he sp	oindle is called :
	a)	Spindle congression.	•	
	b)	Chromosome congression.		
	c)	Chromosome segregation		
	d)	Spindle alignment		
22.		ight enzyme :		
<i></i> .		Aconitase.	b) Pyruvate carboxylase.
	a)			
00	c)	Aldolase.	d) All of the above.
23.	Dicer is	s a type of ———.		(0)
	a)	Reverse transcriptase.	b	
	c)	Isomerise.	d) Transferase.
24.	Endosy	mbiotic theory was proposed by:		
	a)	Lynn Margulis.	b) Albert Von Kolliker.
	c)	Richard Altman.	d) Carl Benda.
25.	Match	the following :		
	I. As	comycotina	A.	Fungi Imperfecti.
	II. Ba	asidiomycotina	B.	Club fungi.
	III. De	euteromycotina	C.	Sac fungi.
	IV. Zy	gomycotina	D.	Coenocytic fungi.
	a)	I-C, II-B , III-A, IV-D.		
	b)	I-D , II- A, III-C , IV-B.		
	c)	I-C , II-B , III-A , IV-D.		
	d)	I-A , II- B, III-C , IV-D.		
26.	Which	of the following is not a C4 plant?)	
	a)	Pearl millet.	b) Wheat.
	c)	Sorghum.	d) Sugarcane.

27.	Which	of the following is non-coding RNA	Α?	
	a)	PiRNA.	b)	miRNA.
	c)	RNaseP.	d)	All of the above.
28.	'Taxon	omy of Indian mosses' was a mono	grapl	n published by :
	a)	S K Pande.	b)	S S Kumar.
	c)	RS Chopra.	d)	Srivastava.
29.	Apogai	ny was first repored in :		
	a)	Pteris sulcata.	b)	Pteris cretica.
	c)	Osmunda javanica.	d)	Osmunda regalis.
30.	Which	of the following yeasts have been s	studie	ed as Single Cell Protein (SCP)?
	a)	Candida lipolytica.	b)	$Toruopis\ Candida.$
	c)	Hansenula polymorpha.	d)	All of the above.
31.	Cryopr	rotectant :		
	a)	Dimethyl sulfoxide.	b)	Sucrose.
	c)	Glycerol.	d)	All of the above.
32.	In whi	ch year Government of India laund	ched '	Project Elephant'?
	a)	1992.	b)	1993.
	c)	1994.	d)	1995.
33.	Match	the following :		
	I. Gi	ılf of Mannar	A.	Western Ghats.
	II. Su	ınderbans	B.	Sikkim.
	III. Ni	lgiri Biosphere Reserve	C.	Tamilnadu.
	IV. Ka	anchanjunga	D.	Western Himalaya.
	V. Na	anda Devi	E.	West Bengal.
	a)	I-D , II-E, III-A , IV-B , V-C.		
	b)	I-D, II-E , III-A, IV-C , V-B.		
	c)	I- A, II-E , III- B, IV-D, V-C.		

d) I-C, II-E, III-A, IV-B, V-D.

6

- 41. Term ecology was coined by:
 - a) Robert Marshall.

b) A G Tansley.

c) EP Odum.

d) Harvey Broome.

42. Match the following:

Forest vegetation

- I. Tropical wet evergreen forest
- II. Tropical wet semi evergreen forest
- III. Tropical moist deciduous forest
- IV. Tropical dry evergreen forest
- V. Himalayan moist temperate forest
 - a) I-E, II-D, III-B, IVA-, V-C.
 - b) I-D, II-A, III-C, IV-B, V-E.
 - c) I-E, II-D, III-B, IV-A, V-C.
 - d) I-C, II-A, III-D, IVA-E, V-B.

- Annual rain fall(cm)
 - A. 87-127.
 - B. 100-200.
 - C. 110-250.
 - D. 200-250.
 - E. 290-320.

- 43. Ratio of sensible heat flux to the latent heat flux:
 - a) Flux ratio.

b) Bowen ratio.

c) Heat flux ratio.

