(Pages: 4)

Name.....

Reg. No....

FOURTH SEMESTER M.Sc. DEGREE (SUPPLEMENTARY) EXAMINATION APRIL 2022

(CUCSS)

Mathematics

MT 4E 15—WAVELET THEORY

(2016 to 2018 Admissions)

Time: Three Hours

Maximum: 36 Weightage

Part A

Answer all questions.

Each question has weightage 1.

- 1. Define translation invariant linear transformation on $l^2\left(\mathbb{Z}_{\mathbb{N}}\right)$
- 2. Define circulant matrix.
- 3. State Plancherel's formula in $l^2(\mathbb{Z}_N)$.
- 4. For $z \in l^2(\mathbb{Z}_N)$, show that $(\overline{z})^{\hat{}}(m) = \overline{\hat{z}(N-m)}$ for all m.
- 5. Suppose $z, w \in l^2(\mathbb{Z}_N)$. For $k \in \mathbb{Z}$, prove that $z^*w(k) = \langle z, R_k \tilde{w} \rangle$, where \tilde{w} is the conjugate reflection of w.
- 6. Define pth stage wavelet filter sequence.
- 7. Suppose $M \in \mathbb{N}$, N = 2M, $z \in l^2(\mathbb{Z}_N)$ and $w \in l^2(\mathbb{Z}_M)$. Then prove that $\langle D(z), w \rangle = \langle z, U(w) \rangle$.
- 8. Define the Fourier series of a function $f \in L^1([-\pi, \pi))$.
- 9. Define down sampling operator on Z.
- 10. Define system matrix of two vectors in $l^2(\mathbb{Z})$.

- 11. Define the notion of Cauchy sequence in $l^2(\mathbb{Z})$.
- 12. State Cauchy-Schwarz inequality for two functions $f, g \in L^2(\mathbb{R})$.
- 13. Define the Fourier transform of the function $f \in L^1(\mathbb{R})$.
- 14. Describe multi-resolution analysis (MRA) with a father wavelet $\varphi \in L^2(\mathbb{R})$.

 $(14 \times 1 = 14 \text{ weightage})$

Part B

Answer any seven questions. Each question has weightage 2.

- 15. Let $z = (1, 0, -3, 4) \in l^2(\mathbb{Z}_4)$. Find \hat{z} , where $\hat{z} : l^2(\mathbb{Z}_4) \to l^2(\mathbb{Z}_4)$ is the discrete Fourier transform.
- 16. Suppose $N = 2^n$, $1 \le p \le n$, and $u_1, v_1, u_2, v_2, ..., u_p, v_p$ form a pth stage wavelet filter sequence. Suppose $z \in l^2(Z_N)$. Then prove that the output :

$$\{x_1, x_2, x_3, ..., x_p, y_p\}$$

of the analysis phase of the corresponding pth stage wavelet filter bank can be computed using no more than $4N + N \log_2 N$ complex multiplications.

- 17. Define $T: l^2(Z_4) \to l^2(Z_4)$ by T(z) = (2z(0) z(1), iz(1) + 2z(2), z(1), 0). Then compute $T(R_1z)$ and $R_1T(z)$ where z = (1, 0, -2, i).
- 18. Suppose $M \in \mathbb{N}$, N = 2M, and $w \in l^2(Z_N)$. Then prove that $\{R_{2k}w\}_{k=0}^{M-1}$ is an orthonormal set with M elements if and only if $|\hat{w}(n)|^2 + |\hat{w}(n+M)|^2 = 2$ for n = 0, 1, ..., M-1.
- 19. State and prove the folding lemma for vectors in $l^2(Z_N)$.
- 20. Prove that $L^{2}([-\pi,\pi))\subset L^{1}([-\pi,\pi))$.

21. Suppose H is a Hilbert space and $T: H \to H$ is a bounded linear transformation. Suppose the series $\sum_{n \in \mathbb{Z}} x_n$ converges in H. Then prove that:

$$T\left(\sum_{n\in\mathbb{Z}}x_n\right)=\sum_{n\in\mathbb{Z}}T(x_n)$$

where the series on the right converges in H.

22. Suppose $w \in l^1(\mathbb{Z})$. Then prove that $\{\mathbb{R}_{2k}w\}_{k\in\mathbb{Z}}$ is orthonormal if and only if:

$$\left|\hat{w}\left(\theta\right)\right|^{2}+\left|\hat{w}\left(\theta+\pi\right)\right|^{2}=2 \text{ for all } \theta\in\left[0,\pi\right).$$

- 23. Suppose $f, g \in L^2(\mathbb{R})$ and $x, y \in \mathbb{R}$. Then prove that $\langle R_x f, R_y g \rangle = \langle f, R_y , g \rangle = (f * \tilde{g})(y x)$.
- 24. Suppose $f,g\in\mathrm{L}^{1}\left(\mathbb{R}\right)$. Then prove that $f\ast g\in\mathrm{L}^{1}\left(\mathbb{R}\right)$ and $\left\Vert f\ast g\right\Vert _{1}\leq\left\Vert f\right\Vert _{1}\left\Vert g\right\Vert _{1}$.

 $(7 \times 2 = 14 \text{ weightage})$

Part C

Answer any **two** questions.

Each question has weightage 4.

- 25. (a) Let $T: l^2(Z_N) \to l^2(Z_N)$ be a translation-invariant linear transformation. Then prove that each element of the Fourier basis F is an eigen vector of T.
 - (b) Suppose $z \in l^2(\mathbb{Z}_N)$ and $k \in \mathbb{Z}$. Then prove that for any $m \in \mathbb{Z}$, $(\mathbb{R}_k z)^{\hat{}}(m) = e^{-2\pi i m k / N} \hat{z}(m).$
- 26. (a) Suppose $M \in \mathbb{N}$ and N = 2 M. Let $u, v \in l^2(Z_N)$. Then prove that $B = \{R_{2k}v\}_{k=0}^{M-1} \cup \{R_{2k}u\}_{k=0}^{M-1}$ is a first stage wavelet basis for $l^2(Z_N)$ if and only if the system matrix A(n) of u and v is unitary for each n = 0, 1,...,M-1.

- (b) Suppose N is divisible by 2^l , x, y, $w \in l^2\left(\mathbb{Z}_{N/2^l}\right)$, and $z \in l^2\left(\mathbb{Z}_N\right)$. Then prove that : $U^l\left(x * y\right) = U^l\left(x\right) * U^l\left(y\right).$
- 27. (a) Suppose $v, w \in l^1(\mathbb{Z})$ and $z \in l^2(\mathbb{Z})$. Then prove that : $(z * w)^{\hat{}}(\theta) = \hat{z}(\theta)\hat{w}(\theta) \text{ a.e.}$
 - (b) Suppose $T: l^2(\mathbb{Z}) \to l^2(\mathbb{Z})$ is a bounded translation-invariant linear transformation. Define $b \in l^2(\mathbb{Z})$ by $b = T(\delta)$. Then show that for all $z \in l^2(\mathbb{Z})$, T(z) = b * z.
- 28. (a) If $f \in L^1(\mathbb{R})$, then prove that $\left| \int_{-\pi}^{\pi} f(x) dx \right| \leq \int_{-\pi}^{\pi} \left| f(x) \right| dx = \left\| f \right\|_1$.
 - (b) Suppose $f \in L^1(\mathbb{R})$ and $\{gt\}_{t>0}$ is an approximate identity. Then prove that for every Lebesgue point x of f, $\lim_{t\to\infty} g_t * f(x) = f(x)$.