- d) None of the above.
- 44. What is the unit of molar absorptivity which is used to determine absorbance A in Beer Lamberts law?
 - a) $L \text{ mol}^{-1} \text{ cm}^{-1}$.

b) $L gm^{-1} cm^{-1}$.

c) $L^{-1} \text{ mol}^{-1}$.

- d) No unit.
- 45. Which of the following pigment play an essential role in photo protection?
 - a) Zeaxanthin.
 - b) Carotenoid.
 - c) Chlorophyll.
 - d) Anthocyanin.

46.	Kino ve	eins are found in :		
	a)	Eucalyptus.	b)	Angophora.
	c)	Corymbia.	d)	All of the above.
47.	Satura	ted fatty acid :		
	a)	Stearic acid.	b)	Oleic acid.
	c)	Linoleic acid.	d)	Arachidonic acid.
48.	Perigor	nial nectarines are present in :		
	a)	Ranunculus.	b)	Polygonium.
	c)	Ceratonia.	d)	Caesalpinia.
49.	Match	the folowing		
	I. An	nphitropous	A. C)puntia.
	II. Ca	mpylotropous	В. Л	Airabilis.
	III. Ci	rcinotropous	C. C	Sycas.
	IV. Or	thotropous	D. A	lisma.
	a)	I-A, II-D, III-B, IV-C.		
	b)	I-B, II-C, III-A, IV-D.		
	c)	I-D, II-B, III-A, IV-C.		
	d)	I-C, II-D, III-A, IV-B.		
50.	Q band	ing of chromosome was developed	by:	
	a)	Torbjorn Caspersson.	b)	Maximo Drets.
	c)	Margery Shaw.	d)	Hans Von Winiwarter.
51.	Larges	t known human gene :		
	a)	Myosin gene.	b)	Collagen gene.
	c)	Dystrophin gene.	d)	Actin gene.

					9		C 336
52.	Mate	ch t	he following :				
	I.	Ha	ploid parthenogenesis	A.		lopment of embryo from any cell of the ther than egg.	embryo
	II.	Ha	ploid apogamy	В.		lopment of embryo from any diploid cell lying outside the embryosac.	l of the
	III.	Sor	natic apospory	C.	Deve	lopment of embryo from an unfertilized	l egg.
	IV.	Ad	ventive embryony	D.		lopment of diploid embryo sac from the llus/integument.	cells of
	8	a)	I-A, II-C, II-D, IV-B.				
	ŀ	o)	I-C, II-A, II-D, IV-B.				
	(c)	I-C, II-B, II-A, IV-D.				
	C	d)	I-A, II-B, II-C, IV-D.				
53.	Pata	us	syndrome :				
	8	a)	Tetrasomy 12.		b)	Trisomy 13.	
	,	c)	Nullisomy.		d)	Monosomy.	
54.	Invi	tro	culture of embryo was first ini	tiate	ed by		
	i	a)	Hanning.		b)	SanNoem.	
		c)	Maheshwari.		d)	Steward.	
55.	Seed	l ge	ermination is hypogeal in:				
	:	a)	$Ricinus\ communis.$				
]	b)	Tamarindus indica.				
		c)	Cicer arietinum.				
		d)	Gossypium hirsutum.				
56.	Prot	ein	present in plants which involv	zed i	in the	processing of miRNA :	

b) MYB.

d) None of the above.

a) DCL 1.

c) P53.

57.	APG II	recognised ————	— families.	
	a)	389.	b) 457.	
	c)	562.	d) 675.	
58.	The ter	m cladistics was coined by	:	
	a)	Cain and Harrison.	b) Van Valen.	
	c)	Nixon and Wheeler.	d) Wet and H	arlen.
59.	RNA w	orld hypothesis put forth b	y:	
	a)	Francis crick.	b) Carl Woese).
	c)	Leslie Orgel.	d) All of the a	bove.
60.	Homolo	ogous genes in different spe	ecies are called :	
	a)	Paralogous genes.	b) Cis genes.	
	c)	Orthologous genes.	d) Hemilogou	s genes.
61.	Match	the following :		
	I. Ar	nomocytic stomata	A. Acanthaceae	
	II. Ar	nisocytic stomata	B. Mimosaceae.	
	III. Pa	racytic stomata	C. Solanaceae.	
	IV. Di	acytic stomata	D. Ranunculace	eae.
	a)	I-A, II-B, III-C, IV-D.		
	b)	I-D, II-C, III-B, IV-A.		
	c)	I-B, II-A, III-C, IV-D.		
	d)	I-C, II-D, III-A, IV-B.		
62.	Ewig's	sarcoma :		
	a)	Develops in cells that form	n skeletal muscles.	
	b)	Develops in skin.		

Develop in the cells near the tendons and joints.

Develop in bone cells or immature soft tissue.

63.	The changes in gene frequency brought about purely by chance is called:						
	a)	Gene flow.	b)	Sewall Wright effect.			
	c)	Population Drift.	d)	Frequency shift.			
64.	Annona	aceae family seeds contains :					
	a)	Nuclear endosperm.	b)	Ruminate endosperm.			
	c)	Helobial endosperm.	d)	None of the above.			
65.	'Philoso	ophia Botanica' was written by :					
	a)	A Pde Candolle.	b)	Aristotle.			
	c)	Carl Linnaeus.	d)	Adolf Engler.			
66.	Match	the following:					
	I. Ac	cidic stain	A. (Cotton blue.			
	II. Ba	asic stain	В. І	Eosin.			
	III. Vi	tal stain	C. (Orcein.			
	IV. No	eutral stain	D. 3	Janus green blue.			
	a)	I-B, II-A, III-D, IV-C.					
	b)	I-A, II-D, III-B, IV-C.					
	c)	I-A, II-D, III-C, IV-B.					
	d)	I-D, II-B, III-A, IV-C.					
67.	ABA is	sa:					
	a)	Monoterpene.	b)	Diterpene.			
	c)	Triterpene.	d)	Sesquiterpene.			
68.	Which	of the following is not crustose lic	hen?				
	a)	Haematoma.	b)	Rhizocarpon.			
	c)	Cladonia.	d)	Lecanora.			

69.	Mat	tch	the following :						
	I.	Di	gitalis species		A.	Quinine		P.	Antibacterial
	II.	Pa	paver somniferum		B.	Cardiac glycoside		Q.	Heart failure
	III.	Plı	umbago indica		C.	Morphine		R.	Pain killer
	IV.	Ci	nchona ledgeriana		D.	Plumbagine		S.	Antimalarial
		a)	I-B-P, II-C-Q, III-D-S	, IV-	A-R.				
		b)	I-A-R, II-C-S, III-D-Q	, IV-	-B-P.				
		c)	I-B-Q, II-C-P, III-D-R	, IV	-A-S.				
		d)	I-B-Q, II-C-R, III-D-F	, IV	-A-S.				
70.	Wh	ich	of the following is not a	maı	ngrov	e species ?			
		a)	Ceriops decandra.			b) Begonia g	rand	is.	
		c)	$Exoecaria\ agallocha.$			d) Bruguiera	parı	oifle	ora.
71.	Mat	tch	the following :						
	I.	Ox	ridoreductase	A.	Amy!	lase	P.	Ру	ruvic acid $ ightarrow$ Lactic acid.
	II.	Li	gase	В.	Pyru	vate carboxylase	Q.	Gl	utamic acid \rightarrow GABA.
	III.	Ну	vdrolase	C.	Deca	rboxylase	R.	St	$arch \rightarrow Sugar.$
	IV.	Ly	rase	D.	Dehy	drogenase	S.	Ру	v ruvate \rightarrow OAA.
		a)	I-C-P, II-B-S, III-A-R	, IV-	D-Q.				
		b)	I-A-R, II-D-P, III-B-S	, IV-	-C-Q.				
		c)	I-B-P, II-D-S, III-C-Q	, IV	-A-R.				
		d)	I-D-P, II-B-S, III-A-R	, IV-	-C-Q.				
72.	Wh	o po	estulated tunica corpus	theo	ory?				
		a)	Hanstein.			b) Schmidt.			
		c)	Schuepp.			d) Nageli.			