(Pages: 4)

Name.....

Reg. No....

FOURTH SEMESTER M.Sc. DEGREE (SUPPLEMENTARY) EXAMINATION APRIL 2022

(CUCSS)

Mathematics

MT 4E 14—DIFFERENTIAL GEOMETRY

(2016 to 2018 Admissions)

Time: Three Hours

Maximum: 36 Weightage

Part A (Short Answer Questions (1-14).

Answer all questions.

Each question carries 1 weightage.

- 1. Describe the level set at c = 1 for the function $f(x_1, x_2) = x_1^2 + x_2^2$.
- 2. Sketch the vector field on \mathbb{R}^2 given by $X(x_1, x_2) = (-x_2, x_1)$ for $(x_1, x_2) \in \mathbb{R}^2$.
- 3. Show that the *n*-sphere $x_1^2 + x_2^2 + \dots + x_n^2 = 1$ is an *n*-surface.
- 4. Sketch the cylinder $f^{-1}(0)$, when $f(x_1, x_2) = x_1 x_2^2$.
- 5. Find the spherical image of an *n*-surface f^{-1} (1) where :

$$f(x_1, x_2,...,x_{n+1}) = x_2^2 + x_3^2 + ... + x_n^2 - 1$$
, when $n = 1$.

- 6. Prove that geodesics have constant speed.
- 7. True or False: "Covariant derivative of a smooth vector field is on the surface is independent of the orientation". Justify your answer.
- 8. Define Euclidean parallel vectors field along the parametrized curve.
- 9. Show that $\nabla_{v+w} f = \nabla_v f + \nabla_w f$ for all smooth functions f and v, $w \in \mathbb{R}_{p}^{n+1}$.
- 10. Find $\nabla_{v}X$ for p = (1, 0) and v = (0, 1) on the vector field $X(x_1, x_2) = (x_1x_2, x_2^2)$.

- 11. Find the length of the parametrized curve $\alpha: I \to \mathbb{R}^2$ given by $\alpha(t) = (t^2, t^3)$ for $t \in [0, 2]$.
- 12. Let $\kappa_1(p) = 1$ and $\kappa_2(p) = \frac{1}{2}$ be principal curvature of an *n*-surface S at *p*. Find the Gaussian Curvature of S at *p*.
- 13. Write down the parametrization of the *n*-plane which passes through $w \in \mathbb{R}^{n+h}$.
- 14. Let $\phi(\theta, \psi) = (\cos \theta \sin \psi, \sin \theta \sin \psi, \cos \psi)$ for $0 < \theta < 2\pi$ and $0 < \psi < \pi$. Describe ϕ^{-1}

 $(14 \times 1 = 14 \text{ weightage})$

Part B

Answer any seven from the following ten questions (15-24).

Each question carries 2 weightage.

- 15. Let $f: U \subset \mathbb{R}^n \to \mathbb{R}$ be smooth and $\alpha: I \to U$ be a parametrized curve. Show that if $f \circ \alpha$ is constant then α is every where orthogonal to the gradient of f.
- 16. Define n-surface and given an example of a 1-surface.
- 17. With the usual notations prove that $(\dot{f} X) = f' X + f \dot{X}$.
- 18. Let $\alpha: I \to \mathbb{R}^{n+1}$ be a parametrized curve with $\dot{\alpha}(t) \neq 0$ for all $t \in I$. Show that there exists a unit speed reparametrization of α .
- 19. Let X' denotes the covariant derivative of a vector field X along a parametrized curve α . Show that $(X \cdot Y)' = X' \cdot Y + X \cdot Y'$.
- 20. Find the Weingarten map for the circular cylinder $x_2^2 + x_3^2 = a^2$ in \mathbb{R}^3 , $(a \neq 0)$.
- 21. Find the global parametrizations of the plane curve oriented by $\nabla f / \|\nabla f\|$, where $f(x_1, x_2) = \frac{x_1^2}{a^2} + \frac{x_2^2}{b^2} 1, a \neq 0, b \neq 0.$
- 22. Describe first and second fundamental form of a surface.

- 23. Describe the normal section of an n-surface.
- 24. Let U be an open subset in \mathbb{R}^n and $f: U \to \mathbb{R}$ be a smooth function. Show that $\phi: U \to \mathbb{R}^{n+1}$ defined by $\phi(p) = (p, f(p))$ is a parametrized *n*-surface in \mathbb{R}^{n+1} .

3

 $(7 \times 2 = 14 \text{ weightage})$

Part C

Answer any two from the following ten questions (25-28).

Each question carries 4 weightage.

- 25. (a) Define integral curve of a vector field.
 - (b) Let X be a smooth vector field on an open set U in \mathbb{R}^{n+1} . Show that there is an integral curve α on X.
 - (c) Show that for the vector field given by $X(x_1, x_2) = (-x_2, x_1)$, the parametrized curve $\alpha(t) = (\cos t, \sin t)$ is an integral curve for X.
- 26. (a) Let f,g be smooth functions from an open set U to \mathbb{R} . Let $S=f^{-1}(c) \nabla f(q) \neq 0$ for all $q \in S$. Let $p \in S$ be an extremal point of g. Show that there exists a real number λ such that $\nabla g(p) = \lambda \nabla f(p)$.
 - (b) Using Lagrange multiplier fine the extreme point on the unit circle $x_1^2 + x_2^2 = 1$ for the function $g(x_1, x_2) = x_1^2 + x_1 x_2 + x_2^2$.
- 27. Let $\alpha: I \to \mathbb{R}^3$ be a unit speed parametrized curve in \mathbb{R}^3 such that $\dot{\alpha}(t) \times \ddot{\alpha}(t) \neq 0$ for all $t \in I$. Let $T(t) = \dot{\alpha}(t)$, $T(t) = \frac{\ddot{\alpha}(t)}{\|\ddot{\alpha}(t)\|}$ and $T(t) = T(t) \times T(t)$ for all $t \in I$. Show that :
 - (a) $\{N(t), T(t), B(t)\}\$ is orthonormal for each $t \in I$.

(b) There exists a smooth functions $\kappa: I \to \mathbb{R}$ and $t: I \to \mathbb{R}$ such that:

$$\dot{T} = \kappa N$$

$$\dot{\mathbf{N}} = -\,\kappa\mathbf{N} + t\mathbf{B}$$

$$\dot{\mathbf{B}} = -t\mathbf{N}.$$

- 28. (a) Write down the parametrization of torus in \mathbb{R}^3 .
 - (b) Find the principal curvatures and Gaussian curvature of the torus.