12

73	Which	of the	following	is not a	micron	utrient?
In.	AATIICII	OI DITC	TOTTOWITTE	is iiu a	mucron	utrient (

a) Zn.

b) Mn.

c) Fe.

d) Mg.

74. Primary intermediate in Auxin biosynthesis:

a) Indole-3-pyruvate.

b) Indole-3-butyrate.

c) Indole-3-acetate.

d) Tryptophan.

75. Intense peak in the blue wavelength region of visible spectrum:

a) Q band.

b) B band.

c) Soret Band.

d) Emerson band.

76. Which of the following statements about Teichoic acid is NOT CORRECT?

- a) Positively charged component of peptidoglycan cell wall.
- b) Copolymer of glycerol phosphate.
- c) Ribitol phosphate and carbohydrates linked via phosphodiester bonds.
- d) Provide flexibility to cell wall.

77. Match the following:

I. Finger millet

A. Cajanus cajan.

II. Horse gram

B. Pennisetum typhoides.

III. Red gram

C. Dolichos biflorus.

IV. Pearl millet

D. Eleusine coracana.

- b) I-D, II-C, III-B, IV-A.
- c) I-D, II-A, III-C, IV-B.
- d) I-D, II-C, III-A, IV-B.

78. Water potential of a flaccid cell:

a) $\psi_w = -\psi_p$.

b) $\psi_w = 0$.

c) $\psi_w = \psi_{s.}$

d) $\psi_w = \psi_s + \psi_{p.}$

79.	Transc	ription rate in prokaryotes:						
	a)	20-30 nucleotides/ sec.	b)	40- 60 nucleotides/ sec.				
	c)	60-70 nucleotides/ sec.	d)	80- 100 nucleotides/sec.				
80.	Which	of the following polypeptide of RNA	poly	merase II hold the catalytic triad?				
	a)	RPB1.	b)	RPB3.				
	c)	RPB5.	d)	RPB7.				
81.	1. In Guinea pigs rough coats (R) is dominant over smooth coat (r) and black coat (B) is dominant over white (b). A rough black Guinea pig bred with a rough white one gives 28 rough black, 31 rough white, 11 smooth black and 10 smooth white. What are the genotypes of the parents?							
	a)	RRB band RrBb.	b)	RrBb and RRbb.				
	c)	RrBb and Rrbb.	d)	RrBB and rrBb.				
82.	2. In a population of dogs, the allele for white hair is recessive and the allele for brown hair is dominant. If the population consists of 500 individuals and the frequency of homozygous brown dog is 49 %, what is the frequency of the recessive allele?							
	a)	0.03.	b)	0.70.				
	c)	0.30.	d)	0.09.				
83.	Which	of the following is a symptom of fun	gal d	lisease?				
	a)	Tar spots.	b)	Mildews.				
	c)	Scab.	d)	All of the above.				
84.	Restric	tion site of Hind III :						
	a)	AAGCTT.	b)	AACGTA.				
	c)	ACGTAC.	d)	ACTAGA.				
85.				roduces 6 double crossovers, 142 single crossovers ntage crossover between the terminal genes?				
	a)	10 %.	b)	14.8 %.				
	c)	20.8 %.	d)	30.8 %.				