$\boldsymbol{\alpha}$	0071	Ω
U	2271	Z

(Pages: 3)

Name

Reg. No....

36 Weightage

Maximum

FOURTH SEMESTER M.Sc. DEGREE (SUPPLEMENTARY) EXAMINATION APRIL 2022

(CUCSS)

Mathematics

MT 4E 11—GRAPH THEORY

(2016 to 2018 Admissions)

Time : Three Hours

Part A

Answer all the questions.

Each question carries weightage 1.

- 1. Prove that, if G is simple and bipartite, then $\varepsilon \leq \frac{v^2}{4}$.
- 2. Prove that in a tree, every two vertices are connected by a unique path.
- 3. Find a non-trivial simple graph whose automorphism group is the identity.
- 4. Let G be a connected graph with at least three vertices. If e(u, v) is a cut-edge in G, then show that either u or v is a cut-vertex.
- 5. If G is 2-connected, then prove that any two vertices of G lie on a common cycle.
- 6. Let G be a simple graph and let u and v be non-adjacent vertices in G such that $d(u) + d(v) \ge v$, then prove that G is hamiltonian if and only if G + uv is hamiltonian.
- 7. Let M be a matching and K be a covering such that |M| = |K|, then prove that M is a maximum matching and K is a minimum covering.
- 8. Let G be a graph with v-1 edges. Then, show that the following statements are equivalent: (a) G is connected; and (b) G is acyclic.
- 9. Prove that $\alpha + \beta = \delta$, (with usual notations).

C 22712

10. Prove that in a bipartite graph G with $\delta > 0$, the number of vertices in a maximum independent set is equal to the number of edges in a minimum edge covering.

2

- 11. Prove that in a critical graph, no verted cut is a clique.
- 12. Show that a graph is planar if and only if each of its blocks is planar.
- 13. Prove that every sub-graph of a planar graph is planar.
- 14. Prove that every tournament has a directed Hamilton path.

 $(14 \times 1 = 14 \text{ weightage})$

Part B

Answer any seven questions.

Each question carries weightage 2.

- 15. Prove that an edge e of G is a cut edge of G if and only if e is contained in no cycle of G.
- 16. If e is a link of G, then prove that $\tau(G) = \tau(G e) + \tau(G \cdot e)$.
- 17. Prove that a non-empty connected graph is eulerian if and only if it has no vertices of odd degree.
- 18. Prove that if G is a simple graph with $v \ge 3$ and $\delta \ge \frac{v}{2}$, then G is Hamiltonian.
- 19. Define closure c(G) of a graph G. Let G be a simple graph with $v \ge 3$. If c(G) is complete, then prove that G is Hamiltonian.
- 20. If G is eulerian, then prove that any trail in G constructed by Fleury's algorithm is an Euler tour of G.
- 21. Prove that graph G has a perfect matching if and only if $o(G-S) \le |S|$, for all $S \subset V$.
- 22. If G is bipartite, then prove that $\chi' = \Delta$.
- 23. If G is k-critical, then prove that $\delta \ge k 1$.
- 24. Let v be a vertex of a planar graph G. Then prove that G can be embedded in the plane in such a way that v is on the exterior face of the embedding.

 $(7 \times 2 = 14 \text{ weightage})$

Part C

Answer any two questions.

Each question carries weightage 4.

- 25. For m < n, let f(m, n) be the least number of edges that an m-connected graph on n vertices can have. Construct an m-connected graph on n vertices with $f(m, n) = \left\{\frac{mn}{2}\right\}$.
- 26. If G is a non-Hamiltonian simple graph with $v \ge 3$, then prove that G is degree majorised by some $C_{m, v}$. Also prove that if G is bipartite with bipartition (X, Y) where $|X| \ne |Y|$, then G is non-hamiltonian.
- 27. State Chinese postman problem. Use Fleury's Algorithm to solve Chinese postman problem.
- 28. Prove that each vertex of a disconnected tournament D with $v \ge 3$ is contained in a directed k-cycle, $3 \le k \le v$.

Name.....

Reg. No.....

FOURTH SEMESTER M.Sc. DEGREE (SUPPLEMENTARY) EXAMINATION APRIL 2022

(CUCSS)

Mathematics

MT 4E 09—FLUID DYNAMICS

(2016 to 2018 Admissions)

Time: Three Hours

Maximum: 36 Weightage

Part A

Answer all questions.

Each question carries 1 weightage.

1. If ω is the area of the cross-section of a stream filament, prove that the equation of continuity is

$$\frac{\partial}{\partial t} (\rho \omega) + \frac{\partial}{\partial s} (\rho \omega q) = 0,$$

where ds is an element of arc of the filament in the direction of flow and q is the speed.

- 2. Prove that the speed is everywhere the same, then the stream lines are straight.
- 3. Show that the constancy of circulation in a circuit moving with the fluid in an inviscid fluid in which the density is either constant or is a function of the pressure.
- 4. Define reducible circuit in a region and give an example of it.
- 5. Write down the equation of motion in terms of the stream function.
- 6. Define complex potential and find the speed of the complex potential $w = 2z + 3iz^2$.
- 7. Find the stagnation points of complex potential $w = Ua\left(\frac{z}{a}\right)^{\frac{\pi}{\alpha}}$.
- 8. State Circle theorem:
- 9. What is Cavitation?
- 10. Write note on Aerofoil.
- 11. Find the complex potential due to simple source.

12. Apply Rankine's method to drawing the streamlines for the flow due to two equal sources.

2

- 13. Find the image of line source outside the circular cylinder.
- 14. How are air ship forms formed?

 $(14 \times 1 = 14 \text{ weightage})$

Part B

Answer any seven questions.

Each question carries 2 weightage.

- 15. Derive the equation of motion of an inviscid fluid.
- 16. State and prove Kelvin's minimum energy theorem.
- 17. Derive Bernoulli's equation.
- 18. A pulse travelling along a fine straight uniform tube filled with gas causes the density at time t and distance x from an origin where the velocity is u_0 to become $\rho_0\phi(Vt-x)$. Prove that the velocity u is given by $V + \frac{(u_0 V)\phi(Vt)}{\phi(Vt-x)}$.
- 19. Show that the velocity potential $\phi = \frac{1}{2} \log \frac{(x+a)^2 + y^2}{(x-a)^2 + y^2}$ gives a possible motion, and determine the form of the streamlines.
- 20. Prove that the velocity potential $\phi = U\left(r + \frac{a^2}{r}\right)\cos\theta$ represents a streaming motion past a fixed circular cylinder.
- 21. State and prove the theorem of Kutta and Joukowski.
- 22. Find the stream function of the two-dimensional motion due to two equal sources and an equal sink situated midway between them.
- 23. OX, OY are fixed rigid boundaries and there is a source at (a, b). Find the form of the streamlines and show that the dividing line is $xy(x^2 y^2 a^2 + b^2) = 0$.
- 24. What arrangement of sources and sinks will give raise to the function $w = \log \left(z \frac{a^2}{z}\right)$. Draw a rough sketch of the streamlines.

 $(7 \times 2 = 14 \text{ weightage})$

Part C

Answer any **two** questions.

Each question carries 4 weightage.

25. If the velocity of an incompressible fluid at the point (x, y, z) is given by $\left(\frac{3xz}{r^5}, \frac{3yz}{r^5}, \frac{3z^2-r^2}{r^5}\right)$ prove

that the liquid motion is possible and that the velocity is $(\cos\theta)/r^2$. Also determine the streamlines.

- 26. Show that the Joukowski transformation maps the concentric circles with centre at the origin in the Z-plane into confocal ellipses in the z-plane.
- 27. Discuss the streaming and circulation for a circular cylinder.
- 28. In the case of a source at a point A outside a circular disc, prove that the velocity of slip of the fluid in contact with the disc is greatest at the points where the circle is cut by the lines joining A to the ends of the diameter perpendicular to OA, and that its magnitude at these points is

$$\frac{2m.\text{OA}}{\text{OA}^2 - a^2}$$

where is the centre and a the radius of the disc

C 22708	(Pages: 3)	Name
J 22708	(Pages: 3)	Name

Reg.	NΤ		
mer.	1 7 ()	 	

FOURTH SEMESTER M.Sc. DEGREE (SUPPLEMENTARY) EXAMINATION APRIL 2022

(CUCSS)

Mathematics

MT 4E 07—ADVANCED FUNCTIONAL ANALYSIS

(2016 and 2018 Admissions)

Time: Three Hours

Maximum: 30 Weightage

Part A

Answer all questions.
Each question carries weightage 1.

- 1. Give an example to show that the dual of a separable normed space need not be separable.
- 2. Let X be a finite dimensional normed space. Prove that x_n converges to x weakly in X if and only if x_n converges to x strongly in X.
- 3. Show that the dual of a reflexive normed space is reflexive.
- 4. Give an example to show that the eigenspace of a compact operator corresponding to the eigen value zero can be infinite dimensional.
- 5. Let H be a Hilbert space and A, B be self-adjoint operators. Then show that A + B is self adjoint.
- 6. Give an example for a Hilbert-Schmidt operator.
- 7. Let $A \in BL(H)$ be normal. Show that every spectral value of A is an approximate eigenvalue of A.
- 8. Define numerical range of a bounded operator on a normed space.
- 9. Let H be a Hilbert space. If $A, B \in BL(H)$, then show that $||A^*|| = ||A||$. Where A^* denotes the adjoint of the bounded operator A.
- 10. Give an example to show that zero can be the limit point of the spectrum of a compact operator on an infinite dimensional normed space.
- 11. Illustrate with an example that, in general, weak convergence in a normed space does not imply strong convergence.

- 12. Let $A \in BL(H)$. Show that $k \in \omega(A)$ if and only if $\overline{k} \in \omega(A^*)$, where $\omega(A)$ represents the numerical range of A.
- 13. Show that a bounded subset of a Hilbert space is weak bounded.
- 14. State the generalized Schwarz inequality.

 $(14 \times 1 = 14 \text{ weightage})$

Part B

Answer any seven questions. Each question carries weightage 2.

- 15. Show that the adjoint T^* of any operator T can be written in the form $T^* = A_1 iA_2$ where A_1 and A_2 are self adjoint operators.
- 16. Give an example to show that every linear operator on an infinite dimensional inner product space may not have the adjoint operator.
- 17. Let X be a separable normed space. Show that every bounded sequence in X has a weak * convergent subsequence.
- 18. If T is normal operator on a Hilbert space H, then show that x is an eigen vector of T with eigen value λ if and only if x is an eigen vector of T^* with eigen value $\overline{\lambda}$.
- 19. Let X be a reflexive normed space. Show that every closed subspace of X is reflexive.
- 20. Let $A \in BL(H)$ be a Hilbert-Schmidt operator. Show that A^* is a Hilbert-Schmidt operator.
- 21. If T is an arbitrary operator on a Hilbert space H and α and β are scalars such that $|\alpha| = |\beta|$, then show that $\alpha T + \beta T^*$ is normal.
- 22. Let H be a finite dimensional Hilbert space over \mathbb{R} and $A \in BL(H)$. Suppose that there is an orthonormal basis for H consisting of eigenvectors of A. Show that A is a self adjoint operator.
- 23. Let $T: \mathbb{C}^2 \to \mathbb{C}^2$ defined by $Tx = (x_1 + ix_2, x_1 ix_2)$ for each $x = (x_1, x_2) \in \mathbb{C}^2$. Find the adjoint T^* .
- 24. Let A be a compact operator on $H \neq 0$. Show that every non-zero approximate eigenvalue of A is an eigenvalue of A.

 $(7 \times 2 = 14 \text{ weightage})$

Part C

Answer any **two** questions. Each question carries weightage 4.

- 25. Let $1 \le p \le \infty$ and $\frac{1}{p} + \frac{1}{q} = 1$. Show that the dual of c_o with the norm $\|\cdot\|_{\infty}$ is linearly isometric to l^1 .
- 26. Let X be a Banach space which is uniformly convex in some equivalent norm. Show that X is reflexive.
- 27. State and prove the Riesz representation theorem.
- 28. Let H be a Hilbert space and $A \in BL(H)$. Show that there is a unique $B \in BL(H)$ such that for all $x, y \in H$, $\langle A(x), y \rangle = \langle x, B(y) \rangle$.

Name	•
------	---

Reg. No....

FOURTH SEMESTER M.Sc. DEGREE [SUPPLEMENTARY] EXAMINATION APRIL 2022

(CUCSS)

Mathematics

MT 4E 02—ALGEBRAIC NUMBER THEORY

(2016 to 2018 Admissions)

Time: Three Hours

Maximum: 36 Weightage

Part A

Answer all questions.

Each question has weightage 1

- 1. Find the order of the group ${}^G\!\!\!/_H$ where G is free abelian with Z- basis x, y, z and H generated by 2x, 3y, 7z.
- 2. Find all submodules of Z.
- 3. Is $\sqrt{1+\sqrt{2}} + \sqrt{1-\sqrt{2}}$ an algebraic number? An algebraic integer? Give reasons.
- 4. Define a unique factorization domain. Is \mathbb{Q} a U F D?
- 5. Prove that 3 has no proper factors in $\mathbb{Z}\left[\sqrt{-5}\right]$.
- 6. Let \emptyset be the ring of integers in a number field K and let $x, y \in \emptyset$. Prove that x is a unit if and only if $N(x) = \pm 1$.
- 7. Define a Euclidean domain. Give an example.
- 8. Define the norm of an ideal.
- 9. Find : integral basis and discriminant for $\mathbb{Q}\left[\sqrt{-11}\right]$.