Turn over

In Arabidopsis mutant the flowers had sepals, sepals, carpels, carpels in the four whorls. Mutation in which of the following is the cause of mutant phenotype:						
a)	A class gene.	b)	B class gene.			
c)	A and B class gene.	d)	C class gene.			
In a syr	nmetrical distribution :					
a)	Skewness = 0, Kurtosis < 3.	b)	Skewness = -1, Kurtosis > 3.			
c)	Skewness = 0, Kurtosis \neq 3	d)	Skewness = 0, Kurtosis = 3.			
DNA amplification where the region of DNA amplified lies on either side of a known segment						
a)	RT PCR.	b)	Anchored PCR.			
c)	Inverse PCR.	d)	Nested PCR.			
Which of the following statement is correct about dark field illumination in microscopy?						
a) Observe sample by illuminating the back surface.						
b) Outline of the sample shine against a dark background.						
c)	Observe specimen darker than back	an background.				
d)	None of the above.					
Plants which complete their life cycle before the occurrence of stress are called:						
a)	Stress avoider.	b)	Stress escaper.			
c)	Stress tolerant.	d)	None of the above.			
Typific	ation concept was dealt in					
a)	Leningrad Code.	b)	Stockholm Code.			
c)	Shenzen Code.	d)	Melbourne Code.			
The fir						
a)	T4 phage.	b)	Lamda phage.			
c)		d)	M13 phage.			
Consider a gene with four alleles S_1 , S_2 , S_3 and S_4 . In a cross between S_1 S_2 and S_3 S_4 , what is the probability that a particular offspring inherits either S_1 or S_3 or both?						
a)	1/2.	b)	1/4.			
	in which a) c) In a syr a) c) DNA ar a) c) Which c a) b) c) d) Plants r a) c) Typific a) c) The first a) c) Consider probabe	 a) A class gene. c) A and B class gene. lin a symmetrical distribution: a) Skewness = 0, Kurtosis < 3. c) Skewness = 0, Kurtosis ≠ 3 DNA amplification where the region of DNA. a) RT PCR. c) Inverse PCR. Which of the following statement is correct a. a) Observe sample by illuminating the. b) Outline of the sample shine against. c) Observe specimen darker than back. d) None of the above. Plants which complete their life cycle before. a) Stress avoider. c) Stress tolerant. Typification concept was dealt in. a) Leningrad Code. c) Shenzen Code. The first published gene sequence was of: a) T4 phage. c) Phi × 174. Consider a gene with four alleles S₁, S₂, S₃ probability that a particular offspring inheritation. 	a) A class gene. b) c) A and B class gene. d) In a symmetrical distribution: a) Skewness = 0, Kurtosis < 3. b) c) Skewness = 0, Kurtosis ≠ 3 d) DNA amplification where the region of DNA am a) RT PCR. b) c) Inverse PCR. d) Which of the following statement is correct about a) Observe sample by illuminating the back b) Outline of the sample shine against a decomposition of the above. Plants which complete their life cycle before the a) Stress avoider. c) Stress tolerant. d) Typification concept was dealt in a) Leningrad Code. b) c) Shenzen Code. d) The first published gene sequence was of: a) T4 phage. b) c) Phi × 174. d) Consider a gene with four alleles S₁, S₂, S₃ and probability that a particular offspring inherits of the sample shine against a decomposition of the above. b) c) Phi × 174. d)			

d) 3/4.

c) 3/2.

94.	Margaret Dayhoff developed the first protein sequence database called :					
	a)	PDB.				
	b)	SWISS PORT.				
	c)	Atlas of protein sequence and struc	ture).		
	d)	Protein sequence data book.				
95.	Mad co	w disease is caused by :				
	a)	Virus.	b)	Viroids.		
	c)	Bacteria.	d)	Prions.		
96.	First cultivated wheat was:					
	a)	Triticum speltoides.	b)	Triticum monococum.		
	c)	Triticum boeoticum.	d)	Triticum tauschi.		
97.	Artificial male sterility can be obtained for hybridisation experiments with the help of:					
	a)	NAA.	b)	2, 4-D.		
	c)	Maeic hydraside.	d)	All of the above.		
98.	Race specific resistance is called:					
	a)	Horizontal resistance.	b)	Vertical resistance.		
	c)	Apparent resistance.	d)	Specific race resistance.		
99.	Wilt disease of sugarcane was first reported in India from :					
	a)	Tamilnadu.	b)	Punjab.		
	c)	Bihar.	d)	Uttarpradesh.		
100.	Improved dwarf wheat variety with higher percentage of lysine/protein is :					
	a)	Kalyan.	b)	Sonalika.		
	c)	Lerma Roja.	d)	Sharbati Sonara.		