10. Let
$$K = \mathbb{Q}(\zeta)$$
 where $\zeta = e^{\frac{2\pi i}{5}}$. Find $N_K(\zeta^2)$ and $N_K(\zeta^2)$.

- 11. In $\mathbb{Z}\left[\sqrt{-5}\right]$ show that $\sqrt{-5}$ divides $a+b\sqrt{-5}$ if and only if 5 divides a.
- 12. Show that subring of a Noetherian ring need not be Noetherian.
- 13. Find the units in the set of Gaussian integers.
- 14. Define a regular prime. Give an example.

 $(14 \times 1 = 14 \text{ weightage})$

Part B

Answer any **seven** questions. Each question has weightage 2.

- 15. Prove that two different bases of a free abelian group have the same number of elements.
- 16. Prove that the set of algebraic integers forms a subring of the set of algebraic numbers.
- 17. Find integral basis and discriminant of $Q(\sqrt{3},\sqrt{5})$
- 18. Prove that the ring of integers \emptyset in a number field K is Noetherian.
- 19. Prove that the ideal $\langle 2, 1 + \sqrt{-5} \rangle$ not a principal ideal in $\mathbb{Z}\left[\sqrt{-5}\right]$.
- 20. Prove that if $\{\alpha_1, \alpha_2,, \alpha_n\}$ is a basis for K over \mathbb{Q} then $\{\sigma(\alpha_1), \sigma(\alpha_2),, \sigma(\alpha_n)\}$ is a linearly independent set over \mathbb{R} .
- 21. Let K be a number field of degree n = s + 2t. Prove that every non-zero ideal I of \mathcal{O} equivalent to an ideal whose norm is $\leq \left(\frac{2}{\pi}\right)^t \sqrt{|\Delta|}$.
- 22. The discriminant of $\mathbb{Q}(\zeta)$ where $\zeta = e^{\frac{2\pi i}{p}}$ and p is an odd prime is $(-1)^{\frac{p-1}{2}} \cdot p^{p-2}$.
- 23. Prove that the only roots of unity in $K = \mathbb{Q}(\zeta)$ are $\pm \zeta^s$ for integers s.

3

24. If $p(t) \in \mathbb{Z}[t]$ is a monic polynomial all of whose zeros in \mathbb{C} have absolute value 1, then prove that every zero is a root of unity.

 $(7 \times 2 = 14 \text{ weightage})$

Part C

Answer any **two** questions. Each question has weightage 4.

- 25. (a) If K is a number field then prove that $K = \mathbb{Q}(\theta)$ for some algebraic number θ
 - (b) Prove: For a number field K, if $\alpha \in K$, then for some non-zero $c \in \mathbb{Z}$, $c\alpha \in \emptyset$.
- 26. (a) Find the ring of integers of $\mathbb{Q}(\sqrt{2},i)$.
 - (b) Let $K = \mathbb{Q}\left(\sqrt[4]{2}\right)$. Find all monomorphisms of $\mathbb{Q}\left(\sqrt[4]{2}\right) \to \mathbb{C}$, minimum polynomial over \mathbb{Q} and field polynomial over K.
- 27. (a) Derive all solutions for the Fermat's equation $x^n + y^n = z^n$ for n = 2.
 - (b) Show that if π is an irreducible in $\mathbb{Z}[i]$ then $\mathbb{Z}[i]/\langle \pi \rangle$ is a field.
- 28. (a) Prove that every number field possesses an integral basis and the additive group of \emptyset is free abelian of rank n equal to the degree of K.
 - (b) Prove that an algebraic number α is an algebraic integer if and only if the minimum polynomial over $\mathbb Q$ has co-efficients in $\mathbb Z$.

Roc	N_{α}			

FOURTH SEMESTER M.Sc. DEGREE (SUPPLEMENTARY) EXAMINATION, APRIL 2022

(CUCSS)

Mathematics

MT4E01—COMMUTATIVE ALGEBRA

(2016 to 2018 Admissions)

Time: Three Hours

Maximum: 36 Weightage

7

Part A

Answer all questions.

Each question has weightage 1.

- 1. Prove that the nilpotent elements in a commutative ring with unity is a zero divisor (unless A = 0).
- 2. Give an example of a ring with exactly one maximal ideal.
- 3. Define a local ring. Give an example
- 4. State Nakayama's Lemma.
- 5. Define a Flat module.
- 6. Prove that the operation S^{-1} commutes with formation of finite products.
- 7. Write the primary ideals in Z.
- 8. Define a Noetherian ring.
- 9. Define a composition series.
- 10. State Structure Theorem for Artin rings.
- 11. State Second Uniqueness Theorem.
- 12. Prove that $a \cap b = ab$ provided a + b = (1)
- 13. Define radical of an ideal in a ring.
- 14. All principal ideal Domains are Noetherian. Prove or disprove.

 $(14 \times 1 = 14 \text{ weightage})$

Part B

Answer any seven questions. Each question has weightage 2.

- 15. Let a and b ideals in a ring A such that r(a) and r(b) are coprime. Prove that a and b are coprime.
- 16. Prove that a local ring contains no idempotent $\neq 0, 1$.
- 17. Let A be a local ring, m its maximal ideal and M be a finitely generated A-module. Let x_i $(1 \le i \le n)$ be elements of M whose images in $M/_{mMI}$ form a basis for this vector space. Prove that x_i generate M.
- 18. Let A be a commutative ring with unity and M be an A-module. Explain the construction of S⁻¹M.
- 19. If \mathfrak{N} is the nilradical of A, then prove that the nilradical of $S^{-1}A$ is $S^{-1}\mathfrak{N}$.
- 20. Let \mathfrak{q} be a primary ideal in a ring A and x be an element of A. If $x \notin \mathfrak{q}$ then prove that $(\mathfrak{q} : x)$ is \mathfrak{p} -primary.
- 21. Let B be an integral domain and K its field of fractions. If B is a valuation ring of K then prove that B is a local ring.
- 22. For a k-vector space V, prove that $a.c.c. \Rightarrow$ finite dimension.
- 23. If A is Noetherian and ϕ is a homomorphism of A onto a ring B then prove that B is Noetherian.
- 24. Prove that a ring A is Artin \Leftrightarrow A is Noetherian and dim.A = 0.

(7x 2 = 14 weightage)

Part C

Answer any **two** questions. Each question has weightage 4.

25. (a) Prove that the set \mathfrak{N} of nilpotent elements in a ring A is an ideal and $A_{\mathfrak{N}}$ has no nilpotent element $\neq 0$.

C 22705

- (b) Let A be a ring and \Re be the Jacobson radical of A. Prove that $x \in \Re \Leftrightarrow 1 xy$ is a unit in A for all $y \in A$.
- 26. (a) $A \subseteq B$ be integral domains and B integral over A. Prove that B is a field if and only if A is a field.

3

- (b) State and prove Going-down Theorem.
- 27. (a) If A is Noetherian then prove that A $[x_1, x_2, ...x_n]$ is also Noetherian.
 - (b) Prove that an Artin ring has only a finite number of maximal ideals.
- 28. (a) Let k be a field and E be a finitely generated k-algebra. If E is a field then prove that it is a finite algebraic extension of k.
 - (b) Let A be a local ring and m be its maximal ideal. Prove that $\dim_k (m/m^2) \le 1 \Rightarrow$ every ideal in A is principal (where k = A/m).

(Pages: 5)

Name	••••••
Reg. No	

FOURTH SEMESTER M.Sc. DEGREE (REGULAR/SUPPLEMENTARY) EXAMINATION, APRIL 2022

April 2021 Session for SDE/Private Students

(CBCSS)

Mathematics

MTH 4E 13—WAVELET THEORY

(2019 Admission onwards)

(Multiple Choice Questions for SDE Candidates)

Time: 20 Minutes Total No. of Questions: 20 Maximum: 5 Weightage

INSTRUCTIONS TO THE CANDIDATE

- 1. This Question Paper carries Multiple Choice Questions from 1 to 20.
- 2. The candidate should check that the question paper supplied to him/her contains all the 20 questions in serial order.
- 3. Each question is provided with choices (A), (B), (C) and (D) having one correct answer. Choose the correct answer and enter it in the main answer-book.
- 4. The MCQ question paper will be supplied after the completion of the descriptive examination.

MTH 4E 13—WAVELET THEORY

(Multiple Choice Questions for SDE Candidates)

1. If $\wedge: l^2(\mathbb{Z}_N) \to l^2(\mathbb{Z}_N)$ is the discrete Fourier transform, then ————

- $\hat{z}(m+N) = \hat{z}(m)$ for $m \in \mathbb{Z}$.
- (B) $\hat{z}(m+N) = \hat{z}(2m)$ for $m \in \mathbb{Z}$.
- (C) $\hat{z}(m+N) = \hat{z}(3m)$ for $m \in \mathbb{Z}$.
- (D) None of the above.

2. For $z \in l(\mathbb{Z}_N), ||z||^2 = ----$

(A) $\|\hat{z}\|^2$

(B) $\frac{1}{N}\|\hat{z}\|^2.$

(C) $\frac{2}{N} \|\hat{z}\|^2$.

(D) None of the above

3. If $F = \{F_0, F_1, ..., F_{N-1}\}$ is the Fourier basis for $l^2(\mathbb{Z}_N)$, then z = -1

(A) $\sum_{m=0}^{N/2-1} \hat{z}(m) F_m.$

(B) $\sum_{m=0}^{N-1} \hat{z}(m) \mathbf{F}_m.$

(C) $\sum_{m=0}^{N-1} \hat{z}(m/2) F_m.$

(D) None of the above.

4. If $F = \{F_0, F_1, ..., F_{N-1}\}$ is the Fourier basis for $l^2(\mathbb{Z}_N)$, then $\hat{z} = ----$.

(C) $\frac{1}{2}[z]_{F}$.

(D) None of the above.

(A)
$$W_4 = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & -i & -1 & i \\ 1 & -1 & 1 & -1 \\ 1 & i & -1 & -i \end{bmatrix}$$
 (B) $W_4 = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & -i & -1 & 1 \\ 1 & -1 & 1 & -1 \\ 1 & i & -1 & -i \end{bmatrix}$

(B)
$$W_4 = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & -i & -1 & 1 \\ 1 & -1 & 1 & -1 \\ 1 & i & -1 & -i \end{bmatrix}$$

(C)
$$W_4 = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & -i & -1 & i \\ 1 & -1 & 1 & -1 \\ 1 & i & 1 & 1 \end{bmatrix}$$
 (D) $W_4 = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & -i & -1 & i \\ 1 & -1 & 1 & -1 \\ i & i & -1 & -i \end{bmatrix}$

(D)
$$W_4 = \begin{vmatrix} 1 & 1 & 1 & 1 \\ 1 & -i & -1 & i \\ 1 & -1 & 1 & -1 \\ i & i & -1 & -i \end{vmatrix}$$

6. $W_4^{-1} = ----$

(A)
$$\frac{1}{4} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & i & -1 & i \\ 1 & -1 & 1 & -1 \\ 1 & -i & -1 & i \end{bmatrix}.$$

(B)
$$\frac{1}{4} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & i & -1 & -i \\ 1 & -1 & 1 & -1 \\ 1 & -i & -1 & i \end{bmatrix}.$$

(C)
$$\frac{1}{4} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & i & -1 & -i \\ 1 & -1 & 1 & -1 \\ 1 & i & -1 & i \end{bmatrix}.$$

- (D) None of the above.
- Suppose N = 6, k = 2 and z = (2, 3 i, 2i, 4 + i, 0, 1), then $(R_2z)(0) = -i$
 - (A) 0.

(C) 2.

- 8. Suppose N = 6, k = 2, and z = (7, 3 i, 2i, 4 + i, 7, 1), then $(R_2z)(0) = -i$
 - (A) 0.

(C) 2.

- (D) None of the above options.
- 9. Suppose N = 6, k = 3, and z = (2, 3 i, 2i, 4 + i, 5, 1), then $(R_3z)(0) = ----$
 - (A) 2.

(C) 5.

- (B) 3-i. (D) 4+i.
- 10. Suppose N = 6, k = 4, and $z = (2, 3 i, 2i, 4 + i, 5, 1), then <math>(R_4 z)(0) = ---$

- Suppose N = 6, k = 4, and z = (2, 3 i, 2i, 4 + i, 5, 1), then $(R_4 z)(1) = -----$.

(B) 3 - i.

- Suppose N = 6, k = 2, and z = (2, 3 i, 2i, 4 + i, 5, 1) then $(R_2z)(4) = ----$
 - (A) 2

(B) 2i.

(C) 5.

(D) 2i.

13. Suppose N = 6, k = 4, and z = (2, 3 - i, 2i, 4 + i, 5, 1) then $(R_4 z)(4) = \frac{1}{2}$

(A) 2

(B) 3-i.

(C) 5.

(D) 2i.

14. The vector $(z*w)^{\wedge} \in l^2(\mathbb{Z}_4)$ where

$$\hat{z} = (4, 1+i, -2, 1-i)$$

and

$$\hat{w} = (1 + 2i, -2 + i, 1, i)$$

- (A) (4+8i, -3-i, -2, 1+i). (B) (4-8i, -3-i, -2, 1+i). (C) (4+8i, -3-i, 2, 1+i). (D) (4+8i, 3+i, -2, 1+i).

15. Let $z, w \in l^2(\mathbb{Z}_N)$. Then for any $k, j \in \mathbb{Z}, \langle R_k z, R_j w \rangle = \underline{\hspace{1cm}}$

(A) $\langle R_{k+j}z, w \rangle$.

(C) $\langle \mathbf{R}_{k-2j}z, w \rangle$.

16. For a sequence $z = (z(n))_{n \in \mathbb{Z}}$, the upsampling operator on $l^2(\mathbb{Z})$ is defined by ———.

- (A) $U(z)(n) = \begin{cases} z(n/2) & \text{if } n \text{ is even,} \\ 0 & \text{if } n \text{ is odd.} \end{cases}$ (B) $U(z)(n) = \begin{cases} z(n/2) & \text{if } n \text{ is odd,} \\ 0 & \text{if } n \text{ is even.} \end{cases}$
- (C) $U(z)(n) = \begin{cases} z(2n) & \text{if } n \text{ is even,} \\ 0 & \text{if } n \text{ is odd.} \end{cases}$ (D) $U(z)(n) = \begin{cases} z(2n) & \text{if } n \text{ is odd,} \\ 0 & \text{if } n \text{ is even.} \end{cases}$

17. Suppose $u, v \in l^2(\mathbb{Z})$. The system matrix of u and v is $A(\theta) = ----$

- (A) $\sqrt{2}\begin{bmatrix} \hat{u}(\theta) & \hat{v}(\theta) \\ \hat{u}(\theta+\pi) & \hat{v}(\theta+\pi) \end{bmatrix}$. (B) $\begin{bmatrix} \hat{u}(\theta) & \hat{v}(\theta) \\ \hat{u}(\theta+\pi) & \hat{v}(\theta+\pi) \end{bmatrix}$. (C) $\frac{1}{2}\begin{bmatrix} \hat{u}(\theta) & \hat{v}(\theta) \\ \hat{u}(\theta+\pi) & \hat{v}(\theta+\pi) \end{bmatrix}$. (D) $\frac{1}{\sqrt{2}}\begin{bmatrix} \hat{u}(\theta) & \hat{v}(\theta) \\ \hat{u}(\theta+\pi) & \hat{v}(\theta+\pi) \end{bmatrix}$.

- 18. Suppose $N = 2^n$ for some $n \in \mathbb{N}$. Then $\#_N \leq \underline{\hspace{1cm}}$
 - (A) $\frac{1}{3}$ N log₂ N.

(B) $\frac{1}{4}$ N log₂N.

(C) $\frac{1}{2}$ N log₂N.

- (D) None of the above.
- 19. Suppose H is a Hilbert space, $\left\{a_j\right\}_{j\in\mathbb{Z}}$ is an orthonormal set in H, and $f\in H$. Then
 - (A) $\sum_{j \in \mathbb{Z}} \left| \left\langle f, \alpha_j \right\rangle \right|^2 \ge \left\| f \right\|^2$.
- (C) $\sum_{j \in \mathbb{Z}} \left| \left\langle f, \alpha_j \right\rangle \right|^2 = \left\| f \right\|^2$.
- (B) $\sum_{j \in \mathbb{Z}} \left| \left\langle f, a_j \right\rangle \right|^2 \le \|f\|^2$. (D) $\sum_{j \in \mathbb{Z}} \left| \left\langle f, a_j \right\rangle \right|^2 \le 4 \|f\|^2$.
- 20. Let $T: l^2(\mathbb{Z}_N) \to l^2(\mathbb{Z}_N)$ be a translation-invariant linear transformation. Then
 - (A) $\det T = 1$.

(B) $\det T = 0$.

(D) None of the above.

\mathbf{D}	225	73
--------------	-----	----

(Pages: 4)

Reg. No.....

FOURTH SEMESTER M.Sc. DEGREE (REGULAR/SUPPLEMENTARY) EXAMINATION, APRIL 2022

April 2021 Session for SDE/Private Students

(CBCSS)

Mathematics

MTH 4E 13—WAVELET THEORY

(2019 Admission onwards)

Time: Three Hours Maximum: 30 Weightage

General Instructions

Covid Instructions are not applicable for Pvt/SDE students (April 2021 session)

- 1. In cases where choices are provided, students can attend all questions in each section.
- 2. The minimum number of questions to be attended from the Section/Part shall remain the same.
- 3. The instruction if any, to attend a minimum number of questions from each sub section/sub part/sub division may be ignored.
- 4. There will be an overall ceiling for each Section/Part that is equivalent to the maximum weightage of the Section/Part.

Part A

Answer all questions.

Each question carries a weightage of 1.

- 1. Examine whether the matrix $\begin{bmatrix} 3 & 2+i & -1 & 4i \\ 4i & 3 & 2+i & -1 \\ -1 & 4i & 3 & 2+i \\ 2+i & -1 & 4i & 3 \end{bmatrix}$ is circulant or not.
- 2. Suppose z, $w \in l^2(\mathbb{Z}_N)$. For $k \in \mathbb{Z}$, prove that $z * \overline{w}(k) = \langle z, R_k w \rangle$.
- 3. If $X: \mathbb{Z}_N \to \mathbb{C}$ is multiplicative, and if $X \neq 0$ then prove that $X(n) = [X(1)]^n$.
- 4. Define upsampling operator on Z.
- 5. Define homogeneous wavelet system for $l^2(\mathbb{Z})$.

- 6. Give an inner product of $L^2(\mathbb{R})$.
- 7. Define translation and conjugate reflection of a function $f: \mathbb{R} \to \mathbb{C}$.
- ·8. Define wavelet system for $L^2(\mathbb{R})$.

 $(8 \times 1 = 8 \text{ weightage})$

Part B

Answer any **two** questions from each module. Each question carries a weightage of 2.

Module I

- 9. Let $w = (2,4,+4i-6,4-4i) \in l^2(\mathbb{Z}_4)$ and it is given that $W_4 = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & -i & -1 & i \\ 1 & -1 & 1 & -1 \\ 1 & i & -1 & -i \end{bmatrix}$. Find \tilde{w} .
- 10. Suppose $z, w \in l^2(\mathbb{Z}_N)$. Then prove that for each m, $\widehat{(z*w)}(m) = \overline{z}(m)\widehat{w}(m)$.
- 11. Let $z, w \in l^2(\mathbb{Z}_N)$. Then prove that $\langle R_k z, R_j w \rangle = \langle R_{k-j} z, w \rangle$ for any $k, \in \mathbb{Z}$.

Module II

- 12. If f and g are members of $L^2\left(\left[-\pi,\pi\right)\right)$, then prove that $f\cdot g\in L^1\left(\left[-\pi,\pi\right)\right)$.
- 13. Suppose H is a Hilbert space and T: H \rightarrow H is a bounded linear transformation. Suppose the series $\sum_{n\in\mathbb{Z}}x_n$ converges in H. Then prove that $\mathrm{T}(\sum_{n\in\mathbb{Z}}x_n)=\sum_{n\in\mathbb{Z}}\mathrm{T}(x_n)$ where the series on the right converges in H.
- 14. Suppose H is a Hilbert space, $\{a_j\}_{j\in\mathbb{Z}}$ is an orthonormal set in H, and $f\in H$. Then prove that the sequence $\{\langle f,a_j\rangle\}_{j\in\mathbb{Z}}$ belongs to $l^2(\mathbb{Z})$ with $\sum_{j\in\mathbb{Z}}\left|\langle f,a_j\rangle\right|^2\leq \|f\|^2$.

Module III

- 15. By means of examples, show that there is no containment between $L^1(\mathbb{R})$ and $L^2(\mathbb{R})$.
- 16. Suppose $f, g \in L^1(\mathbb{R})$. Then prove that $f * g \in L^1(\mathbb{R})$ and $||f * g||_1 \le ||f||_1 ||g||_1$.
- 17. Suppose $f, g \in L^1(\mathbb{R})$ and $\hat{f}, \hat{g} \in L^1(\mathbb{R})$. Then prove that $\langle \hat{f}, \hat{g} \rangle = 2\pi \langle f, g \rangle$.

 $(6 \times 2 = 12 \text{ weightage})$

Part C

Answer any **two** questions. Each question carries a weightage of 5.

- 18. (a) Let $T: l^2(Z_N) \to l^2(Z_N)$ be a translation-invariant linear transformation. Then prove that each element of the Fourier basis F is an eigen vector of T.
 - (b) Define $T: l^2(Z_4) \to l^2(Z_4)$ by T(z)(n) = z(n) + 2z(n+1) + z(n+3). Find the eigen values and eigen vectors of T, and diagonalize the matrix A representing T in the standard basis.
- 19. (a) Suppose $N = 2^n$ for some $n \in \mathbb{N}$. Then prove that $\neq_N \leq \frac{1}{2} N \log_2 N$, where $\#_N$ is the least number of complex multiplications required to compute the D.F.T.
 - (b) Suppose $M \in \mathbb{N}$, N = 2M, and $w \in l^2(\mathbb{Z}_N)$. Then prove that $\{\mathbb{R}_{2k}w\}_{k=0}^{M-1}$ is an orthonormal set with M elements if and only if

$$|\hat{w}(n)|^2 + |\hat{w}(n+M)|^2 = 2 \text{ for } n = 0, 1, ..., M-1.$$

- 20. (a) Suppose $f \in L^1([-\pi, \pi))$ and $\langle f, e^{in\theta} \rangle = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(\theta) e^{-in\theta} d\theta = 0$ for all $n \in \mathbb{Z}$. Then prove that $f(\theta) = 0$ a.e.
 - (b) Suppose $\theta_0 \in (-\pi, \pi)$ and $\alpha > 0$ is sufficiently small that $-\pi < \theta_0 \alpha < \theta_0 + \alpha < \pi$. Define intervals.

$$I = (\theta_0 - \alpha, \theta_0 + \alpha),$$

$$I = (\theta_0 - \alpha, \theta_0 + \alpha),$$
 and
$$J = (\theta_0 - \alpha/2, \theta_0 + \alpha/2).$$

Then prove that there exists $\delta > 0$ and a sequence of real-valued trigonometric polynomials $\{p_n(\theta)\}_{n=1}^{\infty}$ such that

- (i) $p_n(\theta) \ge 1$ for $\theta \in I$. (ii) $p_n(\theta) \ge (1+\delta)^n$ for $\theta \in J$.
- (iii) $|p_n(\theta)| \le 1$ for $\theta \in [-\pi, \pi) \setminus I$.

- 21. (a) Suppose $f,g \in L^2(\mathbb{R})$. Then prove that for all $x \in \mathbb{R}$ $|(f*g)(x)| \le ||f|| ||g||$.
 - (b) Suppose $f \in L^2(\mathbb{R})$. Then prove that

$$f = (\hat{f})^{\vee}$$

and

$$f = \left(\stackrel{\vee}{f} \right)^{\wedge}$$
.

CHNIK LIBRARY UNIVERSITY OF

\boldsymbol{C}	กก		$\overline{}$	ດ	٨
v	22	O	1	Z-	Α

(Pages: 4)

Name

Reg. No.....

FOURTH SEMESTER M.Sc. DEGREE [REGULAR/SUPPLEMENTARY] EXAMINATION, APRIL 2022

April 2021 Session for SDE/Private Students

(CBCSS)

Mathematics

MTH4E12—REPRESENTATION THEORY

(2019 Admission onwards)

(Multiple Choice Questions for SDE Candidates)

Time: 20 Minutes

Total No. of Questions: 20

Maximum: 5 Weightage

INSTRUCTIONS TO THE CANDIDATE

- 1. This Question Paper carries Multiple Choice Questions from 1 to 20.
- 2. The candidate should check that the question paper supplied to him/her contains all the 20 questions in serial order.
- 3. Each question is provided with choices (A), (B), (C) and (D) having one correct answer. Choose the correct answer and enter it in the main answer-book.
- 4. The MCQ question paper will be supplied after the completion of the descriptive examination.

MTH4E12—REPRESENTATION THEORY

(Multiple Choice Questions for SDE Candidates)

7	T = 4 A () h= =	representation	of a amou	~ C	Mhich	of the	following	ie	false	?
1.	Let A (x) be a	representation	or a grou	ιρ Cr.	AATHCH	or me	TOTTOWITTE	10	Idibo	•

- (A) $A(x^{-1}) = (A(x))^{-1}$ for every $x \in G$. (B) A(1) = I.
 - (D) A(x)A(y) = A(xy) for every $x, y \in G$. (C) $\text{Ker A} = \{1\}.$
- 2. A function having the same value throughout a conjugacy class is called:
 - (A) Constant function.
- (B) Group function.
- (C) Conjugate function.
- Class function. (D)
- If χ and $\overline{\chi}$ are the characters of A(x) and A[†](x) respectively, then:
 - χ is simple if and only if $\bar{\chi}$ is simple.
 - χ is simple but $\overline{\chi}$ need not be simple.
 - $\bar{\chi}$ is simple even when χ is not simple.
 - (D) None of these.
- 4. Suppose that U and V are irreducible G—modules over K. Then a G—homomorphism $\theta: V \to U$ is:
 - (A) Always an isomorphism.
- (B) Always the zero map.
- (C) Neither zero nor an isomorphism. (D) Either zero or an isomorphism.
- 5. The character of an irreducible representation is called:
 - (A) Trivial character.

(C) Simple character.

- 6. Let $\chi^{(1)}, \chi^{(2)}, ..., \chi^{(r)}$ be the complete set of simple characters of a group G of order g corresponding to the irreducible representations $F^{(1)}$, $F^{(2)}$,..., $F^{(r)}$. If A is an arbitrary representation, and ϕ is the character of A, then the Fourier analysis of ϕ or A is:
 - (A) $\phi = \sum_{j=1}^{g} d_j \chi^{(j)}$ where $d_j = \langle \phi, \chi^{(j)} \rangle$. (B) $\phi = \sum_{j=1}^{g} d_j \chi^{(j)}$ where $d_j = \langle \phi, \phi \rangle$. (C) $\phi = \sum_{j=1}^{r} d_j \chi^{(j)}$ where $d_j = \langle \phi, \phi \rangle$. (D) $\phi = \sum_{j=1}^{r} d_j \chi^{(j)}$ where $d_j = \langle \phi, \chi^{(j)} \rangle$.
- 7. Let $R(x) = r_{ij}(x)$ be the right regular representation of a G-module G_c with basis vectors $[x_1, x_2, ..., x_g]$. If $x_i x_j = x_{\mu(i,j)}$ in G, then $r_{ij}(x_s) =$

(B) $\delta_{\mu(i,s),i}$

(D) $\delta_{u(i,s),i}$